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Abstract. The ability to obtain high-resolution chemical profiles across otoliths has expanded with technological
advancements that prompted an explosion of data from diverse taxa in coastal, marine and freshwater systems worldwide.

The questions pursued by most otolith chemists fall broadly into six categories: identifying origins, tracking migration,
reconstructing environments, quantifying growth or physiology, validating ages and assessing diets. Advances in
instrumentation havewidened the periodic table of otolith elements, and two-dimensionalmapping has further illuminated

spatial heterogeneity across these complex structures. Although environmental drivers of observed elemental signatures in
otoliths are often assumed to be paramount, multiple intrinsic and extrinsic factors can disrupt simple relationships
between an element and a single environmental parameter. An otolith chemical profile is not a direct photograph of an
environment, but rather an impressionistic image filtered through the multifaceted experiences of the fish itself. A ‘signal-

to-noise’ approach that assesses the relative magnitudes of variation from intrinsic and extrinsic factors on chemical
profiles may be a promising way to resolve the factor of interest against the ‘noise’ of others. A robust appreciation of
environmental drivers, physiological regulation and calcification dynamics that affect the ability to effectively interpret

otolith chemical patterns is necessary to drive the field forward.
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Introduction

Observers actually know that despite the apparent simplicity
of the laws governing their formation, the works of nature are
infinitely varied, from the most important to the least, no

matter what their species or family y the quarters of an
orange, the leaves of a tree, the petals of a flower are never
identical; it thus seems that every kind of beauty draws its

charm from this diversity. [Pierre-Auguste Renoir in 1884;
Nochlin 1966, p. 46]

A robust understanding of migration, life history strategies
and growth dynamics is critical for effective management of
fishes in marine, coastal and freshwater systems worldwide.

The practice of otolithology, or the broad use of otoliths to
investigate fish dynamics (sensu Gaemers 1978), has yielded
an explosion of data and subsequent insight into the dynamics

of fishes, their communities and ecosystems. The field has
proliferated in the types of questions that can be asked with
these remarkable structures, spurred on by monumental dis-

coveries such as the identification of annual (Reibisch 1899)
and daily (Pannella 1971) increments. A particularly fruitful
expansion of this field derives from the increasingly detailed

and high-throughput chemical analyses of otolith increments.
Much of this growth has been tightly coupled to technological
advances, such as the development and refinement of laser

technology allowing multi-element high-resolution and high-
precision measurements that are, importantly, reasonably
affordable for a wide array of fish ecologists. The expansion

and maturation of the otolith chemistry subfield is evident in
the published proceedings of the International Otolith Sym-
posia (IOS) over the years. For instance, in the book published

after the Hilton Head, North Carolina, IOS, only 10% (4 of 40)
of contributed papers focused on the elemental or isotopic
composition of otoliths (Secor et al. 1995), whereas in the two

special issues published after the Mallorca, Spain, sympo-
sium, 48% of contributed papers incorporated chemical
analyses of otoliths or analogous structures such as vertebrae
(Morales-Nin and Geffen 2015; Geffen et al. 2016). A review

of the titles of contributed talks and posters at the IOS in
Keelung, Taiwan, in 2018 showed an estimated 43% of talks
and 34% of posters focused on otolith chemistry techniques

(see http://isis.cmima.csic.es/aforo/presentations/IOS2018-
Taiwan.pdf, accessed 22November 2018). Beyond the official
IOS and their proceedings, other special sessions devoted to

otoliths and comparable structures have become regular fea-
tures at marine and aquatic science conferences, with their
own associated publications (e.g. Walther et al. 2017; Hunter

et al. 2018). Clearly, a growing number of investigators is
turning towards chemical tools to unravel key information
about fish life histories.
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The increasing prominence of otolith chemistry can be seen

in the broader body of published literature. To assess the overall
publication trends in otolith chemistry, a literature search was
conducted in ISI Web of Science (conducted on 3 October 2018
with search terms: otolith AND (chem* OR microchem* OR

elem* OR isotop*)) from 1967 through 2017 to quantify annual
publications of elemental and isotopic analyses of fish otoliths
since the work of Devereux (1967) on oxygen isotope ratios.

Results were culled to remove non-fish biomedical human and
animal model research, exclude fluorescent marking research
and retain only peer-reviewed journal articles (excluding book

chapters or conference abstracts), leaving a total of 1505 papers
published over five decades (Fig. 1a). Although this search is
undoubtedly an undercount, it illustrates the non-linear trajec-
tory and rapid growth in published work in recent decades,

driven in large part by advances in instrumentation, experimen-
tal validation and high-throughput approaches. The critical role
of the periodic symposia can be seen in upticks following IOS

years (1993 in Hilton Head, USA; 1998 in Bergen, Norway;
2004 in Townsville, Australia; 2009 in Monterey, USA; and
2014 in Mallorca, Spain), with publications of associated books

or special issues, such as this one. Given that publication rates in

all subject areas have also grown significantly over the same
time period, the annual percentage of otolith chemistry papers

relative to total otolith publications as indexed in the Aquatic
Sciences and Fisheries Abstracts (ASFA; search term: otolith*)
was calculated (Fig. 1b). Although percentages were initially

high in the early years due to low numbers of total otolith
publications each year before 1990, the proportion increased
steadily throughout the 1990s and subsequently stabilised in the

past decade. These trends are similar to those observed in prior
assessments of annual publication rates (Campana and Thorrold
2001; Secor 2010; Starrs et al. 2016; Tanner et al. 2016).
Clearly, the field is robust, with an average of 91 publications

annually constituting an average of 19% of all otolith publica-
tions since 2013.

Although the applications of otolith chemistry are increas-

ingly diverse, the primary questions investigated can be broadly
grouped into six major categories: (1) identifying natal origins
and connectivity patterns; (2) assessing individual variability in

migration patterns; (3) reconstructing environmental exposure
histories (e.g. temperature, dissolved oxygen, pollution); (4)
quantifying growth and physiological dynamics (e.g. metabo-
lism, stress, reproduction); (5) validating age estimates; and (6)

determining dietary histories.
Investigating any of these questions requires the appropri-

ate selection of chemical proxies that reveal the targeted

variable of interest, an extractive or in situ analysis of suffi-
cient material to yield quantifiable measurements of the ana-
lyte and appropriate placement and resolution of analyses in

relation to increment spacing. A given element may yield
information for multiple questions, given the possibility of
both extrinsic and intrinsic control on elemental incorporation.

