
May 2021  

METABOLOMIC PROFILING OF HUMAN EMBRYO DURING PRE-IMPLANTATION IN 
VITRO FERTILIZATION NON-INVASIVE APPROACH 

 

 

 

 

A Thesis 

by 

MARYAM AL SHAIKH 

 

 

 

BS, Texas A&M University-Corpus Christi, 2016 

 

 

 

 

 

Submitted in Partial Fulfillment of the Requirements for the Degree of 

 

 

 

 

MASTER OF SCIENCE 

 
 

in 

CHEMISTRY 

 

 

 

Texas A&M University-Corpus Christi 

Corpus Christi, Texas 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Maryam Eissa Al Shaikh 

All Rights Reserved 

May 2021 



May 2021  

METABOLOMIC PROFILING OF HUMAN EMBRYO DURING PRE- 
IMPLANTATION IN VITRO FERTILIZATION NON-INVASIVE APPROACH 

 

 

 

 

A Thesis 

by 

MARYAM AL SHAIKH 

 

 

 

 

 

 
This thesis meets the standards for scope and quality of 

Texas A&M University-Corpus Christi and is hereby approved. 
 

 

 

 

 

 

 

 
Hussain Abdulla, PhD 

Chair 

 
Fereshteh Billiot, PhD 

Co-Chair/Committee Member 

 
Xavier Gonzales, PhD 
Committee Member 



iv

  

 

ABSTRACT 
 

In vitro fertilization (IVF) is a standard protocol used to treat infertility. However, the 

probability of successful embryo implantation during IVF is very low. Most of the IVF clinics 

depend on morphological scoring by embryologists to select high-quality embryos capable of 

implantation. But morphological scoring has only around 30% successful pregnancy rate. In this 

study, I investigated the potential of a new embryo scoring method based on measuring the 

change in culture media's metabolomic profiles. I analyzed 71 culture media samples with known 

pregnancy outcomes from two different culture media by ultraperformance liquid chromatography 

(UPLC) coupled with ultrahigh-resolution and accuracy mass spectrometer. I used a newly 

developed on-the-fly dynamic data acquisition technique to increase the percentage of metabolite 

compounds with MS2 fragmentation spectra. To identify potential metabolomic pregnancy 

biomarkers, we used a combination of statistical analysis techniques like principal component 

analysis (PCA), differential analysis (volcano plots), and trend charts. We used Molecular 

Formula Calculator software, ChemSpider, and mzCloud databases to assign the molecule 

formula and chemical structure for the detected significant biomarkers. Also, we applied in-silico 

fragmentation and FISh scoring to validate the chemical structures of the identified biomarkers. 

Using PCA, we did not find any apparent clustering for pregnant or non-pregnant samples, but we 

could locate a few outliers' spectra. However, with volcano plots, we were able to identify a set of 

up-regulated biomarkers that are associated with non-pregnancy and down-regulated biomarkers 

that are associated with pregnancy in both media. Utilizing the KEGG and Metabolika databases, 

we recognized two possible metabolomics pathways. This study can improve selecting viable 

embryos, which will lead to an increase in the success rate of IVF. It will also provide a better 
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understanding of human embryos' metabolomic biochemical pathways during the pre- 

implantation stage. 
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CHAPTER I. INTRODUCTION 
 

1.1 BACKGROUND 

 

Parenthood is a universally desired goal for couples; however, infertility can prevent or 

delay this goal's achievement. Infertility is the inability to conceive after one year of regular 

unprotected intercourse (Kovac et al., 2013). The World Health Organization (WHO) has 

recognized infertility as a public health issue worldwide (Boivin et al., 2009). It affects about 

15% of couples and equally affects both males and females (Kovac et al., 2013). One standard 

protocol to treat infertility is in vitro fertilization (IVF) techniques as an assisted reproductive 

technology (ART). IVF aims to provide high-quality embryos capable of implantation and 

development, which will result in pregnancy and delivery of healthy infants (Ménