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ABSTRACT

Mapping and path planning in disaster scenarios is an area that has benefited

from aerial imaging and unmanned aerial vehicles (UAVs). However, the integration

of an unmanned surface vehicle (USV) in flood rescue operations has not received

much attention. We propose a novel map generation and path planning algorithm,

which makes use of aerial imaging provided by a UAV in combination with surface

level information provided by a USV. Since the aerial image is a 2D projection of a

3D world, some areas of interest could be uncertain, such as under trees. Despite this

issue, a Probabilistic Roadmap (PRM) path planning algorithm can be applied to the

image in order to find near-optimal paths for a rescue boat between initial and target

locations. With the method proposed here, the preliminary PRM solution is further

improved by means of an online feedback structure, where local information provided

by the USV is incorporated to the overall map as soon as it becomes available,

eliminating uncertainties. Simulation results demonstrate the effectiveness of the

proposed approach for improving the time response in search and rescue operations

in flooded areas.
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CHAPTER 1

INTRODUCTION

Natural disasters have serious impacts on human lives in terms of both losses of

life and property. One of nature’s most turbulent years was 1998. Floods wreaked

havoc in Asia, Europe, North America, and South America. Many people suffered

from these heavy floods which had cost great casualties and losses. USVs and UAVs

have seen recent use in helping with various rescue operations. There are many ap-

plication areas of USVs which consist of environmental monitoring [1], hazardous

spill detection [2], victim recovery [3], river mapping [4], surveillance of shipwreck

survivors at sea [5] and object recovery on the sea surface [6]. In Hurricane Wilma,

2005, UAVs and USVs were used for the first time as a cooperation system for the

recovery phase of disaster management by detecting damage to seawalls and piers,

locating submerged debris and determining safe lanes for sea navigation [2]. How-

ever, the existing UAV and USV cooperation systems have not had much attention

for flood relief operations, especially for victim search and rescue. There are many

challenges for flood rescue operations with existing systems where the time response

is critical. The environment is completely changing under flood conditions, especially

when some chemical substances spill into the flood areas and it causes a dangerous

environment for victims and as well as rescue operators. Rescue boats are widely

used for searching and rescuing the victims in the flooded areas. However, rescue

boats have a limited view while searching and rescuing the victims. By using UAVs,

an aerial image can be taken off the flooded environment and this aerial image can

provide global information such as the location of victims and landmarks. The rescue

operations can be organized based on a generated flood environment map by using

this global information. Since global information includes the 2D projections of a
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Figure 1.: Aerial view of a flooded environment

3D world, some areas of interest could be uncertain, such as under trees. By using

the USV, the local information such as clearance of the trees can be inferred from

the surface and then this local information can be helpful to reduce uncertainties

to enhance the modeled map for rescue boat path planning. Figure 1 displays a

typical urban flood scenario where a USV can work to help rescue operations. In

this scenario, the trees occupy a large area, making it hard to detect the clearances.

By using a USV, the clearance can be determined and then combined with global

aerial information to cooperatively build a map model for path planning of a rescue

boat. This research mainly aims at a cooperative map generation by using global

information from UAV and local information from USV to help flood rescue opera-

tions by applying path planning and decision-feedback algorithms. To the authors’

knowledge, this is the first known study of rescue boat path planning by using USV

and aerial imaging in flooded urban environments.
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1.1 Related Work

Using unmanned vehicles in rescue operations is not a brand new topic. Deng et

al. [7] studied automatic ground map building and path planning in a UAV/UGV

cooperative system for ground disaster rescue operations. More recently, Lakas et

al. [8] introduced a framework for cooperative mission planning where a UAV and a

UGV work cooperatively for a rescue task. Zhang et al. [9] introduced a new system

which consists of a USV, a UAV, and a take-off and landing system. In 2017, Xiao et

al. [10] present the first known implementation of a small UAV visually navigating a

USV to solve flood rescue operations the rescuers victims in a more efficient manner.

In the field of map building, many computer vision algorithms have been de-

veloped in the literature. Costea et al. [11] proposed a system for geo-localization

from aerial images in the absence of GPS information. This research includes the

development of computer vision algorithms for the recognition of road, intersections,

buildings, and landmarks. Zhou et al. [12] present an efficient road detection and

tracking framework in UAV videos is proposed. Li et al. [7] proposed a ground

map construction by the aerial image from UAV which was processed with image

denoising, correction and obstacle detection techniques in UAV/UGV cooperation

system. A survey on computer-vision algorithms for obstacle detection in aerial im-

ages which are produced by UAV is analyzed in [13]. More recently, Gunasekaran et

al. proposed a map generation in a static unknown environment by using a mobile

robot [14].

In the field of path planning, it has become one of the fundamental study areas

in UGV and USV systems. Cheng et al. [15] proposed an improved hierarchical A*

algorithm to solve parking path planning issues of a large park. In [16], a heuristic-

based method is proposed to search the feasible initial path efficiently to solve the

3



problem of dynamic environments. Li et al. [7] proposed a hybrid path planning

method which consisted of genetic algorithm and local rolling optimization methods.

Kurdi et al. [17] presented probabilistic roadmap (PRM) path planning method for

UGV by using digital map of UAV/UGV cooperative system. However, the existing

UAV and USV cooperation systems have not had much intention than UAV/UGV

cooperation systems in the research area of path planning. Line-of-sight control is the

most widely used control strategy for path planning of UAV/USV system. Nizami

et al. [18] presented the first known implementation of rescue boat path planning

by using A*, Dijkstra and Breadth-first algorithms in 2012. However, this proposed

system has some limitations. For example, the environment is defined as a marine

with fully certain islands but uncertain areas in the aerial image are ignored and

a flooded urban environment is not tested with the proposed approach. Therefore,

further study is needed to improve the performance of path planning to consider

uncertainty areas in complex scenarios.

