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Abstract Unmanned aerial systems (UAS) have been used as a robust tool for agricultural and
environmental applications in recent years. Remote sensing systems based on UAS typically
acquire massive hyper-spatial images in its short turnaround. This paper takes advantage of
graphics processing unit (GPU) massive parallel computation in order to process the huge data
timely and efficiently. More specifically, this paper presents an index array approach for lens
distortion correction and geo-referencing. They are the two essential components in UAS
hyper-spatial image processing. The index array approach is also capable of parallelizing
image file I/O and the orthoimage generation. In addition, this paper presents the dual tiled
similarity algorithm for the image co-registration. The index array approach and the dual tiled
similarity algorithm were evaluated using two UAS remote sensing datasets of South Padre
island shorelines. The results show that this index array approach was able to speed up at least
10 times the lens distortion correction and the geo-referencing relative to the central processing
unit (CPU) computation. This dual tiled algorithm could provide 12 times speedup compared
with the CPU similarity computation.
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1 Introduction

Unmanned aerial systems (UAS) are experiencing the greatest near-term growth in civil and
commercial operations due to their versatility and relatively low initial cost and operating
expenses [1]. In recent years UAS have also been used as a robust tool for remote sensing of
agricultural and environmental applications. The images acquired with UAS remote sensing
usually have a small footprint, hyper-spatial resolution (namely sub-decimeter), and high
overlapping ratio due to its low flight altitude and high definition cameras. The small footprint
and high overlapping ratio could run in thousands hyper-spatial images for a regular study
area, such as the crop field of a farm or the coastal shoreline of an island. The hyper-spatial
resolution also means that each individual image has large volume. The large number of large
images cause a significant computing load. For example, Texas A&M University-Corpus
Christi’s RS-16 UAS could produce 200GB imagery by 1 h data acquisition.

The goal of this paper is to efficiently generate an extensive mosaic image that completely
covers a regular study area from UAS remote sensing. Four main processes are included in this
task. They are 1) lens distortion correction, 2) geo-referencing, 3) co-registration, and 4)
mosaicking. These processes typically are computing intensive due to the large amount of
data and the complexity of the processes. In addition, for near-real time agricultural and
environmental applications, for example, crop health and precision management of pesticides,
and flooding detection and relief management, the researchers usually need to see the
classification maps derived from the huge volume imagery in a short time, such as the next
day. Traditional sequential computing approach is difficult to meet the needs of this time
sensitive demand of huge computing intensive tasks.

Big data volume and time-demanding time limit are the two main challenges that the UAS
remote sensing faces. The graphics processing unit (GPU) massive parallel computation
provides an opportunity of addressing these issues [2, 3]. Some research has been done in
the GPU-based processing of remote sensing imagery. For example, references [4–12] ex-
plored hyperspectral image processing by the GPU with a focus on handling hundred spectral
bands on the same image pixel. References [13–18] proposed the GPU methods for geo-
correction and orthorectification (also called geo-referencing) for imagery acquired by UAS
commercial off-the-shelf cameras, an airborne pushbroom imager, and high resolution satellite
sensors. Some investigators used the GPU to accelerate computation of radiative transfer
model [19, 20], and segmentation and classification of remotely sensed imagery [21–23].

This paper explores GPU methods for UAS hyper-spatial remote sensing image processing.
More specifically, an index array approach is for lens distortion correction and geo-referencing.
This approach is also capable of parallelizing image file I/O and the orthoimage production. In
addition, a dual tiled similarity algorithm is for the image co-registration in order to mosaic the
images faster.

2 Background

2.1 Principle and workflow of UAS image processing

To generate a mosaic image from original UAS images, typically the following four compo-
nents are included: lens distortion correction, geo-referencing, co-registration and mosaicking
images (Fig. 1). The first two processes are to generate the destination images with geographic
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coordinates, while the last two processes are to generate the mosaic image. Each process is
briefly explained as follows.