Still, otoliths hold incredible promise for revealing compre-
hensive life history information about the lives of fishes. This
paper reviews developments in otolith chemistry research by
using a metaphor to structure the discussion of critical frontiers

in the field. Specifically, it is argued that an otolith is like a
painting. Much like a painting is influenced by multiple
‘filters’ that influence the final image, including the studio,

the canvas, the media and the artist, an otolith is influenced by
analogous filters, including the environment, the constituent
elements and isotopes, the biogenic structure composition and

the physiology of the fish itself. Our challenge as otolith
chemists is to interpret the observed chemical patterns much
like a museum visitor interprets the painting. Before this
metaphor is used, the paper begins by briefly considering the

historical foundations of this field and the technological
advancements that have led to a proliferation of otolith chem-
istry data that require interpretation.

Historical foundations

The growth of the field prompts us to reflect on the origins of
otolith chemistry. Far from springing from a single source of
inspiration, otolith chemistry can be viewed as a natural evo-

lution of the broader advances in biogeochemistry across sys-
tems and taxa. The case of strontium is emblematic of this
evolution. The element was originally discovered in 1790 by
Adair Crawford and William Cruickshank and named for the

small village of Strontian, Scotland, where unidentified
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Fig. 1. (a) Annual publications of otolith chemistry papers from 1967 to

2017 as indexed in ISI Web of Science (search terms: otolith AND chem*

OR microchem* OR elem* OR isotop*). Results were culled to retain peer-

reviewed journal articles on fish otolith chemistry only (n¼ 1505). Asterisks

indicate years of previous International Otolith Symposia. (b) Annual

percentage of otolith chemistry papers relative to all otolith papers as

indexed in the Aquatic Sciences and Fisheries Abstracts (AFSA) database

(search term: otolith*). AFSA retrievals were limited to peer-reviewed

publications in scholarly journals (n ¼ 8944).
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minerals were unearthed in local lead mines (Mellor 1961).
Strontium was first isolated in 1808 by electrolysis by the great

chemist Sir Humphry DavyA, who also isolated calcium, mag-
nesium and barium (Knight 1998). The potential for strontium to
reveal biogeochemical processes and elemental cycling was

quickly realised. Forchhammer (1865) first discovered stron-
tium in seawater and living tissues ofFucus algae, indicating the
possibility of active biotic uptake. Dieulafait (1877) identified

strontium in fossilised and modern brachiopods and suggested
that shell composition reflected contemporary ocean chemical
composition. Papillon (1870) made one of the first assessments
of strontium in living vertebrates and, through experimental diet

manipulations, discovered that strontium in pigeon bones was
derived at least in part from dietary sources. These early
investigations prompted a wide-ranging number of publications

quantifying strontium in water, soil and biological tissues
throughout the late 19th and early 20th centuries (for a review,
see Odum 1950).

The first systematic approach to understanding strontium
cycling came with the ground-breaking work of the ecologist
Howard T. Odum. A graduate student at Yale, Odum was
encouraged to investigate what he called ‘the strontium prob-

lem’ by his supervisor G. Evelyn Hutchinson. Hutchinson and
Odum recognised that a comprehensive model of strontium
cycling was not merely a chemical curiosity, but a window into

global ecosystem processes and the biotic and abiotic connec-
tions that link diverse systems (Limburg 2004). For his thesis,
Odum (1950) analysed 1100 samples of Sr/Ca in water, sedi-

ment, rocks and biota to quantitatively understand the magni-
tudes of elemental reservoirs and transfers among them. He used
these measurements to propose large-scale cycling models that

addressed weathering, riverine transport, atmospheric deposi-
tion and ocean cycling, in addition to uptake and incorporation
into living tissues and calcified hard parts (Odum 1950). This
remarkable body of work was the basis for a series of papers that

addressed specific aspects of cycling dynamics (Odum 1951a,
1951b, 1957a, 1957b). Notably, Odum (1951b) experimentally
measured the relationship between water and Physa gastropod

shells and calculated a distribution factor, or partition coeffi-
cient, to quantify elemental incorporation rates for this species,
much like otolith chemists continue to calculate today. Although

the effect of ambient water composition on elemental uptake
was clear, Odum was keenly aware of the possibility of taxo-
nomic and physiological factors to regulate uptake. He hypothe-
sised that membrane transport capacity, indicated by the

thickness of the tissue separating seawater from the calcifying
surface, and the complexity of the circulatory system could
explain taxonomic differences in strontium uptake from algae to

vertebrates (Odum 1957a; Fig. 2). Note that Fig. 2 includes fish
otolith measurements, which is the first reported quantitative
measurement of otolith strontium I have found in the literature.

Odum’s work was foundational for the field of elemental tracer
ecology in general, and emphasised many of the same issues

otolith chemists grapple with today, including geological con-
trols on water composition, temporal and spatial variability in

ambient composition and physiological mediation of elemental
uptake dynamics. These questions continue to drive important
field-based and experimental work in otolith chemistry.

Currently, otolith chemistry as a discipline is diverse in both
analytical approaches and the types of questions investigated
using these remarkable biogenic structures. Probe-based instru-

mentation, such as laser ablation inductively coupled plasma
mass spectrometry (ICP-MS), the current workhorse of the field,
has improved in sensitivity and precision for many analytes.
Laser wavelengths of 213 or 193 nm are common in many ICP-

MS facilities, and femtosecond lasers hold promise for further
improvements in analyses with single- and multiple-collector
ICP-MS (Lord et al. 2011; Yang et al. 2011). Concordantly, the

improvement in spatial resolution has allowed more targeted
analyses of specified life history periods. Although whole
otolith dissolutions were common in the 1990s, increasingly

precise probe-based methods have allowed targeting of natal
cores or post-settlement periods or complete life history
transects across all growth increments. Furthermore, two-

dimensional spatial mapping of elemental or isotopic distribu-
tions are possible with ICP-MS (Woodhead et al. 2007; Wang
et al. 2013; McGowan et al. 2014; Petrus et al. 2017) or
techniques such as proton-induced energy emission spectros-

copy and scanning X-ray fluorescence microscopy (Limburg
and Elfman 2017). These mapping approaches yield valuable
visualisations of chemical heterogeneity across otoliths,

AH. Davy was a renowned chemist and polymath whose life and work deserves attention by the fish ecologist. In addition to the isolation of important alkaline

earth metals, he discovered the anaesthetic properties of nitrous oxide and served as President of the Royal Society in London. He was also an amateur poet,

friend of Samuel Taylor Coleridge and an avid outdoorsman who was passionate about fishing his entire life. One of his final published works was entitled

Salmonia, which was a treatise on the practice of fly-fishing and the natural history of salmonids (Keys 1956). He would be surely delighted to learn how his

chemical and ichthyological passions have collided in the field of otolith chemistry.