1.2 Contributions

In this research, we consider a flood rescue application where the main goal is to

explore an uncertain environment by USV to build a real-time ground map and plan

near-optimal paths for a rescue boat. The main contributions of this research are as

follows:

1. Using the UAV, a ground image is obtained from above, and then processed

to segment obstacles. The segmentation of the obstacles is done by using

image processing algorithms such as image denoising and obstacle recognition

techniques. This creates a ground map based on the locations of obstacles and

the feasible paths. State of the art solutions on map generation does not take

4



into account the mapping uncertainty. In this study, we propose a novel map

building approach where the clearance of obstacles is taken into account along

with their corresponding uncertainty levels.

2. Based on the generated ground map, we developed a mission planning algo-

rithm which consists of PRM path planning and decision-feedback building

algorithms. The PRM algorithm is used for the rescue boat and as well the

USV to achieve desired target points on the generated map. The decision-

feedback algorithm is used to get local information from the USV’s sensors

while following the near-optimal paths to minimize uncertainties for improving

the generated ground map.

3. Simulations are performed using a MATLAB based simulator to drive the USV,

observe the range sensor readings and USV poses to validate the performance

of the proposed approach.

5



CHAPTER 2

PROPOSED APPROACH

In this paper, we address the problem of mapping an unknown flood environment

by recognizing obstacles and roads in the aerial images which are captured by a

UAV. We consider a typical flood disaster scenario where the USV can explore the

uncertain areas for assisting rescue boat to plan optimal trajectories for reaching the

victims.

Figure 2 shows the general system design of the proposed approach. When

the UAV transmits the aerial image to the USV, the first step is image denoising to

recover the aerial image to remove present noise in the aerial image because the noise

will affect the performance of the following steps. After image enhancement, obstacles

are extracted as certain and uncertain obstacles and stored in a map structure. Based

on the generated ground map, the rescue boat, as well as USV, can plan a path to

reach destination points. The first step of path planning is applying the PRM path

planning algorithm to find near-optimal paths on the generated ground map. Then,

a decision-feedback algorithm is applied to decide which path needs to be followed

by the rescue boat and whether USV needs to join rescue operations by removing

uncertainty for the purpose of finding a better path for the rescue boat. If the

USV needs to join rescue operations, a trajectory following algorithm is applied for

trajectory tracking of USV and local information by USV’s range sensor are used

to enhance the initial generated ground map. The main processes of the proposed

approach is shown in Algorithm 1. These processes are detailed in the following

sections.
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Figure 2.: General system design
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Algorithm 1: The Main System Algorithm

Input : A flooded urban environment to perform rescue operations

Output: The near-optimal paths for RB to help rescue operations and an

uncertainty cleared ground map

1 Begin

2 Record the ground image from aerial vision by UAV

3 Perform image denoising and segmentation algorithms

4 Apply Map Building Algorithm to model a ground map based on the

uncertainty level of the obstacles

5 Define the initial and destination points in the ground map map

6 Apply PRM algorithm into the modeled aerial map to find preliminary

near-optimal paths which can be followed by the RB and USV

7 Apply Decision-Feedback algorithms to decide whether or not USV needs

to explore uncertain areas in the ground map to generate real-time

cooperative ground map and to enhance the preliminary path for RB

8 End

8



2.1 Hardware and Software

In this section, we will provide more details about the hardware and software which

are used for the USV for testing system algorithms.

2.1.1 Differential (Nonholonomic) Drive USV

We adopted a differential drive robot in MATLAB based 2D Robot Simulator to

USV Simulator to validate the performance of the proposed approach [19]. The USV

Simulator uses the Pure pursuit path following controller to drive a simulated USV

along a predetermined path. At each loop iteration, position of the USV (USVPose (x,

y, theta)) is changing based on the velocity of the USV (S) and an arbitrary refresh

period (dt) with respect to Pure pursuit controller which is shown in Equation (2.3),

Equation (2.4) and Equation 2.5. The parameters and functions of differential drive

USV are defined as follows:

1. USVPose (x, y, θ): Current pose of USV

2. Linear velocity (V ): Current linear forward velocity of USV (m/s)

3. Angular velocity (ω): Current angular velocity of USV (rad/s)

4. Maximum linear velocity (vmax): Maximum allowable linear velocity for USV

(m/s)

5. Maximum angular velocity (ωmax): Maximum allowable angular velocity for

USV (rad/s)

dx = dt ∗ V ∗ cos(USVPose(θ)) (2.1)

dy = dt ∗ V ∗ sin(USVPose(θ)) (2.2)

9



Figure 3.: Pure pursuit algorithm look-ahead distance comparison

USVPose(x) = USVPose(x) + dx (2.3)

USVPose(y) = USVPose(y) + dy (2.4)

USVPose(θ) = wrapToPi(USVPose(θ) + dθ) (2.5)

2.1.2 Pure Pursuit Trajectory Tracking Algorithm

The Pure Pursuit (PP) is a trajectory following algorithm where it computes the

angular velocity which is needed for a non-holonomic vehicle to move from its current

position to reach some look-ahead point in front of the robot [20]. The angular

velocity is based on the robot’s current position and the look-ahead distance which

decides how far the look-ahead point is placed from the robot’s current position. The

look-ahead distance is the main tuning property of the PP algorithm. The aim of

the look-ahead distance is how far along the path the robot should look from the

current location to compute the angular velocity.

10



Figure 4.: Geometric explanation of Pure pursuit algorithm

The effect of changing look-ahead distance values can alter how the USV follows

the path. A small look-ahead distance can result in oscillating behavior along the

path. In order to avoid the oscillating, a larger look-ahead distance can be given but

it might cause larger curvature near the corners which is shown in Figure 3 [21].

