Geoinformatica (2016) 20:859-878 @ CrossMark
DOI 10.1007/s10707-016-0253-2

The index array approach and the dual tiled similarity
algorithm for UAS hyper-spatial image processing

Lihong Su' - Yuxia Huang2 - James Gibeaut' -
Longzhuang Li2

Received: 8 December 2014 /Revised: 12 November 2015 /
Accepted: 23 March 2016 /Published online: 2 April 2016
© Springer Science+Business Media New York 2016

Abstract Unmanned aerial systems (UAS) have been used as a robust tool for agricultural and
environmental applications in recent years. Remote sensing systems based on UAS typically
acquire massive hyper-spatial images in its short turnaround. This paper takes advantage of
graphics processing unit (GPU) massive parallel computation in order to process the huge data
timely and efficiently. More specifically, this paper presents an index array approach for lens
distortion correction and geo-referencing. They are the two essential components in UAS
hyper-spatial image processing. The index array approach is also capable of parallelizing
image file I/O and the orthoimage generation. In addition, this paper presents the dual tiled
similarity algorithm for the image co-registration. The index array approach and the dual tiled
similarity algorithm were evaluated using two UAS remote sensing datasets of South Padre
island shorelines. The results show that this index array approach was able to speed up at least
10 times the lens distortion correction and the geo-referencing relative to the central processing
unit (CPU) computation. This dual tiled algorithm could provide 12 times speedup compared
with the CPU similarity computation.

Keywords GPU algorithm - Remote sensing - Unmanned aerial systems - Lens distortion
correction - Geo-referencing - Co-registration

< Lihong Su
su.lihong @tamucc.edu

Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus
Christi, TX, USA

School of Engineering and Computing Sciences, Texas A&M University-Corpus Christi, Corpus
Christi, TX, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-016-0253-2&domain=pdf

860 Geoinformatica (2016) 20:859-878

1 Introduction

Unmanned aerial systems (UAS) are experiencing the greatest near-term growth in civil and
commercial operations due to their versatility and relatively low initial cost and operating
expenses [1]. In recent years UAS have also been used as a robust tool for remote sensing of
agricultural and environmental applications. The images acquired with UAS remote sensing
usually have a small footprint, hyper-spatial resolution (namely sub-decimeter), and high
overlapping ratio due to its low flight altitude and high definition cameras. The small footprint
and high overlapping ratio could run in thousands hyper-spatial images for a regular study
area, such as the crop field of a farm or the coastal shoreline of an island. The hyper-spatial
resolution also means that each individual image has large volume. The large number of large
images cause a significant computing load. For example, Texas A&M University-Corpus
Christi’s RS-16 UAS could produce 200GB imagery by 1 h data acquisition.

The goal of this paper is to efficiently generate an extensive mosaic image that completely
covers a regular study area from UAS remote sensing. Four main processes are included in this
task. They are 1) lens distortion correction, 2) geo-referencing, 3) co-registration, and 4)
mosaicking. These processes typically are computing intensive due to the large amount of
data and the complexity of the processes. In addition, for near-real time agricultural and
environmental applications, for example, crop health and precision management of pesticides,
and flooding detection and relief management, the researchers usually need to see the
classification maps derived from the huge volume imagery in a short time, such as the next
day. Traditional sequential computing approach is difficult to meet the needs of this time
sensitive demand of huge computing intensive tasks.

Big data volume and time-demanding time limit are the two main challenges that the UAS
remote sensing faces. The graphics processing unit (GPU) massive parallel computation
provides an opportunity of addressing these issues [2, 3]. Some research has been done in
the GPU-based processing of remote sensing imagery. For example, references [4—12] ex-
plored hyperspectral image processing by the GPU with a focus on handling hundred spectral
bands on the same image pixel. References [13—18] proposed the GPU methods for geo-
correction and orthorectification (also called geo-referencing) for imagery acquired by UAS
commercial off-the-shelf cameras, an airborne pushbroom imager, and high resolution satellite
sensors. Some investigators used the GPU to accelerate computation of radiative transfer
model [19, 20], and segmentation and classification of remotely sensed imagery [21-23].

This paper explores GPU methods for UAS hyper-spatial remote sensing image processing.
More specifically, an index array approach is for lens distortion correction and geo-referencing.
This approach is also capable of parallelizing image file I/O and the orthoimage production. In
addition, a dual tiled similarity algorithm is for the image co-registration in order to mosaic the
images faster.

2 Background

2.1 Principle and workflow of UAS image processing

To generate a mosaic image from original UAS images, typically the following four compo-
nents are included: lens distortion correction, geo-referencing, co-registration and mosaicking

images (Fig. 1). The first two processes are to generate the destination images with geographic

@ Springer

Geoinformatica (2016) 20:859-878 861

coordinates, while the last two processes are to generate the mosaic image. Each process is
briefly explained as follows.

2.1.1 Lens distortion correction

The camera lens distortion correction uses the internal geometry of a camera existing at the
time of data capture to transform the photo pixel coordinate system to the imaging plane
coordinate system [24]. The internal geometry includes focal length and lens distortion
coefficients. There are two types of radial lens distortion that exist: radial distortion Ar and
tangential distortion A¢. Since the tangential lens distortion is usually much smaller in
magnitude than the radial lens distortion, it is considered negligible. For a digital camera,
radial distortion usually is an inward displacement of a given image point from its ideal
location. The inward displacement should be eliminated by adding matching displacement on
each pixel. The effects of radial lens distortion throughout an image can be approximated using
a polynomial [24]. A forward correction model of non-metric digital camera distortion is given
as follows [25]:

Ax = (x—xo) (kor + kv + k2r5) (1)

Ay = (r-yy) (kor + ka7’ + kar®) 2)

where xy, , are principal point offsets from image center; x, y are the coordinates of the image
point; Ax, Ay are the correction of the image point coordinates. ko, ki, k, are the radial

distortion; and ,. _ /(x—x0)2 N (y_yo)z.