2.1.1 Lens distortion correction

The camera lens distortion correction uses the internal geometry of a camera existing at the
time of data capture to transform the photo pixel coordinate system to the imaging plane
coordinate system [24]. The internal geometry includes focal length and lens distortion
coefficients. There are two types of radial lens distortion that exist: radial distortion Δr and
tangential distortion Δt. Since the tangential lens distortion is usually much smaller in
magnitude than the radial lens distortion, it is considered negligible. For a digital camera,
radial distortion usually is an inward displacement of a given image point from its ideal
location. The inward displacement should be eliminated by adding matching displacement on
each pixel. The effects of radial lens distortion throughout an image can be approximated using
a polynomial [24]. A forward correction model of non-metric digital camera distortion is given
as follows [25]:

Δx ¼ x−x0ð Þ k0r þ k1r3 þ k2r5
� � ð1Þ

Δy ¼ y−y0ð Þ k0r þ k1r3 þ k2r5
� � ð2Þ

where x0, y0 are principal point offsets from image center; x, y are the coordinates of the image
point; Δx, Δy are the correction of the image point coordinates. k0, k1, k2 are the radial
distortion; and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 þ y−y0ð Þ2

q
.

2.1.2 Geo-referencing

Geo-referencing establishes the location of an image in terms of ground coordinate systems. In
other words, geo-referencing generates a destination image that has geographic coordinates
from a photo (namely an original image) that has no geographic coordinates. This is a key
process to make UAS imagery useful for mapping and analysis. The ground coordinate (X, Y,
Z) is typically defined as a three-dimensional Cartesian coordinate system, in which (X, Y)
utilizes a known map projection such as the Universal Transverse Mercator (UTM) and the Z
value is the elevation above the mean sea level by a given vertical datum.

Geo-referencing can be empirically and manually completed through affine transformation
between distorted photo coordinates (column, row) and map coordinates (X, Y) with well-

(photos) 
(images with 

geographic 

coordinates) 

Co-

registration/ 

Tie point 

generation 

Stitching 

images 
Lens 

distortion 

correction 

Geo-

referencing

Lens calibration 

parameters 

GPS and IMU 

measurements 

Orthoimage generation 

Mosaic 

image 

Destination 

images 

Original  

images 

Fig. 1 Workflow of UAS remote sensing image processing

Geoinformatica (2016) 20:859–878 861



distributed ground control points (GCPs) [26]. Here lens distortion correction is included in the
affine transformation. However, determining sufficient manual tie points and GCPs represents
a significant human resource component in an image processing system. To overcome this
problem, georeferencing can also be conducted by photogrammetric approach that consists of
four main components: boresight calibration, camera lens distortion correction, obtaining
camera position and attitude, and othroimage production. This photogrammetric approach is
adopted in this paper.

Typically, the camera, the Global Positioning System (GPS) receiver, and the Inertial
Measurement Unit (IMU) are installed individually on an airplane frame. The GPS position
is required to shift to the camera position (the perspective center). The boresight calibration is
needed to adjust the offset angles between the IMU and camera reference frame axes [27, 28].
The perspective center (X, Y, Z) and three rotation angles (ω, ϕ, κ) are acquired by GPS and
IMUmeasurement, and are associated with the ground coordinate system. The camera position
and attitude at the time of imaging can be obtained by interpolating the GPS and IMU data at
the imaging time. This procedure is usually completed by dedicated software, which is
included in most remote sensing image processing software. An othroimage can be produced
based on the optical principle of imaging. According to the camera optical principle, a straight
line can be extended from the perspective center of a camera to a pixel on the photo and further
to the object of the pixel on ground [24]. This principle is called the collinearity. When the
equations of the imaging plane are available, ground coordinates for each pixel can be obtained
based on the principle of the collinearity.

2.1.3 Co-registration

The individual orthoimages need to be co-registered so that these images can be mosaicked
correctly. The transformation for co-registration can be derived from the tie points generated
by feature matching algorithms, such as the scale invariant feature transform (SIFT) algorithm.
This algorithm has been used in UAS remote sensing applications [29]. The SIFT algorithm
outperformed a number of other local descriptors in evaluations [30]. However, the prelimi-
nary experiments of our coastal shoreline UAS images have shown that Autopano Pro [31],
one of the widely used commercial versions of the SIFT algorithm, could produce inappro-
priate tie points for some neighboring images due to no distinctive features being present.
Feature-based image registration algorithms also failed in some rangeland and agricultural
areas [32, 33]. Our experiments showed that the area-based image similarity could find correct
locations at some failure cases by the SIFT algorithm.