An overview of the Pure pursuit process is shown in Figure 4. The predefined

path P is the set of straight-line sub-paths between waypoints. USV trajectory is

the actual movement of USV with respect to P.

The Pure pursuit process is implemented as follows: [20]

1. Read USV’s positions to estimate the USV’s coordinates, (Xr, Y r), and angle

θ with respect to the x-axis.

2. Find the point on the path nearest to the USV (Xn, Y n). This is the starting

point to search the line for the furthest point on the line that is within the

look-ahead distance. The line between the USV and the nearest point is called

N .

11



3. Search the line for the furthest point (Xp, Y p) within the look-ahead distance.

The line between the USV and this point is called L.

4. Compute the new angle, θp, needed to direct the USV toward (Xp, Y p).

5. Send θp to the USV.

6. Move in that direction for t seconds, where t is an arbitrary refresh rate. In

this work, t = 0.25 to give the USV time to move before re-calculating and

sending a new command.

7. Repeat process until the distance between the goal and the USV is within a

specified threshold. This threshold is set because the USV need not touch the

exact coordinates of the waypoint. Using pure pursuit, the USV would be

continually overshooting the waypoint and retrying to touch the point.

2.1.3 Particle (Holonomic) Drive USV

We proposed a particle drive USV in MATLAB based 2D Robot Simulator to USV

Simulator to analyze the performance of the proposed approach. The USV simulator

does not use any controller to drive a simulated USV along a predetermined path

in contrast to the differential drive USV system. At each loop iteration, position of

the USV (USVPose (x, y)) is changing based on the speed of the USV (S) which is

shown in Equation 2.6 and Equation 2.7. The parameters and functions of particle

drive USV are defined as follows:

1. USVPose (x, y): Current position of USV

2. Heading (theta): Current heading of USV

3. Speed (S): Speed of USV (m/iteration)

12



USVPose(x) = USVPose(x) + S ∗ cos(θ) (2.6)

USVPose(y) = USVPose(y) + S ∗ sin(θ) (2.7)

2.1.4 Range Sensor Implementation

One of the key elements in any search scenario is to choose a proper sensor for USV. In

this research, we decided to use an omni-directional range sensor for USV to explore

the environments in a more efficient manner. The omni-directional range sensor has

the capability of 360 degrees to sense the environment. Therefore, we decided to

mount the omni-directional range sensor at the center of USV. The sensing area

coordinates which are OS(x) and OS(y) while the USV exploring are defined in

Equation (2.9) and Equation (2.10) below.

OS(θ) = 0 :
π

50
: 2 ∗ π (2.8)

OS(x) = USVPose(x) + r ∗ cos(θ); (2.9)

OS(y) = USVPose(y) + r ∗ sin(θ); (2.10)

2.2 Map Building

In this paper, we study a novel cooperative map building system where the obstacles

will be taken into account, along with their corresponding certainty and uncertainty

levels. Map building is the foundation of path planning, which is critical for a rescue

boat and USV to reach their destinations accurately. For the rescue boat and USV,

the map will be changed dynamically when the vehicle is moving. By contrast, for a

UAV, the ground environmental information is nearly unchanging. Therefore, after

13



Figure 5.: Omni-directional range sensor
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Figure 6.: A ground map model generation

the UAV has collected the ground image, image processing is necessary to build a

ground map. Firstly, the median filtering technique is applied to filter possible noise

in the aerial image. Then, image segmentation techniques are applied to build a

ground map by using the MATLAB Image Segmenter App tools such as flood fill. In

the aerial image, certain obstacle areas such as buildings and landmarks are marked

as black, collision-free areas are marked as white and uncertain areas such as trees

and bridges are marked as gray. After image segmentation, the segmented aerial

image is transferred to the occupancy grid map structure. In occupancy grid map,

cell value of 1 indicates occupied, 0 indicates collision-free and -1 indicates uncertain

which is shown in Table I. Figure 6 shows how a ground map structure looks like

after applied image processing techniques into the aerial image.

Environment Definition Occupancy Grid Representation

Occupied 1

Collision-Free 0

Uncertain -1

Table I.: Occupancy grid representation of ground map
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2.2.1 Map Building Benchmark Algorithm

In this section, we describe a benchmark map building algorithm to compare with

our proposed map building algorithm. In our proposed map building algorithm, the

obstacles are taken into account with certainty and uncertainty levels. In contrast,

traditional image segmentation techniques are taking into account the uncertainty

of the obstacles. In this purpose, we analyzed existed image segmentation algorithm

to generate a binary ground map where the occupied and collision-free areas are

represented as 1 and 0 respectively. Figure 7 shows the general process of image

processing for the benchmark map building algorithm. The process of building the

ground map by using image processing algorithms illustrated in the following main

steps:

1. Image Denoising

In the step of image denoising, Gaussian filtering technique is applied to filter

possible noise in the aerial image.

2. Image Segmentation

In this step, the filtered image is converted to grayscale and then the canny edge

detection technique is applied to extract contours accurately by transforming

the grayscale image to binary image. After extracting the contours, erosion and

dilation morphological operation techniques are applied to model a ground map

by using square structuring elements.

Figure 8 shows the general process of a ground map model generation in the

flooded urban environment image by using the benchmark map building algorithm.
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Figure 7.: A ground map model building process

2.3 Path Planning

In this section, we utilize the generated maps and introduce path planning and a tra-

jectory following algorithms. In flood rescue application, one critical issue is making

sure rescue vehicles will not collide with the obstacles in the path. In our system,

rescue boat and USV should avoid collision with the obstacles while performing their

tasks. In order to solve the obstacle avoidance problem, we applied PRM path plan-

ning to find collision-free paths. If USV needs to explore uncertain areas in the

ground map, USV needs a trajectory following algorithm to visit destination points

by following the waypoints in the ground map. In order to solve the trajectory track-

ing problem of USV, we used Pure pursuit trajectory following algorithm for USV

to follow the collision-free paths.

