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ABSTRACT  

 

This study uses a small Unmanned Aircraft System (sUAS) equipped with a multispectral 

sensor to assess various Vegetation Indices (VIs) for their potential to monitor iron chlorosis levels 

in a grain sorghum crop. Iron chlorosis is a nutritional disorder that affects numerous varieties of 

crops and plants that are grown on high-pH, calcareous soils and greatly affects crop yield. The 

objective of this project is to find the best Vegetation Index (VI) to detect and monitor iron 

chlorosis. 

A series of flights were completed over the course of the growing season and processed 

using Structure-from-Motion (SfM) photogrammetry to create orthorectified, multispectral 

reflectance maps in the red, green, red-edge, and near-infrared wavelengths. A series of ground 

data collection methods were used to analyze stress and chlorophyll levels and grain yield, 

correlating them to sUAS-acquired four-band multispectral imagery covering the area of interest 

for ground control and precise crop examination. 

25 Vegetation Indices (VIs) were calculated using the collected reflectance maps and soil-

removed reflectance maps (a supervised classification was used to remove soil via a binary 

classification). The separability for each VI was then calculated using a two-class distance 

measure, determining which contained the largest separation between the pixels representing iron 

chlorosis and healthy vegetation. The field-acquired levels of iron chlorosis were used to conclude 

which VIs achieved the best results for the dataset as a whole and at each level of chlorosis (low, 

moderate and severe). It was concluded that the MERIS Terrestrial Chlorophyll (MTCI), 

Normalized Difference Red Edge (NDRE), and Normalized Green (NG) indices achieved the 

highest amount of separation between the iron chlorotic and healthy plant populations, with the 
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NG being the most popular for both soil-included and soil-removed VIs, with soil-removed VIs 

reaching higher levels of separability.  
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CHAPTER I 

1.1 Introduction 

There are over 7 billion people in this world, and with a global population projected only 

to increase, cultivated lands are shrinking while urban areas are rapidly expanding. As a result, it 

is vital for food producers to maximize their crop yields. In order for this to happen, a system must 

be constructed to manage each of these fields according to their individual needs (Seelan, et al. 

2003). Consequentially, farming has become a form of science, utilizing technology to its 

advantage to increase both productivity and profitability by improving growth (Mulla 2013), 

decreasing wastefulness concerning pesticides and plant nutritional sprays, and therefore 

improving the environment. This method of crop production, called precision agriculture, 

considers soil types, crop types, spatial variability of the plants, weeds, pests, and many other 

conditions in order to determine the most effective processes to achieve the best product (Vega, et 

al. 2015). It is important, throughout the crops growing season, to closely monitor the plants 

growth, health, and development, especially because growing time is limited (Duan, et al. 2017). 

This, in many cases, requires information about crop conditions to be collected frequently and at 

regular intervals throughout the growing season, at high resolution. Often, easily accessible data 

is collected at lower resolution, and irregularly which causes problems. Therefore, these methods 

need to be cost efficient in order for these farmers to have the ability to pay for quality services 

and still maximize profits (Seelan, et al. 2003).  

Precision agriculture allows the integration of modern technologies to monitor and 

remotely manage crops. Monitoring crops can be done using remote sensing methods and can 

include satellite-based data, unmanned aircraft systems (UASs), global navigation satellite systems 

(GNSS), and light detection and ranging (LIDAR). Additional recording and analyzation can be 
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completed with geographic information systems (GIS), plant sensors, yield monitoring 

instruments, and pest sensors (Seelan, et al. 2003). The acquisition of crop data via aerial 

instruments has been traditionally completed with satellite imagery and imagery collected from 

manned aircrafts. However, it has been found that remotely sensed images from these platforms 

are generally low-resolution, and have a long delivery time of their products (Herwitz, et al. 

2004).They are also extremely expensive, are difficult to plan for data acquisition and in some 

cases are impossible for farmers to acquire (Jannoura, et al. 2014). This is why, in recent years, 

UASs have become a popular platform for obtaining remotely sensed data. Small UASs (sUAS) 

and micro-UASs equipped with digital imaging sensors have become a widespread method for 

monitoring crop development for precision agriculture because of their many positive attributes. 

These systems are manageable (according to the FAA a sUAS is under 55 lbs), cost-efficient, fly 

at low altitudes allowing high resolution to hyperspatial resolution (cm to sub-cm scale) imagery 

to be acquired, are flexible in terms of scheduling flight dates, and can be flown with any necessary 

regularity (Vega, et al. 2015).  

UASs, for many years, were only used for military purposes and it was not until this decade 

that they became readily available for commercial use (Gago, et al. 2015). Similarly, only recently 

have these systems have become popular for use in precision agriculture due to their flexibility, 

high-resolution imagery, and small, lightweight sensors (Baluja, et al. 2012). In the early 2000’s 

only a handful of field experiments were completed to test the quality and the capabilities of UAS 

derived data. One of the first and most impactful experiments was completed by NASA in 2002 

(Herwitz, et al. 2004). The project location for this experiment was in Kauai, Hawaii over one of 

the largest coffee plantations in the nation. Coffee growth is sporadic, making this crop ideal for 

experimentation. The unmanned aerial vehicle (UAV) that was used in this experiment contained 
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a wingspan of 36.3 meters and held a multispectral camera and a color camera. The results of this 

experiment brought the authors to conclude that UAVs equipped with digital and multispectral 

cameras are a good alternative to imagery acquired from traditional platforms (such as satellites 

and aircraft) (Herwitz, et al. 2004). This led to further UAS precision agriculture experimentation 

and also to the development of accuracy standards for these new and innovative remote sensing 

platforms. 

The first experiments completed with UASs eventually led to many projects being 

completed with imaging via sUAS. Vega, et al. (2015) used a sUAS to acquire multispectral 

imagery for monitoring of a sunflower crop in Cordoba, Spain. Using the green (G), red (R), and 

near infrared (NIR) bands the normalised difference vegetation index (NDVI) was calculated and 

was used to successfully detect differences in plant yield and nitrogen content. Rasmussen, et al. 

2015 conducted an experiment using two types of sUAS, a fixed wing and a rotary wing, each 

mounted with a different consumer-grade sensor (one multispectral, one red, green, blue (RGB), 

respectively). The findings of this study showed that sUAS-acquired imaging had the same 

capability as ground-based methods to monitor crop changes and responses to biotic and abiotic 

factors. Jannoura, et al. 2014 used an sUAS (hexacoptor) to collect RGB imagery to prove that 

true colour images could be used to calculate VIs to monitor crops. Lastly, Stanton, et al. (2017) 

used a fixed-wing sUAS to collect multispectral imagery to estimate the amount of damage on a 

sorghum crop caused by the invasive sugar cane aphid. The NDVI was used to detect plant stress 

due to aphid feeding injury to the foliage. 

sUASs for precision agriculture has many usages. A wide variety of remotely sensed data 

can be collected and these data can help plan irrigation, water management, detect insect 

infestation problems and weed infiltration, and determine plant stress by carrying out small scale 



 

 

4 

 

photogrammetric surveys using RGB and/or 4-band multispectral imaging (Whitehead, et al. 

2015). Traditionally, surveys by means of photogrammetry are completed using large, metric 

cameras flown at a high altitude on a manned aircraft. Careful planning must be completed before 

the flight is conducted to ensure adequate side-lap and end-lap of every photograph. The imagery 

then undergoes a succession of corrections and transformations based on the orientation in the x-, 

y-, and z-directions of both the platform and of the camera at each instance that a photograph was 

taken, and the positional information, x, y, and z global coordinates (most platforms contain a 

GNSS receiver onboard for direct georeferencing) (Xiang, et al. 2011). After the images are 

collected key points from the overlapping images are identified and a least-squares bundle block 

adjustment is computed to reconstruct the camera position and orientation at each instance every 

photograph was taken. At this point the ground control points (GCPs) (which are established before 

the survey) are applied at this point for positional purposes. Then, matching points are validated 

and unknown parameters are calculated to densify the point cloud. The images are rectified, 

leading to the interpolation of a Digital Surface Model (DSM) and/or an image orthomosaic 

(Toutin, et al. 2004; Stanton, et al. 2017). Sugiura et.al. (2005) completed a project in 2004 testing 

a UASs ability to create a small-scale photogrammetric orthomosaic. Although the data was 

collected using a sUAS, all of the imagery was corrected using traditional photogrammetric 

reconstruction methods (Sugiura, Noguchi and Kazunobu 2005). Since then a new form of image 

processing has been introduced: Structure-from-Motion (SfM) photogrammetry coupled with 

dense matching using multi-view stereo (MVS) algorithms (Whitehead, et al. 2015). SfM/MVS 

photogrammetry (simply called SfM here) enables overlapping image sequences to be processed 

into dense three-dimensional (3D) point cloud data, which are then converted into reflectance 

maps. 
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SfM photogrammetry has replaced traditional photogrammetric methods in terms of 

processing UAS-acquired imagery because of its automation, efficiency, and ability to generate 

3D point cloud data from consumer-grade, non-metric cameras typically equipped to sUAS 

(Stanton, et al. 2017). This method also has the ability to automatically calibrate camera internals 

and simultaneously solve for camera position and orientation (pose) at each image capture. This 

allows less user involvement, the extraction of more points, and increasing accuracy (Bakker and 

Lane 2017). This is possible due to an automatic feature-matching algorithm that is embedded in 

SfM software. Identification of key points and features allows the software to solve the camera 

location and position at the time each photograph was taken (Westoby, et al. 2012). One key 

difference between SfM and traditional photogrammetry is the use of GCPs. With traditional 

photogrammetry, a series of GCPs serve as tie points and are essential to stitch together adjacent 

imagery after necessary corrections are completed. SfM does not need GCPs to create an 

orthomosaic and instead uses a mass bundle adjustment that uses every recognized point that is 

redundantly captured from image-to-image (Snavely, et al. 2008). Therefore, GCPs are only 

optional when conducting SfM photogrammetry. However, just because they are optional does not 

mean that they are not useful. GCPs can serve as helpful reference points and are often necessary 

for high accuracy georeferencing of UAS-SfM derived data products (Bakker, et al. 2017; Stanton, 

et al. 2017).  

Accurately georeferenced 3D point cloud data output from SfM photogrammetry can be 

used for a variety of precise mapping applications including the generation of digital surface 

models (DSMs) for topographic modeling, measuring canopy height, and deriving orthomosaics 

for plainmetric mapping (Westoby, et al. 2012). Because of its wide array of uses, UAS-SfM 
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derived data is becoming more widely adopted into the professional surveying, engineering, and 

GIS world. 

The number of UAS studies in literature aimed at detecting and monitoring plant stress has 

been increasingly growing in recent years (Gago, et al. 2015; Stanton, et al. 2017; Duan, et al. 

2017). Various SfM photogrammetry trials on crops have been conducted using both RGB true 

color digital cameras and multispectral digital sensors that measure both visible and near-infrared 

wavelength bands of reflected sunlight energy (Mulla, et al. 2013; Vega, et al. 2015; Rasmussen, 

et al. 2015; Jannoura, et al. 2014). True color and color-infrared bands collected from digital 

imaging sensors are ideal for producing measurable information about plant status with spatial 

changeability (Jannoura, et al. 2014). 

Plant health is detectable by airborne sensors because of the plant’s reflectivity and 

absorption of electro-magnetic (EM) radiation. The pigmentation of the plants controls this 

reflectivity and absorption, creating incident radiation depending on the plant size, orientation, and 

color. Plant pigment heavily relies on the amount of chlorophyll, which intensely absorbs radiation 

within the visible spectrum (Mulla 2013). When a plant is stressed chlorophyll production declines, 

increasing the reflectance of wavelengths in the visible spectrum, including those in the red bands 

(Alves, Macrae and Koch 2015). 
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Figure 1: Reflectance of green vegetation in visible to near-infrared portion of the EM spectrum 

(Sequoia Data Sheet 2017; Mutanga, et al. 2004; Ramoelo, et al. 2012). 

Plant health and heterogeneity can be quantitatively and qualitatively measured by means 

of calculating a series of remotely sensed vegetation indices (VIs), a common way of extracting 

crop information from multispectral digital imagery. This is completed through a series of image 

band calculations (Rasmussen, et al. 2015). The most common calculation performed is related to 

crop status such as leaf area index (LAI), canopy cover, biomass, and chlorophyll content in cereals 

(Hansen, et al. 2003) and determines vegetation wellbeing, or ‘greenness’. This index is called the 

normalized difference vegetation index (NDVI) (Mulla 2013), and is calculated using the sensor’s 

red band (R), which registers the absorption of red wavelengths due to chlorophyll concentration 

(Sripada, et al. 2008). Lower brightness values in the R channel implies higher absorption from 

the plant implying that chlorophyll content is also higher. The sensor’s near-infrared (NIR) band 

registers the reflection of scattering NIR wavelengths by the plants and other captured land features 

(Mutanga, et al. 2004). The NIR channel can be useful in determining plant stress due to a higher 

reflection in plants containing more chlorophyll and vice versa (Sripada, et al. 2008; Mutanga, et 

al. 2004). The reflectance of visible light essentially relies on the amount of chlorophyll that is 
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contained in the leaves of a plant. This is why visible light reflects differently on a green leaf versus 

a yellow leaf, although the NIR wavelengths could stay the same for both (Rasmussen, et al. 2015) 

as shown in Figure 1. The NDVI ratio is computed using the following formula:  

NDVI =
NIR−R

NIR+R
   (1) 

where R and NIR are either the digital number (DN) values for pixels from the red and near-

infrared bands of a multispectral imaging sensor  (Vega, et al. 2015) or the reflectance values, 

which are normalized values to which a series of corrections are applied (such as target reflectance, 

sun zenith angle, atmospheric conditions) to produce a more realistic value (Guyot, et al. 1994). 

The result of this equation is a number ranging between -1.0 and 1.0,with values closer to -1.0 

representing features such as soil, dirt, rocks, or vegetation that is essentially dead or dying and 

values closer to 1.0 suggest more green, healthy vegetation among other things (Sabins, et al. 

2007). Jannoura, et al. 2014 gives a good example of how true color photographs can be used to 

determine and monitor plant status as well. Within their study, the normalized green-red difference 

index (NGRDI) is calculated using the green (G) and red (R) image bands via the following 

formula: 

NRGDI =
G−R

G+R
   (2) 

with G and R representing the digital values of each bands’ respective pixels. This equation 

accounts for the absorption of red wavelengths and the reflectance of green wavelengths by a plant 

that contains high amounts of chlorophyll and vice versa. The result, much like the NDVI, is a 

number between -1.0 and 1.0, with values near -1.0 suggesting a soil, dirt, and unhealthy vegetation 

and values near 1.0 suggesting healthy vegetation. The results from this study showed that NRGDI 

is a good alternative method when only RGB imagery is available and suggests that RGB imagery 
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can certainly work in a less detailed project or as a data check when both RGB and NIR bands are 

collected. 

 Furthermore, the red-edge (RE) band provides useful information about vegetation. This 

very narrow band captures the edge of reflectance at the area of change between spectral absorption 

in the R and scattering in the NIR region Figure 1 (Mutanga, et al. 2004, Ramoelo, et al. 2012). 

VIs computed using the RE band (called narrow band indices) are said to have improved estimates 

of chlorophyll concentrations compared to traditional broad-band indices (such as indices using 

NIR) (Ramoelo, et al. 2012) due to their short spectrum range. This band has the ability to replace 

NIR in common VIs such as the NDVI to create the NDVI RE equation, stated as follows:  

NDVI RE =
RE − R

RE + R
  (3) 

This provides more acute information concerning plant health because of the usage of a narrow 

band. Broad bands, on the other hand, provide information from a wider range of spectrums, 

resulting in a loss of critical plant health information due to the averaging of spectral data (Hansen, 

et al. 2003). 

 Stress in crops can be due to a wide variety of problems. For example, if plants are not 

receiving enough water or too much water, it will result in the yellowing of their leaves. A major 

nutritional problem in numerous crops is the lack of iron due to crops planted in calcareous and 

sandy soils located mostly in arid and semi-arid climates (Prasad 2003). This iron deficiency, or 

iron chlorosis, greatly affects the growth, yield, and lifespan of any plant that is chlorotic (Abadia, 

et al. 2011). It is important that this problem is caught early in the growing season to sufficiently 

treat the affected plants. This is done by providing nutritional supplements to the chlorotic plants, 

either to the soil or directly to the leaves, early in the growing season. If the plants are not 

sufficiently treated, the plants will be underdeveloped and little to no yield will be produced 
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(pictured in Figure 2) (Karagiannidis, et al. 2008).  Iron chlorosis affects a multitude of crops 

including grape plantations (vineyards), fruit trees, peanuts, sorghum, and various types of 

vegetables. Some crops however, are tolerant to this nutritional disease. These crops include maize 

(corn), alfalfa, cotton, oats, rice, and barley (Behboudian, et al. 2003). Some particular plant 

species and genotypes have varied abilities to absorb iron from even calcareous and high-pH soils. 

These iron chlorosis tolerant plants contain proteins that are produced when soil iron levels are 

low, providing them the nutrition that they need. Other crop varieties do not have this special 

ability in iron-deprived soils, leading them to nutrient deprivation (Prasad 2003). The lack of iron 

in these crops reduces the appropriate amount of energy needed for proper growth, therefore 

decreasing the production of chlorophyll in the plants (Karagiannidis, et al. 2008). This then leads 

to the slowing of cell division within the foliage, making new leaves appear small and sickly 

(Behboudian, et al. 2003). As a result, the bottom leaves of the plant to look healthier and, as the 

plant grows, it will become additionally nutrient deprived. This will cause the plant to gradually 

yellow towards the top, appearing at different levels of severity. This is one visual symptom of an 

iron deficiency of the plant and is a good indicator of iron chlorosis. New leaves will typically 

contain dark green veins that are clearly presented against the yellowing leaf, unless the plant is 

Figure 2: An underdeveloped grain sorghum 

plant with severe iron chlorosis (Trostle 

2013). 
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so nutrient deprived that the leaves are a light yellow and dry, containing little to no chlorophyll 

(Prasad 2003).  

 As mentioned above, sorghum is listed as a crop that is susceptible to iron chlorosis, 

meaning that in many cases, individual plants or groups of plants must be treated. According to 

Prasad et.al. 2003, iron deficiency in sorghum crops could mean that 25% or more of the total yield 

could be lost due to underproduction of plant leaves, stems and roots. The iron deficiency causes 

uneven flowering, delays for readiness during harvest time, uneven pollination, and effects midge 

spraying. This is all made even more difficult because iron chlorosis does not have a pattern within 

a crop. Rather, it occurs in random places, where either a plant or groups of plants cannot get 

enough iron nutrition and may be more effective on some sorghum hybrids and less effective on 

others (Prasad 2003).  

There are three levels of visual iron chlorosis as listed by Livingston, et.al. 1992. The first 

of these, stated as ‘mild chlorosis’ does not affect the plants’ yield and causes delayed flowering 

by only two to three days. The leaves, instead of being a uniform green, are slightly striped with a 

yellowish-green and green hue, as displayed in Figure 4. The second state of chlorosis, or 

‘moderate chlorosis’, contains yellow and green striped leaves. The chlorotic plants are scattered 

throughout the crop and the plants will yield less grain and irregular midge control will commence 

if treatment is not provided early enough in the growing season. The worst level of damage, ‘severe 

chlorosis’, is almost untreatable by the time it is detected. The leaves of the plants affected appear 

yellow-white in color, are thin, and the stems of the plant are fragile. These plants will not grow 

to a great height, and will probably not flower or provide grain. If they are treated early enough 

they can survive, but they will flower late and are more susceptible to midge damage (Livingston, 

et al. 1992). The level of chlorosis occurring in a plant could also appear to be ‘in-between’ these 
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stated ranks, as will be found in this study. Figure 3 displays a leaf with moderate to severe levels 

of iron chlorosis because of the low amounts of chlorophyll, yet slightly detectable green veins. 

 In addition to direct effects on the plants productivity, it is important that sorghum crops 

grow uniformly and all flowers at the same time for several management reasons. If flowers are 

delayed and miss pesticide spraying, they will most likely be affected by sorghum midge. The 

sorghum midge is a widespread damaging insect on sorghum crops in the state of Texas. One full 

generation lives from 14 to 16 days, and as the plants grow, the number of these pests rapidly 

increases. Once the sorghum has come to flower, the damage intensifies as the larva feeds on what 

will develop to be the grain kernel (Cronholm, et al. 2007). To prevent this pest from desolating 

the grain produced by sorghum crops, the plants must be treated regularly, meaning it is essential 

for them to grow homogeneously. To do this, the problem of iron chlorosis must first be identified 

and then treated.  

 Iron chlorosis is a major nutritional ailment that effects many types of crops, no it is 

important to develop a quick and effective way to identify affected plants early (Abadia, et al. 

Figure 4: An example of 

mild iron chlorosis 

(Scanlan 2015) 

Figure 3: An example of 

moderate/severe iron 

chlorosis (McClure n.d.) 
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2011). Iron deficiencies are mostly detected visually, by noticing veining in the leaves, by 

sampling the plants’ roots, and by testing the plants’ leaves (Abadia, et al. 2011). The methods that 

are most commonly used to detect and measure the disorder however, are “completely visual and 

labor intensive” (Naik, et al. 2017). It is therefore important for a method to be developed to not 

only reduce labor, but also provide more accurate and quantitative data. Although there is plently 

of general information about iron chlorosis in grain sorghum ( Abadia, et al. 2011; Behboudian, 

Pickering and Dayan 2003; Livingston, Coffman and Unruh 1992) no studies could be found that 

utilzies sUAS to detect iron chlorosis. However, some studies have focused on finding the disorder 

in other crops.  

 sUAS’s are now popular for crop monitoring and precision agriculture, but not many 

studies have explored their usage on iron chlorosis in crops, especially where grain sorghum is 

concerned. Naik, et al. (2017) used an unmounted RGB digital camera to classify different levels 

of stress due to iron chlorosis in a soybean crop through heirarchical classification models. 

Meggio, et al. 2010 used hyperspectral imagery via manned aerial vehicle to calculate a series of 

VIs for detecting iron chlorosis in a yineyard. It was concluded that this type of imagery is useful 

in determining plants with iron chlorosis. As stated above, this disorder is popular in many types 

of plants and is causing farmers a loss of yield. Finding the best way to idenify the problem will 

benefit farmers and consumers alike. 

1.2 Study Purpose and Objectives 

 The purpose of this study is to use a small UAS equipped with a four-band digital imaging   

sensor to survey and assess a small plot sorghum field to discover and monitor areas of plant stress 

due to iron chlorosis. The plants with iron chlorosis will be further assessed into different levels 

of chlorosis (mild, moderate and severe) to understand the spectral differences between them. 
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Using the ground collected data, correlations to the multispectral imagery will be made and used 

as field control to locate specific areas of iron chlorosis and its level and correlate yield data. A 

series of 25 vegetation indices will be calculated to assess the health of the crops and the 

separability of each VI will be computed to determine which best separates plants with iron 

chlorosis and healthy vegetation. 

This study lays out the following objectives: 

• Use sUAS-acquired multispectral data to derive 25 VIs for determining which is the most 

effective in defining iron chlorosis. 

• Successfully remove background noise from the multispectral data for more precise 

derivation of VIs 

•  Calculate the separability of each VI to identify which perform best in separating pixels 

representing iron chlorosis, levels of chlorosis, and healthy vegetation. 

• Determine if extracting canopy from the multispectral data was useful and provided better 

results and/or higher separability measures 
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CHAPTER II: STUDY AREA AND DATA SETS 

2.1 Project Location 

 The field site was at Texas A&M AgriLife Research Center located in Corpus Christi, 

Texas (see Figures 5 and 6) and all data were collected during the 2017 agricultural growing 

season. The center contains many cultivated fields, planted with a variety of crops, which host 

numerous research experiments. The field used for this experiment contained 80 four-row plots 

planted with various sorghum hybrid plants. A total of 10 hybrids were planted, making a total of 

8 plots of each planted hybrid. One-half of each hybrid type was also treated with insecticide, 

meaning 4 plots of each hybrid were treated, leaving the other 4 untreated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Location of AgriLife Research and Extension Center, Corpus Christi, TX. 
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Figure 6: Location of sorghum study 

plot at AgriLife. 



 

 

17 

 

2.2 UAS Data Collection 

A sUAS was flown over Texas A&M AgriLife’s agricultural fields, including the sorghum 

field of this study, over the course of the 2017 growing season. The flights were performed once a 

week over the course of 12 weeks, making a total of 12 flights. The UAS used in this study was a 

small, fixed-wing drone called an eBee SQ (senseFly, Cheseaux-sur-Lusanne, Switzerland), 

pictured in Figure 7. This sUAS is about 0.71 kg (1.56 lbs), contains a wingspan of 96 cm, has an 

average flight time of 45 minutes, can cover 10 km2 (3.9 mi2) with one battery charge (senseFly 

Ltd 2014).  

The eBee also comes equipped with a Parrot Sequoia multispectral sensor (Parrot, Paris, 

France), pictured in Figure 8. According to senseFly Ltd 2018 the sensor is the “smallest, lightest 

multispectral sensor ever released,” weighing only 72 g (2.5 oz), a height of 59 mm, width of 41 

mm and thickness of 29.5 mm. It also contains four 1.2 MP monochrome sensors with focal lengths 

of 3.95 mm (used to collect red, red-edge, green, and near-infrared wavelengths) and a 16 MP 

RGB sensor with a focal length of 4.88 mm (Sequoia Frequently Asked Questions n.d.; senseFly 

Ltd 2014). The four monochrome collect data in the green, red, red-edge, and near-infrared bandsat 

the central frequency of each wavelength (See Table 1 for details). The ground sample distance 

(GSD) per pixel of the Sequoia is 11 cm/pixel at 120m (400 ft) above ground and can get down to 

2 cm (0.8 in) (Sequoia Frequently Asked Questions n.d.; senseFly Ltd 2014).  

 

Table 1: A display of channels the Parrot Sequoia sensor records. The Recorded Frequency is the 

frequency recorded in each channel, which is the center of each channel. 

Band Band Widths (nm) Recorded Frequency (nm) 

Green 530-570 550 

Red 640-680 660 

Red-Edge 730-740 735 

Near-Infrared 770-810 790 
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A sunshine sensor is also included along with the multispectral sensor weighing 35 g and 

having height, width, and depth dimensions of 47 mm, 39.6 mm and 18.5 mm, respectively. This 

sensor is used to radiometrically calibrate the images based on that days’ sunlight (the sensor faces 

upwards, towards the sun) to produce radiometrically correct reflectance maps. It is also equipped 

with a GPS/GNSS module and an intertial measurement componant for use to loosly track the 

location of the UAS at each location of each image capture. (Parrot Drones SAS 2018)   

A preprogramming software is included with the packaging to help preplan flights, select 

up to 50 waypoints (georeferenced points) for navigation and use with the GNSS for image 

geotagging, and set flight actions (such as take-off, turns, overlap, sidelap, landing, etc.). Since the 

eBee is equipped with navigation, the use of GCPs is not needed. However, the accuracy without 

GCPs is 1 to 5 m horizontally and 2 to 5 m vertically. With GCPs the accuracy gets down to 4 cm 

horizontally and 7 m vertically due to the inaccuracy of the single-frequency, non-differential 

GNSS receiver on board the UAS. (senseFly Ltd 2014) 

Flight data was collected once a week with the eBee SQ for 12 weeks throughout the 

duration of the growing season over the entire AgriLife planting area. The drone was flown, on 

average, at 210 feet above the ground and the imagery contained 80% sidelap and 60% endlap 

(Flight details are included in Table 2). These images were later cropped for better analysis of 

the small sorghum plot (see imagery in Appendix A). 
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Table 2: This table includes information about data collection, including flight dates, the ground 

sample distance (GSD) of each flight, and what field collection was completed on which date. 

Date sUAS GSD (cm/pxl) Field Data Collection 

05/05/17 eBee SQ 7.85  - 

05/12/17 eBee SQ 7.38  - 

05/17/17 eBee SQ 7.38  - 

05/2317 eBee SQ 7.41  - 

05/31/17 eBee SQ 7.57  - 

06/08/17 eBee SQ 7.13  - 

06/13/17 eBee SQ 6.83  - 

06/22/17 eBee SQ 6.78  Flagged areas of chlorosis 

06/23/17 None None GPS and chlorosis ‘Level’ 

06/28/17 eBee SQ 6.83 SPAD measurements  

07/06/17 eBee SQ 6.52  - 

07/15/17 eBee SQ 6.98 - 

7/19/17 None None Collected yield samples and put to dry 

07/27/17 eBee SQ 6.67  Thrashed and weighed grain 

 

  

Figure 7: An image of the Parrot Sequoia 4-

band multispectral sensor. The Sequoia has 

four 1.2 MP monochrome sensors, 

capturing in the red, green, red-edge, and 

near-infrared spectral bands, as well as a 16 

MP RGB camera (senseFly Ltd 2018). 

Figure 8: An image of the eBee SQ agriculture, 

fixed-wing platform (senseFly Ltd 2018) used 

to capture data about the agricultural fields in 

this study. 
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2.2.1 UAS Accessories 

A series of GCPs were laid out over the entire field area for high accuracy georeferencing 

of the UAS imagery and to ensure the “ground truth” field data on chlorosis levels and yield co-

align accurately to the UAS imagery. The GCPs consisted of 1.5 ft by 1.5 ft cement targets painted 

black and white. The pattern painted on the targets is displayed in Figure 9 with a 6” gap between 

black triangles, and a 2.5” diameter center circle. After the targets were set they were 

georeferenced to get an accurate result.  A total of 26 GCPs were laid out over the entire AgriLife 

field (Figure 11 shows an example for flight date of May 5, 2017), 5 of which were over the 

sorghum plot alone, displayed in Figure 10 (the field in which this study is located). They served 

as known, stable points that aided when the stitching process began. Without these points, the 

positional accuracy of the derived UAS image products would be roughly geotagged at 1 to 5 

meters or even worse. Constraining the SfM aerotriangulation using geodetically surveyed GCPs 

during the SfM processing allows high accuracy of the created geospatial data products for further 

GIS analysis.  

1
.5

’

1.5’

Figure 9: An example of what the GCP targets looked like. Each target was a 1.5' by 1.5' 

cement block, painted with a black and white pattern, with a 2.5" black dot in the center, 

used for georeferencing. 
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Figure 10: A display of the lower sorghum plot on a 4-band false color reflectance map. The 

GCP target locations are displayed as white dots, which represent the location of the targets. 
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Immediately before or after a flight was completed, a radiometric calibration target was 

used to calibrate and correct the reflectance on the images. On any given day, lighting, the direction 

of the sun, position of the sensor, cloud coverage, and other factors will affect the imagery that is 

Figure 11: A display of the location of the GCPs laid out for flights over a 4-band false color 

reflectance map of data collected on May 5, 2017. The targets are represented by white dots, 

which are displayed large for visualization. 
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taken. These targets contain a white balance card that gives the reflectance properties of the bands 

registered by the sensor (in this case the bands are G, R, RE, and NIR) (MicaSense 2017). These 

‘reflectance properties’ are used to convert the imagery to true reflectance values of a surface in 

the SfM photogrammetry process. Collecting the data for radiometric calibration involves taking 

a series of images of the calibration target (white balance card) and they are applied in the 

processing of the imagery. The software provided with the sUAS can automatically detect the 

calibration imagery or it can be input manually by the user (Pix4D Support 2011-2018). 

2.3 Field Data Collection 

 During the course of this study, ground truth data were collected for the purpose of data 

redundancy and data correlation with iron chlorosis. This was completed through means of plant 

observations and consisted of data that was physically analyzed and associated with iron chlorosis. 

Physical analysis involved observing the plants and assessing the percentage of iron deficiency 

(measured by yellowness), using a SPAD chlorophyll meter (SPAD-502 DL Plus, Konica Minolta 

Sensing Inc., Osaka, Japan), and measuring grain yield. The dates each type of collection occurred 

are listed in Table 2. 

Before any of these data were collected, the areas that were to be analyzed were marked 

with flags and georeferenced to locate individual and groups of plants on the remotely sensed 

imagery. Areas of iron chlorotic plants within the rows were chosen at random and marked with 

flags at two plants signifying endpoints and a midpoint plant. These lines of sorghum foliage were 

then georeferenced using an Altus GNSS receiver connected to a networked real time kinematic 

(RTK) network using virtual reference stations (VRS) broadcast corrections, at 5 second epochs 

which provide horizontal accuracy estimations of 45 mm (Cannon 2016). The program on the data 

collector that connects to the GPS unit contains a draw function that has the ability to draw lines 
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and polygons ‘on the fly.’ This shortcut was used to draw short lines of plants and also included 

the endpoint and midpoint plants (stored as points) within those lines. 

The iron chlorotic plants, or ‘yellow’ plants, were compaired to common, healthy plants 

(no visual signs of chlorosis), for color and reflectance comparison. Sections of healthy “green” 

plants were selected at random in locations near every georeferenced area of iron chlorosis for the 

comparison. These too were flagged and georeferenced to ensure that that there is a ‘greenness’ 

regulator to observe through the UAS imagery data.  

2.3.1 Level of Chlorosis 

Yellowness was observed and marked for each designated area on a high, medium, and 

low scale based on plant health. This scale reflects the different states of chlorosis that are visually 

variant on a plant. Healthy, normal plants with zero stress are used as control and are marked with 

‘no chlorosis.’ ‘Mild chlorosis’ is visually observed on plants as mild striping of the leaves, 

‘moderate chlorosis’ is a display of clearly green-and-yellow striped leaves, and ‘severe chlorosis’ 

is seen evidently with yellow or even yellow-white leaves. (Livingston, Coffman and Unruh 1992; 

Prasad 2003). 

A total of 13 segments of healthy vegetation were georeferenced. The areas of iron 

chlorosis are made up of 5 segments of severe chlorosis, 6 segments of moderate chlorosis, and 4 

segments of mild chlorosis, making a total of 15 segments. The locations of these areas are shown 

in Figure 12, where each color represents a different level of iron chlorosis, and healthy vegetation 

(the imagery used is a 4-band reflectance map of the field for the flight date closest to the chlorosis 

data collection). 
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2.3.2 SPAD Chlorophyll Meter 

 The relative levels of chlorophyll within a plants’ tissues can be indicated using a 

chlorophyll meter (Alves, Macrae and Koch 2015). A (soil plant analysis development) SPAD-

502 Plus chlorophyll meter (Mulla 2013; Konica Minolta 2008) was used to estimate the 

chlorophyll content of the marked plants. This device encompasses two windows with built-in 

LED lights that emit light in the red and near-infrared regions at 650 nm and 940 nm, respectively, 

when the measuring head is closed  (Xiong, et al. 2015). When the measurements are taken, light 

Figure 12: Areas of georeferenced plants overlaid in a 4-band false image color reflectance map. 

