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ABSTRACT

Hand gestures can allow for natural approach to human-computer interaction. A novel low com-

putation Hand Gesture Recognition System (HGRS) using temporally blended image data with a

convolutional neural network (CNN) is presented. The goal of HGRS is to recognize hand gestures

in an optimized and efficient way. We created a dataset using Kinect depth and body data stream

frames. The dataset comprised of eight different hand gestures, each gesture was performed with the

right hand within a duration of three seconds. Data is first processed by segmenting the hand from

the background using body data joints mapped onto depth data. Reduction in the computation of the

HGRS was achieved by blending the temporal depth data frames into a single frame. The blending of

temporal depth data frames is defined as the addition of the frames into a single frame by increasing

the intensity of each consecutive frame. The resolution of the depth data frames was reduced to an

empirically evaluated frame size of 50× 50 which further improved the computational efficiency of

HGRS. We trained and validated a CNN model for hand gesture classification which consists of three

convolutional layers each followed by a max pooling layer, and two fully connected layers in the end.

We tested the performance of the model and observed a test accuracy of 98.45%. We performed a

quantitative analysis to measure the overall performance of the model.
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CHAPTER I: INTRODUCTION

Hand gesture recognition is a growing field of interest due to advancements in computer vision. Ges-

tures are a very important part of the human routine. According to the Oxford dictionary [36], the

definition of gesture is the movement of a part of the body, especially a hand or head, to express an

idea or meaning. Gestures include movement of the face, hands, or other parts of the body. They are

part of both verbal communication such as presentations, lectures, conversations as well as non-verbal

communication like sign language.

Gesture recognition is a technique that is used to design a system that can comprehend gestures

to control computer systems. The beauty of a gesture recognition system is that the user is not re-

quired to understand the technical jargon when using hand gestures for controlling a system. Thus,

a layman's knowledge is sufficient. In everyday communication, gestures play an important role not

only to enforce the understanding that one would provide through speech but also drive home certain

meaningful phrases, which otherwise would have been impossible to be conveyed through the speech

alone. Therefore, to make human computer interaction as natural as possible, computers should be

able to recognize gestures along with speech.

The most common human-computer interactions used by individuals are devices such as key-

boards, joysticks, controllers, and mice to control systems and machines. Although these are carefully

designed for simple and easy interaction with the users, they suffer from inherent difficulties when it

comes to massive data inputs and reasonable speed. This limitation has become even more evident

with the dramatic evolution of computers in the fields of storing capacity and processing speed. For

these reasons, we need new input methodologies assimilating at a greater degree, the way people

communicate with the system that is, speech and gestures. Hand gestures could nicely serve as an

additional means of providing instructions to a computer or a robot. The Carnegie Mellon Univer-

sity robotics laboratory implemented a gesture based robot which was then given the task of cleaning

through simple gestures [49].

Furthermore, gestures are a necessity in Virtual Reality (VR), where the users have to perform

1



hand movements to interact and manipulate the surroundings of a virtual environment.

1.1 Problem Description

We design and implement a hand gesture recognition system with the sole purpose of meeting the

standard of natural interaction between humans and computers. The current basic human interaction

with computers requires the use of keyboard, mouse, etc. Although, a hand gesture is not a replace-

ment for these devices, addition of hand gesture with these devices provides a way to supplement the

current interaction in a more natural way and intuitiveness. The improvements have been growing

over the years with touch based interaction. The natural human-to-human interaction includes speech

and expressions.

The main goal of this work is to make the human-computer interaction more natural and intuitive.

The use of vision techniques do not require the use of color marker, hand gloves, or wearable devices.

A simple use of the hand to create a gesture that can be recognized efficiently is a necessary criteria.

With the rise of ubiquitous computing, the motivation to implement a hand gesture recognition system

is given a boost. We implement a convolution neural network to recognize the hand gesture which is

a state-of-the-art technique used in recognition.

Our contribution is the implementation of the temporally blended image frames which are inputs

to a convolution neural network. We also contribute in the design of optimized and computationally

efficient convolution neural network that provides an precise and accurate clasification and recogni-

tion. The major work is developing the entire system pipeline which can be used to control computers

and robots.

1.2 Gesture Classification

Gestures can be divided based on the human anatomy, interpreted meaning, devices used, and methods

used to create gestures. These can be classified as below.

2



Human Gestures Classification

Human gestures are related to head movement and facial expressions. A simple example would be

nodding the head from the left to the right expressing refusal. Acknowledgement of an interruption

with a nod of the head is a natural and intuitive communication gesture. Facial gestures involve eye

movements, mouth expressions, eye lid, lip and nose movements. A smile is a very basic example

used most frequently in daily activities. An example of an arm gesture would be conducting an

orchestra which is defined as the art of directing the simultaneous performance of several players or

singers using arm gestures by standing in front of them [9]. Hand gesture example would be raising

a hand to greet someone. Another example of hand gesture would be to raise a specific number of

fingers on either hand to indicate digits between zero and nine. Body gestures may involve one or

more persons. Dance moves to describe a specific form of dance pattern is a good example of body

gesture.

Temporal classification

Gestures are further conclusively divided into two types: Invariable (Static) and Variable (Dynamic).

Static gesture is time independent whereas a dynamic gesture is dependent on time.

Invariable hand gesture involves posing a hand in a certain way or in a defined hand posture,

whereas a variable hand gesture includes the entire hand trajectory motion and the movement. Our

work considers a subset of both the hand gesture types.

Classification based on interpreted meaning

Emblems, illustrators, regulators, affect displays and adaptors [28, 18] are the typical classes to de-

scribe gestures. Emblems are defined as gestures that can be substituted for spoken words. An exam-

ple is showing a thumbs up to show acceptance. Regulators are used in mass speeches as a means of

interaction between active speakers and listeners. A perfect example would be raising hand to manage

turn-taking to raise a question. Illustrators are used for illustrating spoken words. A way of providing

directions by pointing to a specific location can be considered as an example of an illustrator. Af-

3



fect displays are expressions on a face combined with motions of the body to display the intensity

of emotions. A good example would be when a person moves his or her body back during a sudden

encounter with a snake is an instant and sudden display of the emotion of fear. Adaptors are gestures

that are used in certain situations for personal satisfaction or comfort, which have converted to a habit.

The act of shaking our legs while sitting idly or during a desk job is a classic example of adaptors.

Classification based on methods used

Two types of methods are used to record and detect gesture. The first method is to use a professional

wearable electronic or electromagnetic devices like myo [27]. Myo armband reads the electrical

activity of muscles and arm motion to control technology with hand gestures. Gloves like CyberGlove

[19] are used to generate hand gestures. CyberGlove has 22-sensors which capture motion with up to

22 high-accuracy joint-angle measurements.

The other method utilizes computer vision and creates gestures using image processing tech-

niques. This type is also known as non invasive as it does not require the use of any wearable devices.

The former is expensive and only works in specific environment. On the other hand, with the evolu-

tion in the field of image processing and machine learning, the latter requires lesser hardware and is

relatively less expensive and more robust.

1.3 Challenges in Hand Gesture Recognition

Recognition of hand gestures has various challenges associated with it. The following sections pro-

vide the details of each one of them.

Segmentation

Hand segmentation is a precursor for hand gesture recognition. It is a technique of image processing

that involves separating the human hand or hands from the entire body in an image or a video. This

plays a crucial role in the recognition of a hand gesture. A higher recognition rate is the direct result

of better and properly-segmented regions of interest (hand area).
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Dynamic Background

Dynamic background relates to movements in the background when a gesture action is being per-

formed or posed in the foreground. The first case scenario is that it creates a lot of noise in the image

which makes it difficult to segment the hand necessary for recognition. The second case scenario in a

dynamic background is the presence of multiple persons in view. The issue with this scenario is the

detection of multiple hands, which lead to an invalid output. Rick and John [21] proposed techniques

to separate hand from a cluttered background in a gesture recognition. The techniques use target col-

ors to generate histograms called color predicates. The performance described in the paper states that

the system is flexible in different environments and it also performs well on cluttered crowd scenes

involving muiltiple persons in view, extracting a smaller number of false regions.

Occlusion

The basic definition of occlusion is the limitation of a specific property of a device that causes de-

terrence in the output obtained. The first case scenario is when two or more fingers during a hand

gesture appear to be connected due to noise or overlapping of shadows. The range of the camera also

causes occlusion in the output. Another case of occlusion would be the tracking of hand gestures

when there are other objects around causing the gesture to be partially covered. Koller et al. [22]

addressed the problem of occlusion in object tracking. The authors employed a contour tracker based

on intensity and motion. Occlusion was detected from the intersection of the depth ordered regions

and then excluded. This helped in removal of occlusion on 3D object tracking.

Lighting Conditions

Lighting conditions like illumination and color brightness affect hand gestures. Also, low light con-

ditions that affect output are a necessary consideration.
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Noise

These contribute to the majority of errors in the output. Anything that causes the output or the input

to go haywire is considered an error. This issue is caused in the first three modules of the proposed

hand gesture recognition, and is resolved using image processing techniques like erosion and dilation.

Removal of errors to 100% is practically unattainable. Inherent noise is impossible to be removed.