2.3.1 Probabilistic Roadmap Path Planning Algorithm

Probabilistic roadmap path planning algorithm is a sampling-based path planning

technique which consists of two stages: a construction and a query stage [22]. The

goal of the construction stage is to randomly draw a graph (roadmap) across the

environment. All edges and vertices of the roadmap should be collision-free so that

the RB and USV can use the roadmap for their task planning. The PRM selects a

number of random nodes in the work-space as the vertices where the nodes must not

lie inside of the obstacles. If the number of nodes high, the results would be better
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Figure 8.: A ground map model generation by benchmark algorithm
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in contrast, the computation time would be high. Then, the algorithm connects all

pairs of randomly selected vertices. If any two vertices can be connected by a straight

line, the straight line becomes an edge which is shown in Figure 9.

The goal of the query stage is to use the roadmap which is developed earlier for

finding the shortest path for the rescue boat and USV. The distance between each

node and the position of the nodes should be considered to find the shortest path.

Therefore, a cost function which is the same as in the graphical search algorithms such

as A* algorithm should be applied in this purpose. [23]. The cost function consists

of heuristic and historic functions. The heuristic function, H, stores the weights of

the edges, which are taken as the Euclidean distance between the connecting points,

as shown in Equation (2.11):

H(xi, yi, xj, yj) =
√

(xi − xj)2 + (yi − yj)2 (2.11)

The historic nearness function, N , which determines the nearness of the point to the

goal while finding the Euclidean distance between a point and the goal, as shown in

Equation (2.12):

N(xi, yi, Gxj
, Gyj) =

√
(xi −Gxj

)2 + (yi −Gyj)
2 (2.12)

The cost function, C, is summation of heuristic and historic functions which is show

in Equation (2.13):

C = H(xi, yi, xj, yj) +N(xi, yi, Gxj
, Gyj) (2.13)

2.3.2 Benchmark Algorithms

In this section, we describe the benchmark algorithms for comparisons with the PRM

path planning algorithm.
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(a)

(b)

Figure 9.: (a) Roadmap (b) Path Derived

20



2.3.3 Path Planning using A* Algorithm

A* path planning algorithm is a standard graph search based technique. The A*

algorithm takes a graph as input and explores all the regions to find the shortest

path from the initial point to the destination points in the explored regions. The

A* algorithm is heuristic based and works hierarchically which means that all the

near regions are explored before the further ones while the exploration is also biased

towards the regions closer to the destination points [23].

The A* algorithm would take a very large computation time on a high-resolution

map. Therefore, the map resolution is needed to be reduced by the A* algorithm,

while the resolution is an input parameter of the algorithm. However, the higher

resolution map displays better results while it leads to excessive computation time.

In general, a graph consists of vertices and edges. Each pixel of the reduced

resolution map is taken as a vertex in this algorithm and each vertex has a number

of connections which act as edges. In Figure 10 [24], the possible connections are

given for any general position of the vehicle which is represented as a matrix as

shown.

In the matrix, the current position of the vehicle is marked as ’2’. There needs

to be only one current position of the robot which means that only one ’2’ should be

in the matrix. All possible moves are represented by 1 and all impossible moves are

represented by 0.

The connection matrix is an input parameter of the A* algorithm and we can

create our own matrices to test the efficiency of the system. There are three typical

connection matrices which are shown in Figure 11 [24]. Figure 11(a) only allows the

vehicle to take linear moves such as up, down, left and right. Figure 11(b) allows

the vehicle to take four different diagonal moves together with the four linear moves.
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Figure 10.: A* algorithm connection matrix

Figure 11.: A* algorithm connection matrices

Figure 11(c) allows the vehicle to make more moves while adding connections be-

tween the diagonal moves. Allowing more movements for the vehicle by adding more

connections can help to generate a better path. However, adding more connections

may result in excessive computation time. Another design specification of the algo-

rithm is a cost function. The cost function stores the weights of the edges, which are

taken as the Euclidean distance between the connecting points which are nearness

points to the destination.

There are some disadvantages and advantages of using A* algorithm in the path

planning purpose. The A* algorithm is simple and efficient. However, it has excessive

computation time in large scenes and it generally creates unnatural motions such as

sharp turns.
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2.3.4 Path Planning using GA Algorithm

GA is a meta-heuristic search algorithm which applies Darwin’s principle of natural

selection to model path planning problems. In problem modeling, we need a fitness

function and specification of variables of that fitness function. A path can be char-

acterized by a fixed number of points on the map. In order to make some path from

this set of waypoints, we start from the source and connect it to the first waypoint by

a straight line. The first waypoint is connected to the second waypoint by a straight

line, and so on. At the end, the last waypoint is connected to the goal. Distance min-

imization is computed using the Euclidean distance (Equation 2.14) between each

pair of waypoints to measure the paths length (Equation 2.15) is the summation of

each sub-path between adjacent waypoints.

D(xi, yi, xj, yj) =
√

(xi − xj)2 + (yi − yj)2 (2.14)

PathD =
n−1∑
i=1

DIST (< xi, yi >,< xi+1, yi+1 >) (2.15)

A heavy penalty (P) is added if any part of the path lies inside the obstacle,

while the penalty is proportional to the length of the path inside the obstacle defined

which is SINF as show in Equation 2.16. The fitness function is comprised of the

distance minimization and obstacle avoidance functions as shown in Equation 2.17.

PathO = SINF ∗ P (2.16)

Fitnesspath = PathD + PathO (2.17)

The locations of each of these fixed number of points in x and y coordinates

are the optimization variables. The variable bounds are such that the waypoint lies

inside the map (lower bound 1 and upper bound as the length/width of the map
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for the X/Y axis). All points put one by one makes the genetic individual used for

optimization.

