
Received March 1, 2018, accepted April 15, 2018, date of publication April 18, 2018, date of current version May 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2828102

A Survey on Service Migration in Mobile
Edge Computing
SHANGGUANG WANG 1, (Senior Member, IEEE), JINLIANG XU1,
NING ZHANG2, (Senior Member, IEEE), AND YUJIONG LIU1
1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Department of Computing Sciences, Texas A&M University at Corpus Christi, Corpus Christi, TX 78412, USA

Corresponding author: Shangguang Wang (sgwang@bupt.edu.cn)

This work was supported by NSFC under Grant 61472047.

ABSTRACT Mobile edge computing (MEC) provides a promising approach to significantly reduce network
operational cost and improve quality of service (QoS) of mobile users by pushing computation resources to
the network edges, and enables a scalable Internet of Things (IoT) architecture for time-sensitive applications
(e-healthcare, real-time monitoring, and so on.). However, the mobility of mobile users and the limited
coverage of edge servers can result in significant network performance degradation, dramatic drop in QoS,
and even interruption of ongoing edge services; therefore, it is difficult to ensure service continuity. Service
migration has great potential to address the issues, which decides when or where these services are migrated
following user mobility and the changes of demand. In this paper, two conceptions similar to service
migration, i.e., live migration for data centers and handover in cellular networks, are first discussed. Next,
the cutting-edge research efforts on service migration inMEC are reviewed, and a devisal of taxonomy based
on various research directions for efficient service migration is presented. Subsequently, a summary of three
technologies for hosting services on edge servers, i.e., virtual machine, container, and agent, is provided.
At last, open research challenges in service migration are identified and discussed.

INDEX TERMS Mobile edge computing, servicemigration, livemigration, migration path selection, cellular
handover.

I. INTRODUCTION
Cloud computing technology has been widely used in the
past decade, which relies heavily on the centralization of
computing and data resources, so that these resources can be
accessed in an on-demand way by the distributed end users.
Cloud services are provided by large centralized data-centers
that may be located far away from the users. As a result,
a user can endure long latency due to connection to remote
services. In recent years, considerable progresses have been
made to distribute cloud services closer to users, providing
higher reliability and faster access at the same time.

Specifically, in Internet of Things (IoT) applications,
to improve the data throughput and rapid response of mobile
devices or sensors, a small cloud can be connected directly
via the wireless communication infrastructure at the network
edges (e.g., cellular base station and Wi-Fi access point)
to provide services to the mobile users within its cover-
age. Mobile edge computing (MEC) can enable computa-
tion and data offloading for mobile devices [1]–[5], which

is a supplementary for mobile devices with relatively lim-
ited computational and storage capacity. It is also useful
in scenarios that require high data processing capability or
robustness, e.g., in hostile environments [6] or in vehicular
networks [7]. Many conceptual models have been proposed
by academia and industry, including MEC [8], [9], mobile
micro-cloud [10], micro datacenter [11], Cloudlet [12], Fog
Computing [13]–[15], and Follow Me Cloud (FMC) [4].
These conceptual models are partially overlapping and com-
plementary. The core of these models is to run applications
and related processing tasks in proximity of mobile users,
network congestion is reduced, battery life is enhanced and
service experience is improved [16]. We use the termMobile
Edge Computing to refer to a general conceptual model and
differentiate it from the above-mentioned models. In addi-
tion to significantly reducing network operational cost
and improving quality of service (QoS) of mobile users
by pushing computation resources closer to the network
edges, MEC also enables a scalable IoT architecture for time

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

23511

https://orcid.org/0000-0001-7245-1298

S. Wang et al.: Survey on Service Migration in MEC

FIGURE 1. A case of service migration in mobile edge computing. The red
solid line means one transferring path between source and destination
edge server.

sensitive applications (e-healthcare, real time monitoring,
etc.) [17]–[21].

MEC has emerged as a key enabling technology for realiz-
ing the IoT visions [19]. A significant issue inMEC is service
migration with user mobility. The contradiction between the
limited coverage of single edge server and the mobility of
user terminals (e.g., smartphones [8] and intelligent vehicles
[22]–[24]) will result in significant network performance
degradation, which can further lead to dramatic drop in QoS
and even interruption of ongoing edge services, therefore, it
is difficult to ensure the service continuity [12], [25], [26].
Therefore, in order to ensure service continuity as users
move, it is especially important to realize seamless service
migration (i.e., without disruption of ongoing edge services,
a mobile user is not allowed to freely move over a large
geographic area). Since edge servers are attached to many
different access points or base stations, a decision should be
made that whether and where to migrate the ongoing edge
services as an arbitrary user moves outside the service area
of the associated edge server [27]. Considering the scenario
as shown in Fig. 1, an edge server (e.g., a small cloud) con-
tains one or more physical machines hosting several virtual
machines, covers the mobile users in proximity. These edge
servers are interconnected with each other via different kinds
of network connections. Note that we use edge server as a
general term to refer to the small cloud, such as cloudlet [12],
fog node [13], [28], etc. In addition, we consider service
migration as the stateful migration of applications: a mobile
user accepts a service for a continuous time period, and the
service application reserves internal state data for the user,
such as intermediate data processing results. After the com-
pletion of the migration, the service resumes exactly where it
stopped before migration. As a mobile user moves from one
area to another, we can 1) either continue to run the service on
the current edge server, and exchange data with a mobile user
through the core network or other edge servers, 2) or migrate
the service to another edge server that covers the new area.
In both of the two cases, cost can be incurred: such as data
transmission cost for the former case, and migration cost for
the latter.

Service migration is also very challenging [4], [12], [25],
[29]. When a user moves through several adjacent or over-
lapped geographical areas, service migration should deal
with: 1) whether the ongoing service should be migrated out
of the current edge server that hosts this service; 2) if the
answer is yes, then which edge server the service should be
migrated to; 3) how the service migration process should be
carried out, considering the overhead and QoS requirements.
This problem comes from the tradeoff of migration cost (e.g,
migration cost and transmission cost)in the whole service
migration process and improvement of users’ expectation on
QoS that can be achieved after migration (i.e., reducing the
latency for users or network overhead). It is very difficult
to obtain the optimal service mitigation because of the high
uncertainty of user mobility and request patterns, as well as
potential non-linearity of transmission and migration cost.
Since edge servers are allocated at the network edges, their
performance is intimately related to the dynamics of users.
Moreover, service migration becomes more complex, consid-
ering a large number of users and applications, as well as the
heterogeneity of edge servers.

In recent years, several survey papers have been published
to provide overviews of the MEC area. These works mainly
focus on system and network models, computation offload-
ing, resource allocation, architectures and applications [5],
[9], [19]. To the best of our knowledge, this is the first work
that summarizes the problem of service migration in MEC.
The contributions of this paper are: 1) review of the up to date
research on service migration in MEC; 2) comparison with
two similar concepts of service migration, i.e, live migration
for data centers and handover in cellular networks; 3) devisal
of taxonomy based on various research directions for efficient
service migration; 4) summary of three hosting technologies
of services on edge servers, i.e. virtual machine, container
and agent; 5) identification of various open issues related to
service migration which need further research.

The remainder of this paper is organized as follows.
Section II presents two conceptions similar to service migra-
tion and a comparison between them. In Section III, we detail
the techniques of migrating running services. In section IV,
we discuss some of existing strategies of service migration.
In Section V, we explore the pros and cons of three technolo-
gies for hosting mobile application components, i.e., virtual
machine, container and agent. In Section VI, we discuss some
research challenges in service migration. The main content is
as shown in Fig. 2, each entry in frame corresponds to one
section.

II. EXISTING CONCEPTS: SIMILARITY AND COMPARISON
In this section, we introduce two similar concepts that are
closely related to service migration and compare them for
better understanding of service migration.

A. LIVE MIGRATION FOR DATA CENTERS
Livemigration of virtual machine is gainingmore importance
to improve the utilization of resources, load balancing of

23512 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

FIGURE 2. The organization of this survey. The number shows the corresponding section number. Sections 3, 4,
5 together constitute the body of the service migration topic. Among them, Section 5 is the lowest level of the topic,
which describes the host of application components that need migration. If some running service is to be migrated,
we should know what the corresponding application components are and what are hosting them. As a result, we say
what Section 5 deals with is the lowest level, or the fundamental part. Section 4 describes the strategies in migrating
the application components described in Section 5, which is a higher level topic. Section 4 and 5 are not enough for
service migration as we must apply them into mobile edge computing network environment, that is what Section 3 is
doing, e.g., how to reduce the data volume to be transferred. So there exists a progressive relationship between the
three sections. But at the same time they deal with three different parts of and form the body of service migration.

processing nodes, tolerating the faults in virtual machines,
etc., to increase the portability of nodes and to promote the
efficiency of the physical server [30]–[34]. Live migration for
data center mainly deals with memory migration of virtual
machine instances. To transfer the memory state data of
a virtual machine from its source physical machine to the
destination machine, two techniques can be adopted, namely
pre-copy and post-copy memory data migration.

1) In the former technique, all memory pages from the
source to the destination are duplicatedwhile the virtual
machine instance is still running. If some pages change
in the duplicating period, they will be copied again,
until the ratio of re-copied pages is higher than the ratio
of changed pages. After this phase, the instance on the
source stops, the remaining changed pages are moved
to the destination and the virtual machine instance
resumes at the destination.

2) While post-copy memory migration is started by sus-
pending the virtual machine instance on the source
host. Then a minimal set of state data (including CPU
state, register, non-pageable memory, etc.) is moved
to the destination, then the instance is restarted on the
destination.

Post-copy method transfers less data, but may incur long
downtime. In contrast, pre-copy can reduce downtime, how-
ever, it needs transfer more data. Service migration in MEC
resembles live migration in data centers, as they both try
to move a runtime application from one virtual machine to
another. However, they are at least in three important ways as
follows [12]:

1) They target on different performance metrics. Service
migration aims to reduce the total time of completion of
migration, as end-to-end latency deteriorates until the
end of the process. While live migration deals with the
short period of the final step (i.e., downtime, during
which mobile users cannot receive service), of which
the total time is not the first consideration.

2) Live migration for data centers can make use of shared
storage and memory, which are assumed to be very

large and rich. While in MEC environment, these local
resources are limited, this needs invoke application
partition and task scheduling techniques.

3) The edge server deployment should accept whatever
computation or network resources exist across geo-
graphically distributed edge servers. Different from
live migration in data centers, service migration cannot
depend on the availability of a dedicated computation
unit or high-bandwidth network. As a result, service
migration needs overcome high variation of network
bandwidth and computation capacity caused by time-
varying workload.

4) The required operating system and applications of the
ongoing service may exist on the destination edge
server. This can avoid unnecessary data transferring in
service migration.

The distinction between live migration and service migra-
tion is as shown in Table 1.

