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ABSTRACT

Typical representation of the swimming motion of microorganisms in fluid environments

model the microorganisms as spherical squirmers in a viscous fluid (Newtonian Fluid) with pre-

scribed surface velocities on the squirmer surface. There are numerous fluids in nature that deviate

from the classical Newtonian fluid, such as human and animal blood. Modeling swimming mech-

anisms in these non-classical fluid settings can be very useful but are mathematically challenging.

In this thesis, we develop and analyze a mathematical model for the swimming of microorganisms

in micropolar fluids - the fluids that depart from the classical Newtonian fluid due to the micro-

rotational effect. Specifically, micropolar fluid continuum equations involve both the velocity and

internal spin vector fields resulting in antisymmetric and couple stresses. The mathematical prob-

lem of swimming in micropolar fluids is analyzed via a spherical squirmer model in the absence

of inertial effects and assuming steady motion. The idealized configuration allows exact analytical

solutions for the velocity and spin fields surrounding the squirmer via Stokes’s stream function

formulation. Effects of normal and tangential modes induced on the surface of the squirmer are

explained for the two-Mode squirmer. Closed-form expressions for the physical quantities involv-

ing the n-Mode general case are also reported. Our exact solutions to the boundary value problem

(BVP) for the sixth-order partial differential equation (PDE) contain previously derived results for

Stokes and Brinkman fluid squirmer models. It is observed that the propulsion speed, calculated

using the force-free condition, depends on the first surface velocity mode only. Surprisingly, the

swimming speed in a micropolar fluid is the same as that of the spherical microorganism swimming

velocity in Newtonian (Stokes) fluids. The power dissipation and swimming efficiency results de-

rived using non-zero spin boundary conditions on the squirmer surface, however, reveal the micro-

rotational effects due to the inclusion of higher surface velocity modes. The two-mode analytical

results are further utilized to inspect the structure of flow fields surrounding the spherical. Our

exact mathematical results presented herein may be of interest in understanding microorganisms

swimming mechanisms in fluids that exhibit angular momentum due to internal micro-rotation.
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CHAPTER I: INTRODUCTION

1 Swimming microorganisms are found inside people such as gut bacteria, sperm, and outside for

instance algae and bacteria in bio-reactors, lakes, and ocean. Typically, microorganisms covered

with flagella or cilia (see Figure 1.1), propel themselves in a fluid by beating these appendages

in coordinated fashions [5, 10, 21, 22]. Such a self-propulsion at small length scales (in nanome-

ters, nm) is widely observed in biological processes including spermatozoa reaching the ovum

during reproduction, microorganisms escaping predators, and microbes hunting for food [3, 9]. As

narrated in Brennen and Winet [4] cilia or flagella are a group of contractile elements that oscil-

late to propel the microorganism in fluid environments. Water propulsion by cilia attached to a

single-celled microorganism (Figure 1.2) has been discussed in [20]. Many theoretical models

describing the propulsion mechanisms of microorganisms in Newtonian fluids have been proposed

(see [4, 22], for instance). It is evident from the proposed models that the determination of swim-

ming characteristics relies on the solutions of the mathematical boundary value problem for the

governing partial differential equations. In this, we provide a mathematical model and calculations

for a swimming spherical body resembling a microorganism in micropolar fluids.

Figure 1.1
Reproduced from referrence [14]: Microscopic swimmers (a) E. Coli, (b) C. crescentus. (c) R.
sphaeroides (d) Spiroplasma (e) Human spermatozoa (f) Mouse spermatozoa (g) Chlamydomonas.
(h) Paramecium

1Parts of this work have been presented in the following conferences.
American Physical Society - Division of Fluid Dynamics (APS-DFD), Nov. 22 - 24, 2020, Chicago, Illinois
Coastal Bend Mathematics and Statistics Conference (CBMSC), April 10, 2021, Texas A&M University, San Antonio
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As seen in Figure 1.1, commonly observed microorganisms possess geometrical shapes like that

of a sphere (most frequently found), a thin rod, a spheroid, among others. In 1952, Lighthill [15]

introduced the simplest possible mathematical model of a swimming microorganism as a single-

celled protozoan covered with beating cilia in a purely viscous fluid-also known as the Newtonian

fluid. This model is popularly known as squirmer model and has become a standard reference

in subsequent studies. The model consisted of a sphere squirming with its surface oscillations

(radial and tangential mode of oscillations). Blake [2], completed the calculations for the swim-

ming/propulsion speed, power dissipation, and swimming efficiency of the spherical squirmer for

the model introduced by Lighthill. A representative spherical microorganism squirmer model in

slow viscous flow (low-Reynolds number flow) used by Lighthill and Blake is shown in Figure 1.3.

Figure 1.2
Reproduced from reference [20]: (a) A scanning electron micrograph of Paramecium caudatum
(150µm long) depiction of form and orientation of cilia beating on a forward-swimming cell. (b)
Detail of a region of a similar micrograph from another cell showing a prominent recovery wave
R and a less obvious band of cilia in their power stroke P.

In this representative model (Figure 1.3), the radius R represents the radial distance from the origin

to the maximum elongation of the cilia. Similarly, the radius a represents the actual surface of the

organism and the surface of analysis. The angles θ and θ0 correspond to the angular position of

the maximum elongation of the cilia and the actual surface of the microorganism, respectively. The

velocity U is associated with the axisymmetric flow (zero azimuthal component) of the surrounding

Newtonian fluid.
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Figure 1.3
Reproduced from referrence [2]: Surface oscillation/velocity represented due to the cilia beating

In the aforementioned mathematical model, the self-propulsion of the microorganism by the cilia

beating is represented as the surface velocity change (oscillations) in a viscous fluid. This leads

to a different set of boundary conditions (variable surface slip) compared to the Stokes flow past a

solid sphere (no-slip) [11]. The classic works of Lighthill and Blake became instrumental for the

currently growing subject on low Reynolds-number locomotion in a highly viscous fluid and now

there is extensive literature on this topic (see [14, 17, 20] and references therein). However, less

is known on the theoretical modeling of swimming mechanisms in fluid environments that depart

from the classical Newtonian fluid. In this thesis, we propose to investigate the mathematical model

of a squirming sphere, modeling a self-propelling microorganism, in a micropolar fluid with a goal

to understand swimming mechanisms in complex fluid environments.

For a certain class of complex fluids with suspended structures such as ions, atoms, molecules,

particulate matters, the classical theory of fluids does not seem to give adequate results. Several

modified continuum models to describe the flow structures of complex fluids have been proposed

in the literature. Eringen [7] first proposed the theory behind micropolar fluids and defined as the

class of fluids which exhibits micro-rotational effect and the micro-rotational inertia. The microp-

olar fluids belong to a subclass of the more general polar fluids with physical aspects consisting

of: rigid, randomly oriented particles suspended in a viscous medium; where the deformation

of the particles is negligible. Such fluids exhibit microscopic effects due to the microstructures

present in the fluid and micro-motions of the fluid-structure. The rotational part in micropolar

fluids contributes to the non-symmetrical stress and the so-called couple stress. The magnitude of
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the micro-rotational viscosity is what makes the micropolar fluid different from the classical New-

tonian fluid. Common examples of such complex-structured fluids are human and animal blood.

Liquid crystals with dumbell shape structures can also be considered as examples of micropolar

fluids. The theory of polar fluids was formulated later by [6] who defined a fluid model with two

basic kinematic vector fields (velocity and spin vector fields), antisymmetric stress, symmetric

stress, and couple stresses. Polar fluid models have also been applied to study blood flows, mean

turbulent flows, and suspensions in lubrication theory [16].

The effect of micropolar fluid properties on the blood flow has been studied by Evangelos et al [13],

in a human carotid from the perspective of the practical application. Carotid arteries are blood

vessel in our neck that has two branches, one is to supply blood to the brain and the other to

supply blood to our face and neck. The study includes a comparison between the flow due to

microstructures present in the blood and the Newtonian fluid. The authors have shown the direct

impact of micro-rotation viscosity on blood flow. One of their findings is that with the higher

micropolarity values the flow velocity increases at the center of the vessels and decreases close

to the boundary thereby increasing the thickness of the boundary layer. This result has led to

an investigation on the effect of human health causing atherosclerosis which is caused due to the

accumulation of fat and other substances on the artery walls. Also, an increase in the vortex

viscosity leads to an increase in micro-rotation, which reduces the effect of shear stress on the

carotid walls, thus creating high chances of accumulation of foreign substances on the walls of the

carotid. This example illustrates the significance of the spin effect present in polar fluid models.

In our present investigation, we examine the consequence of micro-rotation on microorganism

swimming in micropolar fluids.

The fundamental mathematical problem of the slow uniform flow of a micropolar fluid past a

sphere has been addressed on several occasions (see [12, 18], for instance) in order to calculate the

flow fields and the drag force acting on the solid spherical surface. In those analyses, the surface

velocity is either zero (no-slip condition) or a constant on the spherical surface [11]. However, for

the squirming model problem under consideration, the surface velocities change periodically on
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the surface of the squirmer due to the self-propulsion (Figure 1.3). The micro-rotation associated

with the micropolar fluids will change as a result of the surface oscillations occurring at the spher-

ical boundary due to cilia beating. As a result, the swimming characteristics may be affected by

these additional effects. Thus there is a need for modifications in the model used by Lighthill and

Blake for Newtonian Stokes fluids. Therefore, we analyze the mathematical problem of squirming

motion of a sphere in a micropolar fluid subject to surface velocity changes by mimicking Lighthill

and Blake model for the Newtonian fluid. Our calculations will include the determination of the

propulsion speed, power, and hydrodynamic efficiency of the swimming spherical microorganism

in micropolar fluid environments.

The thesis is structured as follows: We begin with the basic model equations for the problem of

microorganism swimming in micropolar fluid in Chapter 2. The stream function formulation of

the governing equations for velocity, pressure, and micro-rotation fields in the case of axisymmetric

flows is provided. The surface velocity boundary conditions similar to those used by Lighthill [15]

and Blake [2] for spherical squirmer are also discussed. The chapter concludes with the derivation

of general solutions of the equations satisfied by the stream function obtained in terms of spherical

harmonics and modified spherical Bessel functions. In Chapter 3, exact analytical solutions for

the sixth order PDE with velocity slip boundary conditions at the surface of a spherical squirmer.