This paper adopts global similarity measures with spatial alignment, because these simi-
larity measures monotonically increase with decreasing spatial misalignment [34]. Specifically,
the zero-mean cross correlation coefficient is used, as defined as follows:

ρ ¼
X

k
ak−A

� �
bk−B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k
ak−A

� �2X
k
bk−B

� �2
r ð3Þ

where ak and bk are, respectively, the gray-levels of the k pixel in images, or image patches, A

and B. A and B are, respectively, the mean gray levels of A and B. Two questions needed to be
addressed before applying the similarity for the co-registration: what is the suitable size of the
images? And how big should the search range be?
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By our experience, the similarity calculation should use a large array of pixels on the UAS
hyper-spatial images to get reliable co-registration. For example, neighboring cotton areas of
1 m by 1 m, even 10 m by 10 m, usually is similar due to the same agricultural crop
management. In most Texas coastal areas, natural stable beaches are usually more than 30 m
wide [35]. The sand beach actually looks similar everywhere. Empirically, it is desirable for an
image patch to be sufficiently large such as 100 m by 100 m for Texas coastal beaches. An
image patch of this size usually can encompass several land cover types, for example, fore
dune vegetation, beach sand and seawater. This magnitude means an extent of 1000 by
1000 pixels on a hyper-spatial image of 0.1 m pixel size. The optimal match location can be
found by traversing the image patch over its neighboring image within a search range (Fig. 2).
Hereafter, the image patch is referred to as the match image, and the neighboring image is
referred to as the base image.

The search range is determined by both GPS (X, Y, Z) errors and IMU (ω, ϕ, κ) errors. The
low cost IMU typically has angular resolution of 0.05°. The 0.05° errors result in positional
error up to roughly 10 pixels. The similarity is calculated on neighboring images. The relative
locations of two neighboring images are mainly dependent on the angular resolution. Com-
bining with GPS errors, our experience has shown that a suitable search space roughly extends
20 m, which is a search range of 200 pixels. If accurate GPS and IMU are used and the post-
processing are carried out well, the search range could be reduced greatly. In contrast, the
search range should be increased for the inaccurate GPS and IMU data. The more inaccurate
GPS and IMU are, the larger the search range should be. The size of the search range does not
depend on the ground scene on the two adjacent images. The cross correlation coefficient is
computed directly by using the raw intensity values of corresponding pixels on the match and
base images. The UAS photos typically are acquired with high forward and side overlap, for
example, 70 % forward and 50 % side. So both the two adjacent images have large portions
occupied by a corresponding region. Due to almost the same image acquisition condition, the
cross correlation coefficient is an effective similarity measure for the UAS image registration.
Our seagrass experiments showed that the coefficient is effective for the UAS images that
consist of all water.

The search range for spatial alignment is quite small compared with the image sizes of both
the match and base images. For example, if the match image is 1001 by 1001 pixels, and the
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base image is 1201 by 1201 pixels, the search range is only 200 pixels in two dimensions.
While the match image traverses the base image, the center of the match image will form an
array of the search extent, for example an array of 200 by 200 pixels. When each element of
the search extent array holds a cross-correlation coefficient of the match image and its
overlapping region on the base image, the highest similarity is the maximal element of the
200 by 200 pixels.

2.1.4 Mosaicking images

A study area is usually covered by multiple flight lines. In order to reduce error accumulation,
the central image is considered as a base image to stitch images along two opposite directions
in a flight line. Then single flight line is stitched up, multiple flight lines are mosaicked. After
sufficient tie points are identified, the least square method is a widely used method to calculate
the optimal parameters for affine transformation, higher-order polynomial transformation, or
thin-plate spline. By our experience, an affine transformation is preferred because the UAS
orthoimages usually do not needed be bent or curved.