These noises are related to hardware of the system. An attainable value of noise removal in any system

would be to rely on the industry set standards and methods in noise reductions.

User-dependency

This is one of the most challenging issues. It is the ability to recognize the same gestures made by

different people. Every person has distinctive ergonomic sizes of their hands. Therefore, chances are,

that different data is generated for identical gestures. One solution would be calibration of the device

used. The data augmentation (preprocessing steps) and the proposed convolution neural network

handles this challenge in an agreeable manner.

1.4 Prior Work

Stern et al. [44] proposed a novel approach for design of hand gesture using both, human and tech-

nical design factors. Measuring human factors when designing gestures are represented in terms of

intuitiveness and comfort. This paper focused on the development and collection of empirical ma-

trices that performed quantitative analysis of the intuitiveness and comfort on hand gesture design.

Three performance measures were defined intuitiveness, comfort and recognition accuracy. Measure-

ment of intuitiveness and comfort used a bottom up approach, using a command to find matching

gestures. This approach was followed by Coded Gesture Entry where the subject physically generates

the gesture and enters the configuration information.

The subject selecting a level of belief for the command-gesture association followed each of

method. Intuitiveness had eight commands and 59 distinct gesture set was generated. Based on

popularity of use of gestures, the set was reduced to 22. Effort experiments were tested for the com-
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fort factor. Several hard poses were added using the Borg scale of 0 to 10. Analysis showed that

gestures are strongly associated with the command, an example was the “right command” with the

gestures associated had a tilt or pointed to right side. The authors also observed a strong evidence

of matching complementary gestures to complementary commands, which were defined as two com-

mands with opposite connotations. Lower values were obtained in effort results showing the notion

that the subjects inadvertently filtered out difficult gestures during intuitive experiments.

Wachs et al. [48] provided a review of vision based hand gesture applications. These application

are divided into four main classes-medical systems and assistive technologies, crisis management and

disaster relief, entertainment and human-robot interaction each illustrated through a set of examples.

The authors discussed the three main advantages of these applications. Sterility is a necessity in medi-

cal and health care environments. Access to information maintaining sterility in medical environment

is possible with these applications. Another advantage is the control of home appliances for impaired

mobility and elderly users. The third and final advantage is exploration of large and complex data

using a 3D interaction rather than 2D methods for intuitiveness benefit. The basic requirements with

respect to benefits were also discussed. The first requirement is price, it is an important factor when

the development budget is listed. Responsiveness of a system is necessary in gaming and entertain-

ment applications.

User adaptability and feedback relates to ability to recognize gestures and the application it is used

in. Learnability is based on how easy the hand gesture patterns are remembered or learned. Accu-

racy plays a role when the result is of prime importance, this is necessary in medical application like

surgery procedure where human life is dependent on the application’s accuracy. Intuitiveness pro-

vides a strong cognitive association between the commands and gestures performed. Comfort avoids

gestures that have intense muscle tension over long periods referred to as “Gorilla arm”. Lexicon size

should be efficient enough as to allow robust classification between the gestures. “Come as you are”

is a fundamental requirement in vision based application. This requirement suggests a non-invasive

approach that avoids use of wearing additional aids or wired devices like gloves, markers that help in

recognition.

Interaction space defines the virtual interaction envelope and suggests methods for calibration
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when using multimodal cameras. Gesture spotting consists of distinction between useful and uninten-

tional movements that appear as gestures relative to the immersion syndrome [4]. The paper described

the four recommended guidelines for widespread commercial and social acceptance of the applica-

tion. Validation using public and standard test sets like sensitivity/recall increase the robustness of

the systems. User independence to promote customizability improves acceptability. Usability criteria

to evaluate learning and ease of remembering gesture lexicons and likelihood of errors performance

using subjective workload assessment is necessary for social acceptance. Qualitative and quantita-

tive assessment provides way of testing the system using alternative modalities helps improving the

robustness to use compared to state-of-the-art systems.

Murthy and Jadon [33] provided a survey on vision-based hand gestures recognition research pa-

pers. The main purpose of this survey was to introduce the field of gesture recognition as a mechanism

for human machine interaction. The survey describes the application domains for gesture recognition

such as Virtual Reality, Robotics and telepresence, desktops and tablet PC applications, games and

sign language. Virtual Reality interactions use vision to enable realistic execution of virtual objects

for 3D displays. Robotics domains use gesture to interact and control robots. Gestures provide an

alternate interaction desktops and tablet PCs. Interactive games use motions and gestures to control

movements of avatars in gaming domains. Sign languages are highly structural and therefore well

suited for vision algorithms. The paper also gives requirements such as robustness, computational

efficiency, user’s tolerance and scalability required to make a successful working system.

The authors mentioned three approaches, Model based (kinematic model), view based, and low-

level features in which hand features can be derived to classify it as a gesture. Hand gesture clas-

sification described are rule based and Machine learning approaches. The paper also presents the

paper related to gesture taxonomies which vary from author to author. The taxonomy best appropriate

according to this paper was developed by Quek [39, 40]. The paper presents problems hampering

the solution to use of gesture recognition in commercial level. Most of the papers reviewed relied

on several assumptions suited for controlled lab conditions and prevent the effect of generalization to

arbitrary configuration. Assumptions such as high contrast stationary backgrounds and ambient light-

ing conditions. Recognition results presented in the surveyed papers are based on the author’s own
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collected data therefore, raising questions over its applicability in general real-world data. A solution

proposed was to create a standard database for comparison techniques in analogy to FERET database

[38].

There is a lot of research focused on hand gesture recognition. This research is divided into device

based and computer vision based Hand Gesture Recognition. The former uses special hardware worn

on the hand like data gloves, colored gloves or markers. The latter uses human body features like skin

color and does not require any hardware to be worn.

Glove based detection

Glove based detection use gloves as physical devices to obtain the output. The gestures are produced

by using sensors on the gloves.

Pawel et al. [35] worked to analyze gestures of the hand and body language using data from a

specialized glove. The authors used data from ten sensors present on the glove. This data acts as an

input to a machine learning algorithm. The results showed unique features of the classifiers achieving

a sensitivity of 98.32%.

Devi and Deb [11] proposed a glove-based system connected to a mobile device to translate Hindi

sign language to speech. The glove is build with flex sensors which gather the gesture information

and an Arduino micro-controller to provide bluetooth communication with a mobile device. Eculidean

distance is used to classify the gesture.

A proposed hand gesture recognition system implemented a charge-transfer capacitive touch sen-

sor for translating gestures into American Sign Language [1]. The prototype thus developed is a

set of capacitive touch sensors and Rasberry Pi single processor unit to recognize and translate hand

gestures into sound. The results obtained through 1080 trials produced an accuracy of 92%.

Parvini et al. [34] provided a comparison of the major approaches for recognizing hand ges-

tures. The advantages for each of the approaches were discussed. The single layer feed forward,

back propagation neural networks were compared with GRUBC (Gesture Recognition by utilizing

Bio-mechanical characteristics) over American sign language. They concluded that the GRUBC pro-

vided higher accuracy in detecting similar gestures without them having to be labeled. This approach
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required the use of physical equipment to address the problem description, thus having wiring fixtures

and minimizing the use to a specific range of access.

Kau, Su, Yu and Wei [17] proposed a glove to recognize dynamic gestures present in Taiwanese

sign language. A gyroscope detected the motion of the trajectory movement of the hand. The authors

used flex sensors to track and detect finger flexion combined with a gyroscope sensor to detect palm

orientation. The proposed glove is connected via bluetooth to a mobile device that displays the final

results. The architecture is structured on data from the sensors and gyroscope captured in cache of

registers that are monitored per clock cycle. A total of four registers are used. Posture is stored in

one, next monitors and records orientation of the palm, the third stores the trajectory and the final

register stores the duration of the posture. A flag is set to check if a gesture has been recognized or

not. Sensor data size is set to 20-bits. The accuracy of the glove was 94% on five dynamic gestures.

This work does not relate any research to machine learning.

Finger based detection

The use of gloves in the detection of hand gestures requires the use of physical equipment as a source

whereas vision based detection does not require any external equipment and thus has a higher advan-

tage.

A research proposed using finger segmentation for hand gesture recognition as a way to recognize

the gestures over SVM and CRF classifiers [6]. In their work, the hand region is extracted from the

background with background subtraction and then the finger and palm are segmented so as to detect

and recognize fingers. The proposed classifiers predict the label of the gesture.The performance of

this method is based on hand detection and background subtraction. The background tends to be

dynamic in nature and any object with similarity to skin color will tend to degrade the result obtained.

A significant part of the research work in gesture recognition is based on finger position and finger

segmentation. The process of finger segmentation and positioning takes up most of the processing

time. Finger emphasized multi-scale description [51] implemented a descriptor that used multiple

scales for discriminative and complete representation of hand shapes, thus making the finger features

emphasized resulting in detection of the hand.

10



Static hand gesture algorithm implemented by Yu et al. [52] is based on finger angle characteristics

. A gesture is detected by the angle of the fingers relative to the palm center. The work concluded that

true gesture recognition is obtained using the angle from the fingertip attachment to the center of the

palm by calculating the size and quantity of the finger angles. The accuracy rate obtained was 96.8%

from the 900 gesture images used.