Fig. 2. Semiquantitative model proposed by Odum (1957a) hypothesising

the role of the strength of a circulatory system (y-axis) and the thickness of

the calcifying tissue (x-axis) on incorporation of strontium. Lines are

isopleths approximating equal Sr/Ca ratios. Note the inclusion of fish

otoliths in the upper left quadrant. Figure reprinted with permission from

Odum (1957a).
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allowing researchers to identify concentric fluctuations in an

analyte, such as strontium, as well as radial differences in
elemental patterns that would not be evident from a single
transect alone (Fig. 3). Although these topographic quantifica-

tions of otolith elements have been explored before (e.g. Gauldie
et al. 1991; Tzeng et al. 1997), they are becoming more readily
available with improvements in instrumentation and mapping

software.

How do we interpret chemical patterns?

With an expanding scope of analytical possibilities comes a
persistent challenge for the otolith chemist. Elemental maps
provide unprecedented insight into chemical patterns across

structures, but have these advances translated into increased
understanding about the life histories of these fishes? Put sim-
ply, how dowe interpret thesemaps?A common tool that otolith

chemists have used to translate chemical patterns into mean-
ingful life history information is a partition coefficient, or dis-
crimination coefficient, which is simply the ratio of the

concentration of element E ([E]) in an otolith to the concentra-
tion in water, as follows:

D½E� ¼ E½ �otolith
E½ �water

ð1Þ

This simple metric is most directly applicable when deter-
mining partitioning between an accreting solid and the immedi-
ately surrounding fluid. Although used extensively for

calcifying organisms and the water they lived in, this metric
has long been recognised to be a simplification that omits
important intermediary transitions that can have dramatic

effects on elemental uptake. If ultimately derived from seawater,
elements must pass through multiple membranes and barriers
before incorporation into an otolith, with possibility of discrim-
ination or concentration at every step (Campana 1999). These

barrier transitions may not be equilibrium processes, and many
factors, including temperature, precipitation rate and solution
composition, can affect partition coefficients in both abiogenic

and biogenic precipitates. For these reasons, Morse and Bender
(1990) urged workers to ‘use considerable caution in interpret-
ing data on the composition of natural carbonates’. For fishes, a

more explicit decomposition of the participation coefficient was

suggested by Walther et al. (2010) to recognise the strong roles
that each barrier transitionmay play inmediating overall uptake:

D½E� ¼ E½ �blood
E½ �water

x
E½ �endolymph
E½ �blood

x
E½ �otolith

E½ �endolymph

Indeed, this equation itself is insufficient given that elements

may derive partially or predominantly from dietary sources.
Thus, a companion equation to quantify elemental uptake from
the diet would be:

D½E� ¼ E½ �blood
E½ �diet

x
E½ �endolymph
E½ �blood

x
E½ �otolith

E½ �endolymph

Clearly, a partition coefficient is a convenient shorthand, and

the potential for physiological regulation or decoupling poses
considerable challenges for attempts to interpret observed
chemical patterns across otolith increments. These difficulties

have been recognised for some time by otolith chemists,
although practitioners must continuously remind themselves
of the multifaceted intrinsic and extrinsic dynamics that influ-

ence otolith chemistry. The challenge remains how to appreciate
these complexities yet continue to move the field of otolith
chemistry forward without stagnation. To this end, a qualitative
conceptual framework using an artistic metaphor is proposed

below that may hold value in approaching the challenge of
otolith chemistry interpretation.

A metaphor

Imagine you are at a museum, wandering through galleries and
admiring the artwork. You notice a painting on a wall that stops

you in your tracks with its beauty and power. You have never
seen this image before, but something about its use of colour and
form intrigues you. You wonder to yourself: when was this

painted?Who was the artist?What were they trying to say? This
prompts you to learn everything you can about the artist, their
life and times, and the potential messages encoded in the image

that so arrested you.
This metaphor of art appreciation has value when attempting

to interpret the complex chemical patterns we observe in
otoliths. Superficially, the ability to analyse and produce dra-

matic spatial maps of elemental variability in otoliths repre-
sented by shapes and colours has obvious parallels to a painted
landscape. Butmore deeply, this metaphor gives us a framework

for appreciating the many interpretive layers that can be brought
to bear when attempting to decode an image, either artistic or
ichthyological. Consider the 19th century artistic movement of

Impressionism, which was practiced by artists including Claude
Monet, Pierre-Auguste Renoir and Camille Pissaro, among
others. Evolving out of the prior paradigms of Naturalism and

Realism, which emphasised faithful and even idealised repre-
sentations of nature, Impressionism used novel combinations of
brushstrokes and colour to not only represent the world around
the artists, but also to incorporate the observer’s subjective

experience (Thompson 2000). Mood, perspective, experience
and the artist’s interpretation of the world around them were
integrated into images that communicated more than a simple

0.00010
0.00009
0.00008
0.00007
0.00006

Sr

0.00005
0.00004
0.00003
0.00002
0.00001
0

Fig. 3. Two-dimensional map of strontium across an otolith of an Atlantic

codGadusmorhua quantifiedwith scanningX-ray fluorescencemicroscopy

(Limburg and Elfman 2017). The colour scale bar indicates mass fractions.

� 2016The Fisheries Society of theBritish Isles. Reprintedwith permission.
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image of their environment. One of the first paintings to be

considered Impressionist and an inspiration for the label itself
was the painting Impression, Sunrise (1872) by Claude Monet
(Fig. 4). A depiction of rowboats in the port of La Havre, the
work uses bold brushstrokes that are visible swathes of paint

when viewed up close but meld at distance to illustrate a familiar
scene. The painting also preserves a moment in time that
captures the particular light, colour and shadows unique to an

early sunrise, and evokes the experience of the painter that
morning. The art critic Jules-Antoine Castagnary wrote in 1874
that these types of paintingswere Impressionist ‘in the sense that

they render not the landscape, but the sensation produced by the
landscape’ (Rubin 1999). The artist is inserting themselves as a
filter through which the landscape is observed, recorded and

interpreted. Impressionism explicitly integrates images of the
natural world with the subjective experience of the observer and
the artist, and these paintings can be analysed and appreciated
through multiple lenses. This perspective has metaphorical

parallels to the challenges otolith chemists face when interpret-
ing the often complex chemical patterns that are influenced by
physiological and environmental factors alike.

