TAMU-CC Repository

The Texas A&M University‐Corpus Christi (TAMU‐CC) repository is an open online site for storing and sharing digital content created or owned by the TAMU‐CC community. Content includes published and unpublished research and scholarship as well as archival materials. The service is managed by the Mary and Jeff Bell Library in cooperation with the Texas Digital Library. Learn more


Communities in DSpace

Select a community to browse its collections.

Now showing 1 - 12 of 12

Recent Submissions

Toward a more comprehensive approach for dissolved organic matter chemical characterization using an Orbitrap Fusion Tribrid mass spectrometer coupled with ion and liquid chromatography techniques
(American Chemical Society, 2024-02-19) Bergmann, Daniela; Matarrita-Rodriguez, Jessie; Abdulla, Hussain
Dissolved organic matter (DOM) represents one of the largest active organic carbon pools in the global carbon cycle. Although extensively studied, only <10% of DOM has been chemically characterized into individual dissolved compounds due to its molecular complexity. This study introduced a more comprehensive DOM characterization method by coupling both ion chromatography (IC) and liquid chromatography (LC) with high mass accuracy and resolution mass spectrometry. We presented a new on-the-fly mass calibration of the Orbitrap technique by utilizing the “lock mass” function in the Orbitrap Fusion Tribrid mass spectrometer (OT-FTMS), which assures high mass accuracy at every scan by a postcolumn introduction of internal labeled standards. With both IC and LC, tested unlabeled standards of amino acids, small peptides, and organic acids were consistently below 1.0 ppm mass error, giving the OT-FTMS the potential of reaching mass accuracy of the Fourier-transform ion cyclotron resonance mass spectrometer. In addition to mass accuracy, a pooled quality control sample (QC) was used to increase reproducibility by applying systematic error removal using random forest (SERRF). Using an untargeted mass spectrometry approach, estuarine DOM samples were analyzed by OT-FTMS coupled to IC in negative mode and LC in positive mode detection to cover a wide range of highly cationic to highly anionic molecules. As a proof of concept, we focused on elucidating the structures of three distinct DOM compound classes with varied acidities and basicities. In UPLC-OT-FTMS, a total of 915 compounds were detected. We putatively elucidated 44 small peptides and 33 deaminated peptides of these compounds. With IC-OT-FTMS, a total of 1432 compounds were detected. We putatively elucidated 20 peptides, 268 deaminated peptides, and 188 organic acids. Except for five compounds, all putatively elucidated compounds were uniquely detected in their corresponding chromatography technique. These results highlight the need for combining these two techniques to provide a more comprehensive method for DOM characterization. Application of the combined IC and LC techniques is not limited to DOM chemical characterization. It can analyze other complex compound mixtures, such as metabolites, and anthropogenic pollutants, such as pesticides and endocrine-disrupting chemicals, in environmental and biological samples.
Kinematics and controlling factors of slow-moving landslides in central Texas: A multisource data fusion approach
(2024-05-14) Gebremichael, Esayas; Hernandez, Rosbeidy; Alsleben, Helge; Ahmed, Mohamed; Denne, Richard; Harvey, Omar
The Austin metropolitan area has experienced unprecedented economic and population growth over the past two decades. This rapid growth is leading communities to settle in areas susceptible to landslides, necessitating a comprehensive analysis of landslide risks and the development of early warning systems. This could be accomplished with better confidence for slow-moving landslides, whose occurrences could be forecasted by monitoring precursory ground displacement. This study employed a combination of ground- and satellite-based observations and techniques to assess the kinematics of slow-moving landslides and identify the controlling and triggering factors that contribute to their occurrence. By closely examining landslide events in the Shoal Creek area, potential failure modes across the study area were inferred. The findings revealed that landslide-prone areas are undergoing creep deformation at an extremely slow rate (up to −4.29 mm/yr). These areas lie on moderate to steep slopes (>22◦) and are predominantly composed of clay-rich units belonging to the Del Rio and Eagle Ford formations. Based on the incidents at Shoal Creek, episodes of intense rainfall acting on the landslide-prone areas are determined to be the main trigger for landslide processes in the region.
Cellular response of keratinocytes to the entry and accumulation of nanoplastic particles
(2024-04-29) Martin, Leisha; Simpson, Kayla; Brzezinski, Molly; Watt, John; Xu, Wei