2.1.2 Geo-referencing

Geo-referencing establishes the location of an image in terms of ground coordinate systems. In
other words, geo-referencing generates a destination image that has geographic coordinates
from a photo (namely an original image) that has no geographic coordinates. This is a key
process to make UAS imagery useful for mapping and analysis. The ground coordinate (X, ¥,
7) is typically defined as a three-dimensional Cartesian coordinate system, in which (X, Y)
utilizes a known map projection such as the Universal Transverse Mercator (UTM) and the Z
value is the elevation above the mean sea level by a given vertical datum.

Geo-referencing can be empirically and manually completed through affine transformation
between distorted photo coordinates (column, row) and map coordinates (X, Y) with well-

Orthoimage generation

- Co- Stitching
Original Lens Geo- - trati : Mosaic
images distortign —>{ referencing —eafjggst'on [reiglzgianttlon/ —>|mages image
(photos) correction (images with |generation
geographic

coordinates)

Lens calibration GPS and IMU
parameters measurements

Fig. 1 Workflow of UAS remote sensing image processing

@ Springer

862 Geoinformatica (2016) 20:859-878

distributed ground control points (GCPs) [26]. Here lens distortion correction is included in the
affine transformation. However, determining sufficient manual tie points and GCPs represents
a significant human resource component in an image processing system. To overcome this
problem, georeferencing can also be conducted by photogrammetric approach that consists of
four main components: boresight calibration, camera lens distortion correction, obtaining
camera position and attitude, and othroimage production. This photogrammetric approach is
adopted in this paper.

Typically, the camera, the Global Positioning System (GPS) receiver, and the Inertial
Measurement Unit (IMU) are installed individually on an airplane frame. The GPS position
is required to shift to the camera position (the perspective center). The boresight calibration is
needed to adjust the offset angles between the IMU and camera reference frame axes [27, 28].
The perspective center (X, Y, Z) and three rotation angles (w, ¢, k) are acquired by GPS and
IMU measurement, and are associated with the ground coordinate system. The camera position
and attitude at the time of imaging can be obtained by interpolating the GPS and IMU data at
the imaging time. This procedure is usually completed by dedicated software, which is
included in most remote sensing image processing software. An othroimage can be produced
based on the optical principle of imaging. According to the camera optical principle, a straight
line can be extended from the perspective center of a camera to a pixel on the photo and further
to the object of the pixel on ground [24]. This principle is called the collinearity. When the
equations of the imaging plane are available, ground coordinates for each pixel can be obtained
based on the principle of the collinearity.

2.1.3 Co-registration

The individual orthoimages need to be co-registered so that these images can be mosaicked
correctly. The transformation for co-registration can be derived from the tie points generated
by feature matching algorithms, such as the scale invariant feature transform (SIFT) algorithm.
This algorithm has been used in UAS remote sensing applications [29]. The SIFT algorithm
outperformed a number of other local descriptors in evaluations [30]. However, the prelimi-
nary experiments of our coastal shoreline UAS images have shown that Autopano Pro [31],
one of the widely used commercial versions of the SIFT algorithm, could produce inappro-
priate tie points for some neighboring images due to no distinctive features being present.
Feature-based image registration algorithms also failed in some rangeland and agricultural
areas [32, 33]. Our experiments showed that the area-based image similarity could find correct
locations at some failure cases by the SIFT algorithm.

This paper adopts global similarity measures with spatial alignment, because these simi-
larity measures monotonically increase with decreasing spatial misalignment [34]. Specifically,
the zero-mean cross correlation coefficient is used, as defined as follows:

(e
@k(ak_z)zzk(bk_g)z

where a; and by, are, respectively, the gray-levels of the k& pixel in images, or image patches, A

and B. A and B are, respectively, the mean gray levels of A and B. Two questions needed to be
addressed before applying the similarity for the co-registration: what is the suitable size of the
images? And how big should the search range be?

@ Springer

Geoinformatica (2016) 20:859-878 863

By our experience, the similarity calculation should use a large array of pixels on the UAS
hyper-spatial images to get reliable co-registration. For example, neighboring cotton areas of
I mby 1 m, even 10 m by 10 m, usually is similar due to the same agricultural crop
management. In most Texas coastal areas, natural stable beaches are usually more than 30 m
wide [35]. The sand beach actually looks similar everywhere. Empirically, it is desirable for an
image patch to be sufficiently large such as 100 m by 100 m for Texas coastal beaches. An
image patch of this size usually can encompass several land cover types, for example, fore
dune vegetation, beach sand and seawater. This magnitude means an extent of 1000 by
1000 pixels on a hyper-spatial image of 0.1 m pixel size. The optimal match location can be
found by traversing the image patch over its neighboring image within a search range (Fig. 2).
Hereafter, the image patch is referred to as the match image, and the neighboring image is
referred to as the base image.

The search range is determined by both GPS (X, ¥, Z) errors and IMU (w, ¢, x) errors. The
low cost IMU typically has angular resolution of 0.05°. The 0.05° errors result in positional
error up to roughly 10 pixels. The similarity is calculated on neighboring images. The relative
locations of two neighboring images are mainly dependent on the angular resolution. Com-
bining with GPS errors, our experience has shown that a suitable search space roughly extends
20 m, which is a search range of 200 pixels. If accurate GPS and IMU are used and the post-
processing are carried out well, the search range could be reduced greatly. In contrast, the
search range should be increased for the inaccurate GPS and IMU data. The more inaccurate
GPS and IMU are, the larger the search range should be. The size of the search range does not
depend on the ground scene on the two adjacent images. The cross correlation coefficient is
computed directly by using the raw intensity values of corresponding pixels on the match and
base images. The UAS photos typically are acquired with high forward and side overlap, for
example, 70 % forward and 50 % side. So both the two adjacent images have large portions
occupied by a corresponding region. Due to almost the same image acquisition condition, the
cross correlation coefficient is an effective similarity measure for the UAS image registration.
Our seagrass experiments showed that the coefficient is effective for the UAS images that
consist of all water.