Segments of low, moderate and severe iron chlorosis are marked as low, med, high, respectively 

and areas of healthy plants are marked healthy. 
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from the emitting window is shown through the leaf and is passed to the receiving window. The 

receiving window contains a receptor that reads wavelengths that respond to different chlorophyll 

contents. This receptor then converts the amount of energy collected into a number that is displayed 

on the meter screen with a scale that ranges from 0 to 99.9 (Konica Minolta 2008). Both the bottom 

and the top leaves of the healthy and iron chlorotic sampled plants were estimated with the meter. 

2.3.3 Yield Data 

 At the end of the growing season, right before the harvest date on July 19, 2017, yield 

samples of the georeferenced areas of both healthy and iron chlorotic plants were gathered. This 

was completed by clipping the grain head from the top of the sorghum plant, placing it in paper 

bags, and drying it. Then, the grain was extracted from the seed head and measured by weight (in 

grams) for analysis. This process was finished for each section of iron chlorotic and healthy plants. 

Each individual section consisted of one sampled georeferenced plant and ten random sampled 

plants. The grain from the ten sampled plants was used to correlate to the final VI values. The 

single grain head was kept separate from the rest of the row’s ten grain heads and was used to 

determine the amount of midge damage in the area. The plants were then dehydrated in a plant 

dryer, made special for dying plant samples before thrashing. The grain was thrashed using a 

special machine used to extract grain from sorghum. The machine consists of a feeding tube, a 

rotating blade, a ‘trash’ bag and a collecting tray. The sorghum was fed in through the feeding 

tube, where it then made contact with the rotating blade. The blade forced the seed out of the 

sorghum head, where it was then dropped in to the collecting tray. Any excess debris was blown 

into in ‘trash’ bag. The seed that fell into the collecting tray was then measured by weight in grams 

for yield information.  
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CHAPTER III: METHODOLOGY 

3.1 UAS Image Processing 

 After the raw image data is collected from a flight, it must be post-processed to create 

georeferenced and radiometrically corrected reflectance maps. The imagery for this project was 

processed using SfM photogrammetry, which uses like-features from overlapping images to 

extract a series of 3-D points. Unlike traditional photogrammetry, the camera position and 

orientation (camera geometry) at the moment each image was taken is automatically solved 

without additional user information through matching attributes in multiple images (Westoby, et 

al. 2012). There are many open-sourced SfM photogrammetry processing solutions that are user 

friendly, accurate, and ideal for mapping data from UASs. Pix4Dmapper Pro (Pix4D SA, 

Lausanne, Switzerland) was used to process that data that was collected via sUAS for this study. 

 The SfM workflow begins with the raw image data. After it is uploaded into the software, 

a like-feature identification process, or locating key points from the overlapping images, is done 

using a Scale Invariant Feature Transform (SIFT) (Stanton, et al. 2017; Westoby, et al. 2012). 

SIFT is an object recognition algorithm used to match key points in space regardless of image 

position and scale (Lowe 2004). The key points are then matched in the overlapping images, so 

that like-points can create a TIN later in the process (Torres, Arroyo and De Haro 2012). When 

this is complete the key points are used to reconstruct the camera orientation and 3D position at 

the moment each image was taken (also known as the ‘scene’ at each instance an image was taken) 

via a bundle block adjustment as well as solving error due to intrinsic camera parameters, creating 

a sparse point cloud (Stanton, et al. 2017; Torres, Arroyo and De Haro 2012). In this step, the 

GCPs are input to readjust the the network and make the projected location more accurate. 
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Following this process, the sparse point cloud is densified through keypoint verification using a 

densification algorithm (Westoby, et al. 2012).  

 Using the 3-D points from the densified point cloud, a triangulated irregular network (TIN) 

is created, and from this, a DSM is made (Stanton, et al. 2017). At this point, the image reflectance 

can be calibrated using the imagery taken of the reflectance card before/after the flight. This 

assures that radiometric corrections are applied and that factors such incoming sunlight irradiance, 

sensor responses, aperture, and other factors are accounted for (Pix4D 2011-2018). From here, 

orthomosaics and/or reflectance maps can be created. In the case of this project, reflectance maps 

were used because the pixel values better indicate the true reflectance of the object. The generation 

of a reflectance map uses radiometric corrections to produce a product that is truest to the values 

it reflects. As mentioned, an orthomosaic can also be created from the TIN, in which case the 

intensity colors of each image will be adjusted to ‘balance’ them so they fit will together, creating 

a visually pleasing image (Pix4D 2011-2018). 

3.2 VI Calculations 

 Spectral VIs consist of various arithmetic calculations of two or more spectral bands, 

allowing spatial patterns to be extracted from each reflectance map (Vina, et al. 2011, Rasmussen, 

et al. 2015, Mulla 2013). There are multiple formulas for extracting information using VIs because 

of the numerous quantities of image band and value calculations, each producing a unique result. 

Every VI creates unique pixel values that can be both viewed in the image and extracted for 

quantitative analysis. Different VIs highlight several information’s about the vegetation, such as 

soil moisture, chlorophyll content, leaf area index (LAI), or greenness (Rasmussen, et al. 2015, 

Jiang, et al. 2008). This is done by using the spectral band width that best corresponds to the 
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problem at hand, such as using the red band to observe chlorophyll and/or additional plant 

pigments (Mulla 2013).  

A total of 25 VIs were chosen for this study, all created from different combinations from 

the 4-band multispectral Sequoia sensor (shown in Table 3).  Each VI was created for a different 

purpose, such as determining the amount of chlorophyll in a crop (an explanation of each VIs 

purpose is provided below). The table of indices is organized to separate the indices due to the 

‘type’ of index. Listed first are VIs that contain standardized results from -1 to 1. The NDVI, the 

most popular and widely used VI as described in the introduction, is a measure of chlorophyll 

content (Rasmussen, et al. 2015), ‘greenness’ due to levels of chlorophyll (Gago, et al. 2015), leaf 

area, plant cover, and nitrogen content (Hansen and Schjoerring 2003). NDVI RE is a ‘spin off’ of 

the NDVI and may provide more acute information about areas of chlorophyll concentrations 

(Kross, et al. 2014). The Enhanced Normalized Difference Vegetation Index (ENDVI) equation 

was used from a study by Rasmussen, et al. 2015 and is very similar to the NDVI, but also uses 

the green band, which is related to leaf chlorophyll content, where a higher reflectance means there 

are greater amounts of chlorophyll (Jannoura, et al. 2014). The Enhanced Normalized Difference 

Vegetation Index Red-Edge (ENDVI RE) was also used from Rasmussen, et al. 2015 and uses the 

red-edge band in place of the near-infrared. The Green Normalized Difference Vegetation Index, 

as described in the introduction, uses the green band, rather than the red, as in the NDVI formula. 

This band, according to (Mulla 2013), makes the formula more sensitive to changes in chlorophyll 

content and yield prediction than the NDVI. The Green Normalized Difference Vegetation Index 

Red-Edge (GNDVI RE) uses the red-edge band in place of the near-infrared. Another VI based on 

the NDVI is the Normalized Green-Red Difference Index (NGRDI) that is used to estimate active 

photosynthesis and uses the green and red bands, not needing the near-infrared band that is so 
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common in multispectral imagery (Gitelson, et al. 2002). An indicator of chlorophyll was 

introduced as the Normalized Difference Red Edge Index (NDRE) which uses the NIR and RE 

bands in the NDVI formula format (Li, et al. 2014). Along with the NDRE, the MERIS Terrestrial 

Chlorophyll Index (MTCI) is also an accurate depicter of plant chlorophyll and nitrogen content 

(Schlemmer, et al. 2013).  

Three ratio VIs were also chosen for this study. These indices were chosen according to 

their usefulness at detecting chlorophyll amounts and overall healthiness in crops, as this is 

commonly associated to iron chlorosis. These VIs are ratios, giving them no standardized results. 

The Simple Ratio (SR) responds to the contrast between chlorophyll absorption in the R portion 

of the spectrum and the scattering in the NIR region (Mutanga and Skidmore 2004). It is a good 

estimator of canopy chlorophyll content, with a larger ratio representing denser canopy and higher 

chlorophyll content due to the absorption of red wavelengths (Kross, et al. 2014). The Normalized 

Red (NR) and Normalized Green (NG) are very similar except for the fact that the NR concentrates 

on the portion of the spectrum where wavelengths are absorbed by chlorophyll in the red region 

and the NG focuses on the area of the spectrum where other plant pigments (instead of chlorophyll) 

absorb energy (Mulla 2013).  As described above, there are a wide assortment of image band 

combinations, each with a different application of purpose (Apan, et al. 2003). Some VIs however, 

can be affected by soil reflectance, atmospheric refraction, and other factors that can affect canopy 

cover reflection, especially in areas of sparse vegetation (Mulla 2013; Gago, et al. 2015). It was 

also found, in a number of studies, that soils with darker reflection resulted in a higher value of 

index when VIs were calculated and vice versa for soils with light reflections (Huete 1988). The 

third portion of table 2 contains a list of soil-adjusted VIs, with their respective equations, that 

were also calculated during this study to account for these extraneous influences (Apan, et al. 
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2003). The first two of these equations are the Difference Vegetative Index (DVI) and Difference 

Vegetative Index Red-Edge (DVI RE), which are sensitive to greenness and plants with active 

photosynthesis (Tucker 1979). The difference between the NIR and R bands and RE and R bands 

is thought to compensate for soil reflectance (Mulla 2013) because of the high absorption of 

chlorophyll in the R region (Tucker 1979). The Green Difference Vegetative Index (GDVI) and 

Green Difference Vegetative Index Red-Edge (GDVI RE) uses the G band, rather than the R as in 

the DVI, because G contains a lower soil-to-vegetation contrast. Chlorophylls are only slightly 

absorbed in this region, making this VI more sensitive to green biomass (Tucker 1979). The Soil 

Adjusted Vegetation Index (SAVI) was developed to be comparable to NDVI, but not containing 

soil-vegetation effects (Huete 1988). The equation contains a constant L that is an adjustment 

factor for different vegetation densities that include L = 1, for low density, L = 0.5 for intermediate 

density, and L = 0.25 for high density with L = 0.5 being determined the ‘optimal’ adjustment for 

reducing soil-induced noise (Rondeaux, Steven and Baret 1996) An extension of SAVI, called the 

Optimized Soil Adjusted Vegetation Index (OSAVI) contains a more specific constant value, 

which is said to perform better in reducing soil noise in vegetation cover that is over 50% 

(Rondeaux, Steven and Baret 1996). The Optimized Soil Adjusted Vegetation Index Red-Edge 

(OSAVI RE) serves the same purpose as the OSAVI, using the RE band in place of the NIR, and 

contained the same L values as the SAVI. The Transformed Vegetation Index (TVI), which is 

sensitive to greenness (Tucker 1979), returns the contrast of absorption in the R region against 

scattering in the NIR (Mutanga and Skidmore 2004). The Transformed Vegetation Index Red-

Edge (TVI RE), is also an extension of the TVI, using the RE band in place of the NIR (L-values 

for the TVI and TVI RE were the same as the SAVI and SAVI RE). Lastly, the Enhanced 

Vegetation Index 2 (EVI2) was developed to be used in place of the Enhanced Vegetation Index 
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(EVI), which uses the blue band, in cases where the blue band is not available. This VI was made 

to be more sensitive in regions of high canopy cover, improve plant observations, and enhance 

vegetative signal (Jiang, et al. 2008). Examples of the indices listed above are displayed in Figure 

9. The Enhanced Vegetation Index 2 Red-Edge (EVI2 RE) is also an extension of the EVI, using 

the RE band in Place of the NIR. 

The L factor was determined by beginning, early-middle, middle, or end of season, when 

the plants were in different stages of growth. The beginning of the season, which used a value of 

L = 1 began on May 5, 2017 and ended on May 17, 2017. The early mid-season began on May 23, 

2017 and ended June 13, 2017 and used the ‘optimal’ value of L = 0.5. Mid-season, when the 

plants were at their peak was from June 22, 2017 to July 6, 2017 and used a value of L = 1. At the 

end of the season the plants have peaked and start to die before yield is taken. The value for the 

end of season VIs was L = 0.5 from July 15, 2017 to July 27, 2017. The plants’ stages of growth 

were determined by a group of analysts that work at Texas A&M AgriLife Research and Extension 

Center. These include the preflowering stage (when the plants contain up to seven leaves), 

approaching flower (the boot stage) and through flowering, and the reproductive stage, where the 

grain develops and hardens (Stanton, et al. 2017), simply called early, mid, and late season in this 

study, respectively.  

As mentioned in the Introduction, the RE band provides more acute information regarding 

vegetation health (Hansen and Schjoerring 2003). This band covers a range in the spectrum that is 

highly influenced by chlorophyll concentrations and is sensitive to variants of green within crop 

types (Ramoelo, et al. 2012, Clevers and Gitelson 2013, Mutanga and Skidmore 2004). RE 

captures “NIR incident radiation” that reflects off the plant leaves and, in some cases, is thought 

to estimate greenness variations in crops better than the NIR band (Seager, et al. 2005, Mutanga 
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and Skidmore 2004). For these reasons, the NIR band was replaced with the RE band in a total of 

8 equations to study the differences of the two bands when detecting iron chlorosis in the grain 

sorghum crop. These include the ENDVI RE, GNDVI RE, DVI RE, GDVI RE, SAVI RE, OSAVI 

RE, TVI RE, and EVI2 RE. Examples of all 25 VIs are displayed from the flight date on July 22, 

2017 in Figure 13 below. 

Table 3: A list the VIs calculated in this study. The VIs were calculated for every flight date (12 

in total). The type of VI and resulting range of values for each is also shown. 

Vegetation Index 

(VI) 
Abbreviation Definition Type Range of Values 

Difference 

Vegetative Index 
DVI NIR − R Soil Adjusted -1 to 1 

Difference 

Vegetative Index 

Red Edge 

DVI_RE RE − R Soil Adjusted -1 to 1 

Enhanced 

Normalized 

Difference 

Vegetation Index 

ENDVI 
(NIR + G) − 2R

(NIR + G) + 2R
 Standard -1 to 1 

Enhanced 

Normalized 

Difference 

Vegetation Index – 

Red Edge 

ENDVI RE 
(RE + G) − 2R

(RE + G) + 2R
 Standard -1 to 1 

Enhanced Vegetation 

Index 2 
EVI2 2.5 [

NIR − R

NIR + 2.4R + 1
] Soil Adjusted -1 to 1 

Enhanced Vegetation 

Index 2 – Red Edge 
EVI2 RE 2.5 [

RE − R

RE + 2.4R + 1
] Soil Adjusted -1 to 1 

Green Difference 

Vegetative Index 
GDVI NIR − G Soil Adjusted -1 to 1 

Green Difference 

Vegetative Index 

Red Edge 

GDVI RE RE − G Soil Adjusted -1 to 1 

Green Normalized 

Difference 

Vegetation Index 

GNDVI 
NIR − G

NIR + G
 Standard -1 to 1 

Green Normalized 

Difference 

Vegetation Index – 

Red Edge 

GNDVI RE 
RE − G

RE + G
 Standard -1 to 1 

Green Optimized 

Soil Adjusted 

Vegetation Index 

GOSAVI 
NIR − G

NIR + G + 0.16
 Soil Adjusted -1 to 1 
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MERIS Terrestrial 

Chlorophyll Index 
MTCI 

NIR − RE

RE + R
 Standard -1 to 1 

Normalized 

Difference Red Edge 

Index 

NDRE 
NIR − RE

NIR + RE
 Standard -1 to 1 

Normalized 

Difference 

Vegetation Index 

NDVI 
NIR − R

NIR + R
 Standard -1 to 1 

Normalized 

Difference 

Vegetation Index – 

Red Edge 

NDVI RE 
RE − R

RE + R
 Standard -1 to 1 

Normalized Green NG 
G

NIR + R + G
 Ratio None 

Normalized Green-

Red Difference 

Index 

NGRDI 
G − R

G + R
 Standard -1 to 1 

Normalized Red NR 
R

NIR + R + G
 Ratio None 

Optimized Soil 

Adjusted Vegetation 

Index 

OSAVI 
NIR − R

NIR + R + 0.16
 Soil Adjusted -1 to 1 

Optimized Soil 

Adjusted Vegetation 

Index Red Edge 

OSAVI RE 
RE − R

RE + R + 0.16
 Soil Adjusted -1 to 1 

Soil Adjusted 

Vegetation Index 
SAVI 1 + L [

NIR − R

NIR + R + L
] Soil Adjusted -1 to 1 

Soil Adjusted 

Vegetation Index 

Red Edge 

SAVI RE 1 + L [
RE − R

RE + R + L
] Soil Adjusted -1 to 1 

Simple Ratio SR 
NIR

Red
 Ratio None 

Transformed 

Vegetation Index 
TVI [√

NIR − R

NIR + R
+ L] Soil Adjusted -1 to 1 

Transformed 

Vegetation Index 

Red Edge 

TVI RE [√
RE − R

RE + R
+ L] Soil Adjusted -1 to 1 
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Figure 13: A display of all of the different VIs computed for reflectance maps collected on June 

22, 2017. Each VI map is depicted by the high and low values of each dataset. 
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3.3 Canopy Cover Extraction 

 Although the VIs used in this study were developed to observe spatial patterns in crops, 

many of them that decipher stressed vegetation well could have potential noise from soil 

reflectance, especially in areas of low canopy cover (Mulla 2013). Even the soil adjusted VIs could 

have error due to extraneous factors that cause them to perform poorly. As a solution, the process 

of canopy cover extraction and soil removal from the image bands before calculating vegetation 

indices was implimented. This was thought to remove interference from soil background and 

deliver truer values from the calculated VIs.  