Critical analysis of paintings can occur at many levels, as can
interpretation of otolith chemistry patterns. The first level is that
of the studio, or the environment in which the painting was

made. Did the artist paint outdoors or inside, from a model or a
memory? More broadly, when was this painting made in time,
and what were the social and political settings that influenced

the artist? The second level is that of the media, or the materials
used to create the image. Did the artist use oils or gouaches, a
few colours or a wide palette? How did the choice of media
inform the image and its representation of the subject? The third

level is that of the canvas, or the surface on which the image was
painted.Was the canvas primed or bare, made of linen or cotton,
or perhapsmade of something entirely different, like a brickwall

or the inside of a limestone cave? How did the canvas composi-
tion influence the choice of media and subject matter, and vice
versa? Finally, the fourth level is that of the artist. Who was this

person, and what was their motivation?Were they old or young,

healthy or sickly, a loner or sociable? How did their life
influence the way they saw the world and the way they made

paintings? Each of these levels can be thought of as a filter that
stands between reality, such as a landscape, and the one that
eventually ends up in the final painting. Instead of a faithful

snapshot of reality, the painting is filtered through the perspec-
tive of the artist and the materials they use to represent their
environments.

Thus, a painting holds more information than simply what
the landscape actually looked like because it simultaneously
provides insight about the artist themselves. This is precisely the
same challenge that we facewhen interpreting chemical patterns

in otoliths. The ‘studio’ is the environment in which the fish
lives. This includes the geographic and physical setting, as well
as the spatial variability in the elements and isotopes that

become proxies for the environment. The ‘media’ are the
elements themselves. Each element records its own unique set
of information and, together, a suite of elements provides the

palette that can be observed. The ‘canvas’ is the otolith itself,
with its specific organic and inorganic composition that med-
iates elemental incorporation dynamics. The canvasmay change
significantly when investigating otolith analogues, such as

scales, fin rays or vertebrae, which are increasingly popular
alternative structures that have their own growth dynamics and
compositional properties. Finally, but most importantly, the fish

is the Artist that ultimately integrates these filters and creates an
otolith reflecting its individual experience. Internal character-
istics such as physiological status, maturity and stress can all act

as filters thatmodify the eventual chemical pattern, much like an
artist’s subjective perception influences the paintings they
make. For the remainder of this paper, I will use this metaphori-

cal framework to highlight a few specific advances in each of
these four areas, and I conclude with a proposed conceptual
approach to integrate these perspectives.

The studio

A large proportion of otolith research seeks to identify natal

origins or reconstruct movements through distinct habitats.
Central to most of these efforts is the assumption that ambient
variability in chemical constituents will be reflected in the
accreted increments of the life history stage of interest, with

uptake derived primarily through a water-derived pathway. For
elements or isotope ratios in otoliths that have been validated to
strongly or at least partially reflect the ambient dissolved com-

position, geographic variability in such constituents is an ulti-
mate control on the spatial resolution of this tool (Elsdon et al.

2008). The ‘studio’, therefore, is the chemical background

through which a fish travels naturally or experiences during
experimental manipulations, and the degree to which themyriad
environments a fish inhabits are chemically distinct determines
whether such reconstructions from otoliths are even possible.

Considerable progress in geospatial mapping of chemical
variability has been essential for many fields that use composi-
tion of animal tissues to determinemigration pathways.Much of

this work has been driven by researchers investigating terrestrial
fauna and isotopic markers such as d18O, dD and d13C in hard or
soft tissues (West et al. 2010; Hobson and Koehler 2015). The

creation of high-resolution maps of isotope variability, or

Fig. 4. Impression, Sunrise [Impression, soleil levant], by Claude Monet

(1872).
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isoscapes, requires a combination of field-collected samples and
models that interpolate and predict isotope composition for

unsampled locations. Animals of unknown origin can then be
assayed for the marker of interest and matched to the isoscape to
quantitatively estimate putative locations of origin or migration.

A principle concern in these efforts is parameterising temporal
variability of an isotope marker in a given location (Wunder
2010; Trueman et al. 2012). The accuracy of locational assign-

ments requires temporal variability to be smaller than differ-
ences between locations; with large overlap in signature values
between locations, the ability to confidently determine which
location was the true origin decreases. For isotope ratios that are

especially labile and sensitive to climatic conditions, such as
d18O, it is important to remember that these isoscapes are not
static but dynamic, and time is a crucial variable (Dutton et al.

2005; Walther and Thorrold 2009). Although much of this
isoscape mapping work has been targeted towards terrestrial
landscapes, similar tools have been used to construct marine

isoscapes, although limited spatial coverage of sampling in
some ocean basins remain an issue (McMahon et al. 2013a,
2013b).

A powerful and increasingly popular isotope system for

migration studies is 87Sr/86Sr ratios. The utility of this system
is due to several attractive features, including strong geological
control that leads to significant nested variation at local to

continental scales (Banner 2004) and the lack of apparent
fractionation during uptake, meaning water values are directly
recorded in biogenic structures without physiological decou-

pling (Beard and Johnson 2000). Because of the dominant
influence of geological composition and age on this radiogenic
ratio, predictive maps based on rock age and type can be

constructed for use to assign natal origins or habitat use histories
in fishes (Kennedy et al. 2000, 2002; Hegg et al. 2013). A
primary value of these models and maps is their ability to
provide at least first-order estimations about whether certain

habitats may be chemically distinguishable. Thus, these maps
provide guidance on the feasibility of testing hypotheses about
migration between specific locations (e.g. Humston et al. 2017).

This type of a priori prediction of chemical variability is
incredibly valuable given limited budgets and difficulties in
sampling logistics that restrict the ability to sample water from

all putative habitats before a project begins. Thesemaps, to put it
simply, reveal what questions we might ask.

Models that predict large-scale variation in 87Sr/86Sr ratios
have become increasingly sophisticated over the past decade.