2.2 CUDA architecture and programming model

The Compute Unified Device Architecture (CUDA) introduced by NVIDIA is a general
purpose parallel computing architecture. The CUDA computing system consists of a host
(namely a traditional central processing unit, CPU) and one or more devices (namely GPU)
that are massively parallel processors. A CUDA program consists of one or more phases that
are executed on either the CPU or the GPU, depending on the tasks. The phases that exhibit
little or no data parallelism are implemented in the CPU code, which is the straight ANSI C
code. The phases that exhibit rich amount of data parallelism are implemented in the GPU
code, written by so-called kernels. A kernel function is executed by a thread. The GPU threads
are the minimum execution units; multiple threads (typically set to a multiple of 16) form a
block; and multiple blocks can be composed of a grid, where a grid is the GPU application
execution. Normally the total number of threads in a block does not exceed 1024. The blocks
are arranged in the form of a grid of 3D array. The values of the 3D grid dimension can range
from 1 to 65,535. At any time, each thread executes the same instruction, but operates on
different data. Two variables provided by CUDA, blockIdx (the index of a block in a grid) and
threadIdx (the index of a thread in a block), are used to localize the data needed processing and
to distinguish threads from each other.

In CUDA, the host and devices have separate memory spaces. The GPU has several
different memory spaces, and the three main types are: global, constant, and shared. The
GPU threads can access multi memory spaces. Each thread has a private memory; each block
has a shared memory and each thread in this block can access the shared memory; each thread
can access the global memory and the constant memory. Global and constant memories are
used for data transfer between host and device. Constant variables are often used for variables
that provide input values to kernel function because all threads in a grid see the same version of
a constant variable during the entire application execution. Constant variables are stored in the
global memory but are cached for more efficient access. The shared memory latency can be
roughly 100 times lower than the uncached global memory latency [36]. All blocks in a grid
share the global and constant memory. All blocks can run in parallel with each other. All
threads in a block are also executed in parallel, and can share data efficiently through the
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shared memory and synchronize their execution for coordinating accesses to the shared
memory. The profitable strategy for performing computation on the GPUs using this advantage
is to divide data in subsets, copy them from global memory to shared memory, achieve shared
memory locally in threads, and then copy the results back to global memory.

Different GPU hardware may have different configurations. The CUDA environment takes
care of the differences. The transparent scalability let users focus on their applications. Based
on the CUDA programming model [36], the basic flow of a standard GPU application is as
follows:

a) Declare input and output variables in CPU memory
b) Declare corresponding variables in the GPU global memory using cudaMalloc() function;
c) Transfer input data from GPU global memory to CPU memory using cudaMemcpy()

function
d) Run a kernel function by <<<dimGrid, dimBlock>>> instruction;
e) Transfer result data from GPU global memory to CPU memory using cudaMemcpy()

function;
f) Free variables in GPU memory using cudaFree() function.

3 UAS hyper-spatial image processing based on CUDA

3.1 The index array approach for the orthoimage generation

This paper presents a GPU approach for UAS hyper-spatial image processing. Figure 3 shows
the work flow of the lens distortion correction and the geo-referencing. The models of these
two components and the affine transformations are calculated on CPU. The calculation of the
four corners and their minimal bounding rectangle (MBR) are also implemented on CPU. This
is reasonable because these calculations have little data parallelism. In contrast, the calculation
of each pixel is implemented on GPU due to the fact that an image usually consists of a million
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pixels and each pixel can be calculated independently in UAS hyper-spatial image processing.
Specifically, first the model of lens distortion correction computes the displacement of four
corners of a photo to get their correct locations on the imaging plane. Then the four points are
projected into the ground coordinate system. The footprint of the destination image will fall in
the MBR formed by the four corners. Given a ground pixel size, the coordinates of each pixel
in the MBR on the ground coordinate system can be calculated. For any pixel in the MRB, its
location on the original photo can be obtained by the collinearity and the lens distortion
correction.

Several methods can be used to obtain grey value for the ground pixel of the destination
image from the location and its neighbors on the original image. This paper uses the nearest
neighbor resampling method due to its simplicity and the capability of preserving original
radiometric values. The preservation of the original grey value is very important for UAS
remote sensing because UAS remote sensing often uses low radiometric resolution digital
cameras. Interpolations of the pixel grey values bring effects of neighboring pixel grey value
into the interpolated pixel. This mixing reduces the radiometric resolution further. The nearest
neighbor resampling may produce some position errors, especially along linear features.
However, for hyper-spatial image of UAS remote sensing the position errors of several pixels
do not produce large displacements due to its sub-decimeter pixel size.