TABLE 1. Distinction between live migration and service migration.

B. HANDOVER IN CELLULAR NETWORKS
In a cellular system, as the mobile user is moving across dif-
ferent cells during an continuous communication, handover
(or handoff) needs to be performed [35]–[38], to avoid service
interruption.

Similar to handover in cellular networks, service migration
also deals with user mobility from one geographical area to
another. However, they are different in the following aspects:

1) The data transferred in handover process of cellular net-
works contains signal messages and state data between
a pair of mobile terminal and base station, or two base

VOLUME 6, 2018 23513

S. Wang et al.: Survey on Service Migration in MEC

FIGURE 3. The three-layer framework (left side) and the flow chart of the service migration process (right side).

stations [27], [37]. As the size of signal messages and
state data is very small, the time cost for data trans-
ferring only accounts for a tiny part of the whole time
of handover process of cellular networks. While for
servicemigration inMEC, the data that should be trans-
ferred (e.g. memory state data, application image data,
input dataset, etc. [12], [26], [39]) is always very large
(e.g., in megabyte or gigabytes). Therefore the time
cost for data transferring in service migration becomes
a critical factor for seamless service migration.

2) In service migration, users can connect to remote edge
servers, while handover in cellular networks must hap-
pen if a user is no longer in the coverage of the current
serving base station. A user can still continue to receive
service from the current edge server even if they are no
longer directly connected to each other, because mobile
user can still exchange data with remote edge servers
with the help of its direct connection edge server as a
relay node. Hence, the ongoing service can be placed
on any feasible edge server, which gives the service
migration problem larger scope [40].

3) In service migration in MEC, between the start
edge server and the destination edge server, there
may exist various network topology (e.g. remote
clouds or other edge servers as intermediate nodes)
and communication systems (e.g. Wi-Fi, LTE-U, 4G
and 5G) [41]–[43], leading to different network con-
nections and transmission paths for data transmission
between them (various transferring latency and pro-
cess cost). While handover in cellular networks hap-
pens only between two neighboring cellular cells [44].
Therefore, the network environments in service migra-
tion are more complex than handover in cellular
networks.

As a result, service migration in MEC is a problem differ-
ent from handover in cellular networks, therefore, the han-
dover technologie in cellular networks cannot be directly
applied to the problem of service migration.

From these comparison above, we can conclude that ser-
vice migration can integrate advantages of live migration in
data centers and handover in cellular networks and do some
adjustments to better adapt to the MEC environment, e.g.,
large data volume, complex network condition, etc.

III. TECHNIQUES OF MIGRATING RUNNING SERVICE
In this section, we detail the techniques for migrating run-
ning services, including a three-layer framework augmented
service migration flow and optimization of data transmission.
The optimization of data transferring only deals with low
level processing in service migration, while the three-layer
framework augmented service migration flow improves per-
formance from a higher level view. Here we put them together
to give a more comprehensive introduction of the techniques
of migrating running service.

A. THREE-LAYER FRAMEWORK AUGMENTED SERVICE
MIGRATION FLOW
As shown in Fig. 3 [12], the three-layer framework formigrat-
ing running applications is used to optimize the downtime and
the total migration time, which divides the service running on
edge server into three layers as follows [26]:

1) Base. It includes the guest operating system, kernel,
etc., however, no service applications are installed
and it can be largely reused by different applications.
A copy of this base layer may be stored on most edge
servers, so it is unnecessary to be transferred during
each migration process.

2) Application. It is a release version of an application
with only application-specific data. Like the base,
application is unnecessary to be transferred every time,
neither, because edge server can download various
applications from application stores or official appli-
cation web sites by itself.

3) Instance. It is the running state of an application, such
as CPU, register, non-pageable memory, etc.

23514 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

The migration process benefits from the above three-layer
framework. The whole process of migration is as shown the
flow chart of Fig. 3. It should check whether the destination
edge server has the copy of the needed base, application to
avoid unnecessary data transferring. If the instance can be
found in destination edge server, it means that application
layer and base layer have already existed there and it is not
necessary to copy these two layers from the source edge
server. Similarly, if the application can be found in destination
edge server, it implies that the base layer has existed there.
When migrating a service instance, inspired by pre-copy
memory migration, all the memory data is transferred from
the source edge server to the destination edge server while the
service instance is still running, until pre-fixed criteria is met.
Then the running service is suspended and the remaining data
is transferred to the destination edge server. At the destination
edge server, the service can be reconstructed from a collec-
tion of the base, application, and instance data. In this way,
we can transfer most of the service data before suspending
the service, and service downtime is minimized as much as
possible. As the base layer or application layer always has
a large amount of data compared to the instance layer (e.g.,
base package may only have data of hundreds of megabytes
or several gigabytes for LXC1 and KVM,2 respectively),
the three-layer framework helps minimize the transmission
time remarkably in the process of migration.

B. DATA TRANSFERRING OPTIMIZATION
Different from the three-layer framework augmented service
migration flow in last section, the data transmission process
can be further optimized from the following perspectives:
[12], [45].

1) REDUCING DATA SIZE
Since network bandwidth is in general the bottleneck of
service migration, the amount of data is aggressively reduced
to ease the burden of transferred data across the network.
As is shown in Fig. 4 [12], reducing the amount of data
involves changes tracking, delta-encode, deduplication and
compression before it contacts with the network interface.
• Tracking of changes. It includes two aspects, i.e., disk
tracking and memory tracking. 1) For disk tracking,
at the beginning, the system can snapshot all disk data
that differ from the corresponding base layer. Then any
further disk changes will be logged for subsequent data
transferring, and the service can continue to run at the
same time; 2) For memory, it is different from the disk
tracking, as it would will lead to more overhead on
memory write. Memory snapshot is based on a live
migration scheme [32], and this process will be iterated
several times, sending memory blocks that are changed
in the previous iteration period.

1LXC is a user interface for Linux kernel container. Using a set of powerful
APIs and tools, it helps users create and manage containers with ease.

2KVM is a virtualization scheme for Linux onX86 hardware virtualization
extensions.

• Delta encoding of modification. For each changed data
block, a delta algorithm is utilized to encode and send
out the difference between the data block and the cor-
responding one in the base layer [32]. The reason is
that very small changes are large probability events,
and there may exist considerable overlap between the
running service and the application.

• Deduplication.Deduplication works very well in reduc-
ing redundant data. The same parts are removed out at
this stage, and they are replaced with pointers to the
corresponding blocks [32].

• Compression. At this stage, data attempts to be further
compressed by using several off-the-shelf compression
algorithms (e.g, GZIP, BZIP2 and LZMA, etc.), which
vary in compression ratio and processing speed. Multi-
ple instances of the compression algorithms can run in
parallel to alleviate CPU-intensive overhead [32].

It is worth noting that the processing cost in the pipeline
may lead to CPU bottleneck, rather than data transferring
across network. To get rid of this issue, different algorithms
and parameter configurations can be applied to make a trade-
off between the processing demands and data volume to be
transferred.

2) PIPELINED STAGES
As is mentioned above, the execution of the processing stages
is pipelined, so they can be processed simultaneously, which
can lead to two advantages as follows: 1) downstream stage
can be started before the previous stage is completed. For
example, data can be transferred via network in parallel to
these processing stages; 2) less memory capacity is needed to
buffer the temporary data generated by a single stage, as the
data is taken away by downstream ones immediately.

3) DYNAMIC ADAPTION
A fixed setting of parameters in above-mentioned stages
is difficult to minimize time of the service migration. The
reasons are as follows: 1) the relative parameters rely heavily
on the transferred data, and can not be known in advance;
2) network bandwidth can change rapidly over a small period
of time, and so does for the available processing resources.

Alternatively, service migration performance can be moni-
tored continuously, and the tracked information can be uti-
lized to adapt the processing stage setting to dynamically
optimize migration time. More specifically,

• Throughput calculation of pipeline. The pipelined
system has two potential bottlenecks: 1) processing: if
data volume is too large or difficult to process, and
aggressive data reduction takes much more time and
resources; 2) transmission: if processing stage is not
enough to make the data small enough, so network
bandwidth encounters problem.
With respect to those two potential bottlenecks,
the throughput of the pipeline system can be obtained
as follows. Suppose that the processing sequence in

VOLUME 6, 2018 23515

S. Wang et al.: Survey on Service Migration in MEC

FIGURE 4. Data transferring optimization in service migration (Note: dedup and diff are respectively short for
deduplication and difference).

pipeline is composed of n(n = 1, 2, 3, . . .) sequential
stages, and each of them consumes input data and gen-
erates a smaller version. With a specific set of selected
algorithms and parameters (i.e., the Migration Mode
in Fig. 4), at stage i(i = 1, 2, 3, . . . , n) we define as
follows:

pi = processing time,

ri =
output size
input size

. (1)

The processing throughput and network transmission
throughput can be derived from processing time and
network transmission time as follows:

thruprocessing =
1∑n
i=1 pi

,

thrunetwork =
network bandwidth∏n

i=1 ri
. (2)

Since the pipeline overlaps processing and network
transmission, the total throughput is

thrusystem = min{thruprocessing, thrunetwork}. (3)

Intuitively, it reveals that whether processing or network
transmission is the bottleneck.

• Heuristic adaptation. Based on the throughput of
pipeline above, the migration mode can be selected to
maximize the system throughput thrusystem. We write
down the P = {pi|i = 1 ∼ n} and R = {ri|i =
1 ∼ n} to compute various parameter setting. However,
they are heavily depending on the actual content (e.g,
text, audio, video, etc.) to be transferred. As a result,
P and R may generate high misleading result. It has
been noted that the trends of P and R are similar in
different scenarios, and the ratios for different work-
loads are obviously different. Although one workload
may be quite different another, it influences different
algorithms to a similar degree, and the relative perfor-
mance remains unchanged. Alg. 1 shows an example to
determine which operating mode is likely to minimize
handoff time. It uses ratios of P (or R) from the real data,

i.e., relative values rather than the absolute values. It can
adapt to changes of network bandwidth, available pro-
cessing resources and compressibility of virtual machine
modifications.

Algorithm 1 The Heuristic Algorithm to Dynamically Adapt
the Migration Mode
1: Measure current P (Pcurrent) and R (Rcurrent) values of

the running service of current migration mode (Mcurrent).
Measure current network bandwidth by tracking the rate
of data block acknowledgments from migration destina-
tion;

2: Find P (Pprofile) and R (Rprofile) values of the matching
migration modeM . Compute the scaling factor for P and
R as follows: scaleP =

Pcurrent
Pprofile

, scaleR =
Rcurrent
Rprofile

;
3: Using these scaling values to adjust P, R values for

workload at present. For each migration mode, calculate
processing throughput (thruprocessing) and network trans-
mission throughput (thrunetwork);

4: Select a migration mode that maximizes the system
throughput.