Barnett-Johnson et al. (2008) predicted.90% of the variability
in ratios recorded in salmonid otoliths in the western US with a
model based on the proportion of the watershed containing

granitic bedrock. Subsequently, Bataille and Bowen (2012)
developed a model of bedrock lithology for silicates and
carbonates as well as age to estimate rock-specific radiogenic

decay of 87Rb to 87Sr from parent rock compositions, which
were combined with geographic information system (GIS)
geology maps to estimate 87Sr/86Sr variation across the contig-

uous US. This model then incorporated weathering coefficients
for specific rock types combined with hydrological flow mea-
surements to estimate local catchment compositions for specific
regions. The flux-weighted models that incorporated bedrock

type, age and weathering had a high degree of accuracy (,70%)

in predicting observed 87Sr/86Sr ratios in specific regions. This
model was further improved by Bataille et al. (2014) through

refinements of model components including siliciclastic sedi-
mentary rock submodel improvements to account for grain
recycling, and an updated weathering model for Alaska that

incorporated permafrost and glacial processes that can affect
Sr flux at higher latitudes. These models point to the need to
incorporate both general isotope systematics as well as regional

hydrodynamic processes to more accurately estimate the dis-
solved 87Sr/86Sr present in streams and rivers that fish inhabit,
thereby allowing highly accurate estimation of natal origins
and migration patterns of freshwater and diadromous fishes

(Brennan and Schindler 2017).
For fish that transit salinity gradients, a central concern is

understanding how targeted elements vary across an estuary.

The theory and practice of hydrological mixing dynamics are of
paramount concern to discern whether movements between
salinity regimes are even detectable. Although the pertinent

concepts about mixing have been discussed previously (e.g.
Kraus and Secor 2004; Gillanders 2005; Milton and Chenery
2005; Walther and Limburg 2012), they are worth revisiting in
the context of understanding the ‘studio’ in which otoliths are

formed. First, when considering differences between fresh and
marine chemical signatures, the chemical compositions of both
water masses on either end of a mixing dynamic, or endmem-

bers, must be known. For example, the larger the difference
between fresh and marine Sr concentrations, the greater the
likelihood of detecting a movement between those habitats. For

an element like Sr, where marine concentrations are relatively
homogeneous and constant on ecological time scales compared
to fresh waters (de Villiers 1999), it is the freshwater end-

member that is of most concern for otolith chemists. The strong
geological control on freshwater Sr composition therefore
requires one to inspect a geological map of the catchment to
investigate the bedrock composition of the drainages. Given

significant variation in Sr composition among lithologies, some
systems, such as those dominated by marine carbonates, may
have very similar or nearly identical compositions to that of

marine waters (Brown and Severin 2009). With limited differ-
ences in the selected chemical composition between fresh and
marine endmembers, there is little scope for detecting move-

ment in those systems. This ultimate environmental control on
the utility of chemical tracking for a particular system thus
requires the researcher to carefully consider the regional geo-
logical setting before selecting otolith chemistry as a viable tool.

Beyond considering the endmembers themselves, themixing
dynamics across the salinity gradient are also of great interest. A
dissolved element is considered conservative if it exhibits linear

mixing between two water masses, such as fresh and marine
endmembers. Non-conservative mixing is indicated by positive
or negative curvature in the relationship between the element

and salinity, which results when there are internal kinetics that
result in net addition or removal of the constituent at an
intermediate salinity (Ward and Montague 1996). Note that a

linear relationship with salinity does not mean that there is an
absence of kinetics for the constituent in the estuary, only that
there is no net kinetic addition or removal at mid-salinities. A
relevant example of this is dissolved Ba, which exhibits net

addition at low salinities where riverine particles containing
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adsorbed Ba first hit the salt wedge and Ba ions are desorbed and
released into the water column (Coffey et al. 1997). This low

salinity peak in Ba is observed in most estuaries worldwide,
with the magnitude of the peak depending on the particulate
load and geological composition of the catchment (Sinclair and

McCulloch 2004).
However, the ability to determine whether an element is

conservative or non-conservative based on linear or non-linear

behaviour requires that specific set of assumptions are met. If
one or more of those assumptions are violated, non-linear
relationships between the element and salinity may be observed
even if the element itself is still behaving conservatively.

Critical assumptions include: (1) there are only two endmem-
bers (violated if there are multiple streams or even groundwater
contributions with distinct chemical compositions all contribut-

ing to the estuary); (2) that salinity itself is conservative
(violated if strong evaporative processes cause alterations in
salinity that are not due to mixing); and (3) that the endmember

compositions are temporally stable with respect to the residence
time of the estuary (violated if short-term flood or drought
regimes alter upstream weathering of unique lithologies, for
example). Thus, the observation of non-linear behaviour can, on

the one hand, indicate non-conservative processes, but may
indicate on the other hand that one or more assumptions have
been violated. Why is this of concern for otolith chemists? The

shape and scope of the mixing curves for these tracer elements
are again the ultimate control dictating whether movements are
discernible. The hydrodynamics and elemental kinetics of the

system are useful to identify whether movement between
specific salinity regimes is resolvable, and they may also
indicate important ecological considerations, such as the contri-

bution of multiple catchments (and therefore potential habitats
for migration) or the dominance of evaporative processes that
could induce salinity stress for stationary fishes (Barnett-
Johnson et al. 2008; Gillanders and Munro 2012; Hegg et al.

2015; Mohan and Walther 2015). Careful consideration of the
environmental processes and their controls on constituent
behaviour is key to the successful use and interpretation of

otolith chemistry patterns as a movement tracking tool.

The media

Turning to the media, or the chemical constituents that may

capture some aspect of the life of a fish, we must identify the
palette of elements and isotopes available for observation. A
small handful of elements has dominated the literature, in part

because certain elements are readily incorporated into the ara-
gonitic crystal lattice, they may pass through Ca channels and
substitute directly for Ca, thereby more effectively representing
the ambient water composition, and because of their relative

abundance in otoliths, rendering them reliably assayed with
common instrumentation. Thus, the alkaline earth metals iso-
lated by Sir Humphry Davy, such as Sr and Ba, are of great

utility. In addition, the isotopic ratios of C and O are readily
quantified in any carbonate structure and useful given the great
deal of work on fractionation and isotope systematics in other

aragonitic skeletons, such as those of scleractinian corals. The
other key to a useful ‘colour’ is that the element or isotope ratio
varies environmentally with a gradient such as salinity or

responds to another variable of interest like temperature or
dissolved oxygen (Radtke 1989; Thorrold et al. 1997; Elsdon

and Gillanders 2002; Limburg et al. 2015). These required
characteristics naturally winnow to the spectrum of potentially
useful elements down to a handful, which are typically sufficient

for many questions and systems.
However, with advances in instrumental sensitivities and

precisions and expanding experimental validations to under-

stand uptake dynamics of other elements, our palette may
expand. Less frequently investigated elements such as Fe, Pb,
Cu, Zn and S (bulk and isotope ratios) are detectable in otoliths,
although analytical challenges for quantifying their concentra-

tions persist (Spencer et al. 2000; Limburg and Elfman 2010;
Daverat et al. 2012; Di Franco et al. 2014; Hüssy et al. 2016;
Doubleday et al. 2018). The degree to which some of these

elements reflect ambient water compositions or are highly
regulated by physiological discrimination is poorly known
(but see Geffen et al. (1998) and Milton and Chenery (2001b),

among others). Experimental validations of these alternative
elements are rare, due in part to the difficulty in rearing fish in
carefully controlled elemental environments with minimal con-
tamination of trace metals such as Fe and Pb during rearing or

analysis (Arslan and Secor 2008; Selleslagh et al. 2016). Yet, we
must encourage new otolith chemists to devise ways to experi-
mentally manipulate water and diets of these alternative ele-

ments in an attempt to widen the available palette beyond the
now-traditional elements.