An advantage of the nearest neighbor resampling method is that it is not necessary to access
grey value of the original image during the lens distortion correction and geo-referencing. The
location on the original image (row and column) could be an index, pointing its grey value for
the corresponding ground pixel on the destination image. Generating the index array does not
require accessing the original image. The destination image can be produced later by assigning
its pixel grey value with the index array. We refer to this method as an index array approach.

Another advantage is that calculation of the index array could be parallel executed when the
original image is read from disk. This advantage provides additional benefits for remote
sensing. As we know that remote sensing images usually are multispectral or hyperspectral
images, which have spatially co-registered several spectral bands or hundreds of spectral
bands, respectively. This index array approach reduces huge data transfer between CPU and
GPU memory spaces.

3.2 Optimizing memory use of the index array approach

The input values of the kernel function include the Universal Transverse Mercator (UTM)
coordinates of the left upper corner, height and width of both the original image and its
destination image to be produced, and the model coefficients. They are declared as constant
variables because each thread uses the same parameters and coefficient.

Besides these parameters and coefficients, all datasets used by the UAS remote sensing
image processing are the index array, the original image, and the destination image. The index
array is stored in the global memory. In our approach the index array elements do not store a
grey value from the original image. They are the location of the nearest neighbor pixel on the
original image. The destination image is not produced on GPU side. In this way, both the
original image and the destination image are variables in CPU memory. It is not required to
transfer the original image from CPU memory to GPU global memory, and to transfer the
destination image from GPU memory to CPU memory. Further, because the index array is
generated exclusively on GPU, the index array is only transferred from GPU global memory to
CPU memory. Due to the independence of the index array elements, the threads do not need to
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share data among them. Moreover, since each element of the index array only needs to access
global memory once, the strategy of zero-copy host memory for the index array is adopted in
this paper.

3.3 Dual tiled similarity computation for image co-registration

This paper presents a dual tiled similarity algorithm for the image co-registration in order to
take the advantage of GPU capability. For comparison purpose, the paper also implements two
simple algorithms for the similarity calculation: single algorithm and basic algorithm. Assum-
ing that the match image is an array of N=Ncol ×Nrow elements and the array of search extent
hasM=Mcol ×Mrow elements. Using Eq. 3, the two means should be obtained before the cross-
correlation coefficient can be calculated. The execution time of the three calculations is
proportional to the number of elements involved, which is O(N) computational complexity.
The reduction algorithm is suitable since all of them derive a single value from an array of
values. The match image keeps constant, but it traverses the base image within the search
range. In total, the match image has M different overlapping areas on the base image. Total
computational complexity is O(NM). The following algorithm analysis focuses on efficiency
of the CPU to GPU data transferring, and of accessing the GPU memory variables.

The single algorithm is to transfer the match image and its each overlapping area on the
base image from the CPU to the GPU once, to calculate a relationship coefficient within the
GPU side, and return the coefficient to the CPU. Thus some pixels of the base image must be
repeatedly transferred many times. As shown in Table 1, the single algorithm transfers N+NM
data elements from the CPU to the GPU. The total number of global memory accesses is
N(M+1) for the means and 2NM for the coefficient calculation, where 1 is for the match image
itself and M is the total number of the overlapping areas on the base image.

The basic algorithm loads both the match image and the base image entirely into the GPU
global memory from the CPU. All coefficients are calculated within the GPU side, the
maximal coefficient and its location are returned to the CPU. Although the match and base
images are transferred once, some pixels of the base image have to be repeatedly accessed
many times. As shown in Table 1, the transferred data has Ncol ×Nrow + (Ncol +Mcol) × (Nrow+
Mrow) data elements. Without loss of generality, we can assume Mcol =Ncol/4 and Mrow=Nrow/
4. The basic algorithm transfers 2.5N+M data elements. The total number of global memory
accesses that the basic algorithm requires is the same as the single algorithm.