4) WORKLOAD DISTRIBUTION
The relative loads on the network and processing change
with the ratio of modified and unmodified data blocks on
the pipeline system. In fact, the modifications of memory are
always non-uniform and highly clustered, which can result
in a highly bursty workload on the processing pipeline. This
problem comes in twoways: 1) long sequences of unmodified
data block transfer the high processing burden to the later
stage, which makes the whole processing choked and leave
nothing to the network in a very long period of time; 2) at
the opposite extreme, long sequences of modified pages may
bring about high processing burdens, which require more
compression to maintain the full use of the network. Note that
change trackingmechanism can only ensure that themodified
disk blocks are delivered to the processing pipeline. However,
for the memory image, the entire snapshot, including both
modified and unmodified pages are processed. As a result,

23516 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

TABLE 2. Works on strategies for service migration.

unmodified data blocks should also be transferred to the desti-
nation server, incurring processing if the changes are tracked.
When the network is fully used, the best performance can be
achieved in network throughput capacity. When the network
throughput capacity is small, the data can be compressed and
transferred to make it smaller than before.

To solve this problem, workload distribution is employed
to balance the workloads during the process of service migra-
tion. Specifically, 1) workload distribution randomizes the
order of pages on the pipeline system, neither processing nor
network resources are idle for long time; 2) what’s more,
the ratio of modified and unmodified pages does not change
much all the time. Consequently, workload distribution helps
to get rid of the peak workloads and helps the pipeline system
efficiently utilize network and CPU resources.

5) ITERATIVE TRANSFER FOR LIVENESS
As is mentioned above, service migration makes a tradeoff
between service downtime and duration of service degrada-
tion: 1) if the total migration time is the only one concerned,
the post-copy approach contains suspending, transferring,
then restarting the service would be the best choice. However,
this may break down the running service QoS for long time;
2) the other extreme may unacceptably extend the duration of
degraded service.

To solve this problem, inspired by iterative transfer concept
from live migration, use it in quite different environments
of adaptive service migration state transferring. Unlike live
migration, which focuses solely on the volume of data trans-
fer, service migration is sensitive to multiple factors: data
volume, processing speed, compression ratio and bandwidth
information. It makes use of an input queue threshold to start
another iteration and the duration of the iteration to track and
log all elements related to the migration speed. If the iteration
duration is short enough, the system suspends the service
migration and completes the migration operation.

IV. STRATEGIES FOR SERVICE MIGRATION
Here, we review the existing strategies for service migration
proposed in recent years. First, we introduce the follow me
cloud prototype, which is aimed at seamless migration of
ongoing service between a data center and another optimal
data center. Then we present the Markov Decision Process

(MDP) based service migration strategies, including one-
dimensional MDP (i.e., mobile users move along a straight
line, e.g., the car on the road) and two-dimensional MDP
model (it’s a more general case than one-dimensional MDP
model, where mobile users move in an area, e.g., in a square).
At last, we detail the time window based service migration
strategy. Table 2 summarizes three parts of this section.

A. FOLLOW ME CLOUD PROTOTYPE
The FMC allows services to move across federated data
centers (DCs), which to some extent can be considered as
edge servers. As a user moves, the ongoing service hosted on
the current edge server will be migrated once to an optimal
edge server. The detailed evaluation criterion for optimality is
related to the policy of operators, which is typically based on
geographical distance or workload. The cost of servicemigra-
tion is incurred by signaling messages and data transferred
between edge servers, and service migration improves QoS
of mobile users at the same time. As a result, the migration
policy should strike a balance between the incurred cost and
QoS improvement induced by service migration [4], [39],
[46], [47].

A representative network architecture of FMC concept is as
shown in Fig. 5 [39]. The figure shows two main components
of FMC, namely FMC controller and edge server/gate way
(i.e., DC/GW) mapping entity, that can be considered as two

FIGURE 5. Follow Me Cloud prototype.

VOLUME 6, 2018 23517

S. Wang et al.: Survey on Service Migration in MEC

independent function entities collocatedwith existing compo-
nents of mobile cloud computing, e.g., DCs, P-GWs (packet
gate way) and S-GWs (service gate way). In the above FMC
network architecture, both edge servers and mobile operator
network are geographically distributed. Each edge server is
mapped to a collection of P-GWs and S-GWs based on their
locations. The topology information and location information
can be communicated between FMC providers and mobile
network operators. FMC controller is to manage and schedule
the distributed edge servers.

Service migration demand can be easily observed when
one mobile device alters its IP address as a mobile user moves
around. This change of information can be certainly observed
by the corresponding edge server. A choice on whether to
migrate the corresponding ongoing service on the edge server
has to be made by the mobile device or the current edge
server. This service migration decision should be based on
several factors, including but not limited to service type (e.g.,
a video play with high QoS demand tends to be migrated),
data size (e.g., enjoying a movie nearing to its end on your
mobile devices, and it should not to begin service migration),
etc.

As long as it is decided to migrate the service, the edge
server may require the FMC controller to choose a most
suitable edge server to start the service migration process.
An estimate of the potential cost incurred should be compared
against the resource utilization improvement of MEC com-
munity and QoS improvement from the point of end users.

Service migration process in FMC architecture can be
further modeled using MDP. MDP based service migration
method takes into account both the cost and benefit of ser-
vice migration, and it helps to produce the best policy to
decide whether to migrate a service or not. In what follows,
the details will be provided.

B. MDP BASED SERVICE MIGRATION
In this section, we present the MDP based service
migration strategy, including one-dimensional MDP and
two-dimensional MDP.

1) ONE-DIMENSIONAL MDP
One-dimensional MDP is first proposed in [47] and [48],
where mobile users are considered to move down a straight
line, e.g., the car on the road.

As is mentioned in the former sections, a good
service migration model should take into account the bal-
ance between cost reduction and high QoS of mobile users.
To strike this balance, the service migration decision is mod-
eled as a MDP. Given the distance from a mobile user to the
current edge server, MDP based model can decide whether
to migrate the ongoing service to an optimal edge server
or not. The MDP solution can be implemented inside the
FMC controller in the last subsection. To build up the service
migration decision model, works in [4] and [47] proposed
one dimensional MDP based model, which it considers the
distances between mobile users and edge servers as the states,

and associates with an action that means whether migrate
or not, and defines the corresponding transition probabilities
between two states with a definite action and the rewards.
In this way, one MDP based model is proposed to solve
service migration problem.

Let st be a state at time t and S = {s} denote the state space
that contains all states. In the one dimension (1-D) mobility
model, a mobile user has only two possible destinations,
namely moving to another edge server with large distance
with a probability 0 ≤ p ≤ 1, or returning back to the
current edge server with a probability (1−p). The state space
S is defined as S = {0, 1, · · · , g}. Here, 0, 1, · · · , g stands
for the possible set of the discrete distances between mobile
users and the connected edge servers, and value g means the
maximum distance where the service must be migrated to the
optimal edge server. Then we introduce the concept of action
set. For example, As = (a1, a2) can denote the action set
available at state s, where action a1 means that the service is
migrated to an optimal edge server, while action a2 means that
mobile devices are still served by the same edge server. For a
given action a, there will be a state transition from state s to
another state s′, with which there is also a reward r(s, s′, a).
Fig. 6 [51] illustrates one dimensional MDP model that can
be integrated into FMC architecture, where FMC controller
observes the current state s of mobile users in the network and
associates a set of possible actions As to it. When the service
migration is triggered, it always means that they have been
at another edge server, so the state is always 0 after service
migration.

FIGURE 6. One-dimensional MDP based service migration. Action a2
means that mobile devices are still served by the same edge server, a1
means that the service is migrated to an optimal edge server. Value g
means the maximum distance where the service must be migrated to the
optimal edge server. Value µ can be considered as the probability that
user moves.

Without loss of generality, As means a unique action set
at state s. Then we define the transition matrix Q, in which
q(s|s′) denotes the transition rate from state s′ to s. Service
migration policy associates an action to each state. That is to
say, policy can be considered as a function of the state, where
it takes a state as input, and gives an action as output. As a
result, whether migrating a service or not is totally decided
by the actual state. It is worth noting that the state space is
finite, i.e., 0, 1, · · · , g. The reason is that in our settings, after
a certain distance (g) from the current edge server, the service

23518 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

must be automatically migrated to the optimal edge server in
case of service interruption.

To get the one dimensional MDP model, we should nor-
malize the above transition probabilities by the following.
According to MDP theory, if the values of transition rate
in matrix Q are all bounded, the stay times in all states are
exponential with t(s|s, a). Then there exists:

sup(s∈S,a∈As)[1− p(s|s, a)]t(s|s, a) ≤ c <∞, (4)

where p(s|s, a) denotes the probability of staying in the same
state after taking action a at state s, and c is a constant value.
After that, we define an equivalent normalized process with
state-independent exponential stay times using parameter c
and transition probabilities:

p(s′|s, a) =

1−
(
1− q(s′|s)

)
t(s′|s, a)

c
s = s′

q(s′|s)t(s′|s, a)
c

s 6= s′.
(5)

Suppose that the stay time of one mobile user in a state
follows an exponential distributionwithmean 1/(µ−1). Then
by setting c = µ− 1, the transition probabilities are defined
by the following:

p(s′|s, a) =


1 s′ = 0, a = a1
p s′ = s+ 1, s 6= g, a = a2
1− p s′ = s− 1, s 6= 0, a = a2
0 else.

(6)

Note that when in state s = g, the only available action is a1,
which means that when the mobile device moves to another
edge server where the distance is larger than the maximum g,
the service migration action is automatically triggered.

For t ∈ N , let st , at and rt denote state, action and reward at
time t , respectively. Let Pa(s,s′) = p[st+1 = s′|st = s, st+1 =
s′, at = a] denote the transition probabilities and Ra(s,s′) =
E[rt+1|st = s, st+1 = s′, at = a] denote the expected reward.
A policyπ is amapping between a state and an action, and can
be denoted as at = π (st). In the process of service migration,
reward is a function of the cost of migrating one service and
the quality obtained from the new state. Given a discount
factor 0 ≤ γ ≤ 1 and an initial state s, the total discount
reward policy π = (θ1, θ2, θ3, . . . , θN) can be denoted as
follows:

vπγ = Eπγ {
∞∑
t=1

γ t−1rt }. (7)

Reward function r(s′, s, a) explicitly depends on the transi-
tions among states. According to [52], the normalized reward
function R(s′, s, a) is written as follows:

R(s′, s, a) = r(s′, s, a)
α + β(s′, s, a)

α + c
, (8)

where β(s′, s, a) is the transition rate between state s and
s′ when taking action a, and α is a predetermined con-
stant. Let v∗(s) denote the maximum discounted total reward,

i.e., v(s) = maxπ∈5v(s), given the initial state s. Using
the predefined denotations, we can formulate v∗(s) by the
following:

v∗(s) = maxπ∈5{R(s′, s, a)+
∑
s′∈S

γP[s′|s, a]v(s′)}. (9)

The optimal solution of Eq. (9) includes v∗(s) and π∗(s).
In the area of service migration, the optimal policy π∗(s)
indicates the decision as to which network and which data
center the mobile user should migrated to with each state.