A key feature of an otolith is that it is essentially a mixed-

media artwork. Rather than simply an abiotic accretion, the
structure is biogenic and created with a complex protein lattice
that forms the scaffolding on which the carbonate crystals

accrete (Murayama et al. 2005; Miller et al. 2006; Weigele
et al. 2016). The nature and composition of the organic fraction
of an otolith is still being revealed, posing both challenges and
opportunities for interpretations of chemical patterns. The

degree to which proteins bind and alter elemental availability
for transport across membranes or incorporation into the crystal
structure itself contributes greatly to the ability of an element to

accurately reflect ambient water compositions (Payan et al.

1999, 2004a, 2004b; Borelli et al. 2001, 2003a, 2003b). A
careful consideration of protein–element interactions at all

stages along the relevant physiological pathways is important.
For example, Thomas et al. (2017) found that although the
dissolved fraction of Ca, Sr and Ba in endolymph is large, a
significant proportion of those same elements is protein bound

and thus potentially unavailable for incorporation into the
otolith. Within the otolith itself, the assumption that elements
substitute for Ca in the carbonate crystal may not be uniformly

accurate, and the protein lattice itselfmay facilitate the uptake of
some elements (McFadden et al. 2016). Izzo et al. (2016) found
that the fraction of protein-bound elements within otoliths

varied, with minimal proportions of Ba bound to proteins but
larger proportions of protein-boundMn and Cu. These element-
specific protein interactions contribute, in part, to their respec-

tive partition coefficients and illustrate the complexities of
attempting to interpret elemental patterns in these mixed-media
structures.

In addition to affecting uptake dynamics of traditional ele-

ments, the protein matrix itself can be assayed for vital
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information about the life of a fish. Although low in total
concentration, the proteins offer the potential for insight into

dietary dynamics of fishes that cannot be probed effectivelywith
elements such as Sr and Ba. The primary limitation for assaying
the organic fraction has been purifying sufficient material for

analysis. However, new methods for isolating and quantifying
proteins show great promise. For example, Lueders-Dumont
et al. (2018) found that otolith-bound d15N distinguished

between farmed and wild salmonids, and Sirot et al. (2017)
used otolith d15N and d13C together to investigate the diets of
both modern and archived otoliths. Beyond just bulk analysis,
the ability to quantify compound-specific amino acid stable

isotope ratios is a frontier withmuch potential. The advantage of
this compound-specific approach is the use of certain amino
acids that undergo minimal trophic fractionation (‘essential

amino acids’) to estimate baseline carbon fixation sources and
other highly fractionated amino acids to estimate trophic posi-
tion (McClelland andMontoya 2002; Larsen et al. 2013;Nielsen

et al. 2015). The ground-breaking work by McMahon et al.

(2011a, 2011b, 2016) showed that this approach was possible in
otoliths, and d13C values of amino acids effectively distin-
guished fish who fed on mangrove or seagrass food webs. More

recently, Vane et al. (2018) used d15N of ‘trophic’ and ‘source’
amino acids to estimate ontogenetic trophic shifts of mobile
fishes. This compound-specific approach is likely to become

more frequently used as methods and instrumentation become
more accessible. Truly, the organic fraction of otoliths is a
fruitful area of study not only to increase our understanding of

elemental incorporation dynamics, but also to open the door to
additional questions about dietary and metabolic histories con-
tained in the proteins themselves.

The canvas

The canvas refers to the structure onwhich the chemical patterns
are created. As described above, an otolith is composed pri-

marily of calcium carbonate but with a small but significant
fraction of organic matter, thereby influencing the choice of
elemental and isotopic proxies that can be investigated. The

properties of otoliths, including their acellular structure and lack
of metabolic reworking, are fundamental to our ability to
interpret patterns as time-stamped reflections of a particular

period in the life of a fish (Campana and Thorrold 2001).
Although the primary form of most otoliths is aragonite, other
crystal forms may be present in particular species, such as
vaterite and calcite, which have important implications for the

relative abundance and incorporation dynamics of particular
elements (Tzeng et al. 2007; Pracheil et al. 2017). Thus, the
properties of an otolith are paramount for dictating how and

which chemical proxies are incorporated and effectively inter-
preted. Parallel with the growth in the field of otolith chemistry
has been the rapid development of alternative and comple-

mentary chemical records in other structures, such as scales, fin
spines and rays, eye lenses and vertebrae. These ‘otolith ana-
logues’ have their own set of challenges and opportunities,

largely dictated by the relative proportion of calcified and
uncalcified material, the degree of metabolic stability and the
periodicity of increment formation (for a review, see Tzadik
et al. 2017). Workers investigating these alternative structures

tend to come from a background of either soft tissue stable

isotope research or otolith chemistry, with concomitant focus on
one or the other set of proxies in these structures, although work

using combinations of proxies may become more frequent.
Scales offer the potential for paired organic isotope assays

with Sr/Ca and Ba/Ca measurements with less limitations of

sample size as encountered with otoliths (Woodcock and
Walther 2014; Seeley et al. 2015). However, their overlain
bipartite structure renders the interpretation of interior incre-

ments difficult for many species (Hutchinson and Trueman
2006; Trueman and Moore 2007), resorption may occur and
the periodicity of scale increment formation may be irregular or
decoupled from that in otoliths for some species (Campana

2001; Abecasis et al. 2008; Upton et al. 2012). Furthermore,
workers must be cautious to exclude regenerated scales if they
wish to obtain a more complete life history record (Seeley et al.