  The methodologies and processes used to complete the canopy cover extraction were 

researched extensively, as there were many ideas for completing this. First, a method was sought 

to match that of Canopeo; a program designed to compute ‘Fractional Green Canopy Cover 

(FGCC)’ by using RGB imagery in a series of band ratios (blue to green and red to green) and VIs 

(mainly an excess green index, which uses red, green, and blue) (Patrignani and Ochsner 2015). 
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The ease of use of a developed program for this step allowed a question to be asked: ’is there a 

band/band combination that could equal that of the blue band?’ Because this project uses red-edge 

and NIR bands instead of blue, an alternate method was needed to extract canopy cover. 

 This led to the research of another canopy cover metric that is based on multispectral 

imagery. However, after extensive exploration, it was discovered that there are not many ‘canopy 

cover metrics’ for this type of research. Further investigation concluded that the two most popular 

methods of removing background objects (i.e. soil background, non-plant, and unwanted objects) 

among researchers using multispectral imagery were: 1) image thresholding based on VIs and 2) 

supervised image classification methods. These methods were only tested on the reflectance maps 

from one date, May 17, 2017 because it was the first date in which the plants were fuller and more 

vegetation samples could be taken, yet not too full for the areas between rows to be covered with 

vegetation (the vegetation is separated by rows of soil). The two methods were then compared to 

determine which method better extracted the canopy cover. 

3.3.1 Image Thresholding 

 As mentioned above, image thresholding is a popular method of canopy cover extraction 

that involves creating a maximum pixel on which to base the image. The process behind this 

method normally consists of calculating a VI, observing the histogram associated with this VI, and 

creating a ‘threshold,’ or a limiting pixel value. The NDVI is very commonly used when creating 

a threshold as shown by (Berni, et al. 2009, Bhandari, Kumar and Singh 2012, Hall, Louis and 

Lamb 2003, Roosjen, et al. 2017). Each of these sources uses a different thresholding value to 

eliminate soil background. All values were created uniquely for each image through use of the 

image’s histogram. For example, Hall et.al. 2003 created two unique threshold values (one for soil 

and one for mixed soil and vine pixels) based on two histogram peaks. Using these, he eliminated 
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all pixels that were not solely vegetation. Lum, et al. 2016 also created a binary map based off of 

a threshold value of 0.6 to most accurately determine the amount of healthy vegetation within the 

study area. Lastly, (Roosjen, et al. 2017) chose a threshold value of 0.7, where all numbers between 

0.7 and 1.0 were classified as vegetation. This value was chosen based on ‘visual inspection’ where 

the author believed this was an acceptable value to separate vegetation and soil background pixels. 

This method was tried in the multispectral data for the reflectance maps collected on May 17, 

2017. First, the NDVI RE was computed using the red-edge and red bands. Then, using the 

histogram, a ballpark value was determined for the threshold value. After, a known, highly stressed 

area was focused on for validation of pixel values. In this area, individual pixels were examined 

for both highly stressed plants and the surrounding soil. From here, a threshold value of 0.30 was 

determined to be the cutoff value for this date (everything above being vegetation, including highly 

stressed plants) and was used to create a binary file representing vegetation and non-vegetation 

pixels. This image was converted into a polygon file and then used to crop soil and other 

background pixels from the reflectance maps as demonstrated in Figure 14 (the green band is 

displayed as an example of the process). 
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  Figure 14: Canopy cover extraction via image thresholding on a combined 4-band false colored 

reflectance map collected on May 17, 2017. The NDVI RE was computed, and values for a 

known area of high stress was observed to determine a threshold value (0.30). After the value 

was applied a binary image was created and used to crop the individual image bands (displayed 

in a combined 4-band false colored reflectance map. 
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3.3.2 Supervised Classification 

 The second method of canopy cover extraction used in this project was completed by using 

a maximum likelihood supervised classification. There are two main approaches of image 

classification: supervised and unsupervised. In the unsupervised approach, the classes that are to 

be made are unknown and a clustering method is used to generate groups of data. The analyst need 

not take samples of the data, but merely input the number of desired classes, if they would like to 

do so (it is not required) (Omran, Engelbrecht and Salman 2005). Supervised classification requires 

more user-involvement in the classification process such as manually picking out training samples 

to ‘train’ the classifier before it runs, creating a signature for the classification.  

 There are many types of supervised classification, such as Support Vector Machines 

(SVM), Maximum Likelihood (ML), Decision Tree (DT), Index-Based (IB), Fuzzy (FZ), K-Means 

(KM), etc (Khatami, Mountrakis and Stehman 2016). Each supervised classification method works 

differently, for example a DT classifier has one principal node that acts as the root of the decision 

tree, which splits into a series of internal nodes, which are then split into terminal nodes. The data 

is divided down the tree to the desired classes (Otukei and Blaschke 2010). SVM classifiers create 

‘planes’ to separate the data and provide as much separation between these planes as possible 

(Otukei and Blaschke 2010). The type of supervised classification used in this study is ML, which 

is a popular and widely used method. This method does not have a minimum sample number, and 

can classify both linear and non-linear data (Sisodia, Tiwari and Kumar 2014; Otukei and Blaschke 

2010). This type of classifier separates data X (in this case pixels) based on its weighted likelihood 

(or probability) to belong to a certain class. It also takes into account the variance-covariance 

describing the interrelationship of the said pixels, assigning each pixel to one of the classes (Otukei 

and Blaschke 2010; Strahler 1980). 
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The process of a ML supervised classification involved manually choosing ‘training 

samples’ from the image, which included creating two types of samples: one for soil and one for 

vegetation. When a sufficient number of samples were taken from the image, spectral signatures 

of said samples were then used to ‘train’ the classier to extract like signatures. 

 The training samples used for this study were chosen by the author who had previous 

knowledge of the sorghum field. At least 1,000 pixels were included in each training class (one 

class for vegetation, one class for background noise such as soil, targets, etc.). Some areas that 

were difficult to sample were areas of intense iron chlorosis. The pixel values were, in some cases, 

very similar to those of the soil. This is where the georeferenced plants were useful. The points 

and polygons were used to determine what areas and plants were iron chlorotic and these areas 

were carefully picked to train the classifier for maximum accuracy. These areas were particularly 

important to focus on because these plants and segments are what is desired to be located in the 

imagery and analyzed using the VIs. It was vital that the classifier did not wrongly classify this 

vegetation as soil and exclude it from the resulting image. 

 A maximum likelihood classifier was used to extract the spectral information from the 

compiled multispectral image bands by separating the pixels into the class of the highest 

probability of belonging (Otukei and Blaschke 2010). This resulted in a binary classification of 

pixels, one class for soil, and the other for canopy. When the classification was complete, the 

raster image could be converted into a polygon file that could be manipulated to exclude one of 

the two classes (in this case, the soil class). This canopy shape file was then used to crop the 

individual raster image bands, which could then be used to create additional VIs. The workflow 

for extracting canopy cover with a supervised classification is demonstrated in Figure 15.  
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 Figure 15: Supervised binary, maximum likelihood classification method used to extract canopy 

cover. First, training samples are manually chosen from a 4-band reflectance map, collected on 

May 17, 2017, to mark areas of vegetation and areas of background (soil, targets, etc). Then, the 

samples are used to classify the reflectance map based on which pixels are ‘most likely’ to fall 

into each category. When the classification is complete, the resulting image is used to clip the 

individual bands, resulting in a soil-removed reflectance map (the band shown here is green).  
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3.3.3 Thresholding vs Classification 

 After extracting canopy cover with both methods of classification and threshold, it was 

determined that supervised classification was more accurate at eliminating background soil from 

the reflectance maps. This was decided through the computation of a two-class confusion matrix, 

which uses random sample pixels to determine the accuracy of a classifier, where the said sample 

pixels can be separated into a single class (Lewis and Brown 2010). The sample data was manually 

picked from the data, a 4-band multispectral image from June 17, 2017. It consisted of 100 pixels 

per class, the two classes being soil and non-soil, that were spaced throughout the scene. A 

classifier was then run to predict the accuracy of the supervised classification and the threshold 

method in comparison to the ‘ground truth’ sample data. The results were then formed into the 

confusion matrix. 

Two classes existed in the matrix, what an object was actually classified as, and what class 

the classifier predicted the object belonged to (Deng, et al. 2016). The confusion matrix displayed 

the number of pixels that were classified correctly, and how many pixels belonged in the other 

class. A series of accuracies are also computed, the overall accuracy, the user accuracy and the 

producer accuracy. The accuracies for the threshold method were as follows: overall = 0.8591 

(around 86%), user (soil) = 100%, user (canopy) = 79.47%, producer (soil) = 69%, producer 

(canopy) = 125.83%. Likewise, accuracies for the supervised classification method were as 

follows: overall = 1.0 (around 100%), user (soil) = 100, user (canopy) = 100%, producer (soil) = 

100, producer (canopy) = 84.17%. A comparison of the supervised classification and threshold 

methods are displayed in Figure 16 for visual comparison.   
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Training the classifier allowed the highly stressed plants’ pixel values to be viewed by the 

classifier as vegetation, keeping them in the resulting image. It is possible that the threshold value 

of 0.30 did not eliminate soil pixels that bordered canopy, but kept the pixels representing plants 

with severe iron chlorosis. The threshold value could have been set higher to eliminate the 

bordering soil, but this would have been problematic because of the low values of iron chlorosis. 

These low values representing stressed vegetation pixels would also have been eliminated if this 

were done.  

 

Figure 16: A comparison of methods used for canopy cover extraction for the flight date 

completed on May 17, 2017, depicted by 4-band false colored reflectance maps. On the left is 

the supervised classification method, and on the right is the image thresholding method. 
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 To better examine the differences between the two methods of soil removal, the NDVI 

RE was calculated. Figure 17 and Figure 18 show the resulting images side-by-side. As can be 

seen from Figure 18, the threshold method contains more soil pixels and does not fully separate 

rows of healthy vegetation. However, Figure 18 shows that the classification method did indeed 

separate these rows effectively and also kept the stressed vegetation (shown on the left column of 

plants, in the center rows). 

3.4 Canopy Cover VIs 

When a method of canopy cover extraction was selected, the chosen VIs (listed in Table 3) were 

calculated with the soil-removed R, G, RE, and NIR bands for all the VIs across every date. The 

results, displayed in Figure 19 are displayed in the same color scheme as the soil-included VIs 

above with red colors representing higher values and blue colors representing lower values. Each 

VI is depicted with the low and high values being the lowest and highest value resulting from 

that metric. 

Figure 17: NDVI-RE computed from canopy 

extracted by ML supervised classification from 

reflectance maps collected on May 17, 2017. 

Figure 18: NDVI-RE computed from canopy 

extracted by threshold from reflectance maps 

collected on May 17, 2017. 
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Figure 19: A display of all of the different VIs computed for the soil-removed reflectance maps 

initially collected on June 22, 2017. Each VI map is depicted by the high and low values of each 

dataset. 
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3.5 Data Extraction 

In order to determine which metric performed best, each VIs ability to separate the healthy 

vegetation and chlorotic vegetation (separability) needed to be calculated. To do this, the data from 

the known, georeferenced areas needed to be extracted. Kotsiantis, et.al. (2011) states that the data 

used in many separability equations must exclude as many outliers as possible. The polygons that 

were initially built to extract iron chlorosis were too large and the edges of these went beyond the 

confines of pixels containing the georeferenced plants. Because of this, these polygons were 

deemed inapropriate for use. They were moved and fitted to exclude as many outliers as possible 

by carefully placing them around their respective areas to achieve the best fit for more accurate 

results.  

In order to complete the separability calculations, the data had to be extracted from the 

imagery in a readable, quantitative format (most of which was completed with a series of scripts 

written to batch-process the data, see appendix B). As explained in section 2.3.1 areas of healthy 

vegetation and iron chlorosis were georeferenced and marked as to what level of chlorosis each 
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area contained. Figure 12 shows these georeferenced areas along with the level of chlorosis within 

each polygons. These polygons were used to extract the pixels for each respective level of iron 

chlorosis and for combined iron chlorosis from the VIs computed for every flight date (although 

the plants were only georeferenced once and iron chlorosis was already established, the polygons 

were still used in earlier dates to determine if the problem can be seen early in the season). The 

pixels were further broken down into sections of high, medium and low iron chlorosis for better 

analysis of separation (script available in Appendix B.1). The process of extraction involved using 

these polygons to clip each VI map from every date for, both the soil-included and soil removed 

plants (making a total of 50 VIs for each date), and saving them into separate files. For every VI, 

this meant making a file for each, containing only pixels representing healthy vegetation, mild 

chlorosis, moderate chlorosis, severe chlorosis, and combined chlorosis, respectively (making a 

total of 5 files for each VI).  

After each raster image was cropped for the respective datasets, each tiff file was converted to an 

ASCII text file (script available in Appendix B.2) in order for the pixel values to be in a useable 

format. Then, the pixel numbers from each text file were used in the f-Distance equation (Equation 

5) (script available in Appendix B.3). Lastly, the JM distance was computed, using the median 

rather than the mean (script available in B.4), as validation measure to compare to the f-Distance 

method (Equation 4). The total amount of pixels for each file are as follows: healthy = 5152 pixels, 

iron chlorosis (combined) = 5963 pixels, mild chlorosis = 5152 pixels, moderate chlorosis = 5963 

pixels, severe chlorosis = 5963 pixels.  

3.6 Separability of Iron Chlorotic and Healthy Plants 

 Feature separability analysis, in this case, is the process of finding which VI best separates 

pixels reflecting iron chlorosis and pixels that represent green, healthy plants. There are many 
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statistical analyses and methods of doing so for two-class features (Agapiou, Hadjimitsis and 

Alexakis 2012, Villa, et al. 2014, Luzum, Slatton and Shrestha 2005), but a few precautionary 

steps must be taken before they are used to achieve accurate results. Firstly, it is important to 

exclude outliers from the data. Although this in many cases can be difficult to achieve, the data 

samples should be chosen with the utmost care to avoid inaccuracy in the initial data. Secondly, 

one must take caution not to over-fit the data. Having too many samples will lead to overfitting 

and the results will be unintentionally separated into their respective classes, no matter the actual 

separability (Kotsiantis 2011). 

 The measure used in this study was developed by Luzum, Slatton, & Shrestha et.al. 2005 

for the use of data that is not Gaussian distributed and does not rely on the data being normally 

distributed. This measure, called the f-Distance in this study, uses the median value, instead of the 

mean, because it is not as affected by outliars and for this case is given by: 

df = |
median(fIC)−median(fG))

√(mad(fIC))2+(mad(fG))2
|   (4) 

where  

𝑓𝐼𝐶 is the measure of pixels of iron chlorosis 

𝑓𝐺  is the measure of pixels for healthy, green plants 

𝑚𝑎𝑑() is the median absolute deviation given by:  

mad(x) = median|x − median(x)| 

This metric provides a unit less scale for determining the separability of the median values for 

features 𝑓𝐼𝐶 and 𝑓𝐺  (Luzum, Slatton and Shrestha 2005).  

A frequently used measure of separability is called the Jeffries-Matusita (JM) Distance, 

which is based from the Bhattacharyya Distance, provides the likeness between two features 
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through the amount of overlapping between the classes (Bindel, et al. 2011, Villa, et al. 2014). The 

JM Distance is given by the following equation: 

JM = 2(1 − e−B)   (5) 

where  

B =  
1

8
(mi − mj)

2 2

σi
2+σj

2 +
1

2
ln [

σi
2+σj

2

2σiσj
]   (6) 

mi and mj are the mean values 

σi and σj are the variance values 

This equation produces a resulting index value from 0 to 2, with values closer to 2 being highly 

separable and values closer to 0 being non-separable. To add to the JM Distance, another measure 

was developed to measure the Percentage of Totally Separable Class Pairs (TSP): 

TSP = 100
JMN

N
   (7) 

where  

𝐽𝑀𝑁 are all class pairs with a calculated JM distance  

𝑁 is the number of class pairs  

with the resulting number being in percentage form (Michelson, Liljeberg and Pilesjo 2000). This 

method was used as comparison and validation for the separability method for the f-distance 

calculated for the date closest to the field data collection (June 28, 2017). After calculating the f-

Distance and the JM distance for the data collected on June 28, 2017 it was decided that the JM 

distance was not appropriate for this study because too many VIs were ranked at the highest 

separability (a value of 2), with no way to determine which was better, and therefore the 

separability for the rest of the dates was decided by the f-Distance which has no set scale.  