Each waypoint in the path marks a waypoint of turn. The total number of points

is an algorithm parameter and should be equal to the maximum number of turns a

robot is expected to make in the robot map. Setting this number too high would

result in very large computational requirements. If the algorithm is not allowed a

large computational time, random results may be the output. Setting a large value

in simple scenarios will result in useless turns and hence a high path length. A too

small value of the parameter may not give enough flexibility to the algorithm to

model the optimal path, thus resulting in collision-prone paths.

2.3.5 Decision-Feedback Algorithm

The main idea of proposing the decision-feedback algorithm for ASV in USV purpose

is to check whether or not SP is updated while the USV is searching the uncertainty

areas other than reaching the goal autonomously while reducing the uncertainty.

Based on the generated aerial map, uncertain areas are needed to be searched for

reducing uncertainty by USV if it is necessary. In the decision-feedback building

algorithm, the generated ground map is divided into two different map structures

which are Uncertainty-blocked map where the all uncertain areas are assumed as

obstacles and Uncertainty-free map where the all uncertain areas area assumed as

collision-free where the example is shown in Figure 12. Then, we compare two

different collision-free path options which are generated by the path planning module

to decide or not USV needs to explore uncertain areas in the generated map. The

Safest Path (SP) which is generated from Uncertainty-blocked map where the rescue

boat should avoid from obstacles and uncertain areas and the Most Efficient Path

(MEP) which is generated from Uncertainty-free map where the rescue boat should
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avoid from only obstacles between defined starting and destination points where the

example is shown in Figure 13-14.

In this algorithm, we calculate Predicted Enhancement of SP (PESP ) based on

the length of SP (LSP ) and MEP (LMEP ) which is shown in Equation (2.18):

PESP (LSP , LMEP ) =



∣∣∣LSP−LMEP

LSP

∣∣∣ , if LSP 6= 0 and LMEP 6= 0

0, if LSP = 0 and LMEP = 0

1, if LSP = 0 and LMEP 6= 0

(2.18)

We defined a threshold value whether or not USV needs to start searching uncer-

tain areas. In this purpose, the threshold value is defined as 0.25. If the PESP is

smaller than 0.25, it means that USV does not have to start or continue exploring

uncertain areas. If PESP is larger than 0.25 or the SP is not found while the MEP is

found, USV should start exploring the uncertain areas to enhance the ground map.

Then, we define collision-free waypoints (WPs) on the map which are around the

intersection points (IPs) between MEP and the uncertain areas in the sense of USV

omni-directional range sensor (OS) which is shown in Equation (2.19):

WPs(x, y) = IPs(x∓OS(x), y ∓OS(y)) (2.19)

While the USV reaches the WPs, the ground map updates by omni-directional range

sensor’s local information in the real time as shown in Equation (2.20). When the

USV arrives the first WP, then we need to check whether or not SP is enhanced in

the updated ground map.

GroundMAP (O(x), O(y)) = GroundTruthMAP (O(x), O(y)) (2.20)

If the uncertainty is cleared as obstacles or collision-free, the MEP and SP need to be
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updated between initial and destination points in the updated ground map. Then,

we need to recalculate PE between the updated SP and MEP. If the updated PE is

smaller than 0.25, it means that USV does not have to continue its mission because

the threshold value is achieved. If the PE is larger than 0.25, then USV needs to visit

new waypoints which are around the intersecting points between updated MEP and

the uncertain areas in the range of USV sensor. The example scenario in the step of

assigning WPs and updation PE during the USV simulation is shown in Figure 15-

21. The main flow of the decision-feedback map building algorithm for USV is shown

in Figure 22.

26



(a) (b)

(c)

Figure 12.: (a) Ground map, (b) Uncertainty-blocked map, (c) Uncertainty-free

map
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Figure 13.: SP is not found in the Uncertainty-blocked map

Figure 14.: MEP is found in the Uncertainty-free map
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Figure 15.: Assigning WP 1

Figure 16.: Assigning WP 2
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Figure 17.: Assigning WP 3

Figure 18.: Assigning WP 4
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Figure 19.: Assigning WP 5

Figure 20.: Assigning WP 6
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Figure 21.: Updating SP
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Figure 22.: Decision-feedback algorithm
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CHAPTER 3

EXPERIMENTS AND EVALUATION

To evaluate the proposed system, a set of simulation experiments with different

environmental setups are performed. Firstly, the PRM path planning algorithm is

compared with benchmark path planning algorithms which are A* and GA to validate

the performance. The simulation experiments were implemented using MATLAB

with Robotics System Toolbox. For the simulation experiments, the full system of the

map building, decision-feedback, path planning and trajectory tracking algorithms

is tested using user-defined occupancy grid maps and real flood environment images.

3.1 Path Planning Algorithms Testing

In this section, we analyzed the effectiveness of PRM, A* and GA path planning

algorithms. In our experiment, we used an aerial image which is taken from Houston

in Hurricane Harvey (2017) [25]. Then, the image is segmented by using proposed

benchmark image processing techniques to model a ground map.

After building the ground map, path planning algorithms are applied to find

near-optimal paths for rescue boat between source and destination points. The

parameters used for each algorithm in our experiments are shown in Table II. The

starting point is defined as (690, 90) and the destination point is defined as (330,

450) as x and y coordinate points respectively for all the path planning algorithms.

The planning paths are indicated by the blue curve. We can observe the planning

paths for each algorithm from Figure 23.

According to the results in Table III, it can be seen that the generated path

in A* is shorter than the generated path in GA even though computation time for

GA is better than A. PRM algorithm gives the shortest path and best computation
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(a)

(b)

(c)

Figure 23.: (a) A* (b) GA (c) PRM
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Algorithm Source(x,y) Destination(x,y) Population size Number of Generations Number of nodes

A* (690, 90) (330, 450) N/A N/A N/A

GA (690, 90) (330, 450) 80 60 N/A

PRM (690, 90) (330, 450) N/A N/A 400

Table II.: Path planning algorithm parameters

time in these three algorithms. Therefore, we have applied the PRM algorithm in

our simulation tests as a part of system algorithms to validate the performance of

the system algorithms most efficently.