The search range for spatial alignment is quite small compared with the image sizes of both
the match and base images. For example, if the match image is 1001 by 1001 pixels, and the

Ax| Small search range

Large match patch

Similarity output of 3x4 array by
traversing 7x7 match image on
9x11 search image.

Large base image

Fig. 2 Similarity between large match image and base image with relative small search range

@ Springer

864 Geoinformatica (2016) 20:859-878

base image is 1201 by 1201 pixels, the search range is only 200 pixels in two dimensions.
While the match image traverses the base image, the center of the match image will form an
array of the search extent, for example an array of 200 by 200 pixels. When each element of
the search extent array holds a cross-correlation coefficient of the match image and its
overlapping region on the base image, the highest similarity is the maximal element of the
200 by 200 pixels.

2.1.4 Mosaicking images

A study area is usually covered by multiple flight lines. In order to reduce error accumulation,
the central image is considered as a base image to stitch images along two opposite directions
in a flight line. Then single flight line is stitched up, multiple flight lines are mosaicked. After
sufficient tie points are identified, the least square method is a widely used method to calculate
the optimal parameters for affine transformation, higher-order polynomial transformation, or
thin-plate spline. By our experience, an affine transformation is preferred because the UAS
orthoimages usually do not needed be bent or curved.

2.2 CUDA architecture and programming model

The Compute Unified Device Architecture (CUDA) introduced by NVIDIA is a general
purpose parallel computing architecture. The CUDA computing system consists of a host
(namely a traditional central processing unit, CPU) and one or more devices (namely GPU)
that are massively parallel processors. A CUDA program consists of one or more phases that
are executed on either the CPU or the GPU, depending on the tasks. The phases that exhibit
little or no data parallelism are implemented in the CPU code, which is the straight ANSI C
code. The phases that exhibit rich amount of data parallelism are implemented in the GPU
code, written by so-called kernels. A kernel function is executed by a thread. The GPU threads
are the minimum execution units; multiple threads (typically set to a multiple of 16) form a
block; and multiple blocks can be composed of a grid, where a grid is the GPU application
execution. Normally the total number of threads in a block does not exceed 1024. The blocks
are arranged in the form of a grid of 3D array. The values of the 3D grid dimension can range
from 1 to 65,535. At any time, each thread executes the same instruction, but operates on
different data. Two variables provided by CUDA, blockldx (the index of a block in a grid) and
threadldx (the index of a thread in a block), are used to localize the data needed processing and
to distinguish threads from each other.

In CUDA, the host and devices have separate memory spaces. The GPU has several
different memory spaces, and the three main types are: global, constant, and shared. The
GPU threads can access multi memory spaces. Each thread has a private memory; each block
has a shared memory and each thread in this block can access the shared memory; each thread
can access the global memory and the constant memory. Global and constant memories are
used for data transfer between host and device. Constant variables are often used for variables
that provide input values to kernel function because all threads in a grid see the same version of
a constant variable during the entire application execution. Constant variables are stored in the
global memory but are cached for more efficient access. The shared memory latency can be
roughly 100 times lower than the uncached global memory latency [36]. All blocks in a grid
share the global and constant memory. All blocks can run in parallel with each other. All
threads in a block are also executed in parallel, and can share data efficiently through the

@ Springer

Geoinformatica (2016) 20:859-878 865

shared memory and synchronize their execution for coordinating accesses to the shared
memory. The profitable strategy for performing computation on the GPUs using this advantage
is to divide data in subsets, copy them from global memory to shared memory, achieve shared
memory locally in threads, and then copy the results back to global memory.

Different GPU hardware may have different configurations. The CUDA environment takes
care of the differences. The transparent scalability let users focus on their applications. Based
on the CUDA programming model [36], the basic flow of a standard GPU application is as
follows:

a) Declare input and output variables in CPU memory

b) Declare corresponding variables in the GPU global memory using cudaMalloc() function;

¢) Transfer input data from GPU global memory to CPU memory using cudaMemcpy()
function

d) Run a kernel function by <<<dimGrid, dimBlock>>> instruction;

e) Transfer result data from GPU global memory to CPU memory using cudaMemcpy()
function;

f) Free variables in GPU memory using cudaFree() function.

3 UAS hyper-spatial image processing based on CUDA
3.1 The index array approach for the orthoimage generation

This paper presents a GPU approach for UAS hyper-spatial image processing. Figure 3 shows
the work flow of the lens distortion correction and the geo-referencing. The models of these
two components and the affine transformations are calculated on CPU. The calculation of the
four corners and their minimal bounding rectangle (MBR) are also implemented on CPU. This
is reasonable because these calculations have little data parallelism. In contrast, the calculation
of each pixel is implemented on GPU due to the fact that an image usually consists of a million

Host (CPU) Device (GPU)

1. Compute the UTM coordinates of
four corners of an image

2. Obtain the minimal bounding
rectangle (MBR) that the four
corners form.

i v

I
1
I
1
i
I | 1.Calculate the imaging plane
' coordinates of each pixel in
! MBR by colinearity

' | 2.Calculate the row/col on

! photo pixel coordinates for

|

the pixel by lens distortion
Kernel S E——
4t —
; !

1. Read the original image

2. Assign grey value to the
destination image pixel from the
original image by the index array

3. Save the destination image

1 1
1 1
1 1
I 1| Ifthe row/col is valid, the pixel

. 1| is set row*Width-of-Photo + col,
1| else set-1.

1 1

1 1

1 1

1 1

Fig. 3 Work flow of the lens distortion correction and Geo-referencing

@ Springer

866 Geoinformatica (2016) 20:859-878

pixels and each pixel can be calculated independently in UAS hyper-spatial image processing.
Specifically, first the model of lens distortion correction computes the displacement of four
corners of a photo to get their correct locations on the imaging plane. Then the four points are
projected into the ground coordinate system. The footprint of the destination image will fall in
the MBR formed by the four corners. Given a ground pixel size, the coordinates of each pixel
in the MBR on the ground coordinate system can be calculated. For any pixel in the MRB, its
location on the original photo can be obtained by the collinearity and the lens distortion
correction.