The swimming speed, power, and efficiency calculations are given in the same chapter. Detailed

results for 1-mode and 2-mode problems are provided in Chapter 4. Expressions for the velocity

components and micro-rotation are given and the reduction of our results to the classical Newtonian

case is shown. The streamline plots, graphical illustrations, and numerical results are provided as

well. Finally, in Chapter 5 we summarize the key findings of our work reported in this thesis.

The symbols used in this thesis are taken from the references and are listed in the nomenclature.

TAMUCC template is used as format for the thesis.
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CHAPTER II: MATHEMATICAL FORMULATION

As described in the introduction, the micropolar fluid exhibits micro-rotational and micro-rotational

inertia. This is in contrast to the classic Newtonian fluid where such effects are absent. The pres-

ence of micro-rotation induces non-symmetrical couple stress. As a result, the governing equations

for the flow of micropolar fluid are significantly different from those for classical Newtonian flu-

ids. In this chapter, we provide the basic mathematical equations for the flow of a micropolar fluid

following the work of Eringen [8], Lukaszewicz [16] among others. For the sake of simplicity, we

consider axisymmetric flows so the scalar stream function formulation can be adopted as in the

case of Stokes flow. The stream function method reduces the coupled velocity and micro-rotation

vector PDEs to a single sixth-order scalar PDE. The latter equation admits general solutions via the

separable method suitable for linear PDEs. We also state the variable surface velocity boundary

conditions for a spherical swimmer in a micropolar fluid that are used later to solve the mathe-

matical boundary value problem. Derivation of the general solution of the sixth-order scalar PDE

satisfied by the stream function is given in section 2.4 of this chapter. The general solution is used

in the subsequent chapter to obtain exact results in specific cases for the swimming problem.

2.1 Basic Equations

The constitutive equations for the motion of micropolar fluid, in terms of the stress tensor Ti j and

the couple stress tensor Ci j in the absence of inertia and body forces are given by [8],

Ti j = (−p+λ1div u)δi j +µ(ui, j +u j,i)+ k(u j,i − εi jmΩm), (2.1)

Ci j = (α1div Ω)δi j +β1Ωi, j + γΩ j,i, (2.2)

where p, u, Ω, are the pressure, velocity vector, and micro-rotation vector, respectively. Here µ , k

and λ1 are the material constants. Also, µ = ν −νr and k = 2νr in terms of the classical Newtonian

viscosity (ν) and rotational viscosity (νr) as explained in Hoffmann [12]. The notations δi j and

ε jpq correspond to Kronecker delta and permutation symbol, respectively. The additional constants

α1,β1 and γ are known as angular viscosity coefficients. Note that in equations (2.1) and (2.2)

mixed notations are adopted to distinguish tensors and vectors for the sake of convenience. The
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term k(u j,i - ε jpq Ωm) contributes to the anti-symmetric part for the stress tensor in equation (2.1).

For k = νr = 0, equation (2.1) reduces to

Ti j = (−p+λ1div u)δi j +µ(ui, j +u j,i),

which yields the stress tensor for the Newtonian fluid (with non-zero divergence). Note that equa-

tion (2.2) is irrelevant in this case.

In our swimming problem, we assume the micropolar fluid to be incompressible and the flow is

steady. Under these conditions, the constitutive equations (2.1) and (2.2) describing the motion for

slow flow of an incompressible micropolar fluid in terms of velocity, pressure, and micro-rotation,

can be written in the form [16],

−(µ + k)(curl curl u)+ k(curl Ω) = grad p, (2.3)

−γ(curl curl Ω)+ k(curl u)−2kΩ = 0. (2.4)

The incompressibility condition or the continuity equation is given by,

div u = 0. (2.5)

Equations (2.3), (2.4), and (2.5) represent the vector PDEs governing the steady motion of an in-

compressible micropolar fluid. The boundary value problems for vector PDEs are hard to deal

with and therefore, we restrict the flow to be axisymmetric to simplify our analysis. In the follow-

ing section, we describe the reduction of governing equations for axisymmetric flows in spherical

coordinates.

2.2 Axisymmetric Flow in Spherical Polar Coordinates

First, we choose O as the origin of the Cartesian frame as in Figure 2.4 and P(x,y,z) be a point

with coordinates x,y,z. Let r, θ , φ be the spherical polar coordinates as shown in the Figure 2.4

with 0 ≤ r < ∞, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π .

Let êr, êθ and êφ be the unit vectors along the radial, transverse and azimuthal directions, respec-

tively (see Figure 2.4). The transformation between the Cartesian and spherical coordinates is

7



x

y

z

P(r,θ ,φ)

O
r

φ

rsinθ sinφ
rsinθ cosφ

θ

P(x,y,z)

êr
êθ

êφ

Figure 2.4
Spherical Polar Coordinates System

given by

x = r sinθ cosφ , y = r sinθ sinφ , z = r cosθ ,

and the inverse transformation (from spherical to cartesian) is

r2 = x2 + y2 + z2, tanθ =

√
x2 + y2

z
, tanφ =

y
x
.

For axisymmetric flows, all the physical quantities are independent of the azimuthal angle φ and

further uφ = 0. Thus, the spherical velocity components ur, uθ and uφ = 0 and the micro-rotation

components Ωr, Ωθ and Ωφ depend only on r and θ . In this case, the velocity vector u takes the

form

u(r,θ) = ur(r,θ) êr +uθ (r,θ) êθ . (2.6)

The continuity equation (2.5) implies that ur and uθ can be derived from a single scalar function,

known as the Stokes stream function, ψ(r,θ) [12, 17, 18] as follows,

ur(r,θ) =− 1
r2 sinθ

∂ψ

∂θ
(2.7)

uθ (r,θ) =
1

r sinθ

∂ψ

∂ r
(2.8)
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Now the equations (2.3) and (2.4) can be rewritten in the form

grad p =−1
2
(2µ + k)curl curl u− γ(µ + k)

2k
curl curl curl curl u, (2.9)

Ω =
1
2

curl u− γ(µ + k)
2k2 curl curl curl u. (2.10)

Note that the velocity and micro-rotation vectors are decoupled in the above forms of the governing

equations for micropolar fluids. Eliminating the pressure in (2.9) results in

curl curl curl curl curl u+

(
k(2µ + k)
γ(µ + k)

)
curl curl curl u = 0. (2.11)

Equivalently, using the vector identity curl curl u = grad div u−∇2u, one obtains

curl
(
∇

4 u−δ
2

∇
2 u
)
= 0, (2.12)

where the parameter δ 2 is defined as

δ
2 =

2k
γ(1+ ε)

, ε =
k

(2µ + k)
.

Using (2.7) and (2.8), the curl u is computed in terms of Stokes stream function as

curl u =
1

r sinθ

[
∂ 2ψ

∂ r2 +
1
r2

∂ 2ψ

∂θ 2 − cotθ

r2
∂ψ

∂θ

]
êφ . (2.13)

The use of (2.13) in (2.12) and after some simplification we get the following sixth-order PDE for

the Stokes stream function in the form

E4(E2
ψ −δ

2
ψ) = 0, (2.14)

where the axisymmetric Stokes operator E2 is defined as

E2 =
∂ 2

∂ r2 +
1
r2

∂ 2

∂θ 2 −
cotθ

r2
∂

∂θ
.

Again, using (2.3) and (2.4), the non-vanishing φ - component of the micro-rotation vector Ω can

be represented in terms of the Stokes-stream function as

Ω(r,θ) =
1

2r sinθ

{
E2

ψ +
1

δ 2ε
E4

ψ

}
êφ . (2.15)
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Once again we point out that in the limit of k,γ → 0, equations (2.3), (2.4) and (2.5) reduce to the

Stokes equations for the Newtonian fluid given by

µ∇
2u = grad p, ∇ ·u = 0.

In the next section we state the boundary conditions for a spherical squirmer in a micropolar fluid.

2.3 Boundary Conditions for Spherical Squirmer

The schematic of the axisymmetric flow configuration for a spherical squirmer model in a microp-

olar fluid is shown in Figure 2.5. For spherical squirmer models, the surface velocities change

periodically due to self-propelling mechanisms of the micro-organisms. The boundary conditions

in this case (on the squirmer surface r = a), as suggested in [2, 15], take the form

micropolar fluid

a

θ

r

uruθ

Figure 2.5
Representation of spherical microorganism placed in a micropolar fluid

ur(a,θ) =
∞

∑
n=0

AnPn(cosθ), uθ (a,θ) =
∞

∑
n=1

BnVn(cosθ). (2.16)

In the above equation,

Vn(cosθ) =− 2
n(n+1)

P1
n (cosθ),

10



where Pn(cosθ) and P1
n (cosθ) are the Legendre polynomial and the associated Legendre poly-

nomial of the first kind, respectively. The coefficients An and Bn correspond to the radial and

tangential modes of oscillations. It should be noted that the surface velocity conditions (2.16) can

be readily transformed in terms of the stream function by the use of (2.7) and (2.8).

Thus, the spherical squirmer model in micropolar fluids reduces to solving the mathematical

boundary value problem (BVP) for the stream function satisfying (2.14) subject to the surface

velocity boundary conditions given in (2.16). It has been shown in [2, 15] that only the first mode

A1 and B1 (for n = 1) contribute to the swimming speed/velocity of the spherical squirmer while

the power and efficiency depend on all the An and Bn modes in the case of Stokes flow. We show

in Chapter 3 that this conclusion holds for micropolar fluids as well.

The non-zero boundary condition for micro-rotation at the surface of the spherical squirmer (r = a)

is taken to be [12]

Ω =
α

2
curl u with 0 ≤ α ≤ 1 at r = a. (2.17)

When the constants An,Bn and α (non-zero micro-rotation) are zero, the above boundary condition

in vector form reduces to the no-slip condition considered in [18] for the translational drag problem

for a sphere placed in a micropolar fluid.

The scalar boundary value problem formulated here will be utilized in the next chapter to obtain ex-

act solutions for the stream function including a variety of modes. The velocity and micro-rotation

components are then computed using (2.7), (2.8), and (2.15) via, a straightforward differentiation

process. Below we record the derivation of the general solution of the sixth-order PDE (2.14)

satisfied by the stream function in spherical coordinates.