 The f-Distance was then used to calculate the distance between iron chlorosis and green 

plants for the initial VI calculations and the soil-removed VIs to determine the top performing 
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metrics for the entire season (all 12 flights). This was completed with the assumption that iron 

chlorosis was developing from the beginning of the season in the georeferenced, field control 

areas. The healthy and chlorotic vegetation served as the two classes in feature space. The data 

was normalized by the equation, whose result is a measure of the mean values, or centers of the 

polygons, in feature space in relation to the range of the pixels within the polygons (Luzum, Slatton 

and Shrestha 2005). When this was completed, the separability between areas of mild, moderate 

and severe iron chlorosis and healthy plants was also calculated for both regular and soil-removed 

VIs (all 12 flights) to reveal which metric had the highest separation at each level. This was also 

completed with the assumption that the ‘levels’ of chlorosis did not progress throughout the season 

(for example, maybe an area of severe iron chlorosis was mild at the beginning of the season). This 

provided a unitless number for every measure, allowing the metrics with the largest divergence to 

be ranked from best performing to worst performing VI.  
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CHAPTER IV: RESULTS AND DISCUSSION 

4.1 VI Separability Results 

As mentioned, two separability measures were tested, the JM-Distance and the f-Distance 

for one date, June 28, 2017. It was found that the results from the JM-Distance were not as diverse 

as the f-Distance, being that the scale of measure is only from 0 to 2, with 2 being highly separable. 

The results can be seen in Table 4 for the soil-included metrics. (the results from the soil-removed 

VIs can be viewed in Appendix C in comparison with the f-Distance results). Many of the resulting 

distances had a value of two, with no distinct way to decide which index performed better. This 

implied that the f-Distance was the better measure for this study, providing unique values for each 

metric. 

4.1.1 Separability of Iron Chlorosis and Green Plants 

 The pixel values from the healthy vegetation and from the areas of iron chlorosis were used 

to produce a number representing each VI’s performance with separating said pixels (see Appendix 

D for full results) with the f-Distance metric. For each date the separability of every soil-included 

VI and soil-removed VI was calculated and these values were sorted to determine the best and 

worst metrics. The three soil-included VIs and soil-removed VIs with the highest values (the best 

separability) for each date were tabulated and are displayed in Appendix D. The three-overall worst 

VIs were also noted and shown in Appendix D (results for the entire dataset are in Appendix F).  

From these, the most separable VIs were graphed and compared for every date (Figure 20). 
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Table 4: A comparison of the results of the JM-Distance and f-Distance computed from the June 

28, 2017 data. The values for both are ranked from low to high for the soil-included metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vegetation Indices Ranked Low - High 

Vegetation 

Index (VI) 

Seperability 

Ranking (df) 

Vegetation 

Index (VI) 

Seperability 

Measure (JM Dist) 

DVI 0.0073336 DVI 0.055895 

EVI2 0.16269 SR 0.091059 

OSAVI RE 0.19958 EVI2 0.61302 

GDVI 0.20832 ENDVI_RE 1.1497 

ENDVI_RE 0.22929 OSAVI RE 1.3414 

NGRDI 0.282 SAVI 1.4068 

SAVI 0.30752 GDVI 1.5175 

SAVI RE 0.31298 SAVI RE 1.603 

GDVI RE 0.32356 NDVI_RE 1.6683 

NDVI_RE 0.35987 NGRDI 1.6866 

TVI RE 0.36068 OSAVI 1.9712 

OSAVI 0.41307 TVI RE 1.9834 

EVI2 RE 0.47051 EVI2 RE 1.9971 

NR 0.76518 DVI RE 1.9997 

DVI RE 0.76662 ENDVI 1.9997 

ENDVI 0.76662 GDVI RE 2 

TVI 0.87325 GNDVI 2 

NDVI 0.87441 GNDVI_RE 2 

SR 0.91543 GOSAVI 2 

GOSAVI 1.0295 MTCI 2 

GNDVI_RE 1.0677 ND RE 2 

GNDVI 1.6975 NDVI 2 

MTCI 1.7009 NG 2 

ND RE 1.7079 NR 2 

NG 1.8839 TVI 2 
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Figure 20: The most separable VI for each date for the combined chlorosis data. These Vis best 

separated the pixels of healthy vegetation and iron chlorosis as a whole. 

 

After comparing the best performing VIs, it was found that, for the soil-included VIs, the 

best performing indices (with a couple of exceptions) were the MTCI for the first 7 weeks, and the 

NG for the last 5 weeks, with the MTCI performing the best overall. The GDVI, NDRE, and 

NGRDI did perform slightly better in some cases, but the MTCI and NG were still within the top 

three VIs for their ability to separate the healthy and iron chlorotic pixels.  

The soil-removed VIs were more consistent, as can also be seen in Figure 20. There is a 

distinct transition from one VI to another starting with GOSAVI, moving to NDRE for weeks in 

the beginning of the season, MTCI mid-season, and lastly NG for the end of season, with the MTCI 

also performing the best, as with the soil-included metrics. 

The poorest performing metrics for both soil-included and soil-removed metrics were a 

wide range of VIs with the NGRDI containing the lowest amount of separability for both (Figure 

21).  
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Figure 21: The least separable VI for each date for the combined chlorosis data. These VIs best 

separated the pixels of healthy vegetation and iron chlorosis as a whole. 

 Because the field data was collected later in the season (June 28, 2017) it can only be 

inferred that iron chlorosis was already established early in the season. The reflectance maps from 

the first flight (May 5, 2017) were overlaid to create a 4-band false colored image to display that 

iron chlorosis (plants within the red boxes) was apparent in the grain sorghum (Figure 22) at this 

time. However, because this cannot be proved just by observing the reflectance maps, the data was 

also analyzed just for the soil-removed and soil-included VIs calculated from the field data 

collection date (Table 5).  

The results from this ranking show that the top VI for both soil-included and soil-removed 

metrics is the NG, with the following best metrics being the NDRE, GNDVI, and MTCI, 

respectively, with soil-removed metrics containing higher levels of separability. The bottom 

ranked VIs include the GDVI, EVI2 and DVI, with the DVI containing the least amount of 

separability for both types of metrics, respectively. 
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Figure 22: A display of iron chlorosis (red boxes) against healthy vegetation (black boxes) from 

field data collection, which took place on June 28, 2017. The background is a 4-band false 

colored image from multispectral data collected on May 5, 2017. It is apparent that areas of iron 

chlorosis were established early in the season (and is detectable via UAS), as can be viewed by 

the sparse, and sometimes yellowing vegetation. 
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Table 5: A ranking of VIs (from most separable to least) from metrics calculated using June 28, 

2017 reflectance maps. The field data was also completed on this date, making this true 

ground/flight data. 

June 28, 2017 VI Rankings 
Soil Included Soil Removed 

NG 1.8839 NG 1.9873 

NDRE 1.7079 GNDVI 1.8227 

MTCI 1.7009 MTCI 1.7575 

GNDVI 1.6975 NDRE 1.7382 

GNDVI_RE 1.0677 GNDVI_RE 1.2086 

GOSAVI 1.0295 GOSAVI 1.1782 

SR 0.9154 SR 1.0099 

NDVI 0.8744 NDVI 0.9483 

TVI 0.8733 TVI 0.9462 

DVI_RE 0.7666 ENDVI 0.8322 

ENDVI 0.7666 NR 0.8277 

NR 0.7652 DVI_RE 0.7430 

EVI2_RE 0.4705 EVI2_RE 0.5889 

OSAVI 0.4131 OSAVI 0.4751 

TVI_RE 0.3607 GDVI_RE 0.4289 

NDVI_RE 0.3599 NDVI_RE 0.3925 

GDVI_RE 0.3236 TVI_RE 0.3924 

SAVI_RE 0.3130 SAVI_RE 0.3837 

SAVI 0.3075 NGRDI 0.3493 

NGRDI 0.2820 SAVI 0.3492 

ENDVI_RE 0.2293 OSAVI_RE 0.2610 

GDVI 0.2083 ENDVI_RE 0.2411 

OSAVI_RE 0.1996 GDVI 0.2021 

EVI2 0.1627 EVI2 0.1637 

DVI 0.0073 DVI 0.0386 

 

4.1.2 Separability of the ‘Level’ of Chlorosis and Green Plants 

 As mentioned above, the separability of the three levels of chlorosis were computed from 

the georeferenced segments. The highest performing VIs overall (between the soil-included and 

soil-removed VIs are displayed in Figure 23. The three highest performing indices were noted and 

are shown Appendix E, in graduated levels (a full list of results for each stage of chlorosis is located 

in Appendix G). The most separable indices are the MTCI, NDRE, and NG, as in section 4.1.1, 

with the NG being the most separable for both soil-included and soil-removed VIs. The 

performance for the beginning, mid, and end season varied by level. Mild chlorosis was most 

separable by the NDRE at the beginning of the season, MTCI mid-season and NDRE at the end of 
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the season. Moderate chlorosis was most separable by the NDRE at the beginning of the season, 

NG mid-season and NGRDI at the end of the season. Lastly, severe chlorosis was most separable 

by the MTCI at the beginning of the season, and NG mid to end-season. When observing the values 

and the VIs with the worst performance overall (for all metrics including soil-included and soil-

removed), displayed in Figure 24, it seems that most of the metrics are random. There are a select 

few metrics that performed badly across all levels and those include, but are not limited to, the 

DVI_RE, SAVI_RE, TVI_RE, DVI, and NGRDI. However, the metric that was the least separable 

overall was the NGRDI, followed by the DVI RE. 

 

 
 

Figure 23: The most separable VIs for each level of chlorosis depicted by each date. The values 

shown were the highest out of all datasets (soil-included and soil-removed). Therefore, the VI 

with the highest separability is displayed, with 'SR' indicating a soil-removed index and 'SI’ 

indicating a soil-included index. 
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Figure 24: The least separable VIs for each level of chlorosis depicted by each date. The values 

shown were the lowest for all datasets (soil-included and soil-removed). Therefore, the VI with 

the lowest separability is displayed, with 'SR' indicating a soil-removed index and 'SI’ indicating 

a soil-included index. 

 As mentioned in Section 4.1.1, the establishment of iron chlorosis in some areas could have 

possibly taken place later in the season. This is also true for levels of chlorosis as well. It is possible 

that an area of iron chlorosis was, at first, mild and as the season progressed, this area turned into 

moderate chlorosis. An overlay of the field data (collected June 28, 2017) is displayed on a 4-band 

false colored image (from the data collected on May 5, 2017), to display areas marked mild, 

moderate, and severe chlorosis, in Figure 25. Because the only proof that chlorosis in this field 

developed early in the season is that of visualization of the reflectance maps, an analysis of the 

most separable VIs for the flight date that took place on the same day as field collection was 

completed (Figure 26). 

 The results from this ranking show that the NG is the most separable metric for detecting 

mild, moderate, and severe chlorosis for both soil-included and soil-removed VIs. The least 

separable VI was different for all dates, with the SAVI RE and GDVI being the least separable for 
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the soil-included metrics and the ENDVI RE, GDVI, and DVI being the least separable for the 

soil-included metrics, respectively. 

 

 

Figure 25: a display of mild (blue box), moderate (yellow box) and severe (red boxes) iron 

chlorosis in relation to healthy vegetation (black boxes) from field data collected on June 28, 

2017. The background is a 4-band false colored image from multispectral data collected on May 

5, 2017. It is apparent that chlorosis, especially mild and severe, is detectable, via UAS, from the 

beginning of the growing season 
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Figure 26: A display of the top three ranked VIs, by level of chlorosis, for the collection date of 

June 28, 2017. The soil-included VIs are displayed in blue and the soil-removed VIs in orange, 

respectively. 

4.2 Comparison of Values for Top VIs 

 The results from the separability test display which VIs perform the best, the worst, and 

which fall somewhere in-between. The most separable VIs presented in Figures 20 and 23, which 

displayed the top-performing VIs for separating healthy and iron chlorosis pixels as a whole, and 

the most separable VIs for levels of chlorosis, respectively, were analyzed further to give a general 

display of the change in values over time. A prominent area of iron chlorosis was chosen to present 

alterations in the crop over the growing season (these areas are displayed in Appendix H as 

multispectral images for both the regular and soil-removed images). This segment is noted to 

contain severe amounts of chlorosis and is located alongside an area of green, healthy plants, 

making visualization of both the difference in coloration and development of the plants simpler. 

The mean values of iron chlorosis and green vegetation for the best performing VIs as well as the 

NDVI (the most well-known and widely used VI) are plotted against each other in Figure 27 and 
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Figure 28. These figures visually display the separation between iron chlorosis and green 

vegetation. They also explain trends over the season such as the growth and declination of values 

as the plants grow, peak, and start to die before yield is taken. It is also noticeable that as the plants 

reach their peak, the values between green and iron deficient separate more, explaining why at 

each point in the season, a different VI is dominant (one VI for each the beginning, middle, and 

end of the season depending on trends in the data).  
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Figure 27: Mean values over the entire growing season of highest performing soil-included VIs, 

the MTCI, NG and NDRE, in comparison with one of the most widely known/used VIs (NDVI). 

The graphs visually display the amount of separability each VI has for every collection date. 
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Visualizing the patterns of the values for each VI helps associate and disassociate them 

from stressed and healthy plants from each other and also each metric with one another. For 

example, the NDRE and MTCI have similar patterns, with the peaks and falls of the values. Upon 

further analysis of these two equations it can be seen that they are similar, with the numerator 

being the same and the denominator of the NDRE containing the NIR and RE bands and the MTCI 

having the R and RE bands. Additional thoughts on the metrics provide that the NDRE tended to 

perform better at the beginning and the end of the season whereas the MTCI performed better mid-

season, which are seen in the median values, especially for the soil-removed VIs.  
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Figure 28: Mean values over the entire growing season of highest performing soil-removed VIs, 

the MTCI, NG and NDRE, in comparison with one of the most widely known/used VIs (NDVI). 

The graphs visually display the amount of separability each VI has for every collection date. 
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 The NG, which performed very well in terms of separating the healthy and iron chlorosis 

values, contains larger values for pixels representing the latter and lower values for pixels 

representing the former, in contrast to the other VIs. This index, and the other ratio VIs all act in 

the same way, and therefore caution should be taken when analyzing them, as they are not the 

norm. This VI performed exceptionally well when determining areas of severe iron chlorosis and 

separated the pixels well mid-season for the mild and moderate levels. The curves for the median 

values seem to follow this trend, separating more mid-season yet remaining more separated than 

most toward the end of the season. 

 Graphing the trends in these values also visually displays the difference between the regular 

and soil-removed VIs’ values. The rise and fall of the pixel values seems to be almost identical in 

the two, but the separation between iron chlorosis and healthy vegetation grows slightly, especially 

in the MTCI and NG equations. Because low values that weren’t vegetation were taken away, the 

new low values were that of stressed vegetation. While the high values of healthy vegetation stayed 

the same, the gap between the values increased, making the soil-removed VIs the better alternative 

for determining stress due to iron chlorosis. 

4.3 Yield/SPAD Data in Correlation to Top VI Values 

4.3.1 Yield Data 

 As mentioned in section 2.3.3, the yield data from the georeferenced areas were gathered 

and measured (in grams) at the end of the growing season on July 19, 2017. Some plants, when 

the grain head was collected, contained a significant amount of midge damage resulting in a loss 

of data. The amount of grain lost due to midge damage was visually assessed by a group of people 

for a more accurate assessment. Using this valuation an estimation of grain was calculated as if 

the sorghum midge problem been eradicated before damage was done to the crop (this data was 
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used to display how significant the midge damage was in some areas and was not used for 

correlation and regression analyses). The estimates along with an estimated error can be found in 

Appendix I, organized by the row in which each georeferenced area was located. The rows are 

named according to the location from the bottom-right corner of the crop, as is displayed in Figure 

30. 

The weight of the grain was used to correlate the top VI’s and their associated values with the 

measured sections for the flight date closest to yield collection, which took place on July 15, 

2017.  This data, located in Figure 31 for the MTCI, Figure 32 for the NG and 33 for NDRE, 

respectively provides the weight of grain yielded from each area, along with the respective mean 

pixel value from each VI. The data shows that there are some irregularities with value and yield, 

resulting in odd plots, with the correlation lines not truly fitting the random-looking data. This is 

most likely due to the type of hybrid of each space. As can be seem from Figure 29 (a plot map 

of the crop), some zones of plants are healthier than others. For example, areas labeled with the 

number 5 are not as healthy as areas labeled with the number 1 in this map. Each of these 

numbers represent a different hybrid of grain sorghum. There was a total of 10 hybrids planted in 

the field and are named according to the crop map provided by the planters from AgriLife. Half 

of each hybrid plot is also marked with A or B, with A being the un-sprayed half of the plot and 

B being the sprayed half (spray being pesticides), as demonstrated in Figure 30. These are most 

likely the reasons why some areas with iron chlorosis have a greater yield than some areas of 

healthy plants, making this portion of data difficult to fully analyze. Hybrid types, treated and 
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untreated plots, and especially midge damage, make yield a less important factor in the process 

of determining stress due to iron chlorosis.   

 

  

Figure 29: A general plot map of the sorghum field numbered by hybrid type (May 5, 2017). 