Several methods can be used to obtain grey value for the ground pixel of the destination
image from the location and its neighbors on the original image. This paper uses the nearest
neighbor resampling method due to its simplicity and the capability of preserving original
radiometric values. The preservation of the original grey value is very important for UAS
remote sensing because UAS remote sensing often uses low radiometric resolution digital
cameras. Interpolations of the pixel grey values bring effects of neighboring pixel grey value
into the interpolated pixel. This mixing reduces the radiometric resolution further. The nearest
neighbor resampling may produce some position errors, especially along linear features.
However, for hyper-spatial image of UAS remote sensing the position errors of several pixels
do not produce large displacements due to its sub-decimeter pixel size.

An advantage of the nearest neighbor resampling method is that it is not necessary to access
grey value of the original image during the lens distortion correction and geo-referencing. The
location on the original image (row and column) could be an index, pointing its grey value for
the corresponding ground pixel on the destination image. Generating the index array does not
require accessing the original image. The destination image can be produced later by assigning
its pixel grey value with the index array. We refer to this method as an index array approach.

Another advantage is that calculation of the index array could be parallel executed when the
original image is read from disk. This advantage provides additional benefits for remote
sensing. As we know that remote sensing images usually are multispectral or hyperspectral
images, which have spatially co-registered several spectral bands or hundreds of spectral
bands, respectively. This index array approach reduces huge data transfer between CPU and
GPU memory spaces.

3.2 Optimizing memory use of the index array approach

The input values of the kernel function include the Universal Transverse Mercator (UTM)
coordinates of the left upper corer, height and width of both the original image and its
destination image to be produced, and the model coefficients. They are declared as constant
variables because each thread uses the same parameters and coefficient.

Besides these parameters and coefficients, all datasets used by the UAS remote sensing
image processing are the index array, the original image, and the destination image. The index
array is stored in the global memory. In our approach the index array elements do not store a
grey value from the original image. They are the location of the nearest neighbor pixel on the
original image. The destination image is not produced on GPU side. In this way, both the
original image and the destination image are variables in CPU memory. It is not required to
transfer the original image from CPU memory to GPU global memory, and to transfer the
destination image from GPU memory to CPU memory. Further, because the index array is
generated exclusively on GPU, the index array is only transferred from GPU global memory to
CPU memory. Due to the independence of the index array elements, the threads do not need to

@ Springer

Geoinformatica (2016) 20:859-878 867

share data among them. Moreover, since each element of the index array only needs to access
global memory once, the strategy of zero-copy host memory for the index array is adopted in
this paper.

3.3 Dual tiled similarity computation for image co-registration

This paper presents a dual tiled similarity algorithm for the image co-registration in order to
take the advantage of GPU capability. For comparison purpose, the paper also implements two
simple algorithms for the similarity calculation: single algorithm and basic algorithm. Assum-
ing that the match image is an array of N= N, X N0 elements and the array of search extent
has M= M, x M, elements. Using Eq. 3, the two means should be obtained before the cross-
correlation coefficient can be calculated. The execution time of the three calculations is
proportional to the number of elements involved, which is O(N) computational complexity.
The reduction algorithm is suitable since all of them derive a single value from an array of
values. The match image keeps constant, but it traverses the base image within the search
range. In total, the match image has M different overlapping areas on the base image. Total
computational complexity is O(NM). The following algorithm analysis focuses on efficiency
of the CPU to GPU data transferring, and of accessing the GPU memory variables.

The single algorithm is to transfer the match image and its each overlapping area on the
base image from the CPU to the GPU once, to calculate a relationship coefficient within the
GPU side, and return the coefficient to the CPU. Thus some pixels of the base image must be
repeatedly transferred many times. As shown in Table 1, the single algorithm transfers N+ NM
data elements from the CPU to the GPU. The total number of global memory accesses is
N(M + 1) for the means and 2NM for the coefficient calculation, where 1 is for the match image
itself and M is the total number of the overlapping areas on the base image.

The basic algorithm loads both the match image and the base image entirely into the GPU
global memory from the CPU. All coefficients are calculated within the GPU side, the
maximal coefficient and its location are returned to the CPU. Although the match and base
images are transferred once, some pixels of the base image have to be repeatedly accessed
many times. As shown in Table 1, the transferred data has N.o X Nrow + (Neol + Meop) X (Nyow +
M,,) data elements. Without loss of generality, we can assume M= N /4 and M,y = N;ow/
4. The basic algorithm transfers 2.5N+ M data elements. The total number of global memory
accesses that the basic algorithm requires is the same as the single algorithm.

Table 1 The requirement of transferring data to GPU and of accessing GPU global memory and computational
complexity

Algorithms Data transferring to GPU GPU global data accessing Computational
complexity

Single N+NM N+NM for means O(NM)

Mx2 N for coefficients
Basic 2.5%N+M N+NM for means O(NM)

Mx2 N for coefficients
Dual tilted 5/ <2 4 MeowtMea M) N for mean of the match image O(NM)

Puiain Pyian’®

18N x (1 +£f—d“:) X (1 +X—‘dﬂ') for the mean

and the coefficient of base image

@ Springer

868 Geoinformatica (2016) 20:859-878

Among the three types of GPU memory spaces, global memory is large (typically gigabyte
size) but slow whereas the constant memory and the shared memory are small (typically
kilobyte size) but fast. Both the constant memory and the shared memory have no enough
room to entirely hold the match or base images, which usually has a megabyte size. The dual
tiled algorithm efficiently uses their size and access speed (Fig. 4). After loading the match and
base images into the global memory, this algorithm uses dual partition strategies, namely
partitions on both the match and base images. The first partition divides the match image into
small pieces so that each piece can fit into the constant memories. The second partition
organizes the base image into tiles. An important criterion of the tile size is that the kernel
computation on these tiles can be done independently of each other. The partitions should be
careful not to exceed the capacity of these memories for kernel execution. It is worth noting
that the size of both the constant and the shared memories can vary from device to device. A
device property query, cudaGetDeviceProperties(), can obtain their amount available on a
device.