2) TWO-DIMENSIONAL MDP
Two-dimensional MDP model is first proposed in [4]
and [39], which is a more general case than one-dimensional
MDP model, where mobile users move in a 2D area, e.g., in a
square.

Typically, a cellular network is considered to be composed
of multiple adjacent hexagonal cells (Fig. 7a). User mobility
can be considered as a random walk model, whereby mobile
users come into the six adjacent cells with the same proba-
bility (Fig. 7a), i.e., p = 1/6. Fig. 7 [39] shows a cellular
network with K = 5 rings of cells. The service migration
is triggered as the mobile device is equal to or large than K
hops away from the current edge server. Here, the distance
means the number of hops from the location of mobile user
to the current edge server. So we obtain a Markov chain with
state space {C(m,n)|0 ≤ m ≤ (K − 1), 1 ≤ n ≤ 6m}, which,
however, suffers from state space explosion problem when K
value is high. However, according to works in [49] and [53],
we can reduce the state space by aggregating states with the
same behavior. Then we can obtain a new chain with less
number of states.

We give an example to show the state aggregation process.
In Fig. 7a, it can be seen that mobile users in the first ring
have the same behavior and can move to each neighbor-
ing cell with the same probability. That is, mobile devices
come back to the cell with the optimal edge server with
probability p, stay in the same ring (i.e., the same distance
from the optimal edge server) with probability 2p, and move
to second ring with probability 3p [39]. As a result, all states
of the first ring can be aggregated into one state. As to
the second ring, we differentiate it into two cases. The mobile
device leaves the service area with probability 3p in the first
case, instead of 2p in the second case. Therefore, we choose
the concept of aggregated states in the two-dimensional
service migration, instead of the initial states. For exam-
ple, one aggregated is state C∗2,0, which aggregates states
{C2,1,C2,3,C2,5,C2,7,C2,9,C2,11}, another is C∗2,1 , which
aggregates states {C2,2,C2,4,C2,6,C2,8,C2,10,C2,12}. Using
this method, we can obtain a chain with less states in Fig. 7b,
which shows the transition diagram of the aggregatedMarkov
chain for the service migration when the mobile device is K
hops away from the optimal edge server. We can derive the
steady state probability of the aggregated states Cm and Cm

m ,
respectively. The functions of these steady state probabilities

VOLUME 6, 2018 23519

S. Wang et al.: Survey on Service Migration in MEC

FIGURE 7. Two-dimensional MDP based service migration. The Markov chain here is more complex than that in Fig. 6, which is a
one-dimensional MDP model. The same to Fig. 6, value µ is considered as the probability that user moves. At state 0, if user
moves, the next state is definitely 1. So the probability is µ = 6pµ = t1. In this way, we can get other transition probabilities in
this figure. (a) A typical cellular network on two dimensional plane. (b) Markov chain in case of K = 5.

are as follows:

π0 =
1
6
π1 +

1
2
πK−1 +

1
3

∑dK − 2
2
e

n=1 π
(n)
K−1

π1 = π0 +
1
3
π1 +

1
6
π2 +

1
3
π
(1)
2

π2 =
1
6
π1 +

1
6
π3 +

1
3
π
(1)
2 +

1
6
π
(1)
3

πK−1 =
1
6
πK−2 +

1
6
π
(1)
K−1, ∀3 ≤ m ≤ K − 2

πm =
1
6
πm−1 +

1
6
πm+1 +

1
6
π
(1)
m−1 +

1
6
π
(1)
m+1,

(10)

where dxe denotes the smallest integer larger than or equal
to x. We have

π
(1)
2 =

1
3π1 +

1
3π2 +

1
6π

(1)
3

π
(1)
3 =

1
3π2 +

1
3π3 +

1
3π

(1)
2 +

1
6π

(1)
3 +

1
6π

(1)
4 +

1
3π

(2)
4

π
(1)
4 =

1
3π3 +

1
3π4 +

1
6π

(1)
3 +

1
6π

(1)
5 +

1
3π

(2)
4 +

1
6π

(2)
5

∀5 < m < K − 1

π
(1)
m =

1
3πm−1 +

1
3πm +

1
6π

(1)
m−1 +

a
6π

(1)
m+1

+
1
6π

(2)
m +

a
6π

(2)
m+1,

(11)

where

a =

{
1 if 5 ≤ m ≤ K − 2
0 if m = K − 1.

(12)

We can also compute the value ofπ (n)
m ,∀6 < m < K−1∧2 ≤

n ≤ dm−12 e − 1, π (l)
2l+1∀2 ≤ l ≤ K−2

2 . That is to say, we can
obtain all of the steady state probability of the aggregated
states.

With these solutions, we can obtain more attributes of two-
dimensional service migration, such as the mean value of the

distance, the probability of the optimal edge server connec-
tion, cost of service migration, service migration duration,
etc. [39].

The concept of FMC prototype is mainly described in
Section 4.1, while the MDP based service migration algo-
rithm is mainly described in Section 4.2. They are at different
levels in service migration.

C. TIME WINDOW BASED SERVICE MIGRATION
Compared to MDP based service migration above, time win-
dow based service migration deals with the problem from
another point of view. The goal of time window based ser-
vice migration is to search the optimal service placement
sequence that minimizes the average cost over a given time
window [25], [50]. In these works, a look-ahead window is
defined as a time period in the future that can be predicted.
The model contains two sequential parts: 1) suppose that
there exists a method to obtain the prediction error in the
future, how to search the optimal window size to minimize
the average cost; 2) with a fixed size of time window, how to
find the optimal sequence to place the ongoing service.

Compared to MDP based service migration, time window
based service migration can deal with a more general setting,
such as heterogeneous cost function, network structure and
mobility pattern. Cost of service migration may incur in two
ways, namely cost in running a service on an edge server and
cost in transferring data in a specific migrating procedure.
What is more, it supposes that an underlying function can be
found out to predict the two kinds of cost in the future time,
which includes but is not limited to existing approaches such
as [51], [54], and [55]. As to the designed prediction function,
the predicted future cost sequence may be different from
the actual cost, but it can guarantee the upper bound of the

23520 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

possible deviation. Unlike MDP-based method in [4], [39],
and [47], time window based service migration does not need
the probability distribution of the cost, which makes it can be
applied to more scenarios, where the pattern of users mobility
follows a Markov chain model. Time window based service
migration takes into account the dynamics of resource avail-
ability caused by user mobility, which is quite different from
the supposed of static network conditions and fixed resource
demands under complicated network topology [56], [57].

We detail the time window based service migration in two
parts, i.e., optimal size of the look-ahead window in the future
and service placement finding based on prediction cost with
optimal look-ahead window size.

1) OPTIMAL SIZE OF THE LOOK-AHEAD WINDOW
IN THE FUTURE
This part elaborates how to find the optimal size of the look-
ahead window in the future [25], [40], [50].

Suppose that the optimal window size 0 < T ≤ Tmax ,
where Tmax is upper bounded time induced by the service
duration. If the future prediction cost function has no devi-
ation from the actual cost, T = Tmax setting is optimal as
it gives the best long-term performance. However, this is
impractical for the fact that the farther look-ahead we look
in the future, the more uncertainty and deviation about the
cost we encounter. That is to say, if the window size T is
too large, we will obtain much worse prediction performance
and the prediction cost may be far away from the actual cost.
The bad performance of prediction cost will generate a very
bad solution of the service placement sequence. As a result,
we have to find the optimal look-ahead window size that
can minimize both the impact of prediction deviation and the
impact of dividing the look-ahead time period for optimal
window. Window size cannot be accurately set, because it
is related to many factors, which is not known before. Thus,
if the window size is too large, the prediction is not accurate
enough.

Formore details of optimal look-aheadwindow size, please
refer to the works [25], [40], [50].

2) SERVICE PLACEMENT FINDING BASED ON PREDICTION
COST WITH OPTIMAL LOOK-AHEAD WINDOW SIZE
If we have obtained the the optimal look-ahead window
size T , then we can find the optimal placement sequence πT ,
according to the following steps as in Alg. 2.

Note that in the above service placement algorithm, once
the placement in the last window is completely solved,
we need make the placement decision in the current time
slot. So the vector πT can be found in real-time, which is
fit in the high dynamics of network condition and computing
resources inMEC. The value ofDt0π (t0,··· ,te)(t) also depends on
the placement in time slot t0−1.When t0 = 1,π (t0−1) can be
regarded as any dummy variable for the fact that themigration
cost w(1, :, :) = 0. The equation of the placement sequence
πT means that, at the beginning of time slot t0, it finds the
optimal placement sequence that minimizes the prediction

Algorithm 2 Placement Sequence Algorithm
1: Initialize t0 = 1;
2: Let te = min{t0 + T − 1,Tmax}. At the

beginning of time slot t0, find πT (t0, · · · , te) =

argminπ (t0,··· ,te)
∑te

t=t0 D
t0
π (t0,··· ,te)

(t),which
π (t0, · · · , te) denotes the placement sequence for
time slots t0, · · · , te, and D

t0
π (t) can be obtained using

the prediction cost function;
3: Apply the service placement πT (t0, · · · , te) in time slots
t0, · · · , te;

4: If te < Tmax , set t0 = te + 1 and go to step 2. If not, stop
the algorithm.

cost over the next time slot up to te, given the location of the
service in previous time slot t0 − 1.
Based on the above assumptions and analysis, the service

placement problem can be considered as a shortest-path prob-
lem with values of Dt0π (t) as weights. Specifically, each edge
stands for one possible service placement decision in the
corresponding two adjacent time slots and the weight on each
edge means the prediction cost for such service placement
decision. The placement before time slot t0 has been found
out. We define a dummy node at the end of look-ahead win-
dow, which is assigned zero weight to other nodes to ensure
a single shortest path to be found. Obviously, the shortest
path with minimum sum of weight from node π (t0 − 1) to
the defined dummy node can be found with the help of some
shortest path algorithms and the nodes on the shortest path
give the optimal service migration solution πT (t0, · · · , te).

V. HOSTING APPLICATION COMPONENTS
An application may consist of several components. Besides,
multiple applications can simultaneously use theMEC infras-
tructure, such as edge servers. Resource isolation (especially,
memory) across components of different applications is nec-
essary for the security and integrity of the individual applica-
tions; even within an application such isolation between the
application components is beneficial from the point of view
of bug proliferation and performance tuning. We will explore
the pros and cons of full blown virtual machine technology,
container technology and agent technology, from the point of
view of hosting application components.