Hand gesture recognition system to count the number of fingers using geometry of the hand was

performed by D.K. Vishwakarma et al. [25]. The segmentation of hand region uses skin color likeli-

hood method to extract skin color. Morphological and geometry functions are used to extract fingers

and then the fingers are counted using rule based classification.

A lot of previous related work based on vision [31, 13, 33] for hand gesture recognition reviewed

a lot to proposed methods. Survey and reviews were conducted about the use of gesture in real-world

applications and environments. The factors effecting recognition were the nature of optical sens-

ing and the quality, dynamic and variable backgrounds, lighting factors and color schemes. Overall

detection and tracking of hand performance was lowered with effects of these factors.

Hand gesture recognition using Kinect

The development of inexpensive, reliable and robust Microsoft Kinect depth sensor has laid the path to

improving the overall opportunities of hand gesture recognition. The absence of physical equipment

in Kinect depth sensor is successfully used in body tracking [2], moving object detection [37] and

face recongition [16]. In hand recognition there are few techniques that are successful but require

large processing. These can be optimized further to increase the overall accuracy and robustness.

Liu, Zhou and Li [26] proposed a sign language recognition system with Long Term Short Mem-

ory (LSTM [15]) using the skeleton joint (left elbow, right elbow, right hand and left hand) trajectories

provided by Kinect sensor camera (color image and depth information are discarded). The architec-

ture consists of seven layers including the input layer. The first layer is the input layer which is fed

with a 12-dimensional feature vector comprised of four 3D spatial point vectors which are the joints

in the body. The next layer is the LSTM layer with 512 filters followed by a fully connected layer

of 512 neurons and another consecutively of 100 neurons corresponding to 100 classes. The authors
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used 100 isolated sign language words from the Chinese sign language and another with 500 sign

words. The first dataset consisted of 5 performers that generated each gesture 5 times, thereby cre-

ating 25,000 images. The second dataset had 50 performers each performing the gesture 5 times

resulting in 125,000 images. The accuracy of the system was 86% using the first dataset and 64%

with the second dataset.

Sung, Ponce et al. [45] proposed a hierarchical maximum entropy Markov model (MEMM) that

contemplated a subject's activity, collected as a set of sub-activites and concluded a two layered graph

structure using the dynamic programming approach. The corpus of the dataset consisted of twelve

different activity sets that are performed by four people in distinct environments-kitchen, living room,

office, et cetera. The proposed model achieved an accuracy of 84.3% when the same person was

present in the training data and 64.2% when the person was not seen before by the model (unbiased

data test).

Convolution Neural Network based work

Javier et al. [3] discussed convolution neural network architectures for hand gesture recognition.

This work used two classes of gestures: open and closed hand along with the unknown class and

implemented six architectures varying the hyper parameters and depth. The results obtained showed

how robust the network was during implementation, depending on the changes in the hyper parameters

generating the model with the best performance. The sixth architecture achieved an improvement of

more than 40% compared to the first architecture. The performance obtained above is based on only

two gestures and required more classes to be added to make the overall system robust.

Pei Xu [50] proposed a hand gesture recognition with convolution neural network using a cheap

monocular camera . The developed system runs with a fixed number of frames per second. When

an image is captured by the camera, the system uses a hand detector to filter out the hand image

or terminates when nothing is detected. The filtered out image is passed to a CNN classifier that

recognizes the processed image and a Kalman estimator is employed to estimate the position of the

mouse cursor based on points tracked by the hand detector. The recognition and estimation results are

submitted to a control center which is a simple probabilistic model to decide the response the system
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should make.

Recently, classification of hand gestures has been successful on the VIVA challenge dataset. Pavlo

et al. [32] designed a hand gesture recognition system using 3D convolution neural network. The

classifier used fused motion volume of normalized depth and image gradient values that improvised

the spatial-temporal data augmentation to avoid over-fitting of the model. The model also used a

combination of low and high resolution sub-networks to improve the classification accuracy. This

system achieved an accuracy of 77.5%.
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CHAPTER II: SYSTEM DESIGN

The system design has three modules namely frame preprocessing, convolution neural network model

design (CNN) and validation of the CNN model. Figure 2.1 provides an overview of the system.

Figure 2.1: System Design work flow.

2.1 Frame Preprocessing

In this module, we perform image frame preprocessing using image processing techniques. Frame

preprocessing is precursor for hand gesture recognition. This module uses three main techniques

to perfrom frame preprocessing namely segmentation, blending and cropping. Each of these three

techniques perform necessary steps in achieving the required frame for recognizing the hand gesture.

Segmentation

Segmentation is the separation of an area of interest from the rest of the environment. The area of

interest, that is, the hand region up to the wrist needs to be split from the rest of the human body and

the background environment.
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This technique uses raw depth data and skeleton joints obtained from Microsoft Kinect [30].

Kinect allows tracking of 26 body joints. The right hand region has three joints defined as hand

tip, hand center and wrist joint. Similarly, for the left hand.

Hand segmentation is performed by fetching the hand region joint types provided by Kinect, that

is capable of tracking up to six bodies. We restrict the tracking to a single body that is tracked first

when it comes into the view of the camera. Kinect integrates two different sensors, specifically a

color with a resolution of 1920×1080, an infrared (IR) sensor with a resolution of 512×424. These

sensors have different resolution and are not synchronized or aligned so as to map one on the other.

The projection of skeletal joints on depth data frame requires proper adjustment and mapping of

the coordinates. Body tracking is performed by the depth sensor, so the coordinates of the axes are

aligned with the depth data frame. Projection of the coordinates from the depth data frame onto color

data results in mis-alignment. The main task of this step is to map the skeletal joints on the tracked

depth data frame. We use the mapping functionality to map the joints on to the depth data frame, that

is, finding the point in the depth data frame that matches the real world coordinates of the joints. This

mapper identifies points from 3D space that corresponds to a coordinate in the depth 2D space and

vice versa. The coordinates are 3D point values measured in meters. The dimensions of the visual

elements are measured in pixels, so conversion of real-world 3D values into 2D screen pixels uses the

depth coordinate points that stores the mapped value, thus, mapping 3D points on to 2D points. The

final result obtained on this step sets the skeletal points of the hand region on the depth data frame.

Mapping is defined as setting the skeletal joints on the depth frame. The background and the

region of interest (hand area) has to be segmented in the depth data frame. A point to be mentioned is

when we discuss the term “frame”, we mean each individual frame obtained from the Kinect sensors.

The above mapping is the first part of the segmentation. The previous paragraph described setting

the body tracking to the first person that comes into the view. In effect, setting the tracking to the

first person involved, partially solves the challenge of background removal, that is, when there are

multiple persons in the field of view of the sensor. Figure 2.2 displays when a person is moving in the

background whereas figures 2.3 and 2.4 show when a person is raising hands. The other part of the

challenge is removal of the surrounding environment from the depth frame providing only the region
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Figure 2.2: Dynamic background removal (human present).

Figure 2.3: Dynamic background removal (human hand raised).

of interest (hand area).

The other part of the issue is solved by mapping another joint from the skeletal data. The right

elbow joint is mapped using the above procedure. The use of this joint is to set a threshold in the depth

frame. The distance (depth) of the depth data frame beyond this elbow joint depth value is set to null.

The depth distance between the hand center and the right elbow joint is fixed. The difference allows

us to check if the arm is bent, removing the hand out of depth frame completely. This differential

value is necessary as we require only the hand region and not the forearm region.

The last part of the segmentation involves setting all the depth value pixels of the hand region to

one specific value (white) and the remainder to a different value (black). This is analogous to binary
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Figure 2.4: Dynamic background removal (Human hand raised).

frame which is a two-valued frame. The use of flood fill functionality fulfills the criteria. The step

involves setting a seed. The seed uses connected components that spread to the entire hand region,

providing the region of interest (hand area). The seed is the hand center joint mapped on the depth

frame. This seed is then filled with a white value thereby generating white colored hand area. This is

the segmented depth data frame which is a single channel 8-bit frame.

Since each gesture action is performed for a duration of three seconds, we obtain 85−90 frames

from the depth sensor.Theoretically, the number of frames is fixed to 90 frames with a frame rate of 30

frames per second. The range of 85−90 frames indicates loss of negligible time due to computation

in segmentation module. The conclusion is the frame rate is decreased by an insignificant value.

Computation in segmentation module is not related to loss of frames during the gesture. The decrease

in frame rate, results in less frames generated. Each frame fetched from the depth data stream, is

passed into a frame buffer. Temporal features of a video are based on frames generated for each unit

of time, each frame is individually fetched. This helps in keeping the temporal features of the frames

intact. Consecutive frames in the frame buffer are temporally distinct. Depth data frames are passed

to the frame buffer in original resolution of 512×424. Therefore, spatial features are not affected. At

the end of the time limit, the entire buffer is passed to the blending module.
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Blending

The blending technique performs blending of frames keeping the resolution of each frame in its orig-

inal state. This is a necessary factor as temporal and spatial features are important in the construction

of the frame. The blending of frames is defined as summing up the frames by increasing the intensity

of consecutive frames into a single blended frame. Blending of frames without any change to pixel

properties would result in an indistinguishable frame. An example to show distinguishable frames

is to use swipe left and swipe left reverse gestures described in section 2.2.1. Figure 2.5 show the

indistinguishable frames for each gesture shown in figure 2.6.