Table 1 The requirement of transferring data to GPU and of accessing GPU global memory and computational
complexity

Algorithms Data transferring to GPU GPU global data accessing Computational
complexity

Single N+NM N+NM for means
M×2N for coefficients

O(NM)

Basic 2.5×N+M N+NM for means
M×2N for coefficients

O(NM)

Dual tilted N � 2þ M rowþM col
Pwidth

þ M
Pwidth

2

� �
N for mean of the match image

18N� 1þ M col
Pwidth

� �
� 1þ M row

Pwidth

� �
for the mean

and the coefficient of base image

O(NM)
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Among the three types of GPU memory spaces, global memory is large (typically gigabyte
size) but slow whereas the constant memory and the shared memory are small (typically
kilobyte size) but fast. Both the constant memory and the shared memory have no enough
room to entirely hold the match or base images, which usually has a megabyte size. The dual
tiled algorithm efficiently uses their size and access speed (Fig. 4). After loading the match and
base images into the global memory, this algorithm uses dual partition strategies, namely
partitions on both the match and base images. The first partition divides the match image into
small pieces so that each piece can fit into the constant memories. The second partition
organizes the base image into tiles. An important criterion of the tile size is that the kernel
computation on these tiles can be done independently of each other. The partitions should be
careful not to exceed the capacity of these memories for kernel execution. It is worth noting
that the size of both the constant and the shared memories can vary from device to device. A
device property query, cudaGetDeviceProperties(), can obtain their amount available on a
device.
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The three components of Eq. 3, namely ak−A
� �

bk−B
� �

, (ak−Ā)2, and bk−B
� �2

, are the sum
of all pixel pairs on the match image and its overlapping region on the base image. This
property allows the three components to be calculated by regions. As discussed, all possible
cross-coefficients form an array of Mcol ×Mrow elements. The three components may be
produced by summing corresponding components of all match image pieces when each single
piece has an array of Mcol ×Mrow pixels to hold its three quantities. Each piece of the match
image is loaded into the constant memory iteratively. With the tiles, the three components of
each single piece are calculated with reduced global memory accesses comparing with the
above basic algorithm. To obtain high efficiency, the size of the match image pieces should be
bigger than the tiles of the base image. The three quantities calculated for a tile needs elements
from neighbor tiles of the base image. The elements involved in multiple tiles and loaded by
multiple blocks are commonly referred to as halo elements. The sizes of the piece and the tile
determine number of the halo elements and which elements are the halo elements. For
simplicity, width of the match image piece can be set equal to one plus double width of the
tile, namely Pwidth = 2×Twidth + 1. Each element in a tile has eight halo elements on the
corresponding location in its eight neighboring tiles (Fig. 5). Computing the three quantities
of all elements in a tile needs to load nine tiles into the shared memory. For the illustration
purpose, in Fig. 5, the match image piece is an array of 5 by 5 pixels and the tiles have 2 by
2 pixels. Comparing with the basic algorithms, the ratio of memory accesses for once
calculation of the three quantities is:

Raccess ¼ Twidth
2 � 9

�.�
Pwidth

2 � Twidth
2

� �
ð4Þ

If and only if Twidth≥2, Raccess > 1. The ratio of memory access reduction is approximately
proportional to the tile size, namely Twidth ×Twidth.

The match image is partitioned into ceil(N col/Pwidth) by ceil(N row/ Pwidth) pieces that has
Pwidth × Pwidth elements. Each piece of the match image has its own base image of (Pwidth +
Mcol) × (Pwidth +Mrow) elements, which is partitioned into tiles of ceil((Pwidth +Mcol)/ Twidth) by
ceil((Pwidth +Mrow)/ Twidth) elements. Each piece of the match image requires transferring
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Pwidth × Pwidth and (Pwidth +Mcol) × (Pwidth +Mrow) data elements from the CPU to the GPU.
Total number of transferring data from the CPU to the GPU is:

T trans fer ¼ ceil
N col

Pwidth

� �
� ceil

N row

Pwidth

� �

� Pwidth � Pwidth þ Pwidth þM colð Þ � Pwidth þM rowð Þð Þ ð5Þ
Without loss of generality, we can assume all divisions leading to an integer. Equation 6 can

be rewritten as:

T transfer ¼ N � 2þ M row þM col

Pwidth
þ M

Pwidth
2

� �
ð6Þ

For a single piece of the match image, each tile requires Twidth
2 × 9 global memory accesses

for calculating the mean or the coefficient. That is, total number of memory accesses for the
whole match image is:

T access ¼ ceil
N col

Pwidth

� �
� ceil

N row

Pwidth

� �
� ceil

Pwidth þM col

Twidth

� �
� ceil

Pwidth þM row

Twidth

� �

� Twidth
2 � 9

� � ð7Þ
Without loss of generality, we can assume all divisions leading to an integer. Equation 5 can

be rewritten as:

T access ¼ 9N� 1þ M col

Pwidth

� �
� 1þ M row

Pwidth

� �
ð8Þ

Due to insufficient amount of on-chip memory, Pwidth usually is not big. It is worth noting
that one Taccess is for the mean, and another for the cross-relationship coefficient itself. The
total global memory accesses of the tiled algorithm are:

T access ¼ Nþ 18N� 1þ M col

Pwidth

� �
� 1þ M row

Pwidth

� �
ð9Þ

4 Experiments and discussions

4.1 The index array approach

A total of eight experiments were designed and conducted to process two UAS datasets of
South Padre island shorelines (Table 2). The computation consists of lens distortion correction
and geo-referencing. The eight experiments consist of four implementations for the two
different data sets. The four implementations include CPU implementation, GPU implemen-
tation with global memory, and two GPU implementations with two different zero-copy host
memory settings. The data sets are small frames of 1920x1600 pixels with unsigned 8 bit
integer and large frames of 7378x4924 pixels with unsigned 16 bit integer; the size of output
images is 6810x4790 and 1586x1178, respectively.

870 Geoinformatica (2016) 20:859–878



The computer that was used was a Dell Precision T3600 (CPU: 3.60GHz Intel Xeon E5-
1620, RAM: 32 GB), Windows 7 Professional 64-bit operating system, and Visual Studio
2010 development environment. GPU device was Quadro 600, compute capability 2.1, 1 GB
global memory, 64 KB constant memory, and CUDA 6.0 runtime.

As shown in Table 2, the calculation time (the column of Generating index array) is short,
but the image file reading and writing time is long. It is not surprising that the reading and
writing operation is the bottleneck of the efficiency of the entire processing. Speedup analysis
did not include the reading and writing operations. The speedup is 16 times on the small
frames and 11 times on the large frames. For the CPU implementation all computations were
done in CPU. For the GPU global implementation, the index array resides in GPU global
memory. In addition to the kernel execution, transferring data between GPU and CPU memory
costs time. The time of transferring the index array from GPU to CPU was 2 ms for the small
frames and 34 ms for the large frames.

Since each element of the index array is accessed exactly once, we expected a performance
enhancement when using zero-copy memory, in which we access CPU data directly from
GPU. The zero-copy memory has two different settings by two flags of cudaHostAlloc()
function, which allocates memory on CPU. The two flags are cudaHostAllocMapped and
cudaHostAllocWriteCombined. The flag cudaHostAllocMapped shows that this buffer is
accessed from GPU. The flag cudaHostAllocWriteCombined indicates to allocate the memory
as write-combined (WC). WC memory is a good option for buffers that is written by the CPU
and read by the GPU, but it cannot be read efficiently by most CPUs. Here Zero-copy 1 was to
allocate memory on CPU with the flag cudaHostAllocMapped only while Zero-copy 2 was

Table 2 Speedup of the eight computations (unit: milliseconds)

Data Implementation Generating
index array

Copying
index to
CPU

Reading
single
band

Assigning
grey value

Writing
single
band

total

Large frames:
Input: 7378 × 4924
Output: 6810 × 4790
unsigned 16 bit integer

Zero-copy 2 660 0 3323 2331 5014 11,328

Zero-copy 1 654 0 3092 124 4980 8850

GPU global 660 34 3201 123 5225 9243

CPU 7498 0 3186 122 4995 15,801

Small frames:
Input: 1920 × 1600

Output: 1586 × 1176
unsigned 8 bit integer

Zero-copy 2 36 0 2362 7 574 2979

Zero-copy 1 37 0 2318 7 524 2886

GPU global 37 2 2212 9 479 2739

CPU 610 0 2338 10 497 3455

Table 3 Speedup of the similarity computations

Implementation Total elapsed time
(unit: milliseconds)