2017), and scales only begin formation at squamation, which
means they are typically useless for determining larval origins.
Fin spines and rays offer similar potential for assays of organic

stable isotope ratios, although with comparable uncertainties
about increment periodicity, metabolic reworking and record
completeness. A primary reason to use structures such as fin
spines or scales is the non-lethality of sampling, which may be

required for work with imperilled species or catch-and-release
fisheries.

Other structures that are sampled lethally include eye lenses

and vertebrae. Vertebrae have been targeted by those investi-
gating migrations and the life history of sharks, where otoliths
are not available for analysis (Raoult et al. 2016; Smith et al.

2016; McMillan et al. 2017). One intriguing and exciting reason
to investigate vertebrae in these organisms is the presence of
material accreted before birth, potentially providing information

about in utero growth, and therefore maternal diets and move-
ments (Carlisle et al. 2015). Although, as with the other
structures, the potential for metabolic instability and lack of
experimental validation of uptake and turnover for many of

these long-lived and large species is a continued impediment
(but see Werry et al. 2011; Smith et al. 2013). Eye lens
composition is an emerging technique that uses separated

laminae for individual analyses of stable isotopes or elemental
composition (Wallace et al. 2014; Quaeck-Davies et al. 2018).
For all these structures, continued investigation into transport,

incorporation and stability of chemical signatures is key. One
potential value-added way to rapidly advance this field is for
researchers who conduct experiments on otolith chemical
uptake dynamics to retain asmany tissues as possible (vertebrae,

eye lenses, scales etc.) from the fish at the conclusion of the
experiment. Although costly to analyse multiple structures, I
encourage researchers to reach out to one another to attempt to

coordinate analyses among multiple laboratories to maximise
outputs. Importantly, this multilaboratory effort could allow
comparisons of patterns in the same element across multiple

structures, which is sorely needed in this field.
Finally, for otolith chemists attempting to understand ele-

mental uptake dynamics into these carbonate structures, we

must stay familiar with the advances in other biogenic carbonate
research, including work on scleractinian corals, foraminifera
and sclerosponges. Certainly, the taxonomic and physiological
constraints are quite different in these disparate groups,

but theoretical and methodological advances in coral
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sclerochronology, for example, could provide a framework for
modelling and experimental approaches to understanding com-

parable processes in fishes. Researchers in those fields are
engaged in similar attempts to understand how physiological
processes are regulating elemental movement across mem-

branes to the calcification surface and to what extent those
transport dynamics may influence a proxy such as the Sr/Ca
ratio and temperature relationship. Current debate revolves

around the extent to which Rayleigh fractionation in partially
closed calcification systems is also mediated by Ca2þ-ATPase
activity, which itself responds to environmental conditions such
as temperature, pH, aragonite saturation state and elemental

concentrations (Gaetani et al. 2011; Thien et al. 2014; DeCarlo
et al. 2015; Tanaka et al. 2015; Giri et al. 2018). Combined
models that incorporate direct environmental and vital effects on

elemental incorporation have been developed (e.g. DeCarlo
et al. 2016), which could be usefully adapted and modified for
fish physiologies and provide a framework for future investiga-

tion and experimentation. Thus, keeping pace with advances in
analogous fields that are investigating alternative ‘canvases’
could allow otolith chemists tomake great strides in understand-
ing the interplay between biogenic and abiogenic factors with-

out starting from scratch.

The artist

Finally, we come to the ultimate integrator of extrinsic and
intrinsic drivers and the creator of the otolith itself: the fish. As

the artist responsible for the patterns we observe in these
structures, the ‘perspective’ of each fish must be considered
when interpreting chemical signatures recorded in otoliths.

Although it is objectively obvious that the physiology and
experience of the fish is important, it is all too easy to think of
an otolith as a simple recorder of the environment with no
filtering of the ambient signal. A survey of the otolith chem-

istry literature will find numerous statements to the effect that
‘elements in water are recorded in otoliths’ as a justification for
using the approach to study movement dynamics. This lan-

guage is imprecise in a few ways. First, it implies passive and
direct incorporation of elements without any physiological
modification (either concentration or discrimination) during

the various pathways from water to otolith. Second, it assumes
water is the only source of otolith elements, which may be
incorrect for some constituents. Third, it collectively lumps the
uptake of all elements into a single monolithic group, implying

that transport dynamics are similar for any element found in an
otolith. Although some elements do reflect ambient water
composition, as modified by physiology, temperature and

other factors, other elements (e.g. Mg) have not yet been found
to accurately reflect water composition and may more closely
reflect metabolism (Woodcock et al. 2012; Limburg et al.

2018). This language is of course a shorthand and could be
forgiven because not every publication on otolith chemistry
requires a full exposition of the complexities of uptake in the

Introduction of a paper. But we must be cautious to not let
literary shorthand devolve into faulty assumptions. Students
and new practitioners of otolith chemistry must be especially
careful to remind themselves of these assumptions and do their

best to use accurate phraseology.

As mentioned throughout this paper, the myriad intrinsic
factors that can potentially regulate or even decouple otolith

elemental composition from that in the environment are com-
plex and, in some cases, poorly understood. Metaphorically, the
fish as an artist creates its artwork that is both constrained and

enabled by its health, condition, behaviour and environment.
Taxonomic groups with divergent physiologies could be viewed
as analogous to artistic movements with recognisable styles.

Impressionists, Surrealists and Modernists produce identifiably
different artworks, much like Istiophoridae, Salmonidae and
Megalopidae produce distinct otoliths. Although these issues
have been recognised throughout the history of this field, much

work remains to be done to disentangle the relative effects of
these processes. A focus on ionic transport of elements across
membranes is critical (Hirose et al. 2003). Many of the central

elements in our palette, such as Sr and Ba, are assumed tomimic
the behaviour of Ca and move through Ca ion channels. If these
ions do follow such transport pathways, then calcium homeo-

stasis and the hormonal and other pertinent regulatory processes
are of critical concern for understanding physiological media-
tion of ion behaviour. As is well known in the physiological
literature, maintenance of homeostasis will be affected by a

wide variety of physiological and life history perturbations,
including stress, circadian rhythms, vitellogenesis, reproduc-
tion, osmoregulation and metamorphosis (Marshall and Grosell

2006). Sex and reproductive status are potentially quite influen-
tial, particularly for marine fish, which live in more chemically
homogeneous environments (Sturrock et al. 2014, 2015), but

these parameters are not always recorded in wild-collected fish
samples (exceptions include Edmonds et al. 1991; Campana
et al. 1994; Gauldie 1996; Secor and Piccoli 1996; Milton and

Chenery 2001a; Ashford et al. 2006; Brenkman et al. 2007; Han
and Tzeng 2007; Jónsdóttir et al. 2007; Arkhipkin et al. 2009;
Albuquerque et al. 2012). Of particular relevance to those
tracking diadromous movements is the altered ion regulation

requirements for fish inhabiting fresh or marine environments
where they are hyperosmotic or hypo-osmotic respectively.
Elemental partition coefficients are known to vary with salinity

(Elsdon and Gillanders 2003; Gillanders and Munro 2012;
Panfili et al. 2015), and ion regulation may be a partial
explanation for this phenomenon.