A. VIRTUAL MACHINE
Virtual machine is one of enabling technologies for data
centers and is the basis for accountability and containment
of resource usage. Additionally, live migration of virtual
machine has been extensively investigated to enable load
balancing and resource provisioning in data centers [73].
More recently, VMWare [31] andXen [74] have implemented
live migration of virtual machines with downtime ranging
from tens of milliseconds to seconds. As live migration of
virtual machine is a mature technology used in data cen-
ters of cloud computing, many existing works on service

VOLUME 6, 2018 23521

S. Wang et al.: Survey on Service Migration in MEC

TABLE 3. Hosting application for service migration.

migration in MEC take virtual machine as the host for appli-
cation components [4], [12], [26], [39], [61], [63], [75]–[78].
Ha et al. [12] discuss the limitations of live virtual machine
migration for use on edge devices, examine the impact of
user mobility on cloudlet offload, demonstrate that even the
most general user mobility can bring about considerable net-
work degradation, and propose a VM handoff technique for
seamlessly transferring a runtime virtual machine instance
to a better offload site as users move. To reduce the down-
time during service migration, Machen et al. [26] propose
a layered framework to transfer ongoing applications that
are hosted in virtual machines, which does not need users
to have extensive knowledge on the technical details of ser-
vice migration. Taleb et al. [4], [39] applies a MDP based
algorithm to cost-effective, performance-optimized service
migration decisions, and two alternative schemes to ensure
service continuity and disruption-free operation in the con-
text of FMC, which is tailored to an interoperating decen-
tralized mobile network/federated cloud architecture. In this
work, they mainly consider two types of time that affect the
service continuity, i.e., the time required for transforming
a virtual machine to another type (particularly if two rela-
tive edge servers are using different hypervisors), and the
time required for service data transferring. Refaat et al. [61]
propose a service migration solution to select the best des-
tination in service migration in VANET, which aims to
perform efficiently in dealing with rapid dynamics of data
center topology with minimum roadside unit intervention.
Virtual machine technology is also applied in MEC for ser-
vice deployment and the migration of location-aware ser-
vices [63]. Satyanarayanan et al. [75] propose the concept of
cloudlet to exploit standard virtual machine technology in
MEC. Yao et al. [76] present the roadside vehicular cloud
architecture in Vehicular Ad-Hoc Networks (VANET) using
cloudlet, and study how to migrate the virtual machines as
vehicles move to reduce transferring cost. Recently, many
works propose approaches to virtual machine migration with
less involvement of the hypervisor [77] or with a reduction in
the startup time by using delta encoding between an original
virtual machine instance and the changes that occurred during
execution [78].

However, despite such advances in virtual machine migra-
tion techniques, given the latency requirements of situation
awareness applications, full blown virtualization may be
impractical for hosting application components in the MEC
environment.

B. CONTAINER
Container based service migration is a relatively new area
and it needs to be studied systematically. In comparison
to virtual machines, containers are much more efficient for
creating service bundles for one cloud to another transfer-
ring [79], [80]. Here, containers are preferred than virtual
machines because they share more platform resources in
common, whereas, a virtual machine tends to hold most
resources in migrating services [64], so a container is always
much smaller than a virtual machine. As edge servers in
MEC have limited bandwidth, unstable network connectivity,
storage and processing capability, running container-based
applications on them will benefit much more in migrating
services.

More specifically, containers have the following advan-
tages to support service migration in MEC:
• Complexity can be reduced through container abstrac-
tions. Containers avoid reliance on low-level infrastruc-
ture services, which decreases the complexity of dealing
with those platforms.

• Automation can be supported with containers to maxi-
mize the portability. Through automation, tasks can be
conducted without much manual efforts, such as migrat-
ing containers among edge servers.

• Better security and governance can be achieved by plac-
ing services outside, rather than inside, the containers.
In many cases, security services are platform-specific
instead of being application-specific, which helps to
provide better portability and less complexity in imple-
menting and operating.

• Higher computing capability can be provisioned as a
service can be split into many separate containers. These
containers can run on different physical machines or
edge servers to obtain better performance.

• In the container technology, applications contained in
the containers share the OS. Consequently, the memory
footprint of containers is significantly smaller than in a
hypervisor environment, allowing hundreds of contain-
ers to be hosted on a physical host. Since the containers
use the host OS as a base for system services, restarting
a container (upon container migration) does not neces-
sarily restart the OS.

• Once a container is installed, only the extra different
layers, such as additional binaries and libraries, need
to be migrated to correctly execute the handlers in the
context of edge server.

23522 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

Given the above-mentioned advantages, more and more
mainstream operating systems begin to adopt container tech-
nology to provide isolation and resource control, which
has demonstrated great potential for service migration.
Mirkin et al. [81] propose saving the complete state of a con-
tainer (i.e. checkpointing), transferring it to another host, and
restarting it as implementing in OpenVZ.3 A container allows
users to checkpoint the running state of a container and restart
it later on the same or a different host, which is transparent for
ongoing services and network conditions. OpenVZ is based
onCRIU,4 which is a project to implement checkpoint/restore
functionality for Linux. In 2016, live migration of container
was also realized using CRIU.5 Especially in recent years,
Docker as a standard for Linux containers [80], has been
adopted extremely successfully by Google, IBM/Softlayer,
and Joyent in public cloud platforms [79]. In this context,
Machen et al. [26] proposed to use containers in their service
migration framework, and showed that containers perform
favorably than virtual machines. Apart from that, Wang and
Serral-Gracià [25], Montero et al. [62] and Saurez et al. [63]
also take into account container when performing service
migration in MEC.

C. AGENT
In computer science, an agent is a computer program block
that performs tasks in a relationship of agency with other
entities [82], [83]. An agent has the following characteris-
tics [84]: 1) autonomous: it runswithout human interventions,
and can control its external behaviors and internal states by
itself; 2) social: it can sense, process and react to humans
or other agents to perform better; 3) reactive: it perceives
the change of environment and responds in turn in time;
4) proactive: its behaviors to the environment are highly
goal-directed; 5) mobile: it is able to travel between differ-
ent hosts in a network; 6) truthful: it will not deliberately
output false information; 7) benevolent: it always tries to
perform what is asked; 8) rational: it performs in order to
achieve its goal, not the other way around; 9) learning: it
can learn to fit the environment better to be stronger with
time.

As an agent has the above-mentioned advantages, service
migration based on agents will impose less requirements
on edge servers other than providing run-time environment,
and it releases the management burden of edge servers and
mobile terminals using autonomous agent-based application
partition [72]. While in service migration process hosting
of virtual machines and containers, these management bur-
den relies heavily on the support from the underlying vir-
tualization technology [77]. Compared to service migration

3A container-based virtualization for Linux. OpenVZ can create many
different isolated containers on a single physical edge server, which enables
better server utilization and ensure that different services do not conflict with
each other.

4http://criu.org
5http://rhelblog.redhat.com/2016/12/08/container-live-migration-using-

runc-and-criu/

with virtual machines and containers, service migration with
agents can perform better in the dynamic and heterogeneous
environment in MEC (e.g. hosts of virtual machine, contain-
ers, and even physical machines; and rapidly changing net-
work conditions, etc.). For example, an agent implemented in
JADE6 can be migrated among virtual machines, containers
and physical machines, as long as they are equipped with Java
runtime environment [84].

With these advantages, agent technology has been
widely applied in cloud computing, MEC and micro
grids [41], [65]–[72], which shows great potential. Angin and
Bhargava [65] propose a framework based on agent in mobile
cloud computing, and show that application encapsulation
based on agent is particularly useful due to the capability
of moving without the intervention of the caller and self-
cloning. These results can be applied in MEC, which has
many common characteristics with mobile cloud computing.
Then Angin et al. [66] propose to make use of autonomous
agents to offload dynamic computation in MEC. As to the
security issue of mobile cloud computing, Angin et al. [67]
also propose a mobile cloud computing model based on agent
to deal with code tampering, where agents are integrated with
integrity verification functions. Kumar et al. [68] propose
mobile agents to alleviate the issue of unstable and inter-
mittent wireless network connectivity and low bandwidth in
wireless/mobile network. Alami-kamouri et al. [69] survey
mobile agent technology in fields of mobile computing, net-
work management and telecommunication, security issue,
etc., in a flexible way by using interaction with other agents
on the network. Luo et al. [70] propose a multiple agent
framework to promote energy sharing among the massively
distributed autonomous micro grids, which is similar to MEC
environment and relieve the energy imbalance problem by
forming micro grid coalition with agents. Zhu et al. [71]
apply the agent technology in cloud computing environment
to design an agent-based scheduling mechanism to deploy
real-time tasks and dynamic resources. Fareh et al [72] pro-
pose that autonomous agents can make the clouds smarter in
their interactions with users and more efficient in resources
allocation. Gani et al. [41] summarize the application of
agent technology in the field of the interworking for seamless
connectivity.

The pros and cons of virtual machine technology, container
technology and agent technology are summarized in Table 3.
Compared to virtual machine and container technologies,
agent has advantages of administrative convenience, small
data to transfer, rapid boot and running, etc., which is quite
suitable in IoT environment. However, agent technology in
mobile edge computing is at its preliminary stage, and there
are no existing frameworks to use directly. As a result, much
work should be done to develop an agent tool to apply agent
technology into IoT applications.

6JADE is short for JAVA Agent DEvelopment Framework, which is a
software framework to develop agent applications.

VOLUME 6, 2018 23523

S. Wang et al.: Survey on Service Migration in MEC

VI. ISSUES AND CHALLENGES
In this section, we identify and discuss some research
challenges in service migration in MEC, including design
of QoS-aware edge server selection algorithm, selection
algorithm of migration path with both of latency and cost,
and virtual resource allocation strategy on edge servers, and
development of a high servicemigrationmechanism to ensure
service continuity.

A. QOS-AWARE EDGE SERVER SELECTION ALGORITHM
For smooth service migration in MEC, an efficient edge
server selection algorithm is needed to select the optimal
target edge server. In general, two factors should be taken into
account: users’ trajectory and QoS utility. On the one hand,
existing research works rarely explores users’ trajectory data
and the prediction of their movement, and adopts a random
mobilitymodel instead [85]. However, users’ mobility pattern
(e.g. direction and velocity) has a significant influence on the
construction of the candidate edge server set (e.g. the size of
set of candidate edge servers), and the users’ trajectory data
can be used to predict users’ movement. On the other hand,
existing literatures pay less attention on the affect of QoS
utility (network latency, energy consumption and cost) on
the selection of edge servers in service migration, therefore,
hardly select the edge server with the highest QoS utility
[86]–[88]. Without considering users’ trajectory data and
QoS utility, the accuracy of edge server selection and the
efficiency of service migration decrease.