2.4 Derivation of the General Solutions

This section provides the derivation for the general solution to the sixth-order PDE (2.14) using the

separation of variables and variation of parameters. The linearity allows us to decompose (2.14) in

the form

(E2 −δ
2)υ = 0, (2.18)

11



and

E4
χ = 0, (2.19)

where the axisymmetric operator E2 is defined in the section 2.2 (see the equation below (2.14)).

The classical method to solve the sixth-order PDE is to split the whole equation as in (2.18)-(2.19).

Using the principle of superposition for linear PDEs, the general solution ψ can be represented

as ψ = υ + χ . Notice that υ satisfies the homogeneous axisymmetric Helmholtz equation (2.18)

and χ satisfies the homogeneous axisymmetric biharmonic equation (2.19). We first solve the

Helmholtz equation (2.18) using the separation of variables. Thus,

υ(r,θ) = R(r)Θ(θ). (2.20)

Substitution of (2.20) in (2.18) yields the following

R′′

R
+

1
r2

Θ′′

Θ
− cotθ

r2
Θ′

Θ
−δ

2 = 0, (2.21)

which can be written in the form

r2 R′′

R
−δ

2r2 =−Θ′′

Θ
+ cotθ

Θ′

Θ
= n(n+1). (2.22)

Equation (2.22) leads to the following ordinary differential equations for R(r) and Θ(θ)

r2R′′− (δ 2r2 +n(n+1))R = 0, (2.23)

Θ
′′−Θ

′ cotθ +n(n+1)Θ = 0. (2.24)

To solve the angular part of the equation (2.24) we use x = cosθ and obtain the transformed

equation in the form

(1− x2)
d2Θ

dx2 +n(n+1)Θ(x) = 0. (2.25)

Equation (2.25) may be transformed using the substitution

Θ(x) =
√

1− x2 v(x). (2.26)

12



The resulting equation (after simplification) can be written as

d
dx

[
(1− x2)

dv
dx

]
+

(
n(n+1)− 1√

1− x2

)
v = 0. (2.27)

Note that the transformed equation (2.27) is a special case of Sturm-Liouville equation whose

solution is

v(x) = P1
n (x), (2.28)

where P1
n (x) is the associated Legendre polynomial of order 1. Now the solution to (2,25) is

Θ(θ) =


sinθ P1

n (cosθ) n ≥ 1,

(g0 cosθ + j0) n = 0,
(2.29)

where g0 and j0 are arbitrary constants. Next, to solve (2.23) for the radial part we use the following

transformation

R(r) =
r

δ
3
2

t(δ r), (2.30)

and transform the equation in the form

d
d(δ r)

(
(δ r)2 dt(δ r)

d(δ r)

)
−
(
(δ r)2 +n(n+1)

)
t(δ r) = 0. (2.31)

We now use the following change of variable

z = δ r, (2.32)

and transform the derivatives via the relations δ r

dz
d(δ r)

= 1,

dt
d(δ r)

=
dt
dz

dz
d(δ r)

=
dt
dz

,

d2t
d(δ r)2 =

(
d
dz

dz
d(δ r)

)(
du
dz

)
=

d2t
dz2 .

(2.33)

Simplifying (2.31) after making the above substitutions/changes we arrive at

d
dz

(
z2
(

dt
dz

))
−
(
z2 +n(n+1)

)
t = 0. (2.34)

13



Equation (2.34) is a modified spherical Bessel equation whose solution is given in [1] in the form

t(δ r) =
∞

∑
n=1

1√
δ r

(
EnIn+ 1

2
(δ r)+FnKn+ 1

2
(δ r)

)
. (2.35)

where In+1/2(δ r) and Kn+1/2(δ r) are the modified spherical Bessel functions of the first and third

kinds [1], respectively. Substitution of the above results in (2.30) yields the general solution to the

radial part as

R(r) =


(√

r
δ 2

)
∞

∑
n=1

(
EnIn+ 1

2
(δ r)+FnKn+ 1

2
(δ r)

)
for n ≥ 1,

e0eδ r + f0e−δ r for n = 0,

(2.36)

where En, Fn, e0, and f0 are arbitrary constants. Thus, the solution to the axisymmetric Helmholtz

equation (2.18) (after combining the radial and angular parts) becomes

υ(r,θ) =
(

e0eδ r + f0e−δ r
)
(g0 cosθ + j0)

+

(√
r

δ 2

)
∞

∑
n=1

[(
EnIn+ 1

2
(δ r)+FnKn+ 1

2
(δ r)

)]
sinθ P1

n (cosθ). (2.37)

The general solution to the axisymmetric biharmonic equation (2.19) may be derived as follows.

Using the linearity property, equation (2.19) can be split in the form

E2
χh = 0, (2.38)

and

E2
χp = χh, (2.39)

where we have used

χ(r,θ) = χh(r,θ)+χp(r,θ). (2.40)

Note that χh(r,θ) satisfies the homogeneous axisymmetric Laplace equation and χp(r,θ) is a so-

lution of the nonhomogeneous (axisymmetric) Laplace equation. We solve equation (2.38) using

the separation of variables, and so let

χh(r,θ) = Rh(r)Θh(θ). (2.41)

14



This substitution yields the following two ordinary differential equations

r2R′′
h +λRh = 0, (2.42)

Θ
′′
h − cot(θ)Θ′

h −λΘh = 0. (2.43)

Taking the eigenvalue λ = −n(n+ 1) and solving (2.42) and (2.43), we obtain the solution for

χh(r,θ) in the form

χh(r,θ) = (a0 +b0r)(g0 cosθ + j0)+
∞

∑
n=1

(
Cnr−n +Bnrn+1)sinθ P1

n (cosθ), (2.44)

where a0, b0, Cn, Bn are arbitrary constants. Using (2.44) one can solve the nonhomogeneous

Laplace equation (2.39 ) by the method of separation of variables (for the homogeneous part) and

the variation of parameters technique (for the particular solution). The general solution of the

homogeneous part (2.44) will be considered further to derive the particular solution. Thus, two

cases arise which we address separately.

CASE I: n=0 (Degenerate Case)

Let y1(r) = 1 and y2(r) = r be the solutions of the corresponding homogeneous differential equa-

tion. Then, the Wronskian for W(y1(r),y2(r)) = 1. Now a particular solution is taken as

χ1p(r,θ) = Rp(r)Θp(θ),

where

Rp(r) =−y1(r)
∫ y2(r) f (r)

W (y1,y2)
dr+ y2(r)

∫ y1(r) f (r)
W (y1,y2)

dr,

where f (r) = a0 +b0r, and Θp(θ) = (g0 cosθ + j0).

Evaluating the integrals we obtain a particular solution for n = 0 in the form

χ1p(r,θ) = (a0 +b0r+ c0r2 +d0r3)(g0 cosθ + j0),

where c0 and d0 are arbitrary constants.
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CASE II: n ≥ 1

Let y1(r) = r−n and y2(r) = rn+1 be two linearly independent solutions of the corresponding ho-

mogenous differential equation and the Wronskian is W(y1,y2) = 2n+1.

We assume a particular solution as

χ2p(r,θ) = Rp(r)Θp(θ), (2.45)

where

Rp(r) =−y1(r)
∫ y2(r) f (r)

W (y1,y2)
dr+ y2(r)

∫ y1(r) f (r)
W (y1,y2)

dr, (2.46)

f (r) =
∞

∑
n=1

(
Cnr−n +Bnrn+1) and, (2.47)

Θp(θ) = sinθ P1
n (cosθ), (2.48)

Solving for Rp, we get

Rp(r) =
∞

∑
n=1

(
Anrn+3 +

Dn

rn−2

)
. (2.49)

Therefore, we obtain the particular solution as,

χ2p(r,θ) =
∞

∑
n=1

(
Anrn+3 +

Dn

rn−2

)
sinθ P1

n (cosθ). (2.50)

Recalling the equation for χp,

χp = χ1p +χ2p.

Substituting the results for χh(r,θ) and χp(r,θ) into the equation (2.40), one gets

χ(r,θ) =
(
a0 +b0r+ c0r2 +d0r3)(g0 cosθ + j0)

+
∞

∑
n=1

(
Anrn+3 +Bnrn+1 +

Cn

rn +
Dn

rn−2

)
sinθ P1

n (cosθ). (2.51)

16



Combining the solutions of (2.18) and (2.19) derived above we obtain the general solution of the

PDE (2.14) in the following form

ψ(r,θ) =
(

a0 +b0r+ c0r2 +d0r3 + e0eδ r + f0e−δ r
)
(g0 cosθ + j0)

+
∞

∑
n=1

[
anrn+3 +bnrn+1 +

Cn

rn +
Dn

rn−2 +

√
r

δ 2

(
EnIn+ 1

2
(δ r)+FnKn+ 1

2
(δ r)

)]
sinθ P1

n (cosθ).

(2.52)

Substitution of (2.53) in (2.15) yields the micro-rotation as

Ω(r,θ) =
(

2c0 +6d0r+δ
2
(

1+ ε

ε

)(
e0eδ r + f0e−δ r

))
(g0 cosθ + j0)

+
∞

∑
n=1

[
2(2n+3)anrn − 2(2n−1)Dn

rn+1 +

(
1+ ε

2ε

)
1√
r

(
EnIn+ 1

2
(δ r)+FnKn+ 1

2
(δ r)

)]
P1

n (cosθ).

(2.53)

We point out that the terms due to n = 0 do not contribute to the swimming problem under consid-

eration. Therefore, we take n ≥ 1 terms in the general solutions above. For the freely swimming

sphere with the mean speed U in micropolar fluid we add the term U
2 r2 sin2(θ) in the stream func-

tion.