Algorithm Path Length(m) Computation time(sec)

A* 666 158

GA 907 92

PRM 653 35

Table III.: Path planning algorithm comparison results

3.2 User-defined Occupancy Grid Map Testing

There are some different size of user-defined map structures are generated to test

system algorithms. Firstly, Map Model #1 with the dimension of 20*20 and the

resolution of 20 which is shown in Figure 24 is generated. According to the decision-

feedback algorithm, the generated aerial map is divided into two different map struc-

tures to compare LSP and LMEP which is shown in Figure 25. According to the

preliminary path planning results which are shown in TableIV, the LSP is found as

645.4 m, in contrast, LMEP is found as smaller than LSP with 240.3 m and PESP

is found as 0.63. Therefore, USV needs to explore uncertain areas to enhance the
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SP for the RB while visiting the WP which is shown in Figure 26. The simulations

are tested in the user-defined ground truth map by using the differential drive and

particle drive USV and the results are showing that USV successfully searched un-

certain areas and the aerial map is updated based on the USV sensor results which

are shown in Figure 27. According to the results in Table II, the SP is updated and

the PESP is found as 0.26 after USV is completed its task. Therefore, RB can reach

the destination point in a more efficient manner by following the updated SP which

is shown in Figure 27.

Figure 24.: Map Model #1

Test Case LSP LMEP PESP

Map Model #1 645.4 240.3 0.63

Table IV.: Preliminary path planning results in Map Model #1
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(a)

(b)

Figure 25.: a)SP with length 645.4 m b)MEP with length 240.3 m
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Figure 26.: Assigning a WP in Map Model #1

As it is mentioned above, the SP was found in the stage of the pre-path plan-

ning for Map Model #1. However, an SP might not exist in some cases because a

destination point might be located into the uncertain areas or some uncertain areas

might be blocking all the possible paths to reach the destination point. In Figure 28,

Map Model #2 with the dimension of 20*20 and the resolution of 10 is generated to

test the system algorithms.

According to the pre-path planning results which are shown in Table III, the

SP is not found, in contrast, MEP is found with the length of 371.2 and the PESP

is found as 1. Therefore, USV needs to explore uncertain areas to find a possible SP

for the RB while visiting the WPs which is shown in Figure 29. The simulation is

tested on the generated ground truth map which is shown in Figure 30. In Figure 30,
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Figure 27.: USV simulation in Map Model #1

USV Simulation Updated LSP (m) PESP Computation Time(s)

Differential Drive 341.2 0.26 3

Particle Drive 341.2 0.26 0.3

Table V.: USV simulation comparison results in Map Model #1

the simulation results are showing that USV successfully searched uncertain areas

and the aerial map is updated with the sensor readings. According to the results in

Table IV, the SP is found and the PESP is found as 0 after USV is completed their

mission .

As we have seen the previous two models, USV is needed to search uncertain

areas to enhance the aerial map. However, USV does not have to explore uncertain

areas in some cases if PESP does not satisfy the threshold value which is 0.25. In
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Figure 28.: Map Model #2
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Figure 29.: Assigning WPs in Map Model #2

42



Map Model LSP LMEP PESP

Map Model #2 Not found 271.2 1

Table VI.: Preliminary path planning results in Map Model #2

Figure 30.: USV simulation in Map Model #2

Figure 18, Map Model #3 with the dimension of 20*20 and the resolution of 10 is

generated to test the system algorithms. According to the preliminary path planning

results which are shown in Table VI, the LSP is found as 247.5 m, in contrast, LMEP

is found as of 242.3 m and PESP is found as 0.036 which is less than 0.25. Therefore,

USV does not have to explore uncertain areas to find a possible SP for the RB as it

shows in Figure 32.

As we have seen in three map models, the simulation results of USV are show-

ing that SP is found when it was not found previously or enhanced after reducing
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Figure 31.: Map Model #3

Figure 32.: USV simulation in Map Model #3
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USV Simulation Updated SP Length(m) PESP Computation Time(s)

Differential Drive 271.2 0 8.6

Particle Drive 271.2 0 1.4

Table VII.: USV simulation comparison results in Map Model #2

Map Model LSP LMEP PESP

Map Model #3 247.5 242.3 0.036

Table VIII.: Preliminary path planning results in Map Model #3

the uncertainty. However, USV might not find or update the SP in some cases.

In Figure 33, Map Model #4 with the dimension of 40*40 and resolution of 10 is

generated. According to the preliminary path planning results which are shown in

Table IX, the LSP is found as 285.6, in contrast, LMEP is found with the length of

155.8 and PESP is found as 0.48%. Therefore, USV needs to explore uncertain areas

to find a possible SP for the RB while visiting the WP which is shown in Figure 34.

According to the results in Table X, the SP is not updated after ASV and USV are

completed their mission but USV is completed its task in a short time.