Together, the importance of ion transport processes points to
a continued need for experimentation that explicitly integrates
physiological and environmental perspectives to understand
uptake. Here, otolith chemists may find useful collaboration

with physiologists already heavily engaged in ion transport
dynamics, particularly because that field has grappled with the
effects of aquatic acidification on stress, homeostasis, ion

transport and carbonate accretion responses (Pörtner 2008;
Heuer and Grosell 2014; Esbaugh 2018). Complementary
approaches to quantifying environmental experiences, such as

archival tagging technologies, can also be usefully coupled with
otolith chemistry analyses to disentangle extrinsic forcing on
observed chemical patterns (Darnaude et al. 2014; Darnaude

and Hunter 2018). Further, meta-analyses of the existing wide
range of experimental evaluations of factors influencing ele-
mental uptake in otoliths will be critical for highlighting gaps
where future efforts can be focused (Izzo et al. 2018). Much as a

painting is created by an artist with an idiosyncratic set of
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experiences and perspectives, an otolith does not form sponta-

neously in water, but rather is created by a fish with its own
physiological dynamics and experiential history that mediate
and influence the observed patterns incorporated into the struc-

ture itself.

Signal-to-noise approach

The continued challenge for practitioners of otolith chemistry is
to bear these multifarious and interactive extrinsic and intrinsic

factors in mind when attempting to interpret a chemical pattern
for a specific question. How to reconcile these issues while still
deriving meaningful information from these structures? One

potential approach, at least conceptually, borrows terminology
from the field of signal processing. Specifically, we may con-
sider an otolith chemical pattern to be similar to an acoustic

waveform or captured image, with the target signal of interest
embedded with additional information, or noise, that obscures
its resolution. Of central interest, then, is the signal-to-noise
ratio (SNR), which dictates whether our signal has a chance of

being resolved from the ‘background’ of other dynamic factors.
Consider the case of attempting to identify a fish movement

across a salinity gradient with otolith chemistry (Fig. 5). The

expectation is that a tracer such as Sr/Ca varies substantially
across the salinity gradient with the freshwater endmember
identifiably lower than the marine endmember (Fig. 5a). How-

ever, as discussed above, this assumption must be validated and
a catchment with a limestone-dominated bedrock may have
elevated freshwater Sr/Ca and therefore a minimal difference
between endmembers (Fig. 5b). These two scenarios impose

very different constraints on the ability to detect a movement

from fresh to marine waters, particularly given other factors that
include additional variation on the final otolith pattern (depicted
here as random noise, but which could also manifest as system-

atic or non-random alterations). If the magnitude of these
alternative influences is moderate, then a movement across an
environmental backdrop of a large difference between end-

members should still be resolvable. In that scenario, the SNR
is high (Fig. 5c). However, with reduced endmember difference,
the noise may be equivalent in magnitude to the signal, the SNR
is low and the movement is more difficult to detect (Fig. 5d). Of

course, the categorisation of particular factors as signal or noise
depends on the question being asked. An investigator may
identify a physiological transition, such as reproductive status,

as the desired signal, in which case chemical variability induced
by movements across environmental gradients would be the
noise for that study.

In order to implement this type of SNR approach, the relative
magnitudes of pertinent factors must be known at least to a first-
order approximation. Ifmagnitudes of the effects of intrinsic and
non-target extrinsic factors are known, then themagnitude of the

required chemical gradient to impart detectable signals of
movement could be estimated. This estimation may be possible
for some taxonomic groups given current experimental results.

Species-specific or stock-specific differences in uptake dynam-
ics may challenge our ability to extrapolate these results to
species where experimental work is limited (Clarke et al. 2011;

Barnes and Gillanders 2013; Chang and Geffen 2013). How-
ever, multi-elemental comparisons among proxies that have
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varying degrees of physiological control is a promising way to
identify the relative effects of intrinsic and extrinsic factors

(Grammer et al. 2017). This SNR framework could be useful in
pointing towards gaps in experimental knowledge and guide
new practitioners towards essential preliminary steps when

evaluating whether otolith chemistry will be a viable tool.

Conclusion

Returning to the artistic metaphor, we must consider the
museum patron who enjoys and analyses the art in front of them.
This patron is the scientist attempting to understand something

about the life and times of fishes. Much like the art historians
that now use advanced image processing and even elemental
analyses to establish provenance and creation of important art-

works (Marin et al. 2015; Cucci et al. 2016), otolith chemistry
tools have grown in sophistication and accessibility as instru-
mentation has advanced. Yet, technological advances do not

eliminate the possibility that the observer is misled when
interpreting a pattern. Observer bias is an ever-present issue in
biological studies (Holman et al. 2015; Kardish et al. 2015), and
otolith chemists must caution themselves about the possibility

that they are biased towards observing particular types of pat-
terns, or they may simply not recognise patterns that are present.
Scientists are the final filter through which the data are passed

before an interpretation is produced.
Despite these many challenges inherent to the interpretation

of otolith chemistry patterns, the field has grown dramatically

over recent decades and afforded great insight into the life
histories, population dynamics and habitat requirements of a
diverse range of species. An otolith is truly an integrated portrait

of the life of a fish, including information about the environ-
ment, its physiology and growth patterns in one singular
structure. Rather than turning a blind eye to these complicated
issues, our field has flourished by embracing this complexity

and applying innovative experimentation and adoption of tech-
nological improvements to disentangle these dynamics. By
reminding ourselves that an otolith reflects not just the external

environment, but also the singular point of view of each fish, we
can continue to interpret these complicated patterns. We use
otoliths to appreciate not just the landscape imprinted in the

image, but also the perspective of the artist. As visitors to these
aquatic galleries, we are truly lucky to have such rich and
rewarding images to contemplate.
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géologiques. Conséquences relatives aux eaux minérales salifères.

Comptes Rendus Hebdomadaires des Séances de l’Académie des
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