(a) (b)

Figure 2.5: Indistinguishable Frames: (a) 1 (b) 2.

(c) (d)

Figure 2.6: Gestures: (a) Swipe left (b) Swipe left Reverse.

We use the intensity of each frame in the frame buffer to distinguish between gestures having

the same rotation axis as in the example above. Each frame intensity is increased sequentially. The
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final frame has the maximum intensity or the original intensity. Equation 2.1 describes the process

of intensity change for every ith frame in N number of frames. In Equation 2.1, N is the number of

frames in the frame buffer and i is the count of each frame in the frame buffer. Ii is intensity of the ith

frame and Iri is the resulting intensity of ith frame.

Iri = Ii ×
i
N

(2.1)

An additional property used to provide distinctiveness for each frame is weight adding function-

ality [5]. Frame buffer stores 8-bit single channel frames, to use the weight adding functionality, it

is necessary to convert each to 24-bit 3-channel frame. Equations 2.2 and 2.3 show the summing of

frames [5]. First frame Fi and second frame Fi+1 in the frame buffer is added by multiplying fixed

scalar weights and stored in an interim frame Finterim. This interim frame Finterim acts as the first frame

with the sequential or next frame in the frame buffer. The final frame is the resulting blended frame.

The scalar weights α , β and γ are set to 0.95, 1 and 0 . These values are not based on any specific

rules and fixed by experimentation. Since intensity, is reduced for each preceding frame, it provides a

perfect way to add up the two frames.

Finterim = αFi +βFi+1 + γ when i = 0 (2.2)

Finterim = αFinterim ∗+βFi+1 + γ when i = 1 to N −1 (2.3)

Figure 2.7 shows the intensity of a single blended frame with and without adding weights to the

frame. Each blended frame is further passed to the cropping module.

(a) (b)
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Figure 2.7: Frames weights: (a) with weights (b) without weights.

Cropping

The cropping technique uses the region of interest to crop out the blended area in a frame. The first

substep is to remove the blended frames that have no gesture present. No gesture implies that the

blended frame is zero-valued pixels or empty frame having only black pixels. Frames with few pixels

having non zero values are deleted as well. Figures 2.8 and 2.9 display the above cases.

Figure 2.8: Zero pixel frame.

(a) (b)

Figure 2.9: Non zero pixel frames: (a) 10% (b) 14%.

This technique prevents faulty blended frame from being passed on the proposed convolution

neural network. The second sub-step in the cropping module removes the blended frame if the skeletal

tracking of the Kinect fails and the subject's entire body is displayed in the blended frame. Kinect

failures occur due to faults in the hardware systems. A non zero count is set to check if the hand

covers more than 30% of the actual frame area. Hand gesture should only cover a range of 18−30%
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of actual frame area. This range is set based on the experimentation with various distances from the

Kinect. These experiments were performed by sitting on chair which causes the detection of joints

to go haywire and also by hidding the hand joints with an object or behind the back to register test

faults in the system, thereby having entire subject's body in the frame. Figure 2.10 display the above

case scenarios. Frame 1 and 2 in the figure 2.10 use all the 3-channels of frame for experimentation

purpose. As a step of simple optimization, we use only a single channel of the 24-bit 3-channel frame.

We use the red channel, setting the remaining channel intensity to zero.

(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Kinect failures frames: (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6.

The third substep in the cropping module is to find the region of interest (gesture area) in the

blended frame to perform cropping. We use the region of interest (ROI) functionality [5] to perform
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cropping. We get all the non zero points from the frame into a vector buffer. Using the minimum area

of rectangle function gives us the bounding box on the ROI. We use this bounding box to crop out

the blended frame. Figure 2.11 provide an example of cropping performed. The final substep in the

cropping module is to resize the frame to an empirically evaluated size of 50×50.

(a) (b)

Figure 2.11: Cropping: (a) Cropped (b) Original.

2.2 Convolution Neural Network (CNN) Model Design

The Convolution Neural Network (CNN) Model Design module has two techniques named as dataset

and deep learning model. Dataset technique defines the way the dataset was created and number of

gesture classes used in the system. Deep learning model techniques displays the steps in achieving

the optimized CNN model.

Dataset

Dataset technique performs following three steps, gesture description, dataset creation, and dataset

preprocessing.

Gesture Description

We have defined eight gesture classes of which four are static and four are dynamic. We consider

a dynamic gesture as one that involves the movement of the entire hand along a specific trajectory

motion while static gestures involve the number of fingers being raised. Each gesture is performed
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within three seconds. The arm should be positioned parallel to the line of sight or field of view of the

depth sensor when performing the hand gesture action. This position is important, since we have set

the elbow joint to be threshold limit for background removal and skipping this position would cut off

the threshold resulting in faults from the segmentation module.

The first class in the gesture set is called the Open Palm gesture. This gesture is performed with

all the five fingers raised and spread out, facing the depth sensor. Figure 2.12 display the blended

frame and gives the gesture action or posture.

(a) (b)

Figure 2.12: Open Palm: (a) Blended (b) Action.

The second gesture class is defined as the Single Finger gesture. This gesture is performed by

raising the single finger from the palm side facing the depth sensor with the prominent use is the

index finger Figure 2.13 is an example of the blended frame and the posture of the gesture.

(a) (b)

Figure 2.13: Single Finger: (a) Blended (b) Action.
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The third gesture class is the Two Fingers gesture. The gesture involves raising two fingers keeping

the rest of the fingers closed into the palm, with the palm facing the depth sensor. The prominent

fingers used are the index and the middle finger. Figure 2.14 display the blended frame and the

posture of the hand gesture.

(a) (b)

Figure 2.14: Two Finger: (a) Blended (b) Action.

The fourth class is defined as the Three Fingers gesture. The gesture involves raising three fingers

facing the depth sensor. The prominent fingers are the index, the middle and the ring finger. Figure

2.15 show the blended frame and gives an idea of the hand gesture posture.

(a) (b)

Figure 2.15: Three Finger: (a) Blended (b) Action.

The remaining four gesture classes are dynamic in nature that is, it involves movement of the hand

along the wrist axis. The fifth class in the gesture set is called the Swipe Right gesture. The gesture

involves an open palm facing the depth sensor with the fingers tightly fixed to one another and pointing

up which is the start state. The action of the gesture is to rotate right, up to the point of making an
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approximate angle of 90°(with the original start state) along the wrist rotation axis. Figure 2.16

provides an example of blended frame and defines the gesture action.

(a) (b)

Figure 2.16: Swipe Right: (a) Blended (b) Action.

The sixth class in the gesture set is called the Swipe Left gesture. The gesture involves an open

palm facing the depth sensor with the fingers tightly fixed to one another and pointing up which is

the start state. The action of the gesture is to rotate left till it is making an an approximate angle of

90°(with the start state) along the wrist rotation axis. Figure 2.17 highlights an example of blended

frame and the hand gesture action. The remaining gestures are the reverse of the above two hand

gestures. We differentiate the temporal features and the below defined gestures will provide the proof

of concept of this work. Temporal feature separation is a way to provide evidence that another gesture

performed in reverse action of the original gesture does not generalize to the original gesture in the

model.

(a) (b)

Figure 2.17: Swipe Left: (a) Blended (b) Action.
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The next class in the gesture set is called the Swipe Left Reverse gesture. The gesture is the

reverse of Swipe Left gesture defined above. The gesture is defined by an open palm facing the depth

sensor with no gaps between the fingers.The start state has the fingers pointed out towards the left and

rotating left making and angle of 90°(with the original start state) along the wrist rotation axis. Figure

2.18 highlights an example of this blended hand gesture frame and the gesture action.

(a) (b)

Figure 2.18: Swipe Left Reverse: (a) Blended (b) Action.

The final class in the gesture set is called the Swipe Right Reverse gesture. The gesture is the reverse

of the defined Swipe Right gesture. The gesture is defined by an open palm facing the depth sensor

with the fingers stacked side by side .The start state has the fingers pointed out towards the right

and rotating right making and angle of 90°(with the original start state) along the wrist rotation axis.

Figure 2.19 provide a visual example of this blended hand gesture frame and gesture action.

(a) (b)

Figure 2.19: Swipe Right Reverse: (a) Blended (b) Action.
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Data Set Creation

We create and use our own dataset to train the proposed Convolution Neural Network. The dataset

consists of eight classes as described in the above section 2.2. Each class consists of a total of 1600

original images generated through the techniques mentioned in section 2.1. This is not the complete

dataset as we require more data to train the proposed network. Section 2.2 provides the complete

dataset. Therefore, based on these techniques, each image in the dataset is a blended frame of the

hand gesture action (dynamic) or posture (static).