Further, the finite velocity requirment as r → ∞ implies an = bn = En = 0. Finally, the solutions

for the stream function and the micro-rotation for the squirming sphere in the micropolar fluid are

taken to be

ψ(r,θ) =
U
2

r2 sin2
θ −

(
C1

r
+D1r+

√
r

δ 2 F1k 3
2
(δ r)

)
sin2

θ

+
∞

∑
n=2

(
Cn

rn +
Dn

rn−2 +

√
r

δ 2 Fn Kn+ 1
2
(δ r)

)
sinθ P1

n (cosθ) (2.54)

and,

Ω(r,θ) =
(

D1

r2 −
(

1+ ε

2ε

)
F1√

r
K3

2
(δ r)

)
sinθ

+
∞

∑
n=1

[
−2(2n−1)Dn

rn+1 +

(
1+ ε

2ε

)
Fn√

r
Kn+ 1

2
(δ r)

]
P1

n (cosθ). (2.55)

The general solutions (2.54) and (2.55) will be used in the next chapter to derive exact results for

a spherical squirmer suspended in micropolar fluids.
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CHAPTER III: TWO-MODE AND n-MODE ANALYTICAL SOLUTIONS FOR A

SPHERICAL SQUIRMER

The scalar stream function formulation of the spherical squirmer in micropolar fluid problem stated

in (2.14) subject to the surface velocity slip conditions (2.16) and the non-zero microrotation con-

dition (2.17) will now be used to generate closed-form analytical solutions. For the sake of clarity,

we record the calculations for the 2-Mode and n-Mode solutions separately. We emphasize that the

determination of the stream function provides a basis for the discussion of the flow fields prevailing

in the presence of a squirmer. By a direct differentiation process, one can obtain the radial and tan-

gential velocity components via the relations given in (2.7) and (2.8). These necessary quantities

are required for the swimming speed, power, and efficiency calculations of the squirming sphere

in micropolar fluids modeled by the equations (2.3) - (2.5). The pressure can be obtained by direct

integration of (2.9) while the micro-rotation is derived using (2.15) (or equivalently, using (2.10)).

The essential steps used in the derivation of swimming speed, power, and efficiency due to the

swimming of a spherical squirmer in a micropolar fluid are summarized below.

• Use the stream function (2.54) and micro-rotation (2.55) as suitable solutions for the swim-

ming problem under consideration. Note that, as in the case of swimming in Newtonian 

fluids [2, 15], these choices satisfy the requirement that the induced velocity and the micro-

rotation must be finite at large distances from the spherical squirmer.

• Apply the non-vanishing surface velocity and micro-rotation boundary conditions (2.16) and 

(2.17), respectively, to determine the unknown arbitrary constants in the stream function for 

various radial and tangential modes. Due to the linearity of the governing equations, 2-Mode 

and n-Mode cases can be treated separately.

• Find the radial and tangential velocity components via direct differentiation using (2.7) and 

(2.8).

• Compute pressure using (2.9) and stress components using (3.77), (3.78) and (3.81).

18



• Integrate stress components to find drag on the surface of the spherical squirmer (use (3.85)).

• Use force-free condition to obtain the swimming speed [2, 15].

• Determine the power using (3.93). This requires the integration of the product of velocity 

and stress components on the surface of the squirmer. Calculate the efficiency via the relation 

given in (3.97).

The aforementioned steps are utilized to determine the relevant physical quantities of interest in

the context of squirming motion of a sphere in micropolar fluids in the next sections. The essential

quantities computed here are employed to understand the swimming characteristics in Chapter 4.

3.1 Two-Mode Results for the Stream function, Velocity, Micro-rotation and Stress Components

From (2.54), the stream function for the 2-mode solution can be written as

ψ
2M(r,θ) =

Ur2

2
sin2

θ −
(

C1

r
+D1r+

√
r

δ 2 F1k 3
2
(δ r)

)
sin2

θ

−3
(

C2

r2 +D2 +

√
r

δ 2 F2K5
2
(δ r)

)
sin2

θ cosθ . (3.56)

The boundary conditions for the 2-mode are

u2M
r (a,θ) = A1 cosθ +

A2

2
(3cos2

θ −1), (3.57)

u2M
θ (a,θ) = B1 sinθ +B2 sinθ cosθ , (3.58)

Ω
2M(a,θ) =

α

2
curl u2M. (3.59)

Computing the fluid velocity components using (3.56), (2.7) and (2.8), and the micro-rotation from

(2.55) require the use of the recurrence relations and differentiation properties of the modified

spherical Bessel function Kn+ 1
2
(δ r) that are mentioned in Appendix A,

u2M
r (r,θ) =−U cosθ +

(
2C1

r3 +
2D1

r
+

2F1

δ 2r
3
2

K3
2
(δ r)

)
cosθ

+3
(

C2

r4 +
D2

r2 +
F2

δ 2r
3
2

K5
2
(δ r)

)
(3cos2

θ −1), (3.60)
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u2M
θ (r,θ) =U sinθ +

(
C1

r3 − D1

r
+

F1

δ 2r
3
2
(δ rK1

2
(δ r)+K3

2
(δ r))

)
sinθ

+3
(

2C2

r4 +
F2

δ 2r
3
2
(δ rK3

2
(δ r)+2K5

2
(δ r))

)
sinθ cosθ , (3.61)

Ω
2M(r,θ) =

(
D1

r2 −
(

1+ ε

2ε

)
F1√

r
K3

2
(δ r)

)
sinθ

+3
(

3D2

r2 −
(

1+ ε

2ε

)
F2√

r
K5

2
(δ r)

)
sinθ cosθ . (3.62)

The constants in the 2-mode solution are determined using the boundary conditions (3.57)-(3.59)

and are given by

C2M =C1 +C2, (3.63)

where

C1 =−a3

4

[
(1−α) ε (3U −2B1 +A1)

Λ1

(
1+2

(
1

δa
+

1
δ 2a2

))
+(U −2B1 −A1)

]
, (3.64)

C2 =
a4

6

[
B2 +

3 (1−α) ε (B2 −A2)

Λ2

(
1+δa+2

(
1+

3
δa

+
3

δ 2a2

))]
, (3.65)

F2M = F1 +F2, (3.66)

where

F1 =
eδa

√
2πδa

(
(3U −2B1 +A1) (1−α) ε δ 2 a

3
2

Λ1

)
, (3.67)

F2 =− eδ (a)
√

2πδa

(
2 (B2 −A2) (1−α) ε δ 3a

5
2

Λ2

)
, (3.68)

D2M = D1 +D2, (3.69)

where

D1 =
(3U −2B1 +A1)a

4

(
1+

(1−α) ε

Λ1

)
, (3.70)

D2 =−(B2 −A2)a2

6

(
1+

3 (1−α) ε (1+δa)
Λ2

)
. (3.71)
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also,

Λ1 = δa(1+ ε (1−α))+1,

Λ2 = δ
2a2(1+ ε (1−α))+3(1+δa).

Substituting (3.63) - (3.71) in (3.60) - (3.62) we obtain the velocity and micro-rotation components

for a 2-mode model in micropolar fluid in the form

u2m
r (r,θ) =−U cosθ +

[
(3U −2B1 +A1)

2

(
1+

(1−α) ε

Λ1

)(
a
r
− a3

r3

)
− (3U −2B1 +A1) (1−α) ε

Λ1

(
a3

r3

(
1

δa
+

1
δ 2a2

)
− aeδ (a−r)

r

(
1

δ r
+

1
δ 2r2

))

+ (U +A1)

(
a3

r3

)]
cosθ

+

[
(B2 −A2)

2

(
1+

3 (1−α) ε (1+δa)
Λ2

)(
a4

r4 − a2

r2

)
+

A2

2

(
a4

r4

)
+

3(B2 −A2) (1−α) ε

Λ2

{(
1+

3
δa

+
3

δ 2a2

)
a4

r4 − a2eδ (a−r)

r2

(
1+

3
δ r

+
3

δ 2r2

)}]
(3cos2

θ −1),

(3.72)

u2m
θ (r,θ) =U sinθ

+

[
(3U −2B1 +A1)

4

(
1− (1−α)ε

Λ1

)(
a3

r3

)
− (3U −2B1 +A1)

4

(
1+

(1−α)ε

Λ1

)(a
r

)
− (3U −2B1 +A1)(1−α)ε

2Λ1

(
a3

r3

(
1

δa
+

1
δ 2a2

)
− aeδ (a−r)

r

(
1+

1
δ r

+
1

δ 2r2

))

+ (−U +B1)

(
a3

r3

)]
sinθ

+

[
B2

(
a4

r4

)
+

3(B2 −A2)(1−α)ε

Λ2

(
a2

r2

)(
a2

r2 (1+δa)− eδ (a−r)(1+δ r)
)

+
6(B2 −A2)(1−α)εa2

r2Λ2

((
a2

r2

)(
1+

3
δa

+
3

δ 2a2

)
− eδ (a−r)

(
1+

3
δ r

+
3

δ 2r2

))]
cosθ sinθ ,

(3.73)
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Ω
2m(r,θ) =

(3U −2B1 +A1)

4

( a
r2

)[
1+

(1−α) ε

Λ1

(
1−
(

1+ ε

ε

)
eδ (a−r)(1+δ r)

)]
sinθ

− 3(B2 −A2)a2

2r3

[
1+

(1−α) ε

Λ2

(
3(1+δa)−

(
1+ ε

ε

)
(eδ (a−r))(δ 2r2 +3δ r+3)

)]
cosθ sinθ .

(3.74)

The hydrodynamic pressure is computed by substituting the equations (3.72)-(3.74) in (2.9) of

Chapter 2 and is given by

p2M(r,θ) = (2µ + k)
[

D1 cosθ

r2 +
3D2

r3 (3cos2
θ −1)

]
+ p∞. (3.75)

Using the results for D1 and D2 and after simplification, one finds

p2M(r,θ) = (2µ + k)
( a

r2

)[(3U −2B1 +A1)

4
+

(
(3U −2B1 +A1) (1−α) ε

4Λ1

)]
cosθ

− (2µ + k)a2

2r3

[
(B2 −A2)+

3(B2 −A2) (1−α) ε (1+δa)
Λ2

]
(3cos2

θ −1)+ p∞,

(3.76)

where p∞ (arbitrary integration constant) is added for the constant pressure.

Now the radial component of the stress tensor for the micropolar fluid is obtained from (2.1) as

follows.