Set tile width by available shared
memory

A 4

Partition the match image into pieces
by piece width = 2x tile width +1, and
generate the corresponding base image

Y

Sum corresponding pixel
values for each element of
the search range array by
tiles.

1. Iteratively launch the tiled kernel for >
each piece and its base image.
2. Sum the search range array

v

Calculate mean grey value of each
element of the search range array

l Calculate m

1. Iteratively launch the tiled kernel for |— 3 o 5
each piece and its base images. and Y. (ay — A)(by — B)

2. Sum the search range array

v

1. Calculate cross coefficient for each
element of the search range array

2. Find the max coefficient

3. Output the coefficient and its location

A

A

for each element of the search
range array.

Fig. 4 Workflow of the dual tiled image match algorithm

@ Springer

Geoinformatica (2016) 20:859-878 869

The three components of Eq. 3, namely (a;—A) (bx—B), (a;—A)’, and (bk—l_i)z, are the sum
of all pixel pairs on the match image and its overlapping region on the base image. This
property allows the three components to be calculated by regions. As discussed, all possible
cross-coefficients form an array of M, x M, elements. The three components may be
produced by summing corresponding components of all match image pieces when each single
piece has an array of M., * My, pixels to hold its three quantities. Each piece of the match
image is loaded into the constant memory iteratively. With the tiles, the three components of
each single piece are calculated with reduced global memory accesses comparing with the
above basic algorithm. To obtain high efficiency, the size of the match image pieces should be
bigger than the tiles of the base image. The three quantities calculated for a tile needs elements
from neighbor tiles of the base image. The elements involved in multiple tiles and loaded by
multiple blocks are commonly referred to as halo elements. The sizes of the piece and the tile
determine number of the halo elements and which elements are the halo elements. For
simplicity, width of the match image piece can be set equal to one plus double width of the
tile, namely Pyigmn=2 X Twigm+ 1. Each element in a tile has eight halo elements on the
corresponding location in its eight neighboring tiles (Fig. 5). Computing the three quantities
of all elements in a tile needs to load nine tiles into the shared memory. For the illustration
purpose, in Fig. 5, the match image piece is an array of 5 by 5 pixels and the tiles have 2 by
2 pixels. Comparing with the basic algorithms, the ratio of memory accesses for once
calculation of the three quantities is:

Raccess = (Twidth2 X 9)/(Pwidth2 X Twidth2> (4)

If and only if Tyigim =2, Raccess> 1. The ratio of memory access reduction is approximately
proportional to the tile size, namely Tiigm X Twidh-

The match image is partitioned into ceil(N ¢o1/Pyigm) by ceil(Niow/ Pwiam) pieces that has
Pyiam % Pwiam €lements. Each piece of the match image has its own base image of (Pyqm +
Mo1) X (Pyiam + Mrow) elements, which is partitioned into tiles of ceil((Py;iam + Meo1) Twidim) bY
ceil((Pyidgth + Mrow) Twiag) €lements. Each piece of the match image requires transferring

Fig. 5 The halo elements on the

similarity computation Ql 10 10
Q |0
ol 0] 1O

An element (solid circle) and its
halo elements (empty circles) for
the 2D similarity kernel

@ Springer

870 Geoinformatica (2016) 20:859-878

Pwidth X PWidth and (Pwidth+Mcol) X (Pwidth+Mr0W) data elements from the CPU to the GPU.
Total number of transferring data from the CPU to the GPU is:

T'rans fer = ceil< Neo) X ceil(NmW)
: _ Hrow
e Pyidtn Pyidn

X (Pwidth X Pwiath + (Pwiath + Mecol) X (Pywidth + Mrow)) (5)

Without loss of generality, we can assume all divisions leading to an integer. Equation 6 can
be rewritten as:

(6)

M, M. M
Ttransfer =N x (2 + row 7 Meol +)

2
Pyidth Pyian

For a single piece of the match image, each tile requires 7, it X 9 global memory accesses
for calculating the mean or the coefficient. That is, total number of memory accesses for the
whole match image is:

_ . N col . N oW . P width + M col . P width + M row
T access = ceil x ceil x ceil| ——— | x ceill| ——
Pyidtn Pyidtn T'width T'wvidth

X (Twidth2 X 9) (7)

Without loss of generality, we can assume all divisions leading to an integer. Equation 5 can
be rewritten as:

M M,
Taccess = IN X <1 + col) X (1 +$) (8)
Pyidin Pyidin

Due to insufficient amount of on-chip memory, Pyq usually is not big. It is worth noting
that one T,c.ess 1S for the mean, and another for the cross-relationship coefficient itself. The
total global memory accesses of the tiled algorithm are:

~

M M,
Taccess = N+ 18N x (1+—COI) X <1+ OW) (9
width Pwidth

4 Experiments and discussions
4.1 The index array approach

A total of eight experiments were designed and conducted to process two UAS datasets of
South Padre island shorelines (Table 2). The computation consists of lens distortion correction
and geo-referencing. The eight experiments consist of four implementations for the two
different data sets. The four implementations include CPU implementation, GPU implemen-
tation with global memory, and two GPU implementations with two different zero-copy host
memory settings. The data sets are small frames of 1920x1600 pixels with unsigned 8 bit
integer and large frames of 7378x4924 pixels with unsigned 16 bit integer; the size of output
images is 6810x4790 and 1586x1178, respectively.