To develop a QoS-aware algorithm to improve edge server
selection, we should overcome the problems such as how
to integrate user’s trajectory data and QoS utility into the
server selection algorithm. The research can be divided into
the following parts: firstly, develop user moving model using
users’ trajectory data to predict user movement, then con-
struct the candidate edge server set; secondly, devise QoS
utility function of a given edge server based on QoS indi-
cators (e.g. network latency, energy consumption and cost);
at last, based on the designed QoS utility function, select
the candidate edge server with the highest QoS utility as the
target edge server of the service migration. The key issues are
user mobility, QoS utility function design, and the selection
algorithm of edge server.

B. SELECTION ALGORITHM OF MIGRATION PATH WITH
BOTH OF THE LATENCY AND COST
The related data on the edge server (e.g. the run-time state
data of the edge service on hard disk and memory) should
be transferred to the selected target edge server in the pro-
cess of service migration [12], [26]. Between the start edge
server and the target edge server, there may exist various
network top topology (e.g. remote clouds or other edge
servers as intermediate nodes) and communication system
(e.g. WiFi, LTE-U, 4G and 5G) [43], which leads to different
network connections and transmission paths for data trans-
ferring between them (various transferring latency and cost).
Therefore, selection algorithm of migration path is essential.
Existing work selects the migration path randomly and rarely

considers the heterogeneity of network, as well as latency and
cost, leading to high service migration expense (e.g. latency
and cost) and low transferring efficiency of network (includ-
ing edge network and core network) [12], [26], [89], [90].

To this end, we can apply network optimization theory and
propose a service migration path selection method by taking
consideration of both network latency and cost. The main
idea is to transform the migration path selection problem
with both latency and cost into a multi-objective optimization
model, and propose path selection on latency and price in
service migration of MEC, and aim to choose the best set
of available transferring paths that can minimize the total
transferring timewith constrictions on bandwidth and price of
each network connection for the data transferring in a service
migration. Service migration demand can be easily observed
whenmobile device alters its IP address as mobile user moves
around, and the Service Migration Decision Center then
solves the path selection problem. Note that every network
connection has its inherent bandwidth and price attributes,
which are relative to the transmission length, access tech-
nique, current workload, etc. We analyze this problem from
two aspects, i.e., the network operator andmobile user. On the
one hand, due to various prices of network connections,
network operator should choose the best transferring paths
or network connections to save money of providing data
transferring service. On the other hand, for mobile users,
minimizing transferring time during a service migration can
improve QoS/QoE. The best case for transferring time mini-
mization is to realize seamless service migration (i.e., without
any disruption to ongoing edge services, a mobile user is able
to freely move over a significant geographic area). The basic
principle is as follows: firstly, monitor the real-time network
condition (e.g. bandwidth, network style information, and
distance between two nodes), construct the latency and cost
matrix; secondly, based on the proposed expense function,
design the optimization model of migration path selection;
at last, find the optimal service migration path using mixed
integer programming method. The research issues include
expense function design, path selection algorithm and param-
eter optimization.

C. VIRTUAL RESOURCE ALLOCATION STRATEGY
ON EDGE SERVERS
The diverse demands of virtual resources (e.g. computation,
network and storage resources) of the edge service that be
transferred exists in service migration. On the one hand,
the run-time state has changed, which leads to different
demand of virtual resources. On the other hand, the inherent
diversity of edge service (e.g. real-time tasks or batch tasks)
results in different demand of virtual resources [66], [67].
The simplest strategy that allocates more resources than the
actual needs for each edge service will ensure users’ QoS
(e.g. low network latency and energy consumption), however,
it will lead to low utilization efficiency of edge servers and
considerable waste of resources. Meanwhile, this strategy
will increase the payment of each subscriber as the pay-

23524 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

ment is positively related with the allocated virtual resources.
Existing work has considered the resources at the user end
and the network condition, but has not taken into account
the virtual resource allocation strategy on edge servers [91].
An extensive resource allocation strategy is often employed
(e.g., allocating more resources than that it really needs for
each edge service), which will cause high user cost or low
users’ QoS.

To this end, we can put emphasis on the demand diversity
of virtual resources (e.g. computation, network and storage
resources) of the edge service, and study the optimal virtual
resources optimization allocation strategy. The main idea is
to assess the demand for different resources of various edge
services. The basic principle is as follows: firstly, based on
instruction analysis and the computation time ratio of differ-
ent modules of the migrated service, design the model to eval-
uate resource demand; secondly, consider time, energy, cost
and other factors, and transform virtual resources allocation
problem into a multi-objective optimization model; at last,
solve this problem using the improved heuristic algorithm.
The key research issues include but not limited to: how to
evaluate resource demand given the task to be processed and
current resource allocation, how to design the multi-objective
optimization model with constraints to take into time, energy,
cost as input to solve the virtual resources allocation problem,
how to design the above-mentioned utility function, and how
to adapt the current heuristic algorithm, such as ant colony
algorithm or particle swarm optimization, into MEC environ-
ment to allocate virtual resource efficiently.

D. AI BASED STRATEGIES FOR EFFICIENT SERVICE
MIGRATION DECISIONS
The mathematical models, such as MDP, are applied to make
efficient service migration decisions. Elegant though, mathe-
matical models are based on simple assumptions, thus can not
cope with more complex condition and a large number of dif-
ferent parameters [40]. This property restricts the application
of simple mathematical model in the field of service migra-
tion. Many other factors should be taken into account when
making servicemigration decisions, such as the heterogeneity
(many different kinds of hardware) and dynamics (topology
and network condition change rapidly) of the edge servers in
MEC, real-time requirements when users aremoving fast, etc.

Recently, artificial intelligence (AI) technology, repre-
sented by deep learning [28], [92] and reinforcement
learning [93], [94], is developing very fast, and can help solve
this complex problem. AI technology can learn from massive
history data, and efficiently react to the dynamic condition.
It is necessary to study how to apply AI for making efficient
service migration decisions. To apply AI into efficient ser-
vice migration decisions, we should overcome the following
problems, such as data source selection, as there are too many
data that can be poured into the AI based method, and many
of them may not helpful to our problem. The other is how to
design the AI system, such as what algorithm to choose to
integrate MEC better into it.

E. BLOCKCHAIN TECHNOLOGY TO SOLVE TRUST ISSUE
IN SERVICE MIGRATION
Trust issue can not be neglected in service migration in
MEC [66]. Edge servers may belong to different participants,
e.g. telecom operators, internet companies, home users, etc.
As a result, there is no a centralized administration for dif-
ferent stakeholders and heterogeneous hardwares, thus it is
difficult to solve the trust issue in service migration. The envi-
ronment results in security risk of sending data to trustless
edge servers, and this issue is hard to overcome due to large
computation burden induced by complex mechanism.

The trust issue in service migration in MEC can be
solved by blockchain technology for its good property [95].
A blockchain is a continuously growing list of records, called
blocks, which is linked one by one and secured using cryptog-
raphy [96], [97]. It is inherently resistant to the modification
of data. The reason is that once it is recorded, the data in
any given block cannot be altered retroactively without the
alteration of all subsequent blocks and a collusion of the
network majority. As a result, a blockchain can serve as an
open, distributed operating system that can efficiently record
interactions (e.g., transactions) between two individuals or
agents and in a verifiable and permanent way; therefore,
decentralized consensus can be achieved with a blockchain.

However, distributed Apps on the existing blockchain sys-
tem (e.g, ethereum) have slow reaction times when it comes
to saving information. Simple operations take tens of seconds
and occasionally a couple of minutes. It happens when you
send a transaction and wait for it to be verified. It is also the
case for other distributed technologies. It is not uncommon to
wait 30 seconds for pictures from IPFS7 to save or load. As a
result, we should consider the waiting time as a significant
problem when we apply blockchain technology into MEC,
as users these days are not used to waiting. So themost impor-
tant problem to be solved is how to minimize the verification
timewhen usersmake transaction on the blockchain platform.
One way is to develop a customized blockchain system with
less block generating time for MEC.

VII. CONCLUSION
In this paper, we have reviewed the state-of-the-art literature
on service migration in MEC, which ensures service conti-
nuity for moving users by migrating the service on the direct
connection to remote edge server to the near one with better
QoS. We have presented two similar concepts that are closely
related to service migration, and compared them for better
understanding the features of service migration. In addition,
the existing strategies for service migration are categorized
and summarized. Moreover, we have discussed the pros and
cons of the three hosting technologies for mobile applica-
tion components. We also have highlighted some research
directions and challenges in service migration inMEC, which
need further investigation.

7https://ipfs.io/

VOLUME 6, 2018 23525

S. Wang et al.: Survey on Service Migration in MEC

ACKNOWLEDGMENT
The authors would like to thank Yuanzhi Li, Xiaojuan Wei
and Xiaoyu Zhang, for discussions and suggestions.

REFERENCES
[1] U. Drolia et al., ‘‘The case for mobile edge-clouds,’’ inProc. 10th Int. Conf.

Ubiquitous Intell. Comput. Auton. Trusted Comput. (UIC/ATC), Dec. 2013,
pp. 209–215.

[2] Y. Gao, W. Hu, K. Ha, B. Amos, P. Pillai, and M. Satyanarayanan,
‘‘Are cloudlets necessary?’’ School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS-15-139, 2015.

[3] X. Ma, S. Zhang, P. Yang, N. Zhang, C. Lin, and X. Shen, ‘‘Cost-efficient
resource provisioning in cloud assisted mobile edge computing,’’ in Proc.
IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2017, pp. 123–128.

[4] T. Taleb, A. Ksentini, and P. Frangoudis, ‘‘Follow-me cloud: When
cloud services follow mobile users,’’ IEEE Trans. Cloud Comput., 2016.
[Online]. Available: https://ieeexplore.ieee.org/document/7399400/

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[6] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and K. Ha,
‘‘The role of cloudlets in hostile environments,’’ IEEE Pervasive Comput.,
vol. 12, no. 4, pp. 40–49, Oct./Dec. 2013.

[7] S. Wang, L. Le, N. Zahariev, and K. K. Leung, ‘‘Centralized rate control
mechanism for cellular-based vehicular networks,’’ in Proc. IEEE Globe-
com Workshops(GCWorks), Dec. 2013, pp. 4914–4920.

[8] M. Patel et al., ‘‘Mobile-edge computing—Introductory technical white
paper,’’ ETSI, Sophia-Antipolis, France, Tech. Rep., 2014, no. 1. [Online].
Available: https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge
computing-_introductory_technical_white_paper_v1%2018-09-14.pdf

[9] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[10] S. Wang et al., ‘‘Mobile micro-cloud: Application classification, map-
ping, and deployment,’’ in Proc. Annu. Fall Meeting ITA (AMITA), 2013,
pp. 1–8.