T 2M
rr = p2M − T̄rr

2M
, (3.77)

where

T̄rr
2M

= (2µ + k)
∂u2M

r
∂ r

. (3.78)
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Using the equation (3.72) in (3.77) and (3.78) we get

(2µ + k)
∂u2M

r
∂ r

= (2µ + k)
[
Ū (1+Γ1)

(
3a3

r4 − a
r2

)
−3(U +A1)

(
a3

r4

)
+ 2ŪΓ1

(
3a3

r3

(
1

δa
+

1
δ 2a2

)
− 3aeδ (a−r)

r

(
1

δ r
+

1
δ 2r2

)
− aeδ (a−r)

r2

)]
cosθ

−(2µ + k)
[

B2

(
2a4

r5 − a2

r3

)
+A2

(
a2

r3

)
−3(B2 −A2)Γ2

{(
2
(

a4

r5

)
(1+δa)−

(
a2

r3

)
(1+δa)−

(
a2eδ (a−r)

r3

)
(1+δ r)

)

+4

((
a4

r5

)(
1+

3
δa

+
3

δ 2a2

)
−

(
a2eδ (a−r)

r3

)(
1+

3
δ r

+
3

δ 2r2

))}]
(3cos2

θ −1), (3.79)

where for convenience we have defined

Ū =
(3U −2B1 +A1)

2
, Γ1 =

(1−α)ε

Λ1
, Γ2 =

(1−α)ε

Λ2
.

Note that on the surface of the squirmer (r = a), the radial component of stress simplifies to

T 2M
rr (a,θ) =

(2µ + k)
a

[{
D1

a
+2(A1 +B1)

}
cosθ +

{
3D2

a2 +A2 +B2

}
(3cos2

θ −1)
]
− p∞.

(3.80)

In a similar way the tangential stress component is determined using (2.1). We have

T 2M
rθ (r,θ) =−µ

(
1
r

∂u2M
r

∂θ
−

u2M
θ

r
+

∂u2M
θ

∂ r

)
− k
(

∂u2M
θ

∂ r
−Ω

2M
)
, (3.81)
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Now, using (3.72)-(3.74) in (3.81) we get

µ

(
1
r

∂u2M
r

∂θ
−

u2M
θ

r
+

∂u2M
θ

∂ r

)
= µ

[
Ū (1+3Γ1)

(
a3

r4

)
−2(A1 +B1)

(
a3

r4

)
−2ŪΓ1

(
aeδ (a−r)

r2

)

− 6ŪΓ1

(a
r

)(a2

r3

(
1

δa
+

1
δ 2a2

)
− eδ (a−r)

(
1

δ r
+

1
δ 2r2

))
−ŪΓ1(1+δ r)

(
aeδ (a−r)

r2

)]
sinθ

−µ

[
B2

(
8a4

r5 − 3a2

r3

)
+3A2

(
a2

r3

)
+ 3(B2 −A2)Γ2

{(
8(1+δa)

(
a4

r5

)
−3(1+δa)

(
a2

r3

)
−2

(
a2eδ (a−r)

r3

)
(1+δ r)

)

+16

((
a4

r5

)(
1+

3
δa

+
3

δ 2a2

)
−

(
a2eδ (a−r)

r3

)(
1+

3
δ r

+
3

δ 2r2

))

+

(
a2

r3

)
eδ (a−r)(δ 2r2 +3δ r+3)

}]
cosθ sinθ , (3.82)

k
(

∂u2M
θ

∂ r
−Ω

2M
)
= k

[
Ū
2
(1+3Γ1)

(
a3

r4

)
− (A1 +B1)

(
a3

r4

)
−ŪΓ1

(
aeδ (a−r)

r2

)

− 3ŪΓ1

((
a3

r4

)(
1

δa
+

1
δ 2a2

)
− eδ (a−r)

(
1

δ r
+

1
δ 2r2

))
+ŪΓ1

(
aeδ (a−r)

r2 (1+δ r)
µ

k

)]
sinθ

− k
[

B2

(
4a4

r5 − 3a2

2r3

)
+

3A2

2

(
a2

r3

)
+3(B2 −A2)Γ2

{
5(1+δa)

2

(
a2

r3

)
−
(

a2

r3

)
eδ (a−r)(1+δ r)

+ 8
((

a4

r5

)(
1+

3
δa

+
3

δ 2a2

)
−
(

a2

r3

)
eδ (a−r)

(
1+

3
δ r

+
3

δ 2r2

))
−
(

a2

r3

)
eδ (a−r)(δ 2r2 +3δ r+3)

(
µ

k

)}]
cosθ sinθ , (3.83)

Ū ,Γ1, and Γ2 are defined just after equation (3.79). The above expression for the tangential stress

component on the spherical squirmer r = a reduces to

T 2M
rθ (a,θ) =

(2µ + k)
a

[{
−D1

a
+(A1 +B1)

}
sinθ +

{
−9D2

a2 +(3A2 +B2)

}
cosθ sinθ

]
.(3.84)
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3.2 Swimming Speed, Power and Efficiency Calculations from the 2-Mode Solutions

Theoretical results for the speed, power, and efficiency can be very useful to understand the swim-

ming characteristics. Here we provide the derivation of these important quantities for a spherical

swimmer in the micropolar fluid using the 2-Mode solutions. In order to determine the swimming

velocity (speed), one needs to find the force on the squirmer translating in micropolar fluid and

then use the force-free condition [2, 17] to find the speed. To this end, we follow the procedure

used in [12] for the calculation of the drag/force on the rigid sphere. The formula for the drag

is [12]

Fr =
∮
(T 2M

rr cosθ −T 2M
rθ sinθ)r=a dθ , (3.85)

where

(T 2M
rr cosθ)r=a =

(2µ + k)
a

[{
(3U −2B1 +A1)

4
(1+Γ1)+2(A1 +B1)

}
cos2

θ

+

{
−(B2 −A2)

2
(1+3Γ2 (1+δa))+A2 +B2

}
(3cos2

θ −1)cosθ

]
(3.86)

(T 2M
rθ cosθ)r=a =

(2µ + k)
a

[{
−(3U −2B1 +A1)

4
(1+Γ1)+(A1 +B1)

}
sin2

θ

+

{
3(B2 −A2)

2
(1+3Γ2 (1+δa))+3A2 +B2

}
cosθ sin2

θ

]
. (3.87)

Substituting (3.86) and (3.87) in (3.85) and evaluating the integral using the orthogonality proper-

ties (see Appendix B, (B-1),(B-2)), one arrives at

Fr = (3U −2B1 +A1)πa(2µ + k)(1+Γ1) . (3.88)

The expression for the force in (3.88) may be decomposed in the form,

Fr = Dp +D f , (3.89)

where

Dp =
2
3

(
(3U −2B1 +A1)(1+Γ1)

4a

)
, D f = 2Dp. (3.90)
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In (3.90), Dp and D f are the contributions due to the pressure and frictional parts to the total drag.

If we set A1 = B1 = 0 in (3.90), we recover the result presented in [19]. Now using the force-free

condition

Fr = 0, (3.91)

we obtain the swimming speed for a spherical squirmer in micropolar fluid as,

U =
2B1

3
− A1

3
. (3.92)

It is interesting that the swimming speed is independent of the micropolar fluid parameters. We

note that the swimming speed in (3.92) is exactly the same as that for a squirmer in Stokes flow

obtained by Lighthill [15] and Blake [2]. This in turn implies that a spherical squirmer in microp-

olar fluid swims with the same speed as in Stokes flow.

The power P (or the net work rate) generated on the surface of the spherical squirmer for its loco-

motion can be calculated by mimicking the approach used for Stokes flow [2, 15]. As in Stokes

case, the power is computed from

P2M = (2π)
∫

π

0
((u2M

r T 2M
rr +u2M

θ T 2M
rθ )r=a)(a2 sinθ)dθ . (3.93)

Using (3.57)-(3.58) and (3.86)-(3.87) we get

(u2M
r T 2M

rr )r=a =
(2µ + k)

a

[
A1 cosθ +

A2

2
(3cos2

θ −1)
]

×
[

2(A1 +B1)cosθ +

{
3D2

a2 +A2 +B2

}
(3cos2

θ −1)
]
, (3.94)

(u2M
θ T 2M

rθ )r=a =
(2µ + k)

a
[B1 sinθ +B2 sinθ cosθ ]

×
[
(A1 +B1)sinθ +

{
−9D2

a2 +(3A2 +B2)

}
cosθ sinθ

]
. (3.95)

Substitution of (3.94) and (3.95) on (3.93) results in the following expression for the squirmer

power in micropolar fluid

P2M = 2πa(2µ + k)
[

4
3
(A1 +B1)

2 +
12D2(A2 −B2)

5a2 +
4
5

(
A2

2 +
B2

2
3

+2A2B2

)]
. (3.96)
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Where D2 is given in (3.71) in terms of ε , δ , and α . Note that the power depends on the micropolar

fluid parameter via the second mode. In the limit k → 0 (or equivalently, (ε → 0)), the above

equation (3.96) reduces to the power for the 2-Mode squirmer in Newtonian fluid [2] as shown

below

P2M = 2πµa
[

8A2
1

3
+

8B2
1

3
+

16A1B1

3
+

(
12A2

2
5

+
4B2

2
3

+
8A2B2

5

)]
.

The results for the power and the drag on an isolated sphere translating in a micropolar fluid are

sufficient to compute the hydrodynamic efficiency. As in [2], the efficiency η is calculated from

η =
FrU
P2M , (3.97)

where Fr is the drag due to the translation of a sphere given by

Fr = 3πUa(2µ + k)(1+Γ1) . (3.98)

The above expression is extracted from (3.88) with A1 = B1 = 0. Below we derive the hydrody-

namic efficiency for tangential and radial modes separately from the 2-Mode solutions. When the

radial mode is absent the swimming speed given in (3.92) becomes

U =
2
3

B1. (3.99)

Using (3.99) in (3.98) one obtains

Fr = 2πB1a(2µ + k)(1+Γ1) . (3.100)

Now the 2-Mode expression for the power (equation (3.96)) in the absence of radial modes be-

comes

P2M = 2πa(2µ + k)
[

4B2
1

3
+

6B2
2Γ2(1+δa)

5
+

2B2
2

3

]
. (3.101)

Substituting (3.99) – (3.101) in (3.97) we get

η =

(
1+Γ1

2+β 2 + 9β 2Γ2(1+δa)
5

)
. (3.102)
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where we have taken β = B2
B1

. The limit k → 0 yields

η =
1

2+β 2 . (3.103)

which corresponds stokes flow result as expected.

In the same way we can obtain the efficiency for the radial modes (without the tangential modes).