@ Springer

Geoinformatica (2016) 20:859-878 871

Table 2 Speedup of the eight computations (unit: milliseconds)

Data Implementation Generating Copying Reading Assigning Writing total
index array index to single grey value single
CPU band band
Large frames: Zero-copy 2 660 0 3323 2331 5014 11,328
glptut t73678818 42‘2749 o, Zeocopyl 654 0 3092 124 4980 8850
utput: x
unsigned 16 bit integer GPU global 660 34 3201 123 5225 9243
CPU 7498 0 3186 122 4995 15,801
Small frames: Zero-copy 2 36 0 2362 7 574 2979
Inp(l)lt t; 95‘)1;815001 1gg Zerocopy 137 0 2318 7 524 2886
utput: x
unsigned 8 bit integer GPU global 37 2 2212 9 479 2739
CPU 610 0 2338 10 497 3455

The computer that was used was a Dell Precision T3600 (CPU: 3.60GHz Intel Xeon E5-
1620, RAM: 32 GB), Windows 7 Professional 64-bit operating system, and Visual Studio
2010 development environment. GPU device was Quadro 600, compute capability 2.1, 1 GB
global memory, 64 KB constant memory, and CUDA 6.0 runtime.

As shown in Table 2, the calculation time (the column of Generating index array) is short,
but the image file reading and writing time is long. It is not surprising that the reading and
writing operation is the bottleneck of the efficiency of the entire processing. Speedup analysis
did not include the reading and writing operations. The speedup is 16 times on the small
frames and 11 times on the large frames. For the CPU implementation all computations were
done in CPU. For the GPU global implementation, the index array resides in GPU global
memory. In addition to the kernel execution, transferring data between GPU and CPU memory
costs time. The time of transferring the index array from GPU to CPU was 2 ms for the small
frames and 34 ms for the large frames.

Since each element of the index array is accessed exactly once, we expected a performance
enhancement when using zero-copy memory, in which we access CPU data directly from
GPU. The zero-copy memory has two different settings by two flags of cudaHostAlloc()
function, which allocates memory on CPU. The two flags are cudaHostAllocMapped and
cudaHostAllocWriteCombined. The flag cudaHostAllocMapped shows that this buffer is
accessed from GPU. The flag cudaHostAllocWriteCombined indicates to allocate the memory
as write-combined (WC). WC memory is a good option for buffers that is written by the CPU
and read by the GPU, but it cannot be read efficiently by most CPUs. Here Zero-copy 1 was to
allocate memory on CPU with the flag cudaHostAllocMapped only while Zero-copy 2 was

Table 3 Speedup of the similarity computations

Implementation Total elapsed time Speedup
(unit: milliseconds)
CPU Single Basic Dual tiled
CPU 1,427,426 1
Single 440,539 3.24 1
Basic 342,101 4.17 1.29 1
Dual tiled 117,151 12.18 2.92 3.76 1

@ Springer

872 Geoinformatica (2016) 20:859-878

with both the two flags. As shown in Table 2, for the large frames, Zero-copy 2 spent almost
20 times longer to assign grey values to the destination image than Zero-copy 1, but the time
difference was ignorable among CPU, GPU global, and Zero-copy 1 implementations. In
contrast, for the small frames, the time of assigning grey values was roughly the same for both
CPU and all GPU implementations.

4.2 The dual tiled similarity computation

This experiment used 32 pair of the 0.1 m UAS image that has 7378 x 4924 pixels with
unsigned 16 bit integer. The average size of the match image is 1121 x 1121 pixels, namely
112.1 m by 112.1 m patch. The search range is from —10 m to 10 m from the original location
of the match base on the base image. In other words, the array of the search extent is

— ; .
Sinton U Rockport

Taft

;< Aransas Pass

Portland

= Port Aransas

Robstown. . Corpus Christi
R / Mustang

Island
@) _ : :

ingsville
Padre Island
(a)
Padre Island
National Seashore
Sarita
Laguna Madre
¥
e
186
RaymoLdville (te0)

Fig. 6 Study site. The star in the right upper figure represents its location in Texas. The red rectangle in the left
figure is its position on Padre Island (source: Google Maps). The yellow rectangle in the right lower figure
represents its range on the beach (source: Google Maps)

@ Springer

Geoinformatica (2016) 20:859-878 873

200 x 200 pixels. The average cross-correlation coefficient is 0.95, and the minimal is 0.89.
Table 3 shows the speedup for the four implementations: the CPU, the single, the basic, and
the dual tiled algorithms. All GPU implementations generated significant time reductions. The
dual tiled algorithm obtained speedup of 12 times compared with the CPU computation.

4.3 An example on Texas coastal environment

The study site is a beach on South Padre island, which is a barrier island in the U.S. state of
Texas (Fig. 6). The UAS images were acquired on March 4 and June 25, 2014. The unmanned
aerial vehicle was American Aerospace RS-16 owned by the TAMU-CC UAS program. The
March exercise used Nikon D800 camera with 50 mm of focal length and 0.0049 mm of CCD
pixel size. The flight height was 870 m above the ground. The June exercise used the camera
of 14.85 mm focal length and 0.0025 mm pixel size. Its flight height was 300 m. Figure 7
shows two raw photos and their geo-referenced images. Both geo-referenced images are with
10 cm pixel size. The large frame image has much greater footprints than the small frame
image. The shoreline indicators, such as seaward dune vegetation line and instantaneous water
line, are discernible visibly in the UAS coastal imagery. Figure 8 displays two mosaic images
generated with 23 large frame photos and 18 small frame photos, respectively. The left picture
is the two overlapped mosaic images by WGS 84 UTM 14 N zone. The right picture is the
enlarged mosaic image of the small frame photos. As the large frame photos were acquired
during March, no new vegetation and algae accumulation are on beach. On the June images
the opportunistic plants covered the landward portion of the dry beach; and huge volumes of

051 20 3 02550 100 150 200
O — —

40
Heters Meters

Fig. 7 Raw photos (unscaled) and geo-referenced images. The upper left picture is a photo of the small frame
1920 x 1600. The upper right one is a photo of large frame 7378 x 4924. The lower pictures are their geo-
referenced images shown with different scales