[11] V. Bahl, ‘‘Cloud 2020: The emergence of micro datacenter for mobile
computing,’’ Microsoft, Redmond, WA, USA, Tech. Rep., 2015.
[Online]. Available: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/11/Micro-Data-Centers-mDCs-for-Mobile-
Computing-1.pdf

[12] K. Ha et al., ‘‘Adaptive VM handoff across cloudlets,’’ School Comput.
Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-
15-113, 2015.

[13] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet
of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112–116,
Aug. 2016.

[14] P. Yang, N. Zhang, Y. Bi, L. Yu, and X. S. Shen, ‘‘Catalyzing cloud-fog
interoperation in 5G wireless networks: An SDN approach,’’ IEEE Netw.,
vol. 31, no. 5, pp. 14–20, Sep. 2017.

[15] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun. (2015). ‘‘Fog
computing: Focusing on mobile users at the edge.’’ [Online]. Available:
https://arxiv.org/abs/1502.01815

[16] M. Chiang and W. Shi, ‘‘NSF workshop report on grand chal-
lenges in edge computing,’’ Nat. Sci. Found., Alexandria, VA, USA,
Tech. Rep., 2016. [Online]. Available: http://iot.eng.wayne.edu/edge/NSF
%20Edge%20Workshop%20Report.pdf

[17] D. Chen et al., ‘‘S2M: A lightweight acoustic fingerprints-based wireless
device authentication protocol,’’ IEEE Internet Things J., vol. 4, no. 1,
pp. 88–100, Feb. 2017.

[18] O. Salman, I. Elhajj, A. Kayssi, and A. Chehab, ‘‘Edge computing enabling
the Internet of Things,’’ in Proc. IEEE 2nd World Forum Internet Things
(WF-IoT), Dec. 2015, pp. 603–608.

[19] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research opportu-
nities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec. 2016.

[20] Y. Kawamoto, H. Nishiyama, N. Kato, N. Yoshimura, and S. Yamamoto,
‘‘Internet of Things (IoT): Present state and future prospects,’’ IEICE
Trans. Inf. Syst., vol. 9, no. 10, pp. 2568–2575, 2014.

[21] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato,
‘‘A survey on network methodologies for real-time analytics of massive
IoT data and open research issues,’’ IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1457–1477, 3rd Quart., 2017.

[22] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, ‘‘Connected
vehicles: Solutions and challenges,’’ IEEE Internet Things J., vol. 1, no. 4,
pp. 289–299, Aug. 2014.

[23] B. Panja, D. Morrison, P. Meharia, B. Bharat, and A. Prakash, ‘‘Group
security of V2V using cloud computing processing and 4G wireless ser-
vices,’’ Int. J. Next-Generat. Comput., vol. 5, no. 3, pp. 26–31, 2014.

[24] J. Chen et al., ‘‘Service-oriented dynamic connection management for
software-defined Internet of vehicles,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 10, pp. 2826–2837, Oct. 2017.

[25] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
‘‘Dynamic service placement for mobile micro-clouds with predicted
future costs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4,
pp. 1002–1016, Apr. 2017.

[26] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, ‘‘Migrating
running applications across mobile edge clouds: Poster,’’ in Proc. 22nd
Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2016, pp. 435–436.

[27] S. Fu et al., ‘‘Interference cooperation via distributed game in
5G networks,’’ IEEE Internet Things J., 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/8014424/

[28] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal work-
load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[29] R. Urgaonkar et al., ‘‘Dynamic service migration and workload scheduling
in edge-clouds,’’ Perform. Eval., vol. 91, pp. 205–228, Sep. 2015.

[30] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo, ‘‘Dynamic resource man-
agement using virtual machine migrations,’’ IEEE Commun. Mag., vol. 50,
no. 9, pp. 34–40, Sep. 2012.

[31] C. Clark et al., ‘‘Live migration of virtual machines,’’ in Proc. 2nd Conf.
Symp. Netw. Syst. Design Implementation (NSDI), 2005, pp. 273–286.

[32] J. Shetty, M. R. Anala, and G. Shobha, ‘‘A survey on techniques of secure
live migration of virtual machine,’’ Int. J. Comput. Appl., vol. 39, no. 12,
pp. 34–39, 2012.

[33] H. Alshahrani, A. Alshehri, R. Alharthi, A. Alzahrani, D. Debnath, and
H. Fu, ‘‘Live migration of virtual machine in cloud: Survey of issues and
solutions,’’ in Proc. Int. Conf. Secur. Manage. (SAM), 2016, pp. 280–285.

[34] Q. Huang, F. Gao, R. Wang, and Z. Qi, ‘‘Power consumption of virtual
machine live migration in clouds,’’ in Proc. 3rd Int. Conf. Commun. Mobile
Comput. (CMC), Apr. 2011, pp. 122–125.

[35] N. Ekiz, T. Salih, and S. Küçüköner, and K. Fidanboylu. (2005). An
Overview of Handoff Techniques in Cellular Networks. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.9836

[36] S. Pack, X. Shen, J. W.Mark, and J. Pan, ‘‘Mobility management in mobile
hotspots with heterogeneous multihop wireless links,’’ IEEE Commun.
Mag., vol. 45, no. 9, pp. 106–112, Sep. 2007.

[37] J. Han and B. Wu, ‘‘Handover in the 3GPP long term evolution (LTE)
systems,’’ in Proc. Global Mobile Congr. (GMC), Oct. 2010, pp. 1–6.

[38] W. Bao and B. Liang, ‘‘Stochastic geometric analysis of handoffs in user-
centric cooperativewireless networks,’’ inProc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[39] T. Taleb and A. Ksentini, ‘‘An analytical model for follow me cloud,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2013,
pp. 1291–1296.

[40] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
‘‘Dynamic service migration in mobile edge-clouds,’’ in Proc. IFIP Netw.
Conf. (IFIP Netw.), May 2015, pp. 1–9.

[41] A. Gani, G. M. Nayeem, M. Shiraz, M. Sookhak, M. Whaiduzzaman, and
S. Khan, ‘‘A review on interworking and mobility techniques for seamless
connectivity in mobile cloud computing,’’ J. Netw. Comput. Appl., vol. 43,
pp. 84–102, Aug. 2014.

[42] N. Zhang, N. Cheng, A. T. Gamage, K. Zhang, J. W. Mark, and X. Shen,
‘‘Cloud assisted HetNets toward 5G wireless networks,’’ IEEE Commun.
Mag., vol. 53, no. 6, pp. 59–65, Jun. 2015.

[43] H. Zhang, X. Chu, W. Guo, and S. Wang, ‘‘Coexistence of Wi-Fi and
heterogeneous small cell networks sharing unlicensed spectrum,’’ IEEE
Commun. Mag., vol. 53, no. 3, pp. 158–164, Mar. 2015.

[44] J. Li et al., ‘‘On social-aware content caching for D2D-enabled cellular
networks with matching theory,’’ IEEE Internet Things J., to be published.
[Online]. Available: https://ieeexplore.ieee.org/document/8025784/

[45] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, ‘‘Just-in-time
provisioning for cyber foraging,’’ in Proc. 11th Annu. Int. Conf. Mobile
Syst., Appl., Services (MobiSys), 2013, pp. 153–166.

[46] T. Taleb andA. Ksentini, ‘‘Followme cloud: Interworking federated clouds
and distributed mobile networks,’’ IEEE Netw., vol. 27, no. 5, pp. 12–19,
Sep./Oct. 2013.

[47] A. Ksentini, T. Taleb, and M. Chen, ‘‘A Markov decision process-based
service migration procedure for followme cloud,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2014, pp. 1350–1354.

[48] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,
‘‘Mobility-induced service migration in mobile micro-clouds,’’ in Proc.
IEEE Military Commun. Conf. (MILCOM), Oct. 2014, pp. 835–840.

23526 VOLUME 6, 2018

S. Wang et al.: Survey on Service Migration in MEC

[49] K.-H. Chiang and N. Shenoy, ‘‘A 2-D random-walk mobility model for
location-management studies in wireless networks,’’ IEEE Trans. Veh.
Technol., vol. 53, no. 2, pp. 413–424, Mar. 2004.

[50] S. Wang, R. Urgaonkar, K. Chan, T. He, M. Zafer, and K. K. Leung,
‘‘Dynamic service placement for mobile micro-clouds with predicted
future costs,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015,
pp. 5504–5510.

[51] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner, ‘‘Cicada: Intro-
ducing predictive guarantees for cloud networks,’’ in Proc. Usenix Conf.
Hot Topics Cloud Comput. (HotCloud), 2014, pp. 1–14.

[52] M. L. Puterman,MarkovDecision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 1994.

[53] R. Langar, N. Bouabdallah, and R. Boutaba, ‘‘A comprehensive analy-
sis of mobility management in MPLS-based wireless access networks,’’
IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 918–931, Aug. 2008.

[54] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, ‘‘Cloud monitoring:
A survey,’’ Comput. Netw., vol. 57, no. 9, pp. 2093–2115, 2013.

[55] E. Cho, S. A. Myers, and J. Leskovec, ‘‘Friendship and mobility: User
movement in location-based social networks,’’ in Proc. ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), 2011, pp. 1082–1090.

[56] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
‘‘Virtual network embedding: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 4th Quart., 2013.

[57] M. Chowdhury, M. R. Rahman, and R. Boutaba, ‘‘ViNEYard: Virtual
network embedding algorithms with coordinated node and link mapping,’’
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[58] K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, ‘‘Live data center
migration across WANs: A robust cooperative context aware approach,’’
in Proc. SIGCOMM Workshop Internet Netw. Manage. (INM), 2007,
pp. 262–267.

[59] K. Ha and M. Satyanarayanan, ‘‘Openstack++ for cloudlet deploy-
ment,’’ School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-CS-15-123, 2015.

[60] Z. Xiao,W. Song, andQ. Chen, ‘‘Dynamic resource allocation using virtual
machines for cloud computing environment,’’ IEEETrans. Parallel Distrib.
Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[61] T. K. Refaat, B. Kantarci, and H. T. Mouftah, ‘‘Dynamic virtual machine
migration in a vehicular cloud,’’ in Proc. IEEE Symp. Comput. Commun.
(ISCC), Jun. 2014, pp. 1–6.

[62] D. Montero and R. Serral-Gracià, ‘‘Offloading personal security applica-
tions to the network edge: A mobile user case scenario,’’ in Proc. Int. Wire-
less Commun. Mobile Comput. Conf. (IWCMC), Sep. 2016, pp. 96–101.

[63] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder,
‘‘Incremental deployment and migration of geo-distributed situation
awareness applications in the fog,’’ in Proc. 10th ACM Int. Conf. Distrib.
Event-Based Syst. (DEBS), 2016, pp. 258–269.

[64] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, ‘‘Exploring
container virtualization in IoT clouds,’’ in Proc. IEEE Int. Conf. Smart
Comput. (SMARTCOMP), May 2016, pp. 1–6.