The swimming speed in this case is

U =−A1

3
, (3.104)

and the drag force is

Fr =−πA1a(2µ + k)(1+Γ1) . (3.105)

The 2-mode power expression with only radial modes is

P2M = 2πa(2µ + k)
[

4A2
1

3
+

16A2
2

5
+

16A2
2

5
Γ2(1+δa)

]
. (3.106)

And now the efficiency η is

η =
1+Γ1

8
(

1+ 9ξ 2

10 (1+Γ2(1+δa))
) . (3.107)

where ξ = A2
A1 , and in the limit k → 0 the result reduces to

η =
1

8+ 36ξ

5

. (3.108)

as it should. As in the case of power, the efficiency also depends on the micropolar fluid parameter

in the second mode. We will use the 2-Mode results in Chapter 4 and interpret the squirming

characteristics and discuss some flow details.

3.3 n-Mode Results for a Squirmer in Micropolar Fluid

The general n-mode results for the squirmer problem in the micropolar fluid can be obtained using

the same steps used in the previous section. The expressions for the velocity components, micro-

rotation, pressure, stress components, and power for the general case are provided below.
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The stream function for the n-mode problem is given in (2.54). From this equation and (2.55), the

velocity and the micro-rotation are

unM
r (a,θ) =−U cosθ +

(
2C1

r3 +
2D1

r
+

2F1

δ 2r
3
2

K3
2
(δ r)

)
cosθ

+
∞

∑
n=2

(n(n+1))
[

Cn

rn+2 +
Dn

rn +
Fn

δ 2r
3
2

Kn+ 1
2
(δ r)

]
Pn(cosθ), (3.109)

unM
θ (r,θ) =U sinθ +

(
C1

r3 − D1

r
+

F1

δ 2r
3
2
(δ rK1

2
(δ r)+K3

2
(δ r))

)
sinθ

−
∞

∑
n=2

[
nCn

rn+2 +
(n−2)Dn

rn +
Fn

δ 2r
3
2

(
δ rKn− 1

2
(δ r)+nKn+ 1

2
(δ r)

)]
P1

n (cosθ), (3.110)

Ω
nM(r,θ) =

(
D1

r2 −
(

1+ ε

2ε

)
F1√

r
K3

2
(δ r)

)
sinθ

−
∞

∑
n=2

[
(2n−1)Dn

rn+1 −
(

1+ ε

2ε

)
Fn√

r
Kn+ 1

2
(δ r)

]
P1

n (cosθ), (3.111)

where the constants for the first mode C1, F1, and D1 are given in (3.64), (3.67) and (3.70) re-

spectively. The constants Cn, Fn and Dn found using the boundary conditions (2.16) and (2.17) are

given by

Cn =
an+2

2n(n+1)
[(2Bn − (n−2)An)

+
(2n−1) (1−α) ε (2Bn −nAn)

δaΛ
(δaKn− 1

2
(δa)+2Kn+ 1

2
(δa))

]
, (3.112)

Fn =−(2n−1)(1−α) ε (2Bn −nAn) δ a
1
2

n(n+1)Λ
, (3.113)

Dn =−(2Bn −nAn)an

2n(n+1)

[
1+

(2n−1) (1−α) ε Kn− 1
2
(δa)

Λ

]
, (3.114)

where

Λ = (1+ ε (1−α)) δaKn+ 1
2
(δa)− (2n−1) (1−α) ε Kn− 1

2
(δa).

The pressure field for the general n-mode case is

pnM(r,θ) = (2µ + k)
∞

∑
n=1

[
(2n−1)nDn

rn+1 Pn(cosθ)

]
+ p∞. (3.115)
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The radial component of stress is obtained using (3.77) and (3.78) as follows. We have

∂unM
r

∂ r
=

[
Ū (1+Γ1)

(
3a3

r4 − a
r2

)
−3(U +A1)

(
a3

r4

)
+ 2ŪΓ1

(
3a3

r3

(
1

δa
+

1
δ 2a2

)
− 3aeδ (a−r)

r

(
1

δ r
+

1
δ 2r2

)
− aeδ (a−r)

r2

)]
cosθ

−
∞

∑
n=2

[
Bn

(
(n+2)

an+2

rn+3 −n
an

rn+1

)
+An

(
n2

2
an

rn+1 −
n2 −4

2
an+2

rn+3

)
+ Γn(2Bn −nAn)

(
n+2

2
an+2

rn+3 Kn− 1
2
(δa)− nan

2rn+1 Kn− 1
2
(δa)− a

1
2

r
3
2

Kn− 1
2
(δ r)

)

+
Γn(2Bn −nAn)

δa

(
(n+2)an+2

rn+3 Kn+ 1
2
(δa)− (n+2)a

3
2

r
5
2

Kn+ 1
2
(δ r)

)]
Pn(cosθ), (3.116)

where

Γn =
(2n−1)(1−α)ε

Λ
,

Ū and γ1 are defined after the equation (3.79). On the surface of the sphere (r = a), (3.116) becomes(
∂unM

r
∂ r

)
r=a

=

(
2
a

)
∞

∑
n=1

(An +Bn)Pn(cosθ). (3.117)

Therefore, the radial stress component on the boundary takes the form

(T nM
rr )r=a =

(2µ + k)
a

∞

∑
n=1

[
(2n−1)nDn

an +2(An +Bn)

]
Pn(cosθ)− p∞. (3.118)

The tangential stress component using (3.81) is calculated as

µ

(
1
r

∂unM
r

∂θ
−

unM
θ

r
+

∂unM
θ

∂ r

)
= µ

[{
Ū (1+3Γ1)

(
a3

r4

)
−2(A1 +B1)

(
a3

r4

)
−2ŪΓ1

(
aeδ (a−r)

r2

)

− 6ŪΓ1

(a
r

){a2

r3

(
1

δa
+

1
δ 2a2

)
− eδ (a−r)

(
1

δ r
+

1
δ 2r2

)}
−ŪΓ1(1+δ r)

(
aeδ (a−r)

r2

)}
sinθ

+
∞

∑
n=2

[
Bn

{(
2(n+2)

n+1

)
an+2

rn+3 −
(

2(n2 −1)
n(n+1)

)
an

rn+1

}
+An

{(
n2 −1
n+1

)
an

rn+1 −
(

n2 −4
n+1

)
an+2

rn+3

}
+

(2Bn −nAn)Γn

n(n+1)

{
n(n+2)

an+2

rn+3 Kn− 1
2
(δa)− (n2 −1)

an

rn+1 Kn− 1
2
(δa)− 2a

1
2

r
3
2

Kn− 1
2
(δ r)

}

+
2(2Bn −nAn)(n+2)Γn

(n+1)δa

{
an+2

rn+3 Kn+ 1
2
(δa)− a

3
2

r
5
2

Kn+ 1
2
(δ r)

}
+

Fn√
r

Kn+ 1
2
(δ r)

]
P1

n (cosθ)

]
,

(3.119)
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k
(

∂unM
θ

∂ r
−Ω

)
= k

[{
Ū
2
(1+3Γ1)

(
a3

r4

)
− (A1 +B1)

(
a3

r4

)
−ŪΓ1

(
aeδ (a−r)

r2

)

− 3ŪΓ1

{(
a3

r4

)(
1

δa
+

1
δ 2a2

)
− eδ (a−r)

(
1

δ r
+

1
δ 2r2

)}
+ŪΓ1

{
aeδ (a−r)

r2 (1+δ r)
µ

k

}}
sinθ

+
∞

∑
n=2

[
Bn

{(
(n+2)
n+1

)
an+2

rn+3 −
(
(n2 −1)
n(n+1)

)
an

rn+1

}
+An

{(
n2 −1

2(n+1)

)
an

rn+1 −
(

n2 −4
2(n+1)

)
an+2

rn+3

}
+

(2Bn −nAn)Γn

2n(n+1)

{
n(n+2)

an+2

rn+3 Kn− 1
2
(δa)− (n2 −1)

an

rn+1 Kn− 1
2
(δa)− 2a

1
2

r
3
2

Kn− 1
2
(δ r)

}

+
(2Bn −nAn)(n+2)Γn

(n+1)δa

{
an+2

rn+3 Kn+ 1
2
(δa)− a

3
2

r
5
2

Kn+ 1
2
(δ r)

}
− µ

k
Fn√

r
Kn+ 1

2
(δ r)

]
P1

n (cosθ)

]
.

(3.120)

Now the tangential stress on the sphere is given by

(T nM
rθ )r=a =−(2µ + k)

a

∞

∑
n=1

[
−(2n−1)Dn

an +
2Bn +n(n+1)An

n(n+1)

]
P1

n (cosθ). (3.121)

The power for the n-mode case in micropolar fluid is computed using (3.93). The product of the

velocity and stress components on the surface are given in the form

(unM
r T nM

rr )r=a = (2µ + k)
∞

∑
n=1

(
(2n−1)nDnAn

an+1 +
2n(n+1)(A2

n +AnBn)

an(n+1)

)
(Pn(cosθ))2, (3.122)

(unM
θ T nM

rθ )r=a = (2µ + k)
∞

∑
n=1

(
−2(2n−1)DnBn

n(n+1)an+1 +
4B2

n +2n(n+1)AnBn

an2(n+1)2

)
(P1

n (cosθ))2.

(3.123)

Substituting (3.122) and (3.123) in (3.93) and integrating the results in the required expression

for the power. The orthogonality relations for the associated Legendre functions (for the angular

coordinate θ ) (see Appendix B, (B-4),(B-5)) are used in the evaluation of the integral. The explicit

form of the result is written as

PnM = PnM
1 +PnM

2 , (3.124)

where

PnM
1 = (2µ + k)πa

[
8
3
(A1 +B1)

2 +
∞

∑
n=2

(
(4n2 +6n+8)A2

n
(n+1)(2n+1)

+
8B2

n
n(n+1)

+
24AnBn

(n+1)(2n+1)

)]
,
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PnM
2 = (2µ + k)πa

∞

∑
n=2

(
2(2n−1)2(1−α)εkn− 1

2
(δa)(2Bn −nAn)

2

n(n+1)(2n+1)Λ

)
,

We note that as k → 0, the above result reduces to

PnM = 2πa

[
8
3
(A1 +B1)

2 +
∞

∑
n=2

(
(4n2 +6n+8)An

(n+1)(2n+1)
+

8B2
n

n(n+1)
+

24AnBn

(n+1)(2n+1)

)]
. (3.125)

Equation (3.125) agrees with that obtained in [2] for the spherical squirmer in Stokes flow with

n-modes. The efficiency calculations can be performed for the general n-mode case, but, will not

be discussed here further.