Dataset Preprocessing

This step describes the overall techniques used in preprocessing the dataset. There are eight classes

each having 1600 blended frames. In practice, a good amount of data is required for training a model

to be sure of its ability to generalize. The complexity of a neural network can be expressed through

a number of parameters. Parameters of a neural network are defined as weights of the connections

in a network. A general rule of thumb for generating dataset would be P2 where P is the number

of parameters used in the design of the CNN model [43]. Creation of more data is necessary for

the model to generalize. We use image data generator functionality [7] which augments the blended

frames. A number of random transformation performed generates frames that never have the same

features. This functionality allows to configure random transformation and normalization operations

to be performed on frame data before training.

Before the model is trained and tested, all the transformation must be accounted for in the blended

frame. The types of transformation are reflection, rotation, dilation, translation and shear.

Reflection of a frame is not performed. Figure 2.20 display original and reflection (matches Swipe

Right gesture present in the gesture classes) of the same gesture.
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(a) (b)

Figure 2.20: Swipe Left Gesture: (a) Original (b) Reflection.

The rotation range of a frame is set between 0°- 15°. This range is set that any rotation above this

would result in inconsistency in generalizing the model. A frame beyond the range specified is shown

in Figure 2.21.

Figure 2.21: Frame rotated by 16°.

Dilation of frame is accounted by the cropping module described in section 2.2. Distance from

the camera affects the frame in the original camera resolution. The cropping technique provides the

region of interest and resizes the frame to an empirically evaluated size of 50×50.

Translation is set to 0.1 in width and height shift. This randomly translates frames vertically and

horizontally. The value is set based on the experiments peformed and if increased, results in frames

created as shown in figure 2.22. The figures show the gesture being cut off as a result of translation.
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(a) (b)

Figure 2.22: Translation: (a) 0.2 (b) 0.5.

Shear is set to 0.1. This is also set based on experimentation. Any value outside the specified range

results in the generation of images vertical to the human viewpoint. This effects the generalization

that we can perform using model.

Setting these above parameters, we randomly selected 100 frames from each class. We created

4 frames for each blended frame generating a total of 3200 frames, that is, 400 for each class. The

complete dataset had a total of 2000 (400+1600 original frames) frames for each class. We did not

select all the generated frames since the proposed model will not generalize. Training, would be an

over fitting of the model. The reason is that for each frame, transformation is applied to the frame

(original frame) but the pixel values of each generated frame remain the same. When features are

created by the model, they will have a tight bound to the training data and the result would be over

fitting. All factors of transformations and distance were taken into consideration. Using a 60 : 40

train-to-test ratio, we separated the frames into train and test sets. This resulted in the division of

1200 training and 800 testing frames for each class. Thereby, the total number of frames was 16000

in the data set.

Deep Learning Model

Convolution Neural Networks (ConvNets or CNN) are a category of neural networks that are effec-

tive in computer vision areas such as image recognition and object classification. CNNs have recently

proven to be very successful at image recognition [53, 23, 8]. CNNs are very useful in identifying

29



objects, faces and self-driving cars, etc. In a general design of a CNN model, three main operations

(layers) are performed to detect and classify an object or an image. These three operations are convo-

lution, pooling and fully connected layers. These are the fundamental basic building blocks for every

convolution neural network. Each of these are stacked to form a full CNN architecture. Addition of

layers to create appropriate architecture of CNNs require to focus on certain measures. These mea-

sures are number of efficient Convolution layers needed, the optimal number of hidden units, best

pooling strategy, and the best input feature type for CNNs. The behviour of the neural network fea-

tures extracted from the CNNs are also neccessary in the architecture design [42]. The following is

the overview of our network.

INPUT − [[CONV −RELU −POOL]×3− [FC−RELU ]−FC]

INPUT stores the raw pixel values of the frames having a width of 50, a height of 50, and with 3

color channels.

CONV computes outputs of neurons that are connected to local regions in the input, each computing a

dot product between their weights. This results in volumes as [44×44×64] from the first Convolution

layer generating a total trainable parameters of 3200. Similarly, the second layer results in volumes of

[18×18×64] with 102,464 trainable parameters and final layer [7×7×128] with 73,856 trainable

parameters.

RELU applies an element-wise activation function, max(0, x) thresholding at zero. It follows each of

the convolution layer and the size of the output volume remains unchanged.

POOL performs down-sampling operation along the spatial dimensions (width, height), but the depth

(feature sizes) remains fixed. It uses the max function to fetch the maximum value each of 2×2 with a

stride of two. The resulting output volume is spatial reduced to half the dimensions but depth remains

unchanged [22× 22× 64] , [9× 9× 64] and [3× 3× 128] are the resulting output for max pooling

layers of our network. Each CONV is followed by max pooling layer.

FC (Fully Connected) layer computes the class score, resulting in volumes of sizes [1× 1× 256]

with an input of 1152 from a flatten layer [7] that generates a single dimensional vector, thereby

generating 295,168 trainable parameters and in the end of the network we use a fully connected layer

of size[1×1×8], generating 2056 trainable parameters where the output size is eight with each of the
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eight numbers corresponding to a class score, as among the 8 categories. Similar to ordinary Neural

Networks and as the name implies, each neuron in this layer will be connected to all the numbers in

the previous volume obtained from pool.

Figure 2.23: CNN Architecture Design.

Sequential model design with a linear stack of layers is used. Each layer is callable on at tensor

and used to define a model. Our model consists of three convolution layers, max pooling layers, two

dense (Fully connected) layer. A detailed description for each layer is provided below.

Convolution Layers

The primary purpose of a convolution layer is to obtain features from an input frame. The first

convolution layer uses a set of 64 kernels or filters which are of size 7×7. Each of these filters scan

over every pixel in the 50×50 frame taking a stride of 1. On each stride, a feature value is generated

for that pixel. An intermediate output is computed as an element-wise multiplication of each pixel

from the filter and the frame. These intermediate outputs are added up to get the final feature. This

layer extracts higher level features of the input frame. The final frame obtained from the input frame

is called convolved map. These filters act as trainable weights. The convolved map is also called a

feature map because of the filters applied, and the activation functions of the neurons result in the

extraction of features from the input frame.

Complex feature maps obtained from the first convolution layer are passed through a max pooling

layer that reduces the spatial dimensions which then acts as input to the second convolution layer

which uses a set of 64 filters of size 5×5. These filters perform the same operation as the above first
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layer, but the detailed features are extracted from a complex feature map obtained from the first layer.

The feature maps obtained from this layer are passed through a max pooling having a similar function

as the above max pooling layer and then passed on to the final convolution layer.

The third and the final layer is composed of 128 filters of size 3× 3. This extracts the intricate

features from the feature map of the previous layer. The third layer passes the feature maps to the

final max pooling layer.

Rectified Linear Units(ReLU)

Each of the above convolutional layer uses the ReLU activation function. This function computes

max(0, x) that is a simple thresholding at zero. ReLu is used, since they accelerate the convergence

of the gradient descent [23] (reduction of error rate) in comparison to other activation functions.

Expensive computations like exponentials are not required and it involves only thresholding a matrix

of activations at zero.

Max pooling Layer

Max pooling layers between successive Convolution layers or at the end of convolution layers is used

to progressively reduce the spatial size of the representation to reduce the amount of parameters and

computation in a network. These layers control overfitting. Layers of max pooling are used with

filters of size 2×2 with a stride of 2, which removes 60−75% of the feature maps. Therefore, every

maximum operation performed produces 4 numbers.

In Figure 2.24, the input volume of size [50× 50× 32 ] is pooled with filter size 2, stride 2 into

output volume of size [25×25×32]. An important conclusion is that the volume depth is preserved.

Figure 2.25 is the most common downsampling operation called max, giving rise to max pooling, in

this figure it is shown with a stride of 2. That is, each max is taken over 4 numbers (smaller 2× 2

square is obtained).
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Figure 2.24: Pooling (showing depth preserved).

Figure 2.25: Classic max pooling example.

Dropout

Before we pass spatially down-sampled features to the fully-connected layer, we perform a dropout of

25% of the features after each max pooling layer to prevent over fitting. The dropout method is essen-

tially a regularization technique to avoid the network from learning features fit only to training data.

This effects generalization of the model and results failures in recognition during implementation on

real world data. The role of the neurons is to approximate the features effectively from the training

data. When the neurons try to approximate the features for the training data, they fit to a higher order

approximation. This means that neurons will try to learn every details of the training data redundantly

and in doing so, they over fit on training data. The dropout method in the Keras [7] API randomly

mutes neurons creating a sparse set of features that reduces the possibility of over fitting. The features

are then used to generalize on unseen data. Figure 2.26 provide an example of dropout.
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(a) (b)

Figure 2.26: Dropout Layer: (a) Original (b) Dropout.

In our model design, a dropout of 25% is added after every max pool to reduce trainable parame-

ters. Since most of the parameters are trained intrinsically on the training set, having a higher number

of features learnt from the same data over again causes overfitting. Therefore, it is a necessary step

to prevent overfitting of the model. Before we pass spatially down-sampled features to the fully-

connected layer, we perform a dropout of 50% of the features to prevent over fitting which can be

caused due to high activations generated from the neuron output.