Map Model LSP LMEP PESP

Map Model #4 285.6 155.8 0.48

Table IX.: Preliminary path planning results in Map Model #4

3.3 Flooded Urban Environment Image Testing

In flooded urban environment image testing, some aerial images which are taken by

UAV from the flood areas in Houston [25] after Hurricane Harvey (2017) is analyzed
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Figure 33.: Map Model #4

USV Simulation Updated SP Length(m) PESP Computation Time(s)

Differential Drive 0 0 4.6

Particle Drive 0 0 0.75

Table X.: USV simulation comparison results in Map Model #4

to apply the system algorithms. Figure 36(a) displays the aerial image with the

dimension of 1920×798 is tested in our system. Firstly, image processing techniques

are applied to build a ground map. In the process of ground map generation, trees

and bridges are assumed as uncertain areas, roads are assumed as collision-free paths

and the remaining areas in the map are considered as certain obstacles which are

shown in Figure 36(b). Then, we modeled a ground truth map to test our system in

the simulation environment. Google Maps is used as a reference to build a ground
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Figure 34.: Assigning the WP in Map Model #4

truth map based on the aerial view of the test scenario. In the ground truth map, the

shape of tree bodies, the houses and the fences are represented as circles, polygons

and lines respectively which is shown in Figure 36(c). As we compared the differential

and particle drive USV in user-defined occupancy grid maps, the particle drive USV

is showed lower computation time than the differential drive USV. Therefore, we

used the particle drive USV in flooded area images testing to test system algorithms

in a more efficient manner.

In the first simulation test, we defined a source and a single target point which

is shown in Figure 37. According to the decision-feedback and path planning algo-

rithms, an SP is not found, in contrast, MEP is found as 233 meters and accordingly

PESP is calculated as 1. Therefore, USV needs to explore uncertain areas to find

a possible SP for the rescue boat to reach the target in a more efficient manner.
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Figure 35.: USV Simulation in Map Model #4

The simulation results are showing that USV successfully explored the uncertain

areas while visiting the WPs and the SP is found as 1184 meters which are shown

in Table XI. Figure 41 displays updated ground map where the uncertain areas are

cleared by USV’s laser range sensor. The changes in SP and MEP for a single target

during the simulation process is shown in Figure 39.

In the second simulation test, we defined a source and multiple target points

which are shown in Figure 40. According to the decision-feedback and path planning

algorithms, the SPs are not found for each target, in contrast, MEP is found for each

target as 617 meters, 1436 meters and 1948 meters respectively and then accordingly

PESP for each target is calculated as 1. Therefore, USV needs to explore the uncer-

tain areas while visiting the WPs to find a possible SPs for the rescue boat to reach

the targets more efficiently. The simulation results are showing that USV success-

fully searched uncertain areas and the SPs are found as 560 meters, 1298 meters and
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(b)

(c)

Figure 36.: (a) A flood area aerial image (b) Ground map model (c) Ground truth

map model
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Figure 37.: USV simulation with one target.

1764 meters respectively which are shown in Table XII. Figure 38 displays updated

ground map where the uncertain areas are cleared by USV’s laser range sensor. The

changes in SP and MEP for multiple targets during the simulation process is shown

in Figure 42.

In the third simulation test, we tested another flooded area image which is

shown in Figure 43. In this test case, we defined a source and a single target point

which is shown in Figure 44. According to the decision-feedback and path planning

algorithms, the SP is not found, in contrast, MEP is found as 1445 meters and

accordingly PESP is calculated as 1. Therefore, USV needs to explore uncertain

areas to find a possible SP for the rescue boat to reach the target in a more efficient

manner. The simulation results are showing that USV successfully explored the

uncertain areas while visiting the WPs and the SP is found as 1315 meters which are

shown in Table XIII. Figure 45 displays updated ground map where the uncertain
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Process LSP (m) LMEP (m) PESP

Initial 0 233 1

WP 1 0 674 1

WP 2 0 654 1

WP 3 1184 1184 0

Table XI.: SP and MEP findings in the single target test

areas are cleared by USV’s laser range sensor. The changes in SP and MEP for a

single target during the simulation process is shown in Figure 46.
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Target Process LSP (m) LMEP (m) PESP

I Initial 0 617 1

WP 1 0 565 1

WP 2 560 560 0

Target Process LSP (m) LMEP (m) PESP

2 Initial 0 1436 1

WP 1 0 1415 1

WP 2 1298 1298 0

Target Process LSP (m) LMEP (m) PESP

3 Initial 0 1948 1

WP 1 0 1847 1

WP 2 0 1812 1

WP 3 1764 1764 0

Table XII.: SP and MEP findings in the multiple target test

52



(a)

USV Sensor Map

0 200 400 600 800 1000 1200 1400 1600 1800

X [meters]

0

200

400

600

Y
 [
m

e
te

rs
]

(b)

Figure 38.: (a) Updated ground map for one target test and (b) USV range sensor

(r = 20m) data representation in the occupancy grid map.
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Figure 39.: Changes in the SP-MEP for a single target during the test simulation

as new information is made available through clearing uncertainty.

Process LSP (m) LMEP (m) PESP

Initial 0 1445 1

WP 1 0 1432 1

WP 2 0 1420 1

WP 3 0 1384 0

WP 4 0 1344 0

WP 5 1315 1315 0

Table XIII.: SP and MEP findings in the Flooded Area Test #2
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Figure 40.: USV simulation with multiple targets.
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Figure 41.: (a) Updated ground map for multiple targets test and (b) USV range

sensor (r = 20m) data representation in the occupancy grid map.
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Figure 42.: Changes in the SP-MEP for multiple targets during the test simulation

as new information is made available through clearing uncertainty.
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(c)

Figure 43.: (a) A flooded area aerial image (b) Ground map model (c) Ground

truth map model
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Figure 44.: USV simulation in Flooded Area Image Test #2.
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(a)

(b)

Figure 45.: (a) Updated ground map (b) USV range sensor (r = 20 m) data repre-

sentation in the occupancy grid map.
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Figure 46.: Changes in the SP-MEP during the test simulation as new information

is made available through clearing uncertainty.
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CHAPTER 4

CONCLUSION

In this research, we proposed a flood rescue application where the main goal was

exploring uncertain areas by USV to build a real-time ground map and plan near-

optimal paths for a rescue boat in a flooded urban environment. Map building, path

planning and decision-feedback algorithms are expected to greatly enhance the func-

tion of the rescue boat to handle flood rescue operations. The proposed research does

not address all issues but should be a step toward enhanced flood rescue operations.