We conclude this chapter with the comment that the swimming speed is independent of the mi-

cropolar fluid parameters. But, for any given mode, the other quantities such as the stream func-

tion, velocity components, microrotation, pressure, stresses, power, and efficiency depend on k (or

equivalently, ε), γ and α . The discussion of the swimming and flow characteristics in micropolar

fluid with 2-mode results are presented in the next chapter.
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CHAPTER IV: INTERPRETATIONS OF TWO-MODE RESULTS FOR A SPHERICAL

SQUIRMER IN MICROPOLAR FLUID

The 2-mode results have been successfully utilized to understand the swimming characteristics

in Stokes and Brinkman fluid environments [2, 17]. Here we discuss the flow details for the mi-

cropolar fluids using the 2-mode solutions derived in the previous chapter. As noted in section

3.1, the swimming speed in the micropolar fluid is the same as in Stokes flow and therefore, does

not depend on the material constant k and the angular viscosity coefficients α1, β1, γ , and the

micro-rotation α . Further, only the first mode in the surface velocity contributes to the speed of the

spherical squirmer in a micropolar fluid. The effects of all the parameters for a micropolar fluid

can be seen starting from 2-Mode solutions. Below we demonstrate the dependence of the param-

eters α and ε = k/(2µ + k) in 2-Mode results graphically. The flow fields for 2-Mode solutions

are also discussed using the corresponding expression for the stream function. As will be seen, our

numerical results and the flow patterns for the stream function indicate the dominance of Stokes

flow model swimming characteristics for a spherical squirmer in a micropolar fluid. We point out

that a similar analysis for the n-mode calculations can be carried out in a similar fashion (although

it is not done here).

Below, we first recapture some of the features of the 1-Mode results and then proceed to the

interpretation of the 2-Mode solutions.

4.1 Features of 1-Mode Results

As demonstrated in the section 3.1, the swimming speed of a spherical squirmer in a micropolar

fluid is given by

U =
2B1

3
− A1

3
.

We observe that the speed is the same as in Stokes flow [2, 15] and does not depend on the param-

eters k, α1, β1, γ , and α . This means that a spherical squirmer swims in micropolar fluids with the

same velocity as in Stokes flow. Substitution of the swimming speed in 1-Mode solutions yields
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the velocity and micro-rotation components, reduced from (3.60), (3.61) and (3.62), as

ur(r,θ) =−U cosθ +
2
3

(
a3

r3

)
(A1 +B1)cosθ ,

uθ (r,θ) =U sinθ +
1
3

(
a3

r3

)
(A1 +B1)sinθ ,

Ω(r,θ) = 0.

The above velocity components are the same as those in Stokes flow presented in [15] and [2]. The

pressure corresponding to the free swimming is zero and the stress components are

Trr(a,θ) = 2
(2µ + k)

a
(A1 +B1)cosθ ,

Trθ (a,θ) =
(2µ + k)

a
(A1 +B1)sinθ . .

The power for 1-Mode solution is

P = 2π(2µ + k)a
[

4A2
1

3
+

4B2
1

3
+

8A1B1

3

]
,

and as k → 0, it reduces to the power in the Newtonian case [2]

P = 2πµa
[

8A2
1

3
+

8B2
1

3
+

16A1B1

3

]
.

The above results reveal that the swimming characteristics for micropolar fluids are identical to

those for Newtonian (Stokes) fluids.

4.2 Power and Efficiency for Two-Mode Results

The expression for radial and tangential 2-Mode power is given in (3.96). In equations (3.107) and

(3.102) the efficiency expressions for the 2-Mode oscillations with radial and tangential modes

are provided separately. There are several constants in the swimming problem but we analyze

the effects of the material constant ε and the micro-rotation parameter α fixing the values of the

rest of the parameters. Interpretations by varying other parameters can be carried out in a similar

fashion. One can see from these results that both power and efficiency depend on ε and α due

to the inclusion of the second mode. Below we give the graphical representation of these results.

Note that ε = νr
ν

. We fix ν = 2.9×10−3 as in [12] and chose different νr to account for ε variation

in our graphical illustrations. Also, we have chosen γ = 10−6 as in [12].
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Variation of Power with Micro-Rotation Parameter α

The variation of the power with the micro-rotation parameter is shown in Figure 4.6 for various

values of ε . The plots indicate that the power variations for radial modes Figure 4.6 (a), tangential

modes Figure 4.6 (b) and the combined radial and tangential modes Figure 4.6 (c) are qualitatively

similar. Quantitative variations are apparent from these figures. The general trend is that the power

increases with νr (or equivalently with ε) and decreases with the micro-rotation α . It is noted that

for α = 1 the numerical value of the power for the micropolar fluid approaches that of Newtonian

fluid in all cases. It is also seen that the magnitude of the power with radial modes Figure 4.6

(a) is higher compared to that of tangential 2-Modes Figure 4.6 (b). The tangential modes tend

to decrease the power as shown in Figure 4.6 (b). Whereas, the magnitude of power with the

combination of radial and tangential modes Figure 4.6 (c) is the highest among others.

Figure 4.6
Variation of power vs α for (a) A2 = A1 = 1 and B1 = B2 = 0, (b) A2 = A1 = 0 and B1 = B2 = 1,
(c) A2 = A1 = 1 and B1 = 1, B2 = 2
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Variation of Power with Material Constant ε

The power variation with ε is displayed in Figure 4.7 for different values of α . It is seen that the

power increases with the material constant ε in all cases. But it decreases with the micro-rotation

parameter α . The power due to the combination of radial and tangential modes Figure 4.7 (c) is

higher compared to that due to individual radial and tangential modes Figures 4.7 (a), (b).

Figure 4.7
Variation of power vs ε for (a) A2 = A1 = 1 and B1 = B2 = 0 (b) A2 = A1 = 0 and B1 = B2 = 1
(c) A2 = A1 = 1 and B1 = 1, B2 = 2
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Variation of Efficiency with Micro-Rotation Parameter α

The hydrodynamic efficiency η is plotted versus α using (3.107) and (3.102) and the representative

plots are shown in Figure 4.8 (a) for the radial modes, in Figure 4.8 (b) for tangential modes, and

in Figure 4.8 (c) for both together. It can be seen that the efficiency decreases with increasing

α and approaches the Newtonian value as α → 1. Also, the plots show that the efficiency is

greater than the corresponding Newtonian value in all cases considered here. This may indicate

that the spherical squirmer can be efficient in micropolar fluid than in Stokes flow. Thus significant

deviations can be observed in the micropolar fluid due to the presence of micro-rotation (and

rotational viscosity νr).

Figure 4.8
Variation of efficiency vs α for (a) A1=A2= 1 and B1=B2= 0 (b) B1=B2= 1 and A1=A2= 0
(c) B1 = 1, B2 = 2 and A1 = A2 = 1

Variation of η with Material Constant ε

The efficiency plots versus the material constant ε are displayed in Figure 4.9 (a), (b), (c) for

radial, tangential, and sum of the two modes, respectively. The trend is similar to the variations
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predicted for the power. The efficiency increases with increasing ε in all cases. The Newtonian

efficiency can be recovered when α = 1 (the bottom curve in all the cases shown here). This is

the case when the micro-rotation completely vanishes on the boundary of the spherical squirmer.

For α < 1, the efficiency in the micropolar fluid is always greater than that in the Newtonian case.

This is a different behavior compared to that observed in the Figure 4.8. Further, it appears that the

efficiency can be made as large as we please for greater values of ε .

Figure 4.9
Variation of efficiency vs ε for (a) A1=A2= 1 and B1=B2= 0 (b) B1=B2= 1 and A1=A2= 0,
(c) B1 = 1 B2 = 2 and A1 = A2 = 1

4.3 Stokes Flow Dominance and Some Streamline Patterns

One of the surprising results found in the section 3.1 is that the swimming speed in micropolar

fluid is the same as that in Stokes flow. Even though the micropolar fluid parameters appear in the

stream function which provides a basic platform for all calculations, the speed is independent of

these parameters. The cause for this may be understood by analyzing the stream function deeper.
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To this end, we take the stream function solution for the second mode and write in the form

ψ(r,θ) = ψS +ψB, (4.126)

where

ψS =

[
B2

2

(
a2 − a4

r2

)
− A2a2

2
+

3(B2 −A2)ε(1−α)(1+δa)
2Λ2

(
a2 − a4

r2

)]
sin2

θ cosθ ,

ψB =
3(B2 −A2)ε(1−α)

Λ2

[
a2eδ (a−r)

(
1+

3
δ r

+
3

δ 2r2

)
− a4

r2

(
1+

3
δa

+
3

δ 2a2

)]
sin2

θ cosθ .

We point out that the decomposition given in (4.126) is rather new and does not seem to have

been reported earlier. The first term corresponds to the Stokes flow contribution and the second

term is due to the Brinkman flow. Note that the magnitudes of these contributions are different

from the classical Stokes and Brinkman flow fields, but depend on the micropolar fluid parameters.

The numerical values of various contributions are tabulated in Tables 4.1 and 4.2 for certain fixed

parameters. The corresponding stream functions values in the first and second quadrants when the

x-coordinate of the point in the fluid domain is chosen closer the spherical squirmer is given in

Table 4.1. The values for farther x-coordinate locations in the two quadrants are listed in Table

4.2. Comparison of Ψs (Column 5) with the total Ψ (Column 7) values reveal the dominance of

Stokes flow. We observe that the Brinkman contribution (Column 6) is infinitesimally small to the

micropolar fluid flow around the squirmer. Thus, one can say that the Stokes flow contribution

dominates in the fluid domain when a spherical squirmer swims in micropolar fluids.

To illustrate this further we have plotted the flow streamlines corresponding to the second mode

solution (4.126) in Figure 4.10 for some fixed values of the parameters. Stokes flow part is plotted

in Figure 4.10 (a), Brinkman flow in Figure 4.10 (b) and the (total) micropolar fluid flow around the

squirmer is shown in Figure 4.10 (c). It is clear from the plots that the streamlines are very similar

to that in Stokes flow. While the Brinkman part shows a different pattern [17], the dominance of

Stokes flow suppresses its contribution as shown in Figure 4.10 (c). The streamline plots shown

here further supports our argument discussed in the preceding paragraph.