Fully-Connected Layers

A Keras [7] API flatten layer unrolls the features or reshapes it into a 1-dimensional vector which can

then be passed to a fully-connected layer. The first fully connected layer output is [1×1×256]. The

Keras API provides a dense layer which is just a regular fully connected layer of neurons. Neurons in

a fully connected layer have full connections to all activations in the previous layer, as seen in regular

neural networks. Their activations can hence be computed with a matrix multiplication followed by

a bias offset. The final fully connected layer uses the softmax activation that compresses the outputs

of each unit from the previous layer to be between 0 and 1. The output of the softmax function is

equivalent to a categorical probability distribution, it relays the probability that any of the classes are

true.
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Optimization

Adam optimizer is used to optimize the network weights and reduce the cost function to a minimum.

The choice of optimization algorithm of the deep learning model acts like a thresholded boundary

between good results in few minutes and days. Adam optimization [20] is an extension to stochas-

tic gradient descent. It is adopted for deep learning applications in computer vision instead of the

classical stochastic gradient descent procedure to update weights iteratively on training data. Adam

is an acroynm for adaptive moment estimation. Since Adam is an adaptation of stochastic gradient

descent, we briefly define the stochastic gradient descent (SGD), as an iterative method for optimizing

a differentiable objective function, a stochastic approximation of gradient descent optimization [41].

SGD maintains a single learning rate (alpha) for all the weight updates and learning rate does not

change during training.

In Adam, the learning rate is maintained for each network weight and separately adapted as learn-

ing unfolds. Adam combines the advantages of different solutions for optimizing. They are from

AdaGrad that monitors a per-parameter learning rate that improves performance on problems with

sparse gradients [12] and RMSPROP [46] maintains per-parameter learning rates that are adapted

based on the average of magnitude of the garadients for the weight. The Adam algorithm, instead

of adpating the parameter learning rates based on the average first moment (mean value) as in RM-

SPROP, uses the average of second moments of the gradients that is the uncentered variance. The

algorithm generates the exponential moving average of the gradient and squared gradient and the

parameters of β1 and β2 control the negative rates of the averages.

Loss Function

Cross entropy loss [10] or log loss is defined as the measurement of the performance of a classification

model, whose output is a probability value between 0 and 1 Cross entropy increases as the prediction

probablity diverges from the actual label. An example would be predicition of a probability of 0.09

when the actual ground truth is one is bad and results in high loss value. Figure 2.27 shows a graph

of possible loss values given a actual observation. As the prediciton approaches one, log loss slowly
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decreases. When the predicted probabilty decreases, loss is exponential. The probabilty of each class

Figure 2.27: Cross Entropy Example

is obtained and compared the value to the actual observation label. The softmax fully connected layer

(the last output layer in the model design) converts this highest probability to one and the rest to zero.

This is compared to the actual label or ground truth value to determine the prediction correctness.

2.3 Validation of the CNN Model

This module describes validation of the proposed network using test data. This module performs

training and testing validations. This module is of utmost importance for generalization of the model.

Training Validation

We plotted the training accuracy and training loss of the model. When training a model, the accuracy

and loss of the model is displayed in the console. The plot helps to better visualize the training

progress.

Testing Validation

We perform testing using the remaining 40% of the dataset. We generated a confusion matrix for the

test data. It is used to describe the performance of the model. A confusion matrix is an N ×N matrix,

where N is the number of classes being predicted. N = 8 is used, and hence we get a 8×8 matrix. The
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following definitions [14] will help us understand the result and evaluation of the confusion matrix

and Area under the Receiver Operating Characteristics (AUROC) described in section 2.3.

True positives (TP) are cases which are classified correctly. For example, a blended frame showing

an Open Palm gesture when predicted belong to a Open Palm gesture class is a true positive. True

Negatives (TN) are cases that are classified correctly not to belong to a class. False positive (FP)

is defined as cases that are classified incorrectly. For the above example of blended frame showing

Single Finger gesture when predicted belongs to an Open Palm gesture class. True negative (TN) are

cases that are classified incorrectly not to belong to a class. Referring to the above example if a gesture

is predicted to belong to an Open Palm gesture class, but true label puts the class to belong to Single

finger raised gesture. Figure 2.28 is an example of 2-class confusion matrix providing explanation.

Figure 2.28: 2×2 Confusion Matrix

The percentage of the total number of predictions that were correct is defined as accuracy of the

system. Equation 2.4 shows the formula of accuracy of the system. The accuracy over eight classes

(one class against all) will the sum of TP for class 0 and TNs for all other classes. Similarly, the

accuracy of other classes as well.

Accuracy =
T P+T N

Total number o f examples
(2.4)

The proportion of positive cases that were correctly identified as positive case is known as Sensitivity,

Recall, hit rate or true positive rate (TPR). It is given in equation 2.5.

Recall = T PR =
T P

T P+FN
(2.5)
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The proportion of actual negative cases which are correctly identified is defined as Specificity, selec-

tivity or true negative rate (TNR). Equation 2.6 shows the formula for specificity.

T NR =
T N

T N +FP
= 1−FPR (2.6)

The proportion of positive cases that were correctly identified is called as positive predicted value

(PPV) or Precision. Equation 2.7 defines the same.

Precision =
T P

T P+FP
(2.7)

The proportion of negative cases that were correctly identified is Negative Predictive Value (NPV).

NPV =
T N

T N +FN
(2.8)

We also define the ROC curve to validate the model. Receiver Operating Characteristics repre-

sents the degree or measure of separability between classes. It visualizes the model's capability of

distinguishing between classes. Higher the AUC, the better is the model in predicting the true posi-

tives. The ROC curve is plotted with TPR against the FPR where TPR is on y-axis and FPR is on the

x-axis. An ideal case of the ROC curve is when the classifier is perfectly able to distinguish between

positive and negative classes, this means that there are no false positive and false negatives. In this

situation, the top left corner of the plot is the “ideal” point - a false positive rate of zero, and a true

positive rate of one. This is not very realistic, but it does mean that a larger area under the curve

(AUC) is usually better.
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CHAPTER III: EVALUATION AND RESULTS

3.1 Model Training Analysis

The CNN model is trained on the dataset and an analysis is performed to determine how well the

model was trained to generalize on real world data. The analysis is described in the below sections.

Training Dataset Cross Validation

We created a total of 8 models using the training data. The training data is split into a validation set.

This set is a sample of data separated from the training data to give an estimate of the model outputs

and tuning the model's hyper parameters. The validation dataset is different from the test dataset that

is used to to give an unbiased estimate of the model output of the final tuned and trained model. We

performed K-fold cross validation of the training data. K-fold cross validation is used to assess the

results of the statistical analysis on how the overall generalization of the model is performed to an

independent dataset. Tables 3.1 and 3.2 show the summary of the cross validation performed.

Table 3.1: Cross Validation Training Data Summary

(K −1) Folds Training Accuracy Training Loss
Fold 1 98.31% 0.0505
Fold 2 98.50% 0.0431
Fold 3 96.93% 0.0506
Fold 4 98.43% 0.0482
Fold 5 98.74% 0.0686

In K-fold cross validation, we split the training set into k-parts or folds . We build the model

based on data from k − 1 folds and test the model on the remaining fold also called the validation

set. This procedure is repeated k− 1 times excluding a different fold (creating a different validation

dataset) every time. We take the average of the values that provide the best accuracy on each of

the k validation sets. A theoretical model is a good replica of reality if it has an acceptable error in

prediction. When we perform cross validation, the model is tested on data that has not used in training
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the model. If the prediction and thus the error rate is good, it is considered a good fit or replica of real

world. Therefore, to generalize the model it should have the best fit optimization. This is possible

Table 3.2: Cross Validation Validation Data Summary

Kth Fold Validation Accuracy Validation Loss
Fold 1 98.44% 0.0578
Fold 2 98.02% 0.0475
Fold 3 98.21% 0.0591
Fold 4 97.08% 0.0620
Fold 5 97.59% 0.0721

by reduction or minimization of the error rate. The model is validated using k-fold cross validation

over a split of k = 5. The training data set is split in 5 folds and the model is trained on 4 folds

iteratively over all the folds. The tables show that when we perform cross validation on the optimized

model obtained from section below, there is consistency in the accuracy and loss for the training and

validation. This evaluates to the fact that the model is generalized and will efficiently work on real

world data

Model Evaluation

Model evaluation is divided into four categories based on how they fit in generalization to validation

data. The first category is underfitting. This occurs when a model is not powerful enough or has not

been trained enough, that is, it has not learned the relevant patterns in the training data. Underfitting

is often not discussed as it is easy to detect a given good performance metric. An underfit model will

have poor performance on the training data. When validating the data, the validation and the training

error will be high and in the order of 1.0−2.0.

The second category is overfitting. This occurs when the model is trained for too long, resulting in

the model learning pattern from the training that would not generalize to test data or real world data.

When a model learns the detail and noise in the training data to an extent that it negatively impacts the

performance of the model with new data. Noise in training data would mean random fluctuations in

the training data are learned as concepts by the model. The issue is these learned concepts and features
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do not apply to new data and negatively impact the model's ability to generalize. The validation error is

high and the training error is low for an overfit model. This shows that that the model is generalizing

only on the training data and when provided with an unbiased data that the model has never seen

before it fails resulting in a large error rate.