Rather than focus on deeply hardware building, the research was the focus on deeply

testing system algorithms. Simulation tests are used to demonstrate the effectiveness

and applicability of the proposed approach for improving flood rescue operations.

In the purpose of using a rescue boat in the flooded urban environments, the

rescue boat needs to reach victims in a more efficient manner. According to the path

planning algorithm results, PRM path planning algorithm gives a shorter path and

better computation time than A* and GA algorithms. Therefore, the PRM path

planning algorithm satisfies the time requirement of the rescue operations.

Based on the work above, our next step will focus on the real world application

to test system algorithms by using UAV/USV cooperative system.

62



REFERENCES

[1] E. Pinto, P. Santana, F. Marques, R. Mendonça, A. Lourenço, and J. Barata,

“On the design of a robotic system composed of an unmanned surface vehicle

and a piggybacked VTOL,” in Technological Innovation for Collective Awareness

Systems, pp. 193–200, Springer Berlin Heidelberg, 2014.

[2] R. Murphy, S. Stover, K. Pratt, and C. Griffin, “Cooperative damage inspection

with unmanned surface vehicle and micro unmanned aerial vehicle at hurricane

wilma,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and

Systems, IEEE, oct 2006.

[3] J. Dufek and R. Murphy, “Visual pose estimation of USV from UAV to assist

drowning victims recovery,” in 2016 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR), IEEE, oct 2016.

[4] A. Mancini, E. Frontoni, P. Zingaretti, and S. Longhi, “High-resolution mapping

of river and estuary areas by using unmanned aerial and surface platforms,” in

2015 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE,

jun 2015.

[5] R. Mendonca, M. M. Marques, F. Marques, A. Lourenco, E. Pinto, P. San-

tana, F. Coito, V. Lobo, and J. Barata, “A cooperative multi-robot team for

the surveillance of shipwreck survivors at sea,” in OCEANS 2016 MTS/IEEE

Monterey, IEEE, sep 2016.

[6] N. Miskovic, S. Bogdan, E. Nad, F. Mandic, M. Orsag, and T. Haus, “Unmanned

marsupial sea-air system for object recovery,” in 22nd Mediterranean Conference

on Control and Automation, IEEE, jun 2014.

63



[7] J. Li, G. Deng, C. Luo, Q. Lin, Q. Yan, and Z. Ming, “A hybrid path planning

method in unmanned air/ground vehicle (UAV/UGV) cooperative systems,”

IEEE Transactions on Vehicular Technology, vol. 65, pp. 9585–9596, dec 2016.

[8] A. Lakas, B. Belkhouche, O. Benkraouda, A. Shuaib, and H. J. Alasmawi, “A

framework for a cooperative UAV-UGV system for path discovery and plan-

ning,” in 2018 International Conference on Innovations in Information Tech-

nology (IIT), IEEE, nov 2018.

[9] J. Zhang, J. Xiong, G. Zhang, F. Gu, and Y. He, “Flooding disaster oriented

USV & UAV system development & demonstration,” in OCEANS 2016 - Shang-

hai, IEEE, apr 2016.

[10] X. Xiao, J. Dufek, T. Woodbury, and R. Murphy, “UAV assisted USV visual

navigation for marine mass casualty incident response,” in 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), IEEE, sep

2017.

[11] D. Costea and M. Leordeanu, “Aerial image geolocalization from recognition

and matching of roads and intersections,”

[12] H. Zhou, H. Kong, L. Wei, D. Creighton, and S. Nahavandi, “Efficient road

detection and tracking for unmanned aerial vehicle,” IEEE Transactions on

Intelligent Transportation Systems, vol. 16, pp. 297–309, feb 2015.

[13] C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision for UAVs:

Current developments and trends,” Journal of Intelligent & Robotic Systems,

vol. 87, pp. 141–168, jan 2017.

[14] K. U. Gunasekaran, E. Krell, A. Sheta, and S. A. King, “Map generation and

64



path planning for autonomous mobile robot in static environments using GA,”

in 2018 8th International Conference on Computer Science and Information

Technology (CSIT), IEEE, jul 2018.

[15] L. Cheng, C. Liu, and B. Yan, “Improved hierarchical a-star algorithm for opti-

mal parking path planning of the large parking lot,” in 2014 IEEE International

Conference on Information and Automation (ICIA), IEEE, jul 2014.

[16] M. Ganeshmurthy and G. Suresh, “Path planning algorithm for autonomous

mobile robot in dynamic environment,” in 2015 3rd International Conference

on Signal Processing, Communication and Networking (ICSCN), IEEE, mar

2015.

[17] M. M. Kurdi, A. K. Dadykin, and I. Elzein, “Navigation of mobile robot with co-

operation of quadcopter,” in 2017 Ninth International Conference on Advanced

Computational Intelligence (ICACI), IEEE, feb 2017.

[18] M. S. H. Nizami, S. M. R. Al-Arif, A. I. Ferdous, M. M. S. Riyadh, and F. R.

Faridi, “Efficient algorithm for automated rescue boats,” in Proceedings of the

2012 IEEE 16th International Conference on Computer Supported Cooperative

Work in Design (CSCWD), IEEE, may 2012.

[19] “Differential drive robot,” in Path Following for a Differential Drive Robot -

MATLAB & Simulink.

[20] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,”

Tech. Rep. CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh, PA,

January 1992.

65



[21] “Robotics.prm,” in https://www.mathworks.com/help/robotics/ug/pure-

pursuit-controller.html,Pure Pursuit Controller - MATLAB & Simulink.

[22] A. Upadhyay, K. R. Shrimali, and A. Shukla, “UAV-robot relationship for coor-

dination of robots on a collision free path,” Procedia Computer Science, vol. 133,

pp. 424–431, 2018.
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