The flow is symmetric in all cases for the second mode as in Figure 4.10. The direction of the flow

is also represented in the figure.
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α = 0.5, νr = 2.32×10,−4 ν = 2.9×10,−3 γ = 10−6

1ST QUADRANT
X Y r θ ψS ψB ψ

1.2 0.6 1.3416 0.4636 0.0428 −2.49×10−04 0.0425
1.2 1 1.5628 0.6947 0.0996 −3.23×10−04 0.0994
1.2 1.4 1.8439 0.8622 0.1424 −2.76×10−04 0.1421
1.2 1.8 2.1633 0.9828 0.1624 −2.05×10−04 0.1622
1.2 2.2 2.506 1.0714 0.1669 −1.47×10−04 0.1667

2nd QUADRANT
X Y r θ ψS ψB ψ

-1.2 0.6 1.3416 2.6779 -0.0428 2.49×10−04 -0.0425
-1.2 1 1.5628 2.4469 -0.0996 3.23×10−04 -0.0994
-1.2 1.4 1.8439 2.2794 -0.1424 2.76×10−04 -0.1421
-1.2 1.8 2.1633 2.1588 -0.1624 2.05×10−04 -0.1622
-1.2 2.2 2.506 2.0701 -0.1669 1.47×10−04 -0.1667

Table 4.1
Stream function values for closer x-coordinate values of a point in the fluid domain

α = 0.5, νr = 2.32×10,−4 ν = 2.9×10,−3 γ = 10−6

1ST QUADRANT
X Y r θ ψS ψB ψ

2.4 0.6 2.4739 0.245 0.0257 −2.33×10−5 0.0257
2.4 1 2.6 0.3948 0.0626 −5.06×10−5 0.0625
2.4 1.4 2.7785 0.5281 0.1027 −7.11×10−5 0.1026
2.4 1.8 3 0.6435 0.1377 −8.01×10−5 0.1376
2.4 2.2 3.2558 0.7419 0.1639 −7.95×10−5 0.1639

2nd QUADRANT
X Y r θ ψS ψB ψ

-2.4 0.6 2.4739 2.8966 -0.0257 2.33×10−5 -0.0257
-2.4 1 2.6 2.7468 -0.0626 5.06×10−5 -0.0625
-2.4 1.4 2.7785 2.6135 -0.1027 7.11×10−5 -0.1026
-2.4 1.8 3 2.4981 -0.1377 8.01×10−5 -0.1376
-2.4 2.2 3.2558 2.3996 -0.1639 7.95×10−5 -0.1639

Table 4.2
Stream function values for farther x-coordinate values of a point in the fluid domain
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Figure 4.10
Streamline plots for α = 0.5, ν = 2.9×10,−4 νr = 2.32×10,−3 γ = 10−6 (a) Stokes Flow (b)
Brinkman Flow (c) Micropolar Flow

4.4 Flow structure for Two-Mode Spherical Squirmer in Micropolar Fluids

The stream function for the two-mode self-propelling spherical squirmer (extracted from (equation

3.1) after substituting U = 2B1
3 − A1

3 along with A1 = 0) is written as

ψ(r,θ) = B1

[(
β

2

(
1+

Γ(1+δa)
2

)(
a2 − a4

r2

)
+βΓ

(
eδ (a−r)

(
1+

3
δ r

+
3

δ 2r2

)
−
(

a2

r2

)(
1+

3
δa

+
3

δ 2a2

)))
sin2(θ) cos(θ)−

(
a3

3r

)
sin2(θ)

]
. (4.127)

where β = B2
B1

, Γ= 3B2(1−α)ε
Λ2

and Λ2 is defined in the section 3.1. We have considered the tangential

modes here and the radial mode analysis can be performed likewise. The self-propelled swimmer

can be classified as a pusher β = −1, a neutral squirmer β = 0 and puller β = 1, and as in [17].

The streamline patterns for these classes of squirmers in micropolar fluid are depicted in Figure
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4.11 (a), (b), (c), respectively. The flow patters are very similar to the Stokes type flows [17]. This

again supports the conclusion that the Stokes flow is dominant for a squirmer in micropolar fluid.

Figure 4.11
Swimming motion of the squirmer α = 0.5, ν = 2.9× 10,−4 νr = 2.32× 10,−3 γ = 10−6 (a)
Pusher (b) Neutral (c) Puller

The micro-rotation equation for 2-mode free squirmer (extracted from equation (3.62)) is

Ω(r,θ) =−3(B2 −A2)

2

(
1+

3(1−α)ε(1+δa)
Λ2

)(
a2

r3

)
sinθ cosθ

+
3(B2 −A2)(1−α)ε

Λ2

(
1+ ε

2ε

)(
a2

r3 eδ (a−r)(δ 2r2 +3δ r+3)
)

sinθ cosθ . (4.128)

Figure 4.12 illustrates the effect of micro-rotation due to the the spherical squirmer in micropolar

fluid for various values of the rotational viscosity νr with α = 0.5. Both radial and tangential

modes are considered in this case. The micro-rotation contour plots shown in Figure 4.12 (a), (b),

(c) indicate that the contour lines remain similar for different νr values. There is a quadrupolar
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Figure 4.12
Micro-rotation distribution around the surface of the squirmer for α = 0.5, ν = 2.9×10,−4 γ =
10−6 (a) νr = 2.32×100 (b) νr = 2.32×10−5 (c) νr = 2.32×10−10

structure in all cases with a slight distributional change (not shown here) observed in the patterns

values. Effects of the other micropolar fluid parameters can be analyzed in an analogous manner,

but we will not present those results here.
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CHAPTER V: SUMMARY AND CONCLUSION

The mathematical problem modeling a spherical squirmer in a micropolar fluid is treated with non-

uniform surface velocity boundary conditions. Closed form analytical solutions are obtained by

solving the sixth-order boundary value problem (BVP) for the stream function describing axisym-

metric flows. The exact solutions of the BVP are then used to obtain expressions for the velocity,

micro-rotation, pressure and stress fields. The swimming speed is calculated using the force-free

condition and the power is determined via integrating the product of velocity and stresses on the

spherical boundary. Our theoretical results show that the swimming velocity (speed) is independent

of the micropolar fluid parameters- a surprising and interesting result.

The following specific conclusions can be drawn from our mathematical calculations for the squirm-

ing sphere in micropolar fluids based on our calculations in this thesis

• The stream function depends on all the micropolar fluid parameters modeling the axisym-

metric flow around the spherical swimmer.

• The swimming speed for a spherical squirmer in micropolar fluids is the same as that in 

Newtonian fluids.

• The velocity, pressure, micro-rotation, stress components, power and efficiency depend on 

the material constants k, γ , ε and the rotational parameter α for the 2-Mode and n-mode 

cases.

• Both the power and efficiency can increase or decrease with respect to the material constant 

ε and the micro-rotational parameter α .

• The spherical squirmer in micropolar fluid can be efficient than in Newtonian fluid for 

certain values of the parameters ε and α .

• Our theoretical solutions exactly reproduce the corresponding Newtonian results in Stokes 

flow in the limit of vanishing k (one of the key parameter characterizing micropolar fluid).
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• Overall, the swimming characteristics can be adjusted based on the practical values of the

parameters associated with the micropolar fluid.

The theoretical results for a squirming problem presented in this thesis are compact and can be

implemented in practice with ease. We believe that our results can be utilized for a better un-

derstanding of various swimming mechanisms in media that depart from the classical Newtonian

fluid. The generalization of the present model to include non-spherical geometrical shapes of the

microorganisms is possible with appropriate modifications. The analysis of such general models

and mathematical formulations can be relatively more challenging and will be the topics for future

research.
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APPENDIX A: Recurrence Relation for the Modified Spherical Bessel Functions of the Third

Kind

The recurrence relations are provided for the Modified Spherical Bessel Functions of the third kind

of order n, where n ∈ Z as in [1]

K−n− 1
2
(δ ) = Kn+ 1

2
(δ ) (A-1)

Kn+ 1
2
(δ ) = Kn+ 5

2
(δ )−

2(n+ 3
2)

δ
Kn+ 3

2
(δ ) (A-2)

Kn+ 1
2
(δ ) = Kn− 3

2
(δ )+

2(n− 1
2)

δ
Kn− 1

2
(δ ) (A-3)

Kn+ 1
2
(δ ) =

δ

2n+1

(
Kn+ 3

2
(δ )−Kn− 1

2
(δ )
)

(A-4)

The following are the differentiation identities as given in [1]

dKn+ 1
2
(δ )

dδ
=−1

2

(
Kn+ 3

2
(δ )+Kn− 1

2
(δ )
)

(A-5)

dKn+ 1
2
(δ )

dδ
=−Kn− 1

2
(δ )−

(
n+ 1

2

)
δ

Kn+ 1
2
(δ ) (A-6)

=

(
n+ 1

2

)
δ

Kn+ 1
2
(δ )−Kn+ 3

2
(δ ) (A-7)

dK0(δ )

dδ
=−K1(δ ) (A-8)

The Functions Kn+ 1
2
(δ ) for n = 0,1,2 referred from [1]

Km+ 1
2
(δ ) = K−m− 1

2
(δ ) (A-9)

K1
2
=

√
π

2δ
e−δ (A-10)

K3
2
=

√
π

2δ
e−δ

(
1+

1
δ

)
(A-11)

K5
2
=

√
π

2δ
e−δ

(
1+

3
δ
+

3
δ 2

)
(A-12)
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APPENDIX B: Certain Properties of the Associated Legendre Functions

The following are orthogonal properties of the Associated Legendre functions in terms of polar

angle θ over [0,π] as in [1]

∫
π

0
Pm

n (cosθ)Pm
l (cosθ)sinθ dθ = 0 (l ̸= n) (B-1)

∫
π

0
Pm

n (cosθ)Pl
n(cosθ)cscθ dθ = 0 (l ̸= m) (B-2)

The following is the differentiation identity as in [1]

− 1
sinθ

d
dθ

(
sinθP1

n (cosθ)
)
= n(n+1)Pn(cosθ) (B-3)

The following are the integral identities as in [1]

∫
π

0
sinθ(Pn(cosθ))2dθ =

2
2n+1

(B-4)

∫
π

0
sinθ(P1

n (cosθ))2dθ =
2n(n+1)

2n+1
(B-5)
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