The third category is a good fit model, that is, well learned on the training data and ready for real

world data generalization. The validation error is and training error are low, but the validation error

may be slightly higher than training error in the order of 0.001−0.01. The reason for a slight higher

rate is that the model is generalized and may tend to not read a very minute quantity of the real world

data which is considered acceptable, since a model in practical can never be perfect to detect every

real world data, but theoretically it is possible.

The last category is the unknown fit category where the validation rate is low but the training error

is very high. This is known as an “unknown” fit because the conclusion drawn from the model are

counter-intuitive to the concepts of machine learning.

Usually, training error in general, underestimates the validation error. Therefore, for the validation

error to be lower than the training, it may be the result of the two ways the model is trained and tested.

The first is that the training set may have “hard” examples to train the model on and the validation set

may have the most “easy” examples to predict on. In this context, hard examples would be defined

as those which are false positives in the system which have features different than those obtained to

generalize a particular class. Similarly, an easy example would be those have matching features to

the feature maps stored by the model work on the new data. This is reason that cross-validation is of

most importance when working on such smaller dataset.

We designed various versions before obtaining a good fit for the model. We modified the CNN to

build an optimal design based on the validation set separated from the training data. Table 3.3 provides

the optimal design of the CNN model. It provides model summary obtained using the summary

functionality from Keras API [7]. The total trainable parameters in this model is 476,744 as displayed

in the table.

The first step was the ratio of division between train, validate and test data. The split ratio was set

to 50 : 10 : 40 (that is, 60:40 train-to-test ratio). This was not based on any thumb rule, and was chosen
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Table 3.3: Proposed Model Summary

Layer (type) Output Shape Parameters
Conv2d 1 (Convolution2D) (None,44,44,64) 3200
max pooling2d1 (Max Pooling) (None,22,22,64) 0
Dropout 1 (Dropout) (None,22,22,64) 0
Conv2d 2 (Convolution2D) (None,18,18,64) 102464
max pooling2d2 (Max Pooling) (None,9,9,64) 0
Dropout 2 (Dropout) (None,9,9,64) 0
Conv2d 3 (Convolution2D) (None,7,7,128) 73856
max pooling2d3 (Max Pooling) (None,3,3,128) 0
Dropout 3 (Dropout) (None,3,3,128) 0
Flatten 1 (Flatten) (None,1152) 0
Dense 1 (Dense) (None,256) 295168
Dropout 4 (Dropout) (None,256) 0
Dense 2 (Dense) (None,8) 2056
Total Parameters - 476,744
Trainable Parameters - 476,744
Non-trainable Parameters - 0

arbitrarily. The result are shown in table 3.4. We selected the model V4 (60 : 40) as the efficient and

optimized model. Each model design is described below and the analysis for selection of V4 (60 : 40)

as the most generalized model.

Table 3.4: Model Accuracy and Loss for various designs

Validation Training Testing
Model Ratio Accuracy Loss Accuracy Loss Accuracy Loss

V1 60 : 40 93.44% 0.2047 88.41% 0.2921 92.97% 0.1989
V1 70 : 30 95.84% 0.1735 95.00% 0.1735 95.29% 0.1532
V2 60 : 40 94.02% 0.1518 94.37% 0.2000 94.45% 0.1850
V2 70 : 30 95.02% 0.1299 94.46% 0.1716 94.54% 0.1775
V3 60 : 40 98.12% 0.0760 97.96% 0.0601 98.22% 0.0581
V3 70 : 30 98.87% 0.0358 98.30% 0.0623 98.29% 0.0647
V4 60 : 40 98.80% 0.0594 98.32% 0.0425 98.45% 0.0515
V4 70 : 30 98.49% 0.0783 99.06% 0.0314 98.09% 0.0619

We start with a simple model V1 having a single convolution layer having 32 filters of size 3. We

obtained very high error rates thus, concluding that the model was underfitting. This shows the overall

structure of V1. Figure 3.29 shows the accuracy convergence curve and the loss convergence curve.
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(a)

(b)

Figure 3.29: V1 Curves (60:40): (a) Accuracy (b) Loss.
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We changed the ratio to 70 : 30. Figure 3.30 provide the results of this model.

(a)

(b)
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Figure 3.30: V1 Curves (70:30): (a) Accuracy (b) Loss.

(a)

(b)
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Figure 3.31: V2 Curves (60:40): (a) Accuracy (b) Loss.

The model is still under fitting as it has a very high rate of error.

INPUT − [[32CONV −RELU ]− [2×2POOL−0.25DROPOUT ]− [32FC−RELU ]− [8FC]]

In the second design V2, we used 64 filters of size 3 and increased the fully connected layer to have

64 neurons keeping the remaining architecture the same. The model validation loss is reduced by a

minuscule amount and therefore, the model is still underfitting. This model also has a higher error

rate, therefore, we cannot use this design for our optimized design Figure 3.31 display the convergence

and accuracy of this model.

Similarly, as V1, we changed the ratio to 70 : 30 and train the model. The result of high error rate

has small change and therefore we consider the next version of the model. Figure 3.32 and figure 3.33

provide this example.

INPUT − [[64@3×3CONV −RELU ]− [2×2POOL−0.25DROPOUT ]− [64FC−RELU ]− [8FC]]

Figure 3.32: V2 Convergence curve: Accuracy (Train-to-Test 70:30).

The addition of another convolution layer does not reduce the error rate significantly and therefore

we excluded the results, therefore, we implement a 3-layered convolution model.
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Figure 3.33: V2 Convergence curve: Loss (Train-to-Test 70:30).

The third version design model V3 is implemented with three convolution layers. The first con-

volution layer has 64 filters of size 7. Second layer has 64 filters of size 5 and the final convolution

layer 64 of size 3. Each of the layer are followed by a max pooling layer of stride 2×2. We added a

dropout of 25% after each layer to drop neurons and reduce overfitting. Figure 3.34 show the results

of this model.

The result shows a validation error of is slightly over training error, thus this model of V2 is

good fit. The only problem with this model is it has a significantly higher error in both validation

and training. This prompted to reduce the error a bit further by upgrading the filters on the final

convolution to reduce the error rate a bit further. We tested the same model V3 with train-to-test ratio

of 70 : 30, the result was the model was overfitting.
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(a)

(b)

Figure 3.34: V3 Curves (60:40): (a) Accuracy (b) Loss.

To reduce this overfitting, we introduced a dropout rate of 75% after the dense
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(a)

(b)

Figure 3.35: V3 Curves (70:30): (a) Accuracy (b) Loss.

layer, but it negatively impacted the result giving an uknown fit. Figure 3.35 shows the overfitting
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results. INPUT − [[CONV −RELU −POOL−DROPOUT ]∗3− [64FC−RELU ]− [8FC]]

Model V3 for the train-to-test ratio is a good fit, but we tried to improve on the error value on

model V4. The final convolution was replaced with 128 filter and same size of 3. The dense layer

was improved to 128 neuron but there was no significant improvement. Therefore, we increased

the neurons to 256. The rest of the architecture remained the same as previous model. This model

reduced the error rates by approximately 0.02 values. Figures 3.36 and 3.37 provide an details of the

accuracy and training loss. We also implemented the same for the ratio of 70 : 30 and the result was

Figure 3.36: V4 Convergence curve: Accuracy (Train-to-Test 60:40).

overfitting of the model V4. Therefore, the reason of overfitting when using 70 : 30 ratio was that

since there is additional 10% increase in the training dataset. The feature and learning of the model

increased. Thereby, the model was trending to closely fit on the training data and the noise associated

with it. Figure 3.38 gives the detail of the accuracy and the loss functions of the model. These noise

were added up as features and result in overfitting the model. Usually, the train-to-test ratio is set to

70 : 30 or 80 : 20 when there are a large number of classes in the design of the dataset. The additional

features are obtained from the added up 10− 20% of data in the training. This does not point to the

fact that the dataset size should be less. The higher number of classes the higher the data to optimize
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Figure 3.37: V4 Convergence curve: Loss (Train-to-Test 60:40).

the generalization of the model training.

INPUT − [[CONV −RELU −POOL−DROPOUT ]∗3− [256FC−RELU ]− [8FC]] Table 3.4 shows

that we obtained a fine tuned accuracy of 98.45 % on model V4 for train-to-test ratio of 60 : 40. The

model is optimized to its efficiency to provide a good fit. We used this optimized and computationally

inexpensive model in our HGRS.
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(a)

(b)

Figure 3.38: V4 Curves (70:30): (a) Accuracy (b) Loss.

The k-fold cross validation is performed on this model to provide a mean accuracy and loss. There

were a multiple attempts that were not significant enough to put our results. The results mentioned
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in this table are significant enough that provide fine tuning of the model to generate an optimized and

computationally efficient.

3.2 Quantitative Analysis

Quantitative Analysis of a model is performed using standard metrics that are obtained when we train

the model. This metrics is more related to performance analysis of the curve based on numerical

values and graphical visualization. Metrics such as confusion matrix, Area under the Receiver Op-

erating Characteristics help understand how well the model would perform on real world examples

that may be unbiased. These metrics ascertain the model generalization without placing the system in

real world. This means that the model can be again fined tuned to improve the factors of the model to

obtain a better matrix.

Confusion Matrix

The above section showed the convergence curve and the cross validation to obtain a good fit of the

proposed model. We now design the confusion matrix on the unbiased test data which acts as new

data to the trained model. Table 3.4 shows the testing results. We use the model V4 as a optimized

model. Similarly, figures 3.36 and 3.37 show the accuracy and loss of the model. We designed the

confusion matrix without normalization (raw examples) alongwith normalized matrix. Figures 3.39

display the confusion matrices.
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(a)

(b)

Figure 3.39: Confusion Matrices: (a) Original (b) Normalized.
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Area under the ROC Curve

A Receiver Operating Characteristic (ROC) [29] curve demonstrates the tradeoff between sensitivity

and specificity (any increase in sensitivity will be accompanied by a decrease in specificity). ROC

analysis is a standard tool used in evaluation of two class classification problems. ROC dimensions

for a multiclass can be simplified as some dimensions are independent of each other [24]. Figure 3.40

Figure 3.40: Receiver Operating Characteristics for all classes.

is the actual fit size graph and figure 3.41 is the zoom-in graph to analyze the class characteristics.

The graph in the figure 3.41 show eight ROC curves representing each gesture class. The accuracy of

the ROC depends on how well the curve separates the group being tested into those that belong to the

class and those which do not. The ROC for a multi class system is defined by comparing the gesture

class in question with the remaining classes, that means it is a one class versus all the rest curve. The

figure shows the graph for each class and we noticed that each class has an area under the curve slight

above 99% approximately proving it is an excellent test with each of the class. Theoretically, if the

area under the curve is 1, it represent a prefect test accuracy. The closer the curve follows the left-

hand border and then the top border of the ROC space, the more accurate is the class test. In figure

3.41, we see that the ROC curve for classes 5− 7 are closer to the left border and top ROC space
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Figure 3.41: Receiver Operating Characteristics for all classes.

region, thus providing a higher accuracy for these classes. This also meant that each of these had a

better performance for recognition with real world examples. The closer the curve comes to the 45-

degree diagonal of the ROC space, the less accurate is the test performed. In figure 3.41 that classes

0−4 are closer to 45-degree diagonal, thus showing that these classes have slightly lesser accuracy in

comparison to the remaining four classes in correspondance to real world examples. Classes 2 and 3

have a slightly lesser accuracy which corresponds to the values displayed by the confusion matrix

Precision-Recall curve

Precision-Recall is a useful measure of the success of prediction when the classes are very imbalanced

[47]. In information retrieval, precision is a measure of result relevancy, while recall is a measure of

how many truly relevant results are returned. The precision-recall curve shows the tradeoff between

precision and recall for different threshold. A high area under the curve represents both high recall

and high precision, where high precision relates to a low false positive rate, and high recall relates to

a low false negative rate. High scores for both show that the classifier is returning accurate results

(high precision), as well as returning a majority of all positive results (high recall). A system with
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Figure 3.42: Precision-Recall curve for all classes.

high recall but low precision returns many results, but most of its predicted labels are incorrect when

compared to the training labels. A system with high precision but low recall is just the opposite,

returning very few results, but most of its predicted labels are correct when compared to the training

labels. An ideal system with high precision and high recall will return many results, with all results

labeled correctly. Figure 3.42 shows the precision-recall curve and the figure 3.43 provides a zoom-in

view for visual analysis. We can visualize in the graph that the system has a high precision and low

recall thereby infering that the predicition results will have higher chances of being a true positive in

the system with unbiased data.

3.3 Qualitative Analysis

Qualitative analysis is defined as the use of the system in real time with unbiased and unknown

environment, checking the performance of the system. We performed a simple qualitative analysis

by controlling the system music player. The results were accurate when gestures were performed

decisively, with this we mean that the we used performed the gesture within the three second duration

and also had the arm raised full to shoulder level to perform the gesture accurately. Figures 3.44 -

3.51 display the results for all the eight gesture classes during a live system test.
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Figure 3.43: Precision-Recall curve for all classes.

Figure 3.44: Live system test class 0.
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Figure 3.45: Live system test class 1.

Figure 3.46: Live system test class 2.
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Figure 3.47: Live system test class 3.

Figure 3.48: Live system test class 4.
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Figure 3.49: Live system test class 5.

Figure 3.50: Live system test class 6.
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Figure 3.51: Live system test class 7.
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CHAPTER IV: CONCLUSION

We presented a novel, computationally efficient hand gesture recognition system using temporally

blended image data. A Kinect depth sensor was used as a source for the depth and the body data

raw input frames. A major contribution was blending the frames using the temporal feature. This

contributed to reduction of the layers used in the design of CNN. We also designed an optimal and

efficient CNN creating eight different model versions and observed the behaviour of each model

to obtain and estimate the most generalized model. The computational efficiency of the model was

observed to increase with an empirically evaluated size of 50×50. Live system testing was performed

and the system achieved precise classification of the gestures. System was further tested to control

the music player of the computer using the hand gestures. It was observed to accurately control the

music player with a good accuracy. System failure was observed when tracking of the Kinect suffered

inherent hardware failures.

Recognizing gesture was an integral part which was performed with a convolutional neural net-

work (CNN). We generated a dataset using the Kinect depth sensor. A total of 2000 blended frames

were generated per class, which summed to 16,000 frames. An appropriate, efficient and optimized

CNN model was designed to have eight layers. This model was achieved after generating eight mod-

els having different configurations and measuring the performance and behaviour of the accuracy and

the loss of each model. It consisted of three convolution layer of sizes 64× 7× 7, 64× 5× 5 and

128×3×3, each followed by a max pooling layer with a stride of two and a dropout of 25%. The last

two layer were the fully connected layer having 256 and 8 units of neurons. The first fully connected

layer was followed by a dropout of 50% to reduce overfitting in the model. The dataset was split

randomly into train-to-test ratio of 60 : 40 and the accuracy and loss was observed for each model

design. The split of 70 : 30 was also used to test the accuracy and loss for each model design. The

models using 70 : 30 ratio had overfitting issues monitored using the accuracy and loss hyperparam-

eters. We observed that the CNN model version V4 was the most efficient and optimized, therefore,

it was selected for classification. Cross-validation was performed using 5-fold cross validation on
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the V4 CNN model. The performance after cross validation displayed an overall generalization of

the model. The optimized model achieved a mean training accuracy of 97.92%, a mean validation

accuracy of 97.87%. We obtained test data accuracy 98.45%. This helped us conclude that the model

was generalized well to work on real world data. Since this is just one of the criteria to observe if the

model is generalized, we performed more analysis.

An additional and necessary analysis of the model was perfomed using metric analysis in quantita-

tive measures of confusion matrix, Receiver Operating Characteristics (ROC) and the precision-recall

graph for all the eight classes. We observed that the model was a good fit and generalized to predict

on a real unbiased data.

The final process in the system pipeline design was to merge the system to make it online as

HGRS to read gestures from users to control computer system functionality. HGRS has a lot of scope

in terms of usage and control of systems.
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CHAPTER V: FUTURE WORK

This research was implemented as a proof of concept with the image processing techniques and deep

learning as main foundations in the recognition of hand gestures.

Blending of frames was performed using the intensity changes in the ascending order for each

consecutive frames. This work considers temporal aspect of the frame that is, each frame is different

than the previous frame based on time. A future work would be implementing the spatial feature to

detect gestures using the position of the hand in the frame independent of the temporal feature. When

considering a spatial feature it may not be relevant to use cropping so as to maintain the aspects of

spatial features. Another area of research would be upsampling of the frame rate when the number of

frames in the gesture is less. Up sampling may improve the features in the images by adding more

frames and therby increasing the image details.The process of upsampling would increase the frame

rate when less frames are generated.

We implemented a CNN model to classify eight gesture classes. A first direction of future work

would be to train a CNN model that can distinguish more than eight classes. The fact that the CNN

model uses only eight classes does by no means imply that it is not generalizable to more number

of classes. Another direction of future work would be creating more complex hand gestures using

both hand and testing the accuracy of the system. Another approach for future research is to train our

model on a much larger dataset hoping that the benefits of generating a start-of-the-art model.

We used blended frames to detect gesture, a field of future work would be to combine the solutions

with speech as a form combined interaction with the systems. Since speech is also another form of

communication for simple control of systems.This would make the system a multi-task classification.

Future research may also focus on three-dimensional gestures to improve the accuracy of the system.

These three-dimensional gestures may a point cloud of generation of three dimensional hand models.

The other way around would be to combine the hand gesture with wearable devices such as arm bands

and vision-based device such as Leap Motion to improve the accuracy with real world problems.

Another plan would be to evaluate the system on a larger set of gestures, collected from multiple
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users. Such a dataset will also enable quantifying how good a system is trained for one user versus

multiple users. A practical deployment of our approach would also benefit from allowing the user to

label a misclassified gesture and provide it as an online training example, in a never-ending learning

version of the system.

We use offline augmentation technique to improve the size of the dataset, this augmentation tech-

nique is balanced when the data set is small,it would be very interesting to use a larger dataset and

implement online data augmentation techniques which is performing data augmentation on the mini

batches of data that we input to the model during training of the network.
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