@ Springer

874 Geoinformatica (2016) 20:859-878

662000 662250 662500 662750 663000 663250 663500
1 1

2973000 2973000
2972750 5 2972750
2972500 - ; 2972500
2972250 P 2972250
2972000 i - 2972000
2071750 - 2971750
i 5
2971500 3 ; 2971500
Q Ea
2971250 AUt Eo 8 2971250
2971000 B 9 2971000
3
2970750 ; 2070750
4
2970500 \ S » 2970500
207 4 D 2970250
N g
2970000 ‘ - 3 2970000
B/
2969750 s 2 - 2969750
T T
662000 662250 662500 662750 663000 663250 663500 0
Meters
0 250 500 1,000
WGS 84 UTM 14N Zone Meters

Fig. 8 Two mosaic images generated with 23 large frame photos and 18 small frame photos, respectively, in
WGS 84 UTM 14 N zone. The left figure is the two overlapped mosaic images. The right figure is the enlarged
mosaic image of the small frame photos

the algae were onto the beach in rows. This example shows that UAS remote sensing provides
a new tool for monitoring coastal dynamic changes.

5 Conclusion

This paper presents an index array approach of processing hyper-spatial images of UAS
remote sensing. The experiments of the lens distortion correction and geo-referencing algo-
rithm showed a significant speedup. In the case of not considering image loading and saving,
speedup was at least 11 times better than that would have been with the traditional CPU
approach. The dual tiled algorithm can obtain 12 times speedup relative to the CPU similarity
computation. The experiments showed that these two approaches have improved efficiency of

@ Springer

Geoinformatica (2016) 20:859-878 875

UAS remote sensing image processing. The GPU computation is helpful to address big data
volume and demand time limit, which are the two main challenges that the UAS remote
sensing faces.

Acknowledgments This work was supported partly by the NSF grant MRI: Acquisition of a High Performance
Computing Cluster to Support Multidisciplinary Big Data Analysis and Modeling (#1429518).

References

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

. FAA, Unmanned Aircraft Systems (UAS) - Regulations & Policies, 2011, http://www.faa.gov/about/

initiatives/uas/reg/

. Christophe E, Michel J, Inglada J (2011) Remote sensing processing: from multicore to GPU. IEEE J Sel

Top Appl Earth Obs Remote Sens 4(3):643-652

. Lee CA, Gasster SD, Plaza A, Chang C, Huang B (2011) Recent developments in high performance

computing for remote sensing: a review. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):508-527

. Setoain J, Prieto M, Tenllado C, Plaza A, Tirado F (2007) Parallel morphological endmember extraction

using commodity graphics hardware. IEEE Geosci Remote Sens Lett 4(3):441-445

. Yang H, Du Q, Chen G (2011) Unsupervised hyperspectral band selection using graphics processing units.

IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):660-668

. Luo Y, Guo K, Zhao S, Tao Z, Wang M (2012) Feature extraction of hyperspectral remote sensing in parallel

computing research based on GPU. In Proceedings of the 4th GEOBIA, pp. 381-384, May, Rio de Janeiro,
Brazil

. Trigueros-Espinosa B, Velez-Reyes M, Santiago NG, Rosario-Torres S (2012) Evaluation of the graphics

processing unit architecture for the implementation of target detection algorithms for hyperspectral imagery.
Journal of Applied Remote Sensing, Vol.6, No.1, 061506 (Jun 21). doi: 10.1117/1.JRS.6.061506

. Gonzalez C, Sanchez S, Paz A, Resano J, Mozos D, Plaza A (2013) Use of FPGA or GPU-based

architectures for remotely sensed hyperspectral image processing. Integr VLSI J 46:89—-103

. QuH, Zhang J, Lin Z, Chen H (2013) Parallel Acceleration of SAM Algorithm and Performance Analysis.

IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1172—-1178

Molero JM, Garzon EM, Garcia I, Quintana-Orti ES, Plaza A (2014) Efficient implementation of
hyperspectral anomaly detection techniques on GPUs and multicore processors. IEEE J Sel Top Appl
Earth Obs Remote Sens 7(6):2256-2266

Nascimento JMP, Bioucas-Dias JM, Alves JMR, Silva V, Plaza A (2014) Parallel hyperspectral unmixing on
GPUs. IEEE Geosci Remote Sens Lett 11(3):666-670

Wu X, Huang B, Plaza A, Li Y, Wu C (2014) Real-time implementation of the pixel purity index algorithm
for endmember identification on GPUs. IEEE Geosci Remote Sens Lett 11(5):955-959

Dai C, Yang J (2011) Research on orthorectification of remote sensing images using GPU-CPU cooperative
processing. In Proceedings of IGARSS 2011. July, Vancouver, Canada

. Reguera-Salgado J, Calvino-Cancela M, Martin-Herrero J (2012) GPU geocorrection for airborne

pushbroom imagers. IEEE Trans Geosci Remote Sens 50(11):4409—4419

Lemoine G, Giovalli M (2013) Geo-correction of high-resolution imagery using fast template matching on a
GPU in emergency mapping contexts. Remote Sens 5:4488-4502. doi:10.3390/rs5094488

Zhang W, Li Y, Li D, Teng C, Liu J (2014) Distortion correction algorithm for UAV remote sensing image
based on CUDA. 35th International Symposium on Remote Sensing of Environment (ISRSE35), IOP
Conference Series: Earth and Environmental Science, vol.17

Fang L, Wang M, Li D, Pan J (2014) CPU/GPU near real-time preprocessing for ZY-3 satellite images:
relative radiometric correction, MTF compensation, and geocorrection. ISPRS J Photogramm Remote Sens
87:229-240

Lei Z, Wang M, Li D, Lei TL (2014) Stream model-based orthorectification in a GPU cluster environment.
IEEE Geosci Remote Sens Lett 11(12):2115-2119

Su X, Wu J, Huang B, Wu Z (2013) GPU-accelerated computation for electromagnetic scattering of a
double-layer vegetation model. IEEE J Sel Top Appl Earth Obs Remote Sens 6(4):1799-1806