[65] P. Angin and B. K. Bhargava, ‘‘An agent-based optimization framework
for mobile-cloud computing,’’ JoWUA, vol. 4, no. 2, pp. 1–17, 2013.

[66] P. Angin, B. Bhargava, and Z. Jin, ‘‘A self-cloning agents based model for
high-performance mobile-cloud computing,’’ in Proc. IEEE 8th Int. Conf.
Cloud Comput. (CLOUD), Jun./Jul. 2015, pp. 301–308.

[67] P. Angin, B. Bhargava, and R. Ranchal, ‘‘Tamper-resistant autonomous
agents-based mobile-cloud computing,’’ in Proc. IEEE/IFIP Netw. Oper.
Manage. Symp. (NOMS), Apr. 2016, pp. 843–847.

[68] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, ‘‘A survey of computa-
tion offloading for mobile systems,’’ Mobile Netw. Appl., vol. 18, no. 1,
pp. 129–140, Feb. 2013.

[69] S. Alami-Kamouri, G. Orhanou, and S. Elhajji, ‘‘Overview of mobile
agents and security,’’ in Proc. IEEE Int. Conf. Eng. MIS (ICEMIS),
Sep. 2016, pp. 1–5.

[70] F. Luo, Y. Chen, Z. Xu, G. Liang, Y. Zheng, and J. Qiu, ‘‘Multiagent-based
cooperative control framework for microgrids’ energy imbalance,’’ IEEE
Trans. Ind. Inform., vol. 13, no. 3, pp. 1046–1056, Jul. 2017.

[71] X. Zhu, C. Chen, L. T. Yang, and Y. Xiang, ‘‘ANGEL: Agent-based
scheduling for real-time tasks in virtualized clouds,’’ IEEE Trans. Comput.,
vol. 64, no. 12, pp. 3389–3403, Dec. 2015.

[72] M. E.-K. Fareh, O. Kazar, M. Femmam, and S. Bourekkache, ‘‘An agent-
based approach for resource allocation in the cloud computing environ-
ment,’’ in Proc. 9th Int. Conf. Telecommun. Syst. Services Appl. (TSSA),
Nov. 2015, pp. 1–5.

[73] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, F. Xia, and
S. A. Madani, ‘‘Virtual machine migration in cloud data centers: A review,
taxonomy, and open research issues,’’ J. Supercomput., vol. 71, no. 7,
pp. 2473–2515, 2015.

[74] Z. Liu, W. Qu, W. Liu, and K. Li, ‘‘Xen live migration with slowdown
scheduling algorithm,’’ in Proc. Int. Conf. Parallel Distrib. Comput., Appl.
Technol. (PDCAT), Dec. 2010, pp. 215–221.

[75] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct./Dec. 2009.

[76] H. Yao, C. Bai, D. Zeng, Q. Liang, and Y. Fan, ‘‘Migrate or not? Exploring
virtual machine migration in roadside cloudlet-based vehicular cloud,’’
Concurrency Comput., Pract. Exper., vol. 27, no. 18, pp. 5780–5792, 2015.

[77] P. Lu, A. Barbalace, and B. Ravindran, ‘‘HSG-LM: Hybrid-copy specu-
lative guest os live migration without hypervisor,’’ in Proc. 6th Int. Syst.
Storage Conf. (SYSTOR), 2013, pp. 2–9.

[78] S. Simanta, G. A. Lewis, E. Morris, K. Ha, andM. Satyanarayanan, ‘‘A ref-
erence architecture for mobile code offload in hostile environments,’’ in
Proc. Int. Conf. Mobile Comput., Appl., Services (MobiCASE), Aug. 2012,
pp. 274–293.

[79] D. Bernstein, ‘‘Containers and cloud: From LXC to docker to kubernetes,’’
IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[80] B. Paten et al., ‘‘The NIH BD2K center for big data in translational
genomics,’’ J. Amer. Med. Informat. Assoc., vol. 22, no. 6, pp. 1143–1147,
2015.

[81] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, ‘‘Containers checkpointing
and live migration,’’ in Proc. Linux Symp., vol. 2. 2008, pp. 85–90.

[82] K. M. Sim, ‘‘Agent-based cloud computing,’’ IEEE Trans. Serv. Comput.,
vol. 5, no. 4, pp. 564–577, Oct. 2012.

[83] H. Liang, B. J. Choi, W. Zhuang, X. Shen, A. S. A. Awad, and A. Abdr,
‘‘Multiagent coordination in microgrids via wireless networks,’’ IEEE
Wireless Commun., vol. 19, no. 3, pp. 14–22, Jun. 2012.

[84] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multiagent
Systems With JADE, vol. 7. Hoboken, NJ, USA: Wiley, 2007.

[85] Y. Zhang, D. Niyato, and P. Wang, ‘‘Offloading in mobile cloudlet systems
with intermittent connectivity,’’ IEEE Trans. Mobile Comput., vol. 14,
no. 12, pp. 2516–2529, Dec. 2015.

[86] N. Ahmed and B. K. Bhargava, ‘‘Towards dynamic QoS monitoring in
service oriented archtectures,’’ in Proc. Int. Conf. Cloud Comput. Services
Sci. (CLOSER), 2015, pp. 163–171.

[87] S. Guo, B. Xiao, Y. Yang, and Y. Yang, ‘‘Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,’’ in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp. 1–9.

[88] C. A.Kamienski, F. F. Borelli, G. O. Biondi, I. Pinheiro, I. D. Zyrianoff, and
M. Jentsch, ‘‘Context design and tracking for IoT-based energy manage-
ment in smart cities,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 687–695,
Apr. 2017.

[89] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, ‘‘Hybrid method for
minimizing service delay in edge cloud computing through VM migration
and transmission power control,’’ IEEE Trans. Comput., vol. 66, no. 5,
pp. 810–819, May 2017.

[90] M. Jia, J. Cao, and W. Liang, ‘‘Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,’’ IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct./Dec. 2015.

[91] M. Nir, A. Matrawy, and M. St-Hilaire, ‘‘Economic and energy considera-
tions for resource augmentation in mobile cloud computing,’’ IEEE Trans.
Cloud Comput., vol. 6, no. 1, pp. 99–113, Jan./Mar. 2015.

[92] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[93] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-
ing,’’ Nature, vol. 518, pp. 529–533, 2015.

[94] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, ‘‘PHY-layer spoofing
detection with reinforcement learning in wireless networks,’’ IEEE Trans.
Veh. Technol., vol. 65, no. 12, pp. 10037–10047, Dec. 2016.

[95] A. Stanciu, ‘‘Blockchain based distributed control system for edge comput-
ing,’’ inProc. 21st Int. Conf. Control Syst. Comput. Sci. (CSCS), May 2017,
pp. 667–671.

[96] Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/en/bitcoin-paper

[97] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, ‘‘Bitcoin-NG:
A scalable blockchain protocol,’’ in Proc. 13rd USENIX Symp. Netw. Syst.
Design Implementation(NSDI), 2016, pp. 45–59.

VOLUME 6, 2018 23527

S. Wang et al.: Survey on Service Migration in MEC

SHANGGUANG WANG (SM’11) received the
Ph.D. degree from the Beijing University of
Posts and Telecommunications (BUPT) in 2011.
He is currently an Associate Professor with the
State Key Laboratory of Networking and Switch-
ing Technology, BUPT. He has co-authored over
100 papers. His research interests include edge
computing, service computing, and cloud comput-
ing. He is the Vice Chair of the IEEE Computer
Society Technical Committee on Services Com-

puting and the President of the Service Society Young Scientist Forum in
China. He has played a key role at many international conferences, such as
a General Chair of CollaborateCom 2016, a General Chair of ICCSA 2016,
and a TPC Co-Chair of IEEE EDGE 2018.

JINLIANG XU received the bachelor’s degree
in electronic information science and technol-
ogy from the Beijing University of Posts and
Telecommunications in 2014, where he is cur-
rently pursuing the Ph.D. degree in computer sci-
ence with the State Key Laboratory of Networking
and Switching Technology. His research interests
include mobile cloud computing, service comput-
ing, information retrieval, and crowdsourcing.

NING ZHANG received the Ph.D. degree in elec-
trical and computer engineering from the Uni-
versity of Waterloo, Waterloo, Canada, under
the supervision of Prof. J. W. Mark, in 2015.
After that, he was a Post-Doctoral Research
Fellow at the University of Waterloo and the
University of Toronto, under the supervision of
Prof. S. (Xuemin) Shen and Prof. B. Liang,
respectively.

YUJIONG LIU received the M.E. degree in com-
puter science and technology from Chongqing
University in 2010. He is currently pursuing the
Ph.D. degree with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications. His
research interests include mobile cloud comput-
ing, edge computing, and Internet of Things.

23528 VOLUME 6, 2018

	INTRODUCTION
	EXISTING CONCEPTS: SIMILARITY AND COMPARISON
	LIVE MIGRATION FOR DATA CENTERS
	HANDOVER IN CELLULAR NETWORKS

	TECHNIQUES OF MIGRATING RUNNING SERVICE
	THREE-LAYER FRAMEWORK AUGMENTED SERVICE MIGRATION FLOW
	DATA TRANSFERRING OPTIMIZATION
	REDUCING DATA SIZE
	PIPELINED STAGES
	DYNAMIC ADAPTION
	WORKLOAD DISTRIBUTION
	ITERATIVE TRANSFER FOR LIVENESS

	STRATEGIES FOR SERVICE MIGRATION
	FOLLOW ME CLOUD PROTOTYPE
	MDP BASED SERVICE MIGRATION
	ONE-DIMENSIONAL MDP
	TWO-DIMENSIONAL MDP

	TIME WINDOW BASED SERVICE MIGRATION
	OPTIMAL SIZE OF THE LOOK-AHEAD WINDOW IN THE FUTURE
	SERVICE PLACEMENT FINDING BASED ON PREDICTION COST WITH OPTIMAL LOOK-AHEAD WINDOW SIZE

	HOSTING APPLICATION COMPONENTS
	VIRTUAL MACHINE
	CONTAINER
	AGENT

	ISSUES AND CHALLENGES
	QOS-AWARE EDGE SERVER SELECTION ALGORITHM
	SELECTION ALGORITHM OF MIGRATION PATH WITH BOTH OF THE LATENCY AND COST
	VIRTUAL RESOURCE ALLOCATION STRATEGY ON EDGE SERVERS
	AI BASED STRATEGIES FOR EFFICIENT SERVICE MIGRATION DECISIONS
	BLOCKCHAIN TECHNOLOGY TO SOLVE TRUST ISSUE IN SERVICE MIGRATION

	CONCLUSION
	REFERENCES
	Biographies
	SHANGGUANG WANG
	JINLIANG XU
	NING ZHANG
	YUJIONG LIU