Speedup

CPU Single Basic Dual tiled

CPU 1,427,426 1

Single 440,539 3.24 1

Basic 342,101 4.17 1.29 1

Dual tiled 117,151 12.18 2.92 3.76 1
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with both the two flags. As shown in Table 2, for the large frames, Zero-copy 2 spent almost
20 times longer to assign grey values to the destination image than Zero-copy 1, but the time
difference was ignorable among CPU, GPU global, and Zero-copy 1 implementations. In
contrast, for the small frames, the time of assigning grey values was roughly the same for both
CPU and all GPU implementations.

4.2 The dual tiled similarity computation

This experiment used 32 pair of the 0.1 m UAS image that has 7378×4924 pixels with
unsigned 16 bit integer. The average size of the match image is 1121×1121 pixels, namely
112.1 m by 112.1 m patch. The search range is from −10 m to 10 m from the original location
of the match base on the base image. In other words, the array of the search extent is

Fig. 6 Study site. The star in the right upper figure represents its location in Texas. The red rectangle in the left
figure is its position on Padre Island (source: Google Maps). The yellow rectangle in the right lower figure
represents its range on the beach (source: Google Maps)
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200×200 pixels. The average cross-correlation coefficient is 0.95, and the minimal is 0.89.
Table 3 shows the speedup for the four implementations: the CPU, the single, the basic, and
the dual tiled algorithms. All GPU implementations generated significant time reductions. The
dual tiled algorithm obtained speedup of 12 times compared with the CPU computation.

4.3 An example on Texas coastal environment

The study site is a beach on South Padre island, which is a barrier island in the U.S. state of
Texas (Fig. 6). The UAS images were acquired on March 4 and June 25, 2014. The unmanned
aerial vehicle was American Aerospace RS-16 owned by the TAMU-CC UAS program. The
March exercise used Nikon D800 camera with 50 mm of focal length and 0.0049 mm of CCD
pixel size. The flight height was 870 m above the ground. The June exercise used the camera
of 14.85 mm focal length and 0.0025 mm pixel size. Its flight height was 300 m. Figure 7
shows two raw photos and their geo-referenced images. Both geo-referenced images are with
10 cm pixel size. The large frame image has much greater footprints than the small frame
image. The shoreline indicators, such as seaward dune vegetation line and instantaneous water
line, are discernible visibly in the UAS coastal imagery. Figure 8 displays two mosaic images
generated with 23 large frame photos and 18 small frame photos, respectively. The left picture
is the two overlapped mosaic images by WGS 84 UTM 14 N zone. The right picture is the
enlarged mosaic image of the small frame photos. As the large frame photos were acquired
during March, no new vegetation and algae accumulation are on beach. On the June images
the opportunistic plants covered the landward portion of the dry beach; and huge volumes of

Fig. 7 Raw photos (unscaled) and geo-referenced images. The upper left picture is a photo of the small frame
1920 × 1600. The upper right one is a photo of large frame 7378 × 4924. The lower pictures are their geo-
referenced images shown with different scales
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the algae were onto the beach in rows. This example shows that UAS remote sensing provides
a new tool for monitoring coastal dynamic changes.

5 Conclusion

This paper presents an index array approach of processing hyper-spatial images of UAS
remote sensing. The experiments of the lens distortion correction and geo-referencing algo-
rithm showed a significant speedup. In the case of not considering image loading and saving,
speedup was at least 11 times better than that would have been with the traditional CPU
approach. The dual tiled algorithm can obtain 12 times speedup relative to the CPU similarity
computation. The experiments showed that these two approaches have improved efficiency of

Fig. 8 Two mosaic images generated with 23 large frame photos and 18 small frame photos, respectively, in
WGS 84 UTM 14 N zone. The left figure is the two overlapped mosaic images. The right figure is the enlarged
mosaic image of the small frame photos
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UAS remote sensing image processing. The GPU computation is helpful to address big data
volume and demand time limit, which are the two main challenges that the UAS remote
sensing faces.
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