Each numbered area is a different hybrid. There are two four-row plots located inside each 

hybrid plot (one plot treated, the other untreated) and four hybrid plots in the entire field. 
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Figure 30: A field map of the sorghum plot labeled by row. (May 5, 2017) Each plot contains 

four rows in total, either untreated (marked with an A) or sprayed (marked with a B). 
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Figure 31: A plot of mean MTCI values from July 15, 2017 in relation to yield measurements (in 

grams). The scatterplot was fitted with a best-fit line. 

 

 

Figure 32: A plot of NG values from July 15, 2017 in relation to yield measurements (in grams). 

The scatterplot was fitted with a best- fit line. 

 

 

Figure 33: A plot of NDRE values from July 15, 2017 in relation to yield measurements (in 

grams).  The scatterplot was fitted with a best- fit line. 
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4.3.2 SPAD Data 

 As mentioned in section 2.3.2, the leaves of the georeferenced plants were measured with 

a SPAD-502 Plus chlorophyll meter (Konica Minolta 2008). These measurements were used to 

correlate with the mean VI values from the most separable VIs, being the soil-removed NG, MTCI, 

and NDRE, respectively. These field measurements took place on the flight date July 28, 2017, 

from which the mean values were extracted. Figures 34, 35, and 36 show the relationship between 

the VIs and SPAD chlorophyll measurements. Every metric shows a positive relationship between 

the two data classes, displaying a connection between VI values and SPAD values. This 

demonstrations that areas with higher measured chlorophyll amounts (with a SPAD meter) are 

reflected by VI values for healthier vegetation. 

 

Figure 34: A correlation of the mean values from the soil-removed MTCI metric and SPAD 

chlorophyll measurements. All data was collected on July 28, 2017. The data shows that higher 

chlorophyll values correspond to higher MTCI values. 
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Figure 35: A correlation of the mean values from the soil-removed NG metric and SPAD 

chlorophyll measurements. All data was collected on July 28, 2017. The data shows that higher 

chlorophyll values correspond to lower NG values (lower NG values correspond to healthier 

vegetation). 

 

 

Figure 36: A correlation of the mean values from the soil-removed NDRE metric and SPAD 

chlorophyll measurements. All data was collected on July 28, 2017. The data shows that higher 

chlorophyll values correspond to higher NDRE values. 
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4.3.3 Yield/SPAD Correlation 

 The correlation between the yield measurements and the SPAD chlorophyll amounts was 

also observed, as shown in Figure 37. The figure is a display of measured chlorophyll amounts 

and yield weight. Although this is a correlation between two forms of field collected data, it is a 

display of true measurements. 

 

Figure 37: A correlation between yield measurements and SPAD chlorophyll data. The data 

shows that higher chlorophyll amounts generally correspond to higher yields. 
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of separability between the two was generally higher in the soil-removed metrics. It should also 

be mentioned that, in cases where the NDRE performed the best, the MTCI ranked second in terms 

of separability, making it almost just as effective, thus simplifying the findings. 

This provides a unique solution, as the most widely used metric is the NDVI. For example, 

the NDVI metric was utilized by Vina, et al. (2011) to monitor a sunflower crop, and by Alves, 

Macrae and Koch (2015) to determine stress due to chlorophyll reductions in a soybean crop. 

Mulla, et al. (2013) and Gago, et al. (2015) both discuss using soil-adjusted VIs, such as the SAVI 

metric to detect stress in sparse vegetation. However, the NDVI has been bested by other metrics 

in previous studies, such as the NRGDI, SAVI, NDVI RE, and others (Kross, et al. 2014; 

Rondeaux, Steven and Baret 1996). Mutanga and Skidmore, et.al (2004) had high precision 

measures with the NDVI RE, in comparison with the NDVI. Even the SAVI, mentioned above, 

was expanded upon to make the OSAVI, that according to (Rondeaux, Steven and Baret, et al. 

(1996) is useful for vegetation analysis. The NDVI, SAVI, OSAVI and other metrics were not 

found to be as useful for detecting iron chlorosis in grain sorghum, conversely. The results from 

the separability rankings displayed a distinctive set of results, for both metrics with higher 

divergence and lower separation.  

The poorest performing metrics contained a wide assortment of VIs, which included both 

regular and soil adjusted indices of both peer reviewed paper-proven formulas and red-edge 

substitution formulas. The separability values for these metrics are very low, and in many cases 

close to 0, especially at the beginning and the end of the season, where values for even the best 

performing metrics were low.  

The DVI and some other soil-adjusted indices also performed poorly for both soil-included 

and soil-removed, but the soil-removed had more soil-adjusted indices listed as the least separable. 
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This is to be expected since there was no soil in this imagery to correct, indicating that some soil-

adjusted indices, such as the SAVI and OSAVI did not perform poorly for the soil-included data. 

The DVI and DVI RE, as another example were amongst the lowest separable VIs for both soil-

included and soil-removed, making them amongst the lowest performing overall. 

Although the field data for iron chlorosis was collected towards the end of the season, it is 

implied in the results above that the deficiency was present during the entire season. This cannot 

be proven through field data, but it can be implied through multispectral data, as pictured in Figure 

22. It is apparent that the iron chlorotic areas contain sparse vegetation that, in some areas, is 

already beginning to yellow. This gives an idea of how chlorosis progresses, from the beginning 

of the season, for some areas.  

The Resulting VIs from just the data collected on June 28, 2017 also reflect the findings 

from the other dates, with the NG being the most separable. The other top VI’s included the 

GNDVI, NDRE, and MTCI for both soil-removed and soil-included metrics. The amount of 

separability was higher for the soil-removed VIs, as was found for all the datasets.  

4.4.2 VI Rankings by Level of Chlorosis Separation 

 Upon observing the values and metrics that performed the best for each level, it is apparent 

that the same metrics tended to do well for both the soil-included and soil-removed VIs. It can also 

be inferred that as the levels of iron chlorosis graduate, the leading VIs changed, and the f-Distance 

values increased. This demonstrates that areas of higher levels of chlorosis have a greater 

separability from green plants and gives an improved understanding as to which VIs perform better 

at each level. For mild chlorosis the NDRE was in the list of top three metrics most of the season, 

for moderate chlorosis the performance is split between the NDRE, NG and NGRDI, respectively, 

and for severe chlorosis the NG is dominant for almost the entire growing season (results can be 
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seen in Figure 23 for the top VI for each level overall. See Appendix D for the top three ranking 

VIs for each level of soil-included and soil-removed VIs). There is a transition from one metric to 

another through the levels, which evidences that each stage of chlorosis is identifiable by different 

VIs. 

The formulas that did seem to work well for detecting iron chlorosis for combined iron 

chlorosis and for all levels, however, were those which used both the NIR and RE bands. Both the 

MTCI and NDRE (which use both NIR and RE) equations out-performed metrics using only NIR 

or only RE. The G band also performed better than expected in the NG, NGRDI, and GNDVI 

equations. The NG, the most separable VI across all datasets, was one of the three ratio VIs tested, 

had better results than the almost-identical NR metric, although the only difference between the 

two is the use of the G and R bands. The GNDVI also uses the G and R bands to create a ratio, 

much like the NDVI equation, substituting G for NIR and this, too was among one of the highest 

ranked metrics. 

  As mentioned in section 4.1.2, the worst performing VIs were also analyzed for the three 

levels of iron chlorosis to determine which of the metrics did not perform as expected. These are 

displayed in Figure 24 and display which VI was the least separable across all VIs tested for both 

soil-included and soil-removed indices. It was found that the least separable VI overall was the 

NGRDI. It is also apparent that many of the metrics changed to include the RE band, instead of 

NIR, did not work as well as was originally anticipated. This is interesting considering that fact 

that the NDRE and MTCI both use the RE band.  

These results show that the NIR and RE bands, in conjunction with one another, seem to 

perform better than these respective bands alone. Although the RE band is said to be extremely 

useful when analyzing vegetation (Hansen and Schjoerring 2003), this band did not perform as 
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well as initially thought. There did not seem to be a significant change in the amounts of 

chlorophyll detected with this band, making the performance of this band mediocre when used 

alone in this study. However, the scattering of IR wavelengths captured by the NIR and the 

detection of chlorophyll of the RE band together created good results.  

The separability results also hint that R and G bands also appear to work well in contrast 

to one another. This could be due to the fact, as stated in the introduction, that the absorption of R 

wavelengths and the reflection of G wavelengths by greener vegetation and the reflection of R 

wavelengths and absorption of G wavelengths by stressed vegetation create a well-balanced 

contrast to determine areas of iron chlorosis (Sripada, et al. 2008).  

 As mentioned above, the NDVI did not achieve results as well as predicted. As mentioned, 

this metric is one of the most commonly used VIs for determining plant stress. Also, the SAVI, 

which was derived from the NDVI equation to compensate for soil effects (and is also one of the 

more popular soil-adjusted indices) did not perform well and, in some cases, was amongst even 

the worst metrics for both the soil-included and soil-removed metrics (it is to be expected from 

soil-removed metrics to perform poorly with soil adjusted VIs). These findings are surprising, 

considering the popularity of the SAVI, hinting that this VI is not the best for determining iron 

chlorosis. 

As was discussed in Section 4.1.2, the ‘levels’ of iron chlorosis may have changed 

throughout the season. An area of moderate chlorosis could have been mild at the beginning of the 

season. From Figure 25, it is apparent that the different levels of chlorosis can be seen starting to 

form, giving a visual confirmation that some levels of chlorosis did stay consistent throughout the 

growing season. The most separable VIs are also consistent with the popular findings of the dataset 
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as a whole. The NG was the most separable metric for both soil-included and soil-removed VIs 

for all levels of chlorosis, with the separation increasing as chlorosis intensifies, respectively. 

4.4.3 The Separability for all Groups 

 The most separable VIs were unexpected, as they are not the most popular or widely used 

indices. The RE band, which is said to have better estimates of chlorophyll amounts in a plant did 

not perform well by itself when replacing the NIR band, but did work well in conjunction with it. 

The G band also out-performed the R band in many cases, making the GNDVI more separable 

than the well-known NDVI and also making the NG become one of the top-performing VIs, 

possibly due to its reflectivity in healthy vegetation and absorption in stressed plants. 

While some VIs had higher separability values in specific cases, such as for only mild 

chlorosis, the MTCI, NDRE, and NG performed the best for all. The NDRE and NG both did well 

in the beginning of the season to determine areas of iron chlorosis. The NDRE performed better 

for mild and moderate levels, whereas the NG did the best when detecting severe chlorosis and the 

MTCI performed well for the group as a whole (Results displayed in Figure 23 with the top three 

ranking VIs located in Appendix E). However, the NG overall was the most separable VI for most 

cases, making it the top-ranking index. Some VIs separated the two pixel classes better at the end 

of the season, such as the OSAVI and DVI. While the mid to end of season data is important, the 

early season information is more useful. It is early in the season, while the plants are young and 

still have growing potential, that they should be treated, making the end of season data less 

important in terms of this study. 

 Every VI performed poorly at separating the two classes in the very early and end parts of 

the season. As the plants continued to grow, the distinction between iron chlorosis and healthy 

vegetation began to grow, even by the second or third week, which should give ample time for 
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treatment. The distinction between the two populations was especially clear in the areas of severe 

iron chlorosis, where the plants contain the most need for treatment. The separation for severe 

chlorosis was still distinct enough to show stress in the early-season with the NG, further implying 

that this index performed well, especially for this level of stress. 

4.4.4 Yield/SPAD Measurements in Relation to Top Ranking VIs 

 While the yield data was not a leading factor to determine areas of iron chlorosis, they did 

highlight a few pieces of information about the crop. One important finding to note is that the most 

separable metric, the NG, did not have many outlying points in Figure 30, displaying lower yield 

values for higher NG values. This is an indication that healthier plants do contain a higher yield 

(the NG is one of the few VIs in which a lower VI value indicates healthier vegetation). 

Although some areas of iron chlorosis contained a higher yield amount than those of the 

healthy plants, it is most likely because of the hybrid type that this is so. Therefore, by observation 

of the hybrid map, areas of healthier plants can be differentiated using sUAS-derived multispectral 

data, and it is also apparent that some hybrids fare better than others. This can be linked to the rise 

and fall of values (the range of values) of healthy vegetation and provide an explanation for why 

this wider range occurred in the data. 

 The sUAS-acquired multispectral imagery can be used to detect areas of healthier 

vegetation, which can be linked to higher yield values. Some areas or sparse vegetation, although 

healthy, did not have high yield counts (yield values can be found in Appendix I and can be 

correlated to the general plot map in Figure 29). 

 The correlation between SPAD estimated chlorophyll amounts and VI values contained an 

evident relationship. As the chlorophyll amounts increased, so did the VI values (apart from the 

NG, in which lower values are related to higher chlorophyll amounts and healthier vegetation). 
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The correspondence between the NG and chlorophyll amounts also seemed to contain a better 

‘grouping’ of data, rather than a widespread trend.  

 Yield estimates and SPAD chlorophyll data was also correlated, giving a positive 

relationship. However, the link between the two classes was not as linear, suggesting that some 

areas of healthy vegetation do not have high yields. This, as mentioned before, is probably due to 

hybrid type. 
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CHAPTER V: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 This project used a sUAS to collect 4-band multispectral imagery to assess their utility for 

extracting VIs to discover and monitor iron chlorosis in grain sorghum. The 4-band multispectral 

imagery was processed using SfM image processing to derive reflectance maps that could 

subsequently be used to calculate a series of VIs. These VIs were then were evaluated on their 

ability to separate healthy vegetation and iron chlorosis as a whole, and at levels of mild, moderate 

and severe, based on their separability rankings. The VIs that ranked the highest have the potential 

to predict oncoming areas of iron chlorosis, or iron chlorosis in its early stages.  

 A series of ground truth data was collected to pre-determine strained areas which included 

georeferenced iron chlorotic plants, assessing the amount of chlorosis, using a SPAD chlorophyll 

meter to measure the relative amount of chlorophyll, and collecting the yield. Over the course of 

the growing season a series of weekly flights were performed with an eBee SQ fixed-wing drone 

mounted with a Parrot Sequoia multispectral sensor. The imagery (as mentioned above) was 

processed with SfM photogrammetry to create multispectral reflectance maps in the R, RE, NIR 

and G bands. 

 The multispectral data was then used to calculate a total of 25 VIs, gathered from multiple 

sources that validated their use in detecting plant stress from factors relating to iron chlorosis. For 

further analysis of these indices, the soil was removed from the imagery for one date (May 17, 

2017) using a maximum likelihood supervised classification and a probabilistic classifier to 

determine which method provided more ideal results. When a method was chosen (maximum 

likelihood classification), the soil was removed from the reflectance maps for all dates. From these, 

another set of soil-removed VIs were calculated, mostly independent of the background factors 
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that caused low values. The VIs were delineated (using the field collected GPS observations) to 

extract pixels representing two classes, iron chlorosis and healthy vegetation.  

The separability between these areas was calculated using two methods, the JM-Distance 

and the f-Distance to determine which method produced superior results, for data collected on June 

28, 2017. When the more appropriate metric for this study was found (the f-Distance), it was used 

to rank class separability for each VI. The f-Distance was also computed for areas of mild, 

moderate, and severe levels of chlorosis to determine which VI performed the best at each. 

 It was found that the most separable VIs across all dates for both soil-included and soil-

removed VIs were the MTCI, NDRE, and NG, with the NG being the most separable for most 

dates (including the date of field collection). The separability values from the soil-removed VIs 

were also generally higher than the soil-included, implying that removing soil from the reflectance 

maps before calculating VIs is useful, and provides better results.  

 The VI results also were used to relate the yield and SPAD chlorophyll measurements. 

There was no specific correlation that could be found between the VI values and the weight of the 

grain due to the many different hybrids planted in the field. The 4-band multispectral reflectance 

maps and VI maps showed that some hybrids are generally healthier than others, skewing the data. 

A relationship between yield and SPAD measurements was found, although some plants with 

higher chlorophyll readings had lower yields. These also probably relate to hybrid type. There was 

a correlation between chlorophyll measurements and VI values, relating low chlorophyll 

measurements to high levels of chlorosis and vice versa.  

 In conclusion, sUAS-derived multispectral imaging, created from SfM photogrammetry, is 

useful when determining plant stress due to iron chlorosis in grain sorghum crops. The 

multispectral image bands could calculate a plethora of VIs, which were able to detect iron 
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chlorosis, the best overall VI for this being the NG. This study was successful in demonstrating 

the uses of sUAS’s for the detection of iron chlorosis, monitoring areas of crop stress, and assessing 

areas of crop health.  

5.2 Future Work 

 The sUAS-acquired 4-band multispectral imagery were utilized to compute 25 VIs in this 

study. Some of those VIs were modified to include the bands collected by the Sequoia sensor, and 

some were modified to exclude the blue (B) band, which was not available. This band is not one 

of the more common to be found in VIs formulated to monitor vegetation, but it can be used, as in 

a study conducted by Gitelson, et al. 2002, in which a VI utilized the R, G, and B bands. A sensor 

with this band could be useful for both calculating VIs and also for using Canopeo (Patrignani and 

Ochsner 2015) for extracting canopy cover. 