Plastic accumulation in the environment is rapidly increasing, and nanoplastics (NP), byproducts of environmental weathering of bulk plastic waste, pose a significant public health risk. Particles may enter the human body through many possible routes such as ingestion, inhalation, and skin absorption. However, studies on NP penetration and accumulation in human skin are limited. Loss or reduction of the keratinized skin barrier may enhance the skin penetration of NPs. The present study investigated the entry of NPs into a human skin system modeling skin with compromised barrier functions and cellular responses to the intracellular accumulations of NPs. Two in vitro models were employed to simulate human skin lacking keratinized barriers. The first model was an ex vivo human skin culture with the keratinized dermal layer (stratum corneum) removed. The second model was a 3D keratinocyte/ dermal fibroblast cell co-culture model with stratified keratinocytes on the top and a monolayer of skin fibroblast cells co-cultured at the bottom. The penetration and accumulation of the NPs in different cell types were observed using fluorescent microscopy, confocal microscopy, and cryogenic electron microscopy (cryo-EM). The cellular responses of keratinocytes and dermal fibroblast cells to stress induced by NPs stress were measured. The genetic regulatory pathway of keratinocytes to the intracellular NPs was identified using transcript analyses and KEGG pathway analysis. The cellular uptake of NPs by skin cells was confirmed by imaging analyses. Transepidermal transport and penetration of NPs through the skin epidermis were observed. According to the gene expression and pathway analyses, an IL-17 signaling pathway was identified as the trigger for cellular responses to internal NP accumulation in the keratinocytes. The transepidermal NPs were also found in co-cultured dermal fibroblast cells and resulted in a large-scale transition from fibroblast cells to myofibroblast cells with enhanced production of α-smooth muscle actin and pro-Collagen Ia. The upregulation of inflammatory factors and cell activation may result in skin inflammation and ultimately trigger immune responses.
Dynamics of methane emissions from northwestern Gulf of Mexico subtropical seagrass meadows
(2024-03-21) Yu, Hao; Coffin, Richard; Organ, Hannah
While seagrass meadows are perceived to be pertinent blue carbon reservoirs, they also potentially release methane (CH4) into the atmosphere. Seasonal and diurnal variations in CH4 emissions from a subtropical hypersaline lagoon dominated by Halodule wrightii in southern Texas, USA, on the northwest coast of the Gulf of Mexico were investigated. Dissolved CH4 concentrations decreased in the daytime and increased overnight during the diel observation period, which could be explained by photosynthesis and respiration of seagrasses. Photosynthetic oxygen was found to significantly reduce CH4 emissions from seagrass sediment. Diffusive transport contributed slightly to the release of CH4 from the sediment to the water column, while plant mediation might be the primary mechanism. The diffusive CH4 flux at the sea-air interface was 12.3–816.2 µmol/m2 d, over the range of the sea-air fluxes previously reported from other seagrass meadows. This was related to relatively higher dissolved CH4 concentrations (11.6–258.2 nmol/L) in a mostly closed lagoon with restricted water exchange. This study emphasizes seagrass meadows in the subtropical hypersaline lagoon as a source of atmospheric CH4, providing insights into the interactions between seagrass ecosystems and methane dynamics, with potential implications for seagrass meadow management and conservation efforts.
Global diversity and distribution of rhizosphere and root‑associated fungi in coastal wetlands: A systematic review
(2024-03-22) Lumibao, Candice Y.; Harris, Georgia; Birnbaum, Christina
Coastal wetlands have been long recognized for their importance to biodiversity and many biogeochemical processes including carbon sequestration; however, our understanding of plant-microbe interactions that govern many processes in these ecosystems remains elusive. Fungal communities are known to play critical roles in coastal wetlands, particularly due to their close relationships with plants, yet, systematic understanding of their distributional patterns and the factors shaping these patterns in natural coastal wetland environments has been rarely assessed. We synthesized existing published literature from fifty-one studies spanning 60 years to examine global fungal distributional patterns in coastal wetlands, draw linkages between fungi, the plant communities, and their environment, and identify gaps in fungal research and suggest future research directions. We focused on studies that reported root-associated fungi and fungi from the plant rhizosphere (i.e., soil surrounding roots) in coastal dunes, intertidal flats, salt marshes, and tidal wetlands. Our synthesis has revealed that (1) 203 fungal species were reported from salt marshes, 59 fungal species from coastal dunes, 32 from tidal wetlands, and ten from intertidal flats; (2) rhizosphere fungal communities were more species-rich and reported more often for all ecosystems except in salt marshes; and (3) nineteen different fungal guilds, which are predominantly arbuscular mycorrhizal fungi. We conclude that more research is needed to better understand root-associated fungal diversity in less studied ecosystems reviewed here. We have identified knowledge gaps in reported data and outlined suggestions to facilitate future plant-fungal research in these declining, but important, coastal ecosystems.