Coleman DM, Feldman DR (2013) Porting existing radiation code for GPU acceleration. IEEE J Sel Top
Appl Earth Obs Remote Sens 6(6):2486-2491

Fulkerson B, Soatto S (2012) Really quick shift: Image segmentation on a GPU. Trends and Topics in
Computer Vision. Springer, Berlin, pp 350-358

@ Springer

http://www.faa.gov/about/initiatives/uas/reg/
http://www.faa.gov/about/initiatives/uas/reg/
http://dx.doi.org/10.1117/1.JRS.6.061506
http://dx.doi.org/10.3390/rs5094488

876 Geoinformatica (2016) 20:859-878

22. Happ PN, Feitosa RQ, Bentes C, Farias R (2013) A region-growing segmentation algorithm for GPUs. IEEE
Geosci Remote Sens Lett 10(6):1612-1616

23. Bernabe S, Plaza A, Marpu PR, Benediktsson JA (2012) A new parallel tool for classification of remotely
sensed imagery. Comput Geosci 46:208-218

24. Wolf P, DeWitt B (2000) Elements of photogrammetry with applications in GIS (3rd Edition). McGraw-Hill,
New York

25. (2013) Intergraph, ERDAS Field Guide

26. Lillesand T, Kiefer RW, Chipman J (2007) Remote sensing and image interpretation (6th Edition). Wiley,
New York

27. Maune DF (2007) Digital elevation model technologies and applications: the DEM users manual. The
American Society for Photogrammetry and Remote Sensing

28. Shan J, Toth CK (2008) Topographic laser ranging and scanning: principles and processing. CRC

29. Tumner D, Lucieer A, Malenovsky Z, King DH, Robinson SA (2014) Spatial co-registration of ultra-high
resolution visible, multispectral and thermal images acquired with a micro-UAV over antarctic moss beds.
Remote Sens 6(5):4003-4024. doi:10.3390/rs6054003

30. Mikolajezyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal
Mach Intell 27(10):1615-1630

31. (2014) Kolor Autopano, Version 1.4.0. Autopano website http://www.autopano.net

32. Laliberte AS, Herrick JE, Rango A, Winters C (2010) Acquisition, orthorectification, and object-based
classification of Unmanned Aerial Vehicle (UAV) imagery for rangeland monitoring. Photogramm Eng
Remote Sens 76(6):661-672

33. Du Q, Raksuntorn N, Orduyilmaz A, Bruce LM (2008) Automatic registration and mosaicking for airborne
multispectral image sequences. Photogramm Eng Remote Sens 74(2):169-181

34. Mitchell HB (2010) Image fusion theories, Techniques and applications. Springer, New York

35. Morton RA, Peterson RL, South Texas Coastal Classification Maps - Mansfield Channel to the Rio Grande,
USGS Open File Report 2006-1133. http://pubs.usgs.gov/of/2006/1133/mapintro.html Accessed 21
Oct 2015

36. Kirk DB, Hwu WW (2010) Programming massively parallel processors, a hands-on approach. Elsevier, New
York

Lihong Su is an Associate Research Scientist at the Harte Research Institute for Gulf of Mexico Studies (HRI) at
Texas A&M University — Corpus Christi. He earned a bachelor’s degree in Mathematics from Xinjiang
University, a Master’s degree in Geography Information System, and a PhD in remote sensing from Chinese
Academy of Sciences. He is interested in spatial data handling, remote sensing applications and computer
simulation in GIS and remote sensing.

@ Springer

http://dx.doi.org/10.3390/rs6054003
http://www.autopano.net/
http://pubs.usgs.gov/of/2006/1133/mapintro.html

Geoinformatica (2016) 20:859-878 877

Yuxia Huang received the Ph.D degree in Geographic Information Science from the University at Buffalo, State
University of New York in 2009. She is currently with the School of Engineering and Computing Science, Texas
A&M University — Corpus Christi, as an associate Professor. She is also a research scientist in the Conrad
Blucher Institute, Texas A&M University — Corpus Christi. Her research focuses on semantic integration for
spatial information and ontology construction, and GIS applications in health.

James Gibeaut is the Endowed Chair for Coastal and Marine Geospatial Sciences at the Harte Research Institute
for Gulf of Mexico Studies (HRI) and Associate Professor of Geology at Texas A&M University — Corpus
Christi. He earned a B.S. in geology from Ohio State University, a M.S. in coastal geology from the University of
Rhode Island, and a Ph.D. in Marine Science from the University of South Florida. He is a coastal geologist who
uses optical, radar, and lidar remote sensing, GIS, and field surveys to measure and understand coastal change.
He has studied shorelines in a variety of locations including Rhode Island, Florida, Texas, Alaska, Honduras,
Venezuela, Brazil, and Saudi Arabia. Currently, his main research focus is modeling the effects of relative sea-
level rise and storms on coastal systems and projecting future change. His Coastal and Marine Geospatial Lab at
HRI is also developing web applications and scientific data repositories for the dissemination of research results.

@ Springer

878 Geoinformatica (2016) 20:859-878

Longzhuang Li obtained his Bachelor and Master degree in 1992 and 1995, respectively at Northwestern
Polytechinc University, China, and Ph.D degree in 2002 at University of Missouri-Columbia. Now he is an
associate professor at Texas A&M University-Corpus Christi. His research focuses on data integration, data
mining and big data processing, and has been supported by National Science Foundation and Air Force Research
Lab.

@ Springer

	The index array approach and the dual tiled similarity algorithm for UAS hyper-spatial image processing
	Abstract
	Introduction
	Background
	Principle and workflow of UAS image processing
	Lens distortion correction
	Geo-referencing
	Co-registration
	Mosaicking images

	CUDA architecture and programming model

	UAS hyper-spatial image processing based on CUDA
	The index array approach for the orthoimage generation
	Optimizing memory use of the index array approach
	Dual tiled similarity computation for image co-registration

	Experiments and discussions
	The index array approach
	The dual tiled similarity computation
	An example on Texas coastal environment

	Conclusion
	References