 The VIs could further be utilised to predict yield in grain sorghum over an entire crop or 

for different hybrids. One problem with this study was correlating the VIs with the yield data. If 

more yield counts were taken, they could potentially have found a correlation with yield counts.  

 One main downfall of this study was the lack of ground truth data. While the UAS imagery 

was collected once a week to privide sufficient data, the measurements for iron chlorosis took 

place on only two days (one day for georeferencing one for SPAD measurements and assessment 

of chlorosis levels. Data collection should have taken place for the entire growing season to see 

how chlorosis progressed and at what stage it is visible to the eye, for field measurements.  

 As mentioned, this study used UAS-derived imagery to compute VIs, with consistent 

results. With the top VIs, a supervised machine lerarning algorithm could be built, with these VIs 

used as training data. This algorithm could be tested on the 4-band false colored multispectral 

reflectance maps to determine how well each VI can detect iron chlorosis, if they can detect 
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different levels of chlorosis, and how early the chlorosis can be detected. The ultimate goal of this 

study in the future is to create an automatic classifier built for UAS-acquired multispectral imagery 

to detect iron chlorosis, by level, early in the season, with enough time for farmers to treat it and 

produce a yield from the affected plants.  
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Appendix A: Time Series of Plot represented by sUAS acquired 4-band false colored 

multispectral image 
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Appendix B: Examples of the code used to automate methodology processes  

Appendix B.1: A sample of code used to clip the raster images   

 
#------------------------------------------------------------------------------- 

# Name:        Extract By Mask 

# Purpose:     Extract areas of High, Med, and Low levels of IC from VI datasets 

# 

# Author:      Isabel Garcia 

# 

# Created:     06/06/2018 

# Copyright:   (c) Isabel Garcia 2018 

# Licence:     <your licence> 

#------------------------------------------------------------------------------- 

 

import arcpy 

from arcpy import env 

# Import Spatial Analysis toolbox 

from arcpy.sa import * 

 

# Check the ArcGIS Spatial Analyst 

arcpy.CheckOutExtension("Spatial") 

 

# Import mask data (common for all CC VIs) 

mask = "C:/Users/igarcia21/Documents/AgriLife 2017/Polygons/Segments_Low_IC.shp" 

 

# Set local variables (VI files) 

 

## DVI 

dvi = "C:/Users/igarcia21/Documents/AgriLife 2017/Multispec Imagery/17_05_05/CC 

VIs/CC_DVI/CC_DVI.tif"  

 

# Execute Extract By Mask and save the output file to desired location 

 

## DVI 

out_dvi = ExtractByMask(dvi, mask) 

out_dvi.save("C:/Users/igarcia21/Documents/AgriLife 2017/Multispec Imagery/17_05_05/CC 

VIs/CC_DVI/CC_DVI_L.tif")   
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Appendix B.2: A sample of code used to convert tiff to ASCII  

#------------------------------------------------------------------------------- 

# Name:          Raster to ASCII Regular VI 

# Purpose:       Convert Clipped Y and G .tif Images to .txt 

# 

# Author:        Isabel Garcia 

# 

# Created:       28/05/2018 

# Copyright:   (c) Isabel Garcia 2018 

#------------------------------------------------------------------------------- 

 

import arcpy 

from arcpy import env 

 

# Set local variables 

 

## DVI 

dviY = "C:/Users/Isabel Garcia/Documents/AgriLife 2017/Multispec 

Imagery/17_07_27/VIs/DVI/DVI_Y.tif" 

out_dvi_y = "C:/Users/Isabel Garcia/Documents/AgriLife 2017/Multispec 

Imagery/17_07_27/VIs/DVI/DVI_Y.txt" 

 

# Execute RasterToASCII 

 

## DVI 

arcpy.RasterToASCII_conversion(dviY, out_dvi_y) 

arcpy.RasterToASCII_conversion(dviG, out_dvi_g) 
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Appendix B.3: Example of the code used to calculate f-Distance  

%% Isabel Garcia 
% Seperability Script 
% Luzum, Slatton, & Shrestha et.al. 2005 

  
%% DVI 

  
% Step 1: Import and clean files 

  
format short g 

  
% Import files 
% Skip the header lines to access only the data 
% 6 skips the first 6 lines, 0 skips 0 columns 
green = dlmread('C://Users/Isabel Garcia/Documents/AgriLife 2017/Multispec 

Imagery/17_05_12/VIs/DVI/dvi_g.txt'... 
    ,'', 6, 0); 

  
yellow = dlmread('C://Users/Isabel Garcia/Documents/AgriLife 2017/Multispec 

Imagery/17_05_12/VIs/DVI/dvi_y.txt'... 
    ,'', 6, 0); 

  
% Convert matrix to vector; 
gVector = green(:); 
yVector = yellow(:); 

  
% Rid all of the null values from the file 
g = gVector(gVector ~= -9999); 
y = yVector(yVector ~= -9999); 
 

% Step 2: Perform initial calculations 

  
% Compute median values 
mG = median(g); 
mIC = median(y); 

  
% Compute median absolute deviation 
madG = median(abs(g-median(g))); 
madIC = median(abs(y-median(y))); 

  
% Step 3: Calculate seperability 

 

dvi_Sep = abs((mIC-mG)/sqrt(madIC^2+madG^2)) 
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Appendix B.4: Example of the validation code used to calculate Jeffries-Matusita (JM) Distance 

%% Isabel Garcia 
% Seperability Script 
% JM Distance with Median (instead of mean) 

  
%% Step 1: Import and clean files 

  
format short g 

  
% Import files 
% Skip the header lines to access only the data 
% 6 skips the first 6 lines, 0 skips 0 columns 
green = dlmread('C://Users/igarcia21/My Documents/Agrilife 2017/Multispec 

Imagery/17_06_28/CC VIs/CC_OSAVI_RE/cc_osavi_re_g.txt'... 
    ,'', 6, 0); 

  
yellow = dlmread('C://Users/igarcia21/My Documents/Agrilife 2017/Multispec 

Imagery/17_06_28/CC VIs/CC_OSAVI_RE/cc_osavi_re_y.txt'... 
    ,'', 6, 0); 

  
% Convert matrix to vector; 
gVector = green(:); 
yVector = yellow(:); 

  
% Rid all of the null values from the file 
g = gVector(gVector ~= -9999); 
y = yVector(yVector ~= -9999); 

  
%% Step 2: Compute B  

  
% Compute median values 
mG = median(g); 
mIC = median(y); 

  
% Compute variance 
varG = var(g); 
varIC = var(y); 

  
% Compute B 
B = 1/8*(mG - mIC)^2 * 2/(varG^2+varIC^2) + 1/2 * 

log((varG^2+varIC^2)/(2*varG*varIC)); %in MatLab log() is ln  

  
%% Step 3: Calculate seperability, JM Distance 

  
JM = 2*(1-exp(-B)) 
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Appendix C: A comparison between JM distance and f-Distance separability measures for soil-

included and soil-removed datasets from June 28, 2017. 

Note: The separability measures are ranked from smallest (worst performing) to largest (best 

performing). 

 

  

 Soil-Included Vegetation Indices Ranked Low - High 

Vegetation 

Index (VI) 

Seperability 

Ranking (df) 

Vegetation 

Index (VI) 

Seperability 

Measure (JM Dist) 

DVI 0.0073336 DVI 0.055895 

EVI2 0.16269 SR 0.091059 

OSAVI RE 0.19958 EVI2 0.61302 

GDVI 0.20832 ENDVI_RE 1.1497 

ENDVI_RE 0.22929 OSAVI RE 1.3414 

NGRDI 0.282 SAVI 1.4068 

SAVI 0.30752 GDVI 1.5175 

SAVI RE 0.31298 SAVI RE 1.603 

GDVI RE 0.32356 NDVI_RE 1.6683 

NDVI_RE 0.35987 NGRDI 1.6866 

TVI RE 0.36068 OSAVI 1.9712 

OSAVI 0.41307 TVI RE 1.9834 

EVI2 RE 0.47051 EVI2 RE 1.9971 

NR 0.76518 DVI RE 1.9997 

DVI RE 0.76662 ENDVI 1.9997 

ENDVI 0.76662 GDVI RE 2 

TVI 0.87325 GNDVI 2 

NDVI 0.87441 GNDVI_RE 2 

SR 0.91543 GOSAVI 2 

GOSAVI 1.0295 MTCI 2 

GNDVI_RE 1.0677 ND RE 2 

GNDVI 1.6975 NDVI 2 

MTCI 1.7009 NG 2 

ND RE 1.7079 NR 2 

NG 1.8839 TVI 2 
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Soil-Removed Vegetation Indices Ranked Low - High 

Vegetation 

Index (VI) 

Seperability 

Measure (df) 

Vegetation 

Index (VI) 

Seperability 

Measure (JM Dist) 

DVI 0.038603 SR 0.13697 

EVI2 0.16366 DVI 0.15055 

GDVI 0.20214 EVI2 0.93438 

ENDVI_RE 0.24106 ENDVI_RE 1.6244 

OSAVI RE 0.26103 GDVI 1.7299 

SAVI 0.34924 SAVI 1.9137 

NGRDI 0.34929 NGRDI 1.9682 

SAVI RE 0.3837 OSAVI RE 1.9743 

TVI RE 0.3924 NDVI_RE 1.9764 

NDVI_RE 0.39247 SAVI RE 1.9916 

GDVI RE 0.42888 DVI RE 2 

OSAVI 0.47513 ENDVI 2 

EVI2 RE 0.58889 EVI2 RE 2 

DVI RE 0.74297 GDVI RE 2 

NR 0.82774 GNDVI 2 

ENDVI 0.83222 GNDVI_RE 2 

TVI 0.94619 GOSAVI 2 

NDVI 0.94828 MTCI 2 

SR 1.0099 ND RE 2 

GOSAVI 1.1782 NDVI 2 

GNDVI_RE 1.2086 NG 2 

ND RE 1.7382 NR 2 

MTCI 1.7575 OSAVI 2 

GNDVI 1.8227 TVI 2 

NG 1.9873 TVI RE 2 



 

 

104 

 

Appendix D: Top and Bottom three separable VIs for combined chlorosis.  

Top three performing soil-included VIs by date. The values are the separability values, 

calculated by the f-Distance, between healthy vegetation and vegetation containing all levels of 

iron chlorosis. 

 Best Performing Soil-Included VIs 

Date 1st 2nd 3rd 

05_05 GDVI 0.55226 SR 0.52892 MTCI 0.52796 

05_12 MTCI 1.1568 ND RE 1.1306 NG 0.91686 

05_17 ND RE 1.4994 MTCI 1.4707 NG 1.3394 

05_23 MTCI 1.7439 ND RE 1.7166 NG 1.6539 

05_31 MTCI 1.8286 NG 1.7654 GNDVI 1.6336 

06_08 MTCI 2.1011 ND RE 1.9462 NG 1.9437 

06_13 MTCI 2.4312 ND RE 2.3358 NG 2.1075 

06_22 NG 2.2345 MTCI 2.2184 ND RE 2.0848 

06_28 NG 1.8839 ND RE 1.7079 MTCI 1.7009 

07_06 NG 1.5648 GNDVI 1.3534 ND RE 1.3451 

07_15 NGRDI 1.0833 NG 0.94931 ND RE 0.86454 

07_27 NG 0.63373 ENDVI 0.44153 NGRDI 0.4392 

 

 

 

 

Top three performing soil-removed VIs by date. The values are the separability values, 

calculated by the f-Distance, between healthy vegetation and vegetation containing all levels of 

iron chlorosis. 

 

 

 

 

 

 

 

Best Performing Soil-Removed VIs 

Date 1st 2nd 3rd 

05_05 GOSAVI 0.59733 GNDVI 0.58726 GNDVI RE 0.53835 

05_12 ND RE 1.1068 MTCI 0.93357 NG 0.74687 

05_17 ND RE 1.57 MTCI 1.4847 NG 1.3482 

05_23 MTCI 1.8791 NG 1.8606 GNDVI 1.7137 

05_31 MTCI 1.9348 ND RE 1.8204 NG 1.7521 

06_08 MTCI 2.2265 NG 2.0573 ND RE 2.0459 

06_13 MTCI 2.5577 ND RE 2.4787 NG 2.1207 

06_22 MTCI 2.2492 NG 2.1661 NDRE 2.1064 

06_28 NG 1.9873 GNDVI 1.8227 MTCI 1.7575 

07_06 NG 1.6886 GNDVI 1.4862 ND RE 1.4474 

07_15 NG 1.2651 GNDVI 1.0702 NGRDI 1.0661 

07_27 NG 0.76203 NGRDI 0.53008 DVI RE 0.49216 
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The worst three performing VIs by date. The values are the separability values, calculated by the 

f-Distance, between healthy vegetation and vegetation containing all levels of iron chlorosis. 

 

 

 

  

 

 

 

 

 

 

 

The worst three performing soil-removed VIs by date. The values are the separability values, 

calculated by the f-Distance, between healthy vegetation and vegetation containing all levels of 

iron chlorosis. 

 

 

 

 

 

  

Worst Performing Soil-Included VIs 

Date 1st 2nd 3rd 

05_05 NGRDI 0.1454 GNDVI RE 0.3556 NDRE 0.3586 

05_12 NGRDI 0.4243 GDVI RE 0.4362 DVI RE 0.4846 

05_17 NGRDI 0.5358 DVI RE 0.5434 SAVI RE 0.5655 

05_23 DVI RE 0.2721 GNDVI RE 0.3450 GDVI RE 0.3450 

05_31 DVI RE 0.0932 NGRDI 0.0965 EVI2 RE 0.2536 

06_08 GDVI RE 0.0054 EVI2 RE 0.0250 SAVI RE 0.0744 

06_13 NGRDI 0.0023 DVI 0.2417 GDVI RE 0.2787 

06_22 NGRDI 0.0324 DVI 0.0747 OSAVI RE 0.1378 

06_28 DVI 0.0073 EVI2 0.1627 OSAVI RE 0.1996 

07_06 TVI RE 0.0036 NDVI RE 0.0036 EVI2 0.0198 

07_15 NDVI 0.0805 TVI 0.0806 SR 0.0817 

07_27 GOSAVI 0.0355 MTCI 0.0991 GDVI 0.1427 

Worst Performing Soil-Removed VIs 

Date 1st 2nd 3rd 

05_05 NGRDI 0.1477 ENDVI RE 0.3547 DVI RE 0.3601 

05_12 GDVI RE 0.0737 DVI RE 0.1160 SAVI RE 0.1834 

05_17 NGRDI 0.0936 DVI RE 0.1115 SAVI RE 0.1455 

05_23 GDVI RE 0.0450 NGRDI 0.0540 DVI RE 0.0704 

05_31 EVI2 RE 0.0287 SAVI RE 0.0579 NGRDI 0.0862 

06_08 NGRDI 0.0686 GDVI RE 0.1069 EVI2 RE 0.1497 

06_13 NGRDI 0.0550 DVI 0.1645 SAVI 0.2543 

06_22 DVI 0.0608 GDVI 0.1863 NGRDI 0.1968 

06_28 DVI 0.0386 EVI2 0.1637 GDVI 0.2021 

07_06 NDVI RE 0.0294 TVI RE 0.0294 EVI2 0.0324 

07_15 NR 0.0097 ENDVI 0.0097 NDVI 0.1227 

07_27 GOSAVI 0.0870 MTCI 0.1180 GNDVI RE 0.1424 
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Appendix E: Top and Bottom three separable VIs for each level of chlorosis.  

 

Top three performing soil-included VIs for mild levels of chlorosis by date. The values are the 

separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing mild levels of iron chlorosis. 

 

 

 

 

 

 

 

Top three performing soil-removed VIs for mild levels of chlorosis by date. The values are the 

separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing mild levels of iron chlorosis. 

 

 

 

 

 

 

 

Top Performing Soil-Included VIs (Mild) 

Date 1st 2nd 3rd 

05_05 NDRE 0.7631 NG 0.6782 GDVI 0.6767 

05_12 NDRE 0.9293 MTCI 0.7331 NG 0.5692 

05_17 NDRE 1.1922 MTCI 1.1841 NG 0.7195 

05_23 MTCI 0.9813 NG 0.9252 GNDVI 0.8814 

05_31 MTCI 0.9112 NDRE 0.9100 NG 0.8126 

06_08 NG 0.7769 GNDVI 0.7689 NDRE 0.6933 

06_13 MTCI 1.0748 NDRE 1.0652 GNDVI 1.0413 

06_22 NDRE 1.2022 MTCI 1.1295 NG 0.8028 

06_28 NG 1.0797 NDRE 1.0596 MTCI 0.9817 

07_06 NDRE 1.2472 MTCI 1.1572 NG 0.9180 

07_15 NDRE 1.2546 MTCI 1.1484 NG 1.0319 

07_27 NDRE 0.6666 MTCI 0.6286 NG 0.6259 

Top Performing Soil-Removed VIs (Mild) 

Date 1st 2nd 3rd 

05_05 NDRE 0.9832 MTCI 0.9818 NG 0.9394 

05_12 NDRE 1.2143 MTCI 0.9488 NG 0.8105 

05_17 NDRE 1.3254 MTCI 1.2485 NG 0.8965 

05_23 NG 1.1630 GNDVI 1.0640 MTCI 0.9582 

05_31 MTCI 1.0300 NDRE 0.9651 NG 0.8387 

06_08 MTCI 0.8051 NDRE 0.7988 NG 0.7728 

06_13 NDRE 1.1129 MTCI 1.1067 NG 0.9795 

06_22 MTCI 1.2478 NDRE 1.2474 NG 0.8223 

06_28 NG 1.1539 NDRE 1.1060 GNDVI 1.0523 

07_06 NDRE 1.3173 MTCI 1.2076 GNDVI 1.0021 

07_15 NG 1.4297 GNDVI 1.3539 NDRE 1.2915 

07_27 NDRE 0.6890 MTCI 0.6330 NG 0.6278 
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Top three performing soil-included VIs for moderate levels of chlorosis by date. The values are 

the separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing moderate levels of iron chlorosis. 

 

 

 

 

 

 

 

Top three performing soil-removed VIs for moderate levels of chlorosis by date. The values are 

the separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing moderate levels of iron chlorosis. 

 

 

 

 

 

 

 

Top Performing Soil-Included VIs (Moderate) 

Date 1st 2nd 3rd 

05_05 NDRE 0.2146 GNDVI RE 0.1729 GDVI RE 0.1203 

05_12 NDRE 0.6935 MTCI 0.5967 NG 0.4096 

05_17 NDRE 1.2192 MTCI 0.9653 NG 0.8369 

05_23 NDRE 1.7016 MTCI 1.6134 NG 1.5841 

05_31 NG 1.7439 GNDVI 1.6562 GNDVI RE 1.6222 

06_08 NG 2.0994 GNDVI 1.9357 MTCI 1.9240 

06_13 MTCI 2.5199 NDRE 2.4153 NG 2.2459 

06_22 NG 2.1091 MTCI 2.0553 NDRE 2.0129 

06_28 NG 1.4268 GNDVI 1.2488 NDRE 1.1811 

07_06 NGRDI 1.3053 NG 1.1964 DVI RE 1.0483 

07_15 NGRDI 1.6989 ENDVI RE 1.1034 OSAVI RE 1.0797 

07_27 OSAVI 0.7503 ENDVI 0.7222 SAVI 0.7173 

Top Performing Soil-Removed VIs (Moderate) 

Date 1st 2nd 3rd 

05_05 GNDVI RE 0.4075 GNDVI 0.3315 SR 0.3213 

05_12 NDRE 0.6747 GDVI RE 0.4109 MTCI 0.4083 

05_17 NDRE 1.4211 NG 1.3001 MTCI 1.1825 

05_23 NDRE 2.0977 MTCI 1.9771 NG 1.8891 

05_31 NG 1.8868 GNDVI RE 1.8598 GNDVI 1.8291 

06_08 NG 2.2731 GNDVI 2.1103 MTCI 2.0417 

06_13 MTCI 2.6288 NDRE 2.5901 NG 2.2562 

06_22 NG 2.1736 MTCI 2.1236 NDRE 2.0440 

06_28 NG 1.4921 GNDVI 1.3113 NDRE 1.1630 

07_06 NG 1.3494 NGRDI 1.3295 GNDVI 1.1156 

07_15 NGRDI 1.5676 ENDVI RE 0.9980 OSAVI RE 0.9632 

07_27 DVI 0.7089 NGRDI 0.6869 EVI2 0.6717 
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Top three performing soil-included VIs for severe levels of chlorosis by date. The values are the 

separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing severe levels of iron chlorosis. 

 

 

 

 

 

 

 

Top three performing soil-removed VIs for severe levels of chlorosis by date. The values are the 

separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing severe levels of iron chlorosis. 

 

 

 

 

 

 

Top Performing Soil- Included VIs (Severe) 

Date 1st 2nd 3rd 

05_05 GDVI 1.0885 MTCI 1.0869 DVI 0.9913 

05_12 NDRE 1.6303 NG 1.5692 MTCI 1.5341 

05_17 MTCI 2.1196 NG 2.0133 NDRE 1.9293 

05_23 NG 3.2083 MTCI 2.6780 GNDVI 2.5549 

05_31 NG 3.5034 GNDVI 3.2507 GNDVI_RE 2.9148 

06_08 NG 4.9873 GNDVI 3.8094 MTCI 3.5365 

06_13 NG 3.9025 GNDVI 3.4058 MTCI 3.4035 

06_22 NG 4.1919 GNDVI 3.6068 MTCI 3.3641 

06_28 NG 2.7204 NDRE 2.7113 MTCI 2.5625 

07_06 NG 2.4361 NDRE 2.2304 GNDVI 2.1376 

07_15 NG 1.4451 GNDVI 1.1972 NDRE 1.0758 

07_27 NG 0.7097 GNDVI 0.3481 NDRE 0.2373 

Top Performing Soil-Removed VIs (Severe) 

Date 1st 2nd 3rd 

05_05 MTCI 1.4382 NDRE 1.3543 GDVI 1.1095 

05_12 NDRE 2.2108 MTCI 1.8705 NG 1.8227 

05_17 NG 2.4279 MTCI 2.2868 GNDVI 2.2853 

05_23 NG 3.0368 GNDVI 2.7335 MTCI 2.5322 

05_31 NG 3.2859 GNDVI 2.9725 MTCI 2.9096 

06_08 NG 4.6633 GNDVI 3.8929 MTCI 3.7825 

06_13 NG 4.1291 GNDVI 3.6275 MTCI 3.5564 

06_22 NG 4.2020 GNDVI 3.7813 MTCI 3.6157 

06_28 NG 3.0446 NDRE 2.8482 GNDVI 2.8198 

07_06 NG 2.7612 GNDVI 2.4001 NDRE 2.3942 

07_15 NG 1.8697 GNDVI 1.6077 NDRE 1.2111 

07_27 NG 0.8318 GNDVI 0.4170 DVI_RE 0.3439 
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Worst three performing soil-included VIs for mild levels of chlorosis by date. The values are the 

separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing mild levels of iron chlorosis. 

 

 

 

 

 

 

 

 

 

Worst three performing soil-removed VIs for mild levels of chlorosis by date. The values are the 

separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing mild levels of iron chlorosis. 

 

 

 

 

 

 

 

 

 

Worst Performing Soil-Included VIs (Mild) 

Date 1st 2nd 3rd 

05_05 NGRDI 0.0710 ENDVI RE 0.0814 TVI RE 0.1586 

05_12 NGRDI 0.1699 DVI RE 0.1898 TVI RE 0.1901 

05_17 DVI RE 0.1957 SAVI RE 0.2037 EVI2 RE 0.2052 

05_23 DVI RE 0.1459 GNDVI RE 0.1750 GDVI RE 0.1750 

05_31 DVI RE 0.0004 NGRDI 0.0195 EVI2 RE 0.0503 

06_08 SAVI RE 0.0086 DVI RE 0.0137 EVI2 RE 0.0471 

06_13 NGRDI 0.0919 GDVI RE 0.0930 OSAVI RE 0.1080 

06_22 ENDVI RE 0.0163 NDVI RE 0.0277 NGRDI 0.0377 

06_28 SAVI RE 0.0010 GDVI RE 0.0124 OSAVI RE 0.0335 

07_06 EVI2 RE 0.0283 DVI RE 0.0373 GDVI RE 0.0556 

07_15 DVI RE 0.0371 EVI2 RE 0.0458 SAVI RE 0.0474 

07_27 GDVI RE 0.0397 DVI RE 0.0789 EVI2 RE 0.1258 

Worst Performing Soil-Removed VIs (Mild) 

Date 1st 2nd 3rd 

05_05 NGRDI 0.0231 ENDVI RE 0.2854 TVI RE 0.3516 

05_12 NGRDI 0.1995 DVI RE 0.2117 GDVI RE 0.2389 

05_17 OSAVI RE 0.0207 GDVI RE 0.0225 EVI2 RE 0.0272 

05_23 DVI RE 0.2001 GDVI RE 0.2345 EVI2 RE 0.2554 

05_31 OSAVI RE 0.0419 SAVI RE 0.0627 EVI2 RE 0.0681 

06_08 GDVI RE 0.0054 OSAVI RE 0.0544 EVI2 RE 0.0755 

06_13 ENDVI RE 0.1298 GDVI RE 0.1435 NGRDI 0.1549 

06_22 DVI 0.0409 NDVI RE 0.0885 TVI RE 0.0889 

06_28 ENDVI RE 0.0042 NDVI RE 0.0965 TVI RE 0.0968 

07_06 OSAVI RE 0.0085 SAVI RE 0.0369 EVI2 RE 0.0891 

07_15 DVI RE 0.0723 EVI2 RE 0.0869 SAVI RE 0.0917 

07_27 DVI RE 0.0160 EVI2 RE 0.0249 SAVI RE 0.0282 
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Worst three performing soil-included VIs for moderate levels of chlorosis by date. The values 

are the separability values, calculated by the f-Distance, between healthy vegetation and 

vegetation containing moderate levels of iron chlorosis. 

 

 

 

 

 

 

 

 

Worst Performing Soil-Included VIs (Moderate) 

Date 1st 2nd 3rd 

05_05 DVI 0.0112 ENDVI RE 0.0193 SAVI 0.0236 

05_12 GDVI RE 0.0032 DVI RE 0.0408 SAVI RE 0.0983 

05_17 NGRDI 0.1341 GNDVI 0.1953 DVI RE 0.2478 

05_23 GNDVI RE 0.0020 GDVI RE 0.0020 EVI2 RE 0.0279 

05_31 SAVI RE 0.1026 GDVI RE 0.1083 EVI2 RE 0.1185 

06_08 DVI 0.0014 SAVI 0.1894 OSAVI RE 0.2202 

06_13 GDVI 0.0071 OSAVI 0.1166 EVI2 0.1197 

06_22 EVI2 0.0127 GDVI 0.0963 ENDVI RE 0.2423 

06_28 GDVI 0.0097 OSAVI 0.0317 SAVI 0.0727 

07_06 SR 0.0805 NDVI 0.0820 TVI 0.0823 

07_15 GNDVI RE 0.0488 GNDVI 0.2638 MTCI 0.2758 

07_27 GNDVI 0.0225 NDRE 0.0479 GNDVI RE 0.0500 
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Worst three performing soil-removed VIs for moderate levels of chlorosis by date. The values 

are the separability values, calculated by the f-Distance, between healthy vegetation and 

vegetation containing moderate levels of iron chlorosis. 

 

 

Worst 

three 

performing soil-included VIs for severe levels of chlorosis by date. The values are the 

separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing severe levels of iron chlorosis. 

 

 

 

 

 

 

 

Worst Performing Soil-Removed VIs (Moderate) 

Date 1st 2nd 3rd 

05_05 MTCI 0.0308 GDVI 0.0509 NDRE 0.0603 

05_12 OSAVI RE 0.0022 EVI2 0.0241 SAVI 0.0462 

05_17 OSAVI RE 0.0429 GDVI RE 0.0613 ENDVI RE 0.1069 

05_23 ENDVI RE 0.0868 OSAVI RE 0.1354 NDVI RE 0.1906 

05_31 OSAVI RE 0.0470 DVI 0.2115 NGRDI 0.2940 

06_08 DVI 0.0774 OSAVI RE 0.1832 NGRDI 0.2179 

06_13 GDVI 0.0462 GOSAVI 0.0466 EVI2 0.1054 

06_22 EVI2 0.0013 GDVI 0.1172 ENDVI RE 0.2955 

06_28 GDVI 0.0201 OSAVI 0.0274 SAVI 0.0919 

07_06 SR 0.0265 NDVI 0.0266 TVI 0.0266 

07_15 GNDVI RE 0.2016 GOSAVI 0.3571 NDVI 0.4090 

07_27 NDRE 0.0103 GNDVI 0.0757 MTCI 0.1259 

Worst Performing Soil-Included VIs (Severe) 

Date 1st 2nd 3rd 

05_05 NGRDI 0.3896 GNDVI RE 0.5306 GDVI RE 0.6555 

05_12 NGRDI 0.7263 GDVI RE 0.9418 DVI RE 0.9840 

05_17 DVI RE 0.9143 SAVI RE 0.9554 EVI2 RE 0.9605 

05_23 DVI RE 0.6374 GNDVI RE 0.6952 GDVI RE 0.6952 

05_31 NGRDI 0.3012 DVI RE 0.3649 EVI2 RE 0.6186 

06_08 DVI RE 0.0157 SAVI RE 0.2512 GDVI RE 0.3149 

06_13 OSAVI RE 0.0404 GDVI RE 0.0625 EVI2 RE 0.2444 

06_22 SAVI RE 0.0742 TVI RE 0.0746 OSAVI RE 0.1376 

06_28 SAVI RE 0.0879 OSAVI RE 0.1100 DVI 0.1144 

07_06 DVI 0.0725 OSAVI RE 0.1033 SAVI RE 0.2152 

07_15 ENDVI 0.0830 NR 0.0832 NDVI RE 0.0885 

07_27 GDVI 0.0060 TVI RE 0.1037 NDVI RE 0.1043 
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Worst three performing soil-removed VIs for severe levels of chlorosis by date. The values are 

the separability values, calculated by the f-Distance, between healthy vegetation and vegetation 

containing severe levels of iron chlorosis. 

 

 

 

 

 

 

  

Worst Performing Soil-Removed VIs (Severe) 

Date 1st 2nd 3rd 

05_05 NGRDI 0.2866 ENDVI RE 0.5827 EVI2 RE 0.6311 

05_12 NGRDI 0.4007 DVI RE 0.5727 GDVI RE 0.6064 

05_17 DVI RE 0.5394 SAVI RE 0.5928 NGRDI 0.5929 

05_23 DVI RE 0.2368 GDVI RE 0.3867 EVI2 RE 0.5246 

05_31 NGRDI 0.0429 DVI RE 0.1250 EVI2 RE 0.4467 

06_08 SAVI RE 0.1182 EVI2 RE 0.2056 GDVI RE 0.2073 

06_13 OSAVI RE 0.2332 GDVI RE 0.2407 NGRDI 0.2491 

06_22 OSAVI RE 0.0284 DVI 0.1114 NGRDI 0.1849 

06_28 DVI 0.0091 OSAVI RE 0.0385 SAVI RE 0.1724 

07_06 DVI 0.0666 OSAVI RE 0.1164 NGRDI 0.2187 

07_15 NDVI RE 0.0661 TVI RE 0.0662 ENDVI RE 0.1224 

07_27 GOSAVI 0.0640 GNDVI RE 0.1363 GDVI 0.1651 
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Appendix F: Separability results, for the entire dataset, between healthy vegetation and iron 

chlorosis as a whole 
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 Appendix G: Separability results, for the entire dataset, between healthy vegetation and mild, 

moderate, and severe levels of iron chlorosis 
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Appendix H: An area of iron chlorosis and green vegetation mapped over the season 

Note: This is a display of regular multispectral imagery. The top black box represents an area of 

healthy vegetation and the bottom box represents an area of severe iron chlorosis.  
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Note: This is a display of soil-removed multispectral imagery. The top black box represents an 

area of healthy vegetation and the bottom box represents an area of severe iron chlorosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

May 5, 2017 May 12, 2017 May 17, 2017 

May 23, 2017 May 31, 2017 June 8, 2017 

June 13, 2017 June 22, 2017 June 28, 2017 

July 6, 2017 July 15, 2017 July 27, 2017 



 

 

123 

 

Appendix I: Yield measurements and grain estimates in comparison with values from the top three 

VIs, the MTCI, NG, and NDRE.  

 

ID 

Measured 

Weight (in 

grams) 

Weight 

Estimation 

(in grams) 

MTCI NG NDRE 

107ag 180 189.4737 0.1900 0.1662 0.3157 

107ay no data no data 0.1632 0.1721 0.2762 

108bg 317 634.0000 0.1900 0.1593 0.2915 

109ay no data no data 0.2097 0.1786 0.2675 

109bg no data no data 0.2560 0.1583 0.2944 

110ay 18 360.0000 0.1663 0.2034 0.2233 

201ag 334 351.5790 0.1947 0.1712 0.2592 

201ay 83 332.0000 0.1709 0.1772 0.2390 

302ag 199 398.0000 0.2441 0.1524 0.2676 

302ay 199 995.0000 0.2025 0.1537 0.2647 

304ag 261 522.0000 0.2719 0.1836 0.2680 

304ay 63 1260.0000 0.1989 0.1626 0.2533 

305ag no data no data 0.2110 0.1431 0.3053 

304by 98 392.0000 0.2060 0.1836 0.2245 

306bg 599 360.5263 0.2343 0.1646 0.2700 

307ay 15 300.0000 0.1721 0.1907 0.2409 

309bg 256 393.8462 0.2234 0.1523 0.2550 

309by 152 506.6667 0.1553 0.1801 0.2306 

403bg 431 783.6364 0.2637 0.1611 0.2440 

403by 384 426.6667 0.1956 0.1749 0.2207 

405ag 266 280.0000 0.2248 0.1785 0.2373 

405ay 195 205.2632 0.1900 0.1881 0.0240 

406bg 175 437.5000 0.2045 0.1655 0.2730 

406by no data no data 0.1485 0.1760 0.2424 

407bg 362 381.0526 0.1744 0.1769 0.2355 

407by 276 394.2857 0.2707 0.1843 0.2231 

408bg 281 562.0000 0.1821 0.1626 0.2651 

408ay 75 750.0000 0.1811 0.1827 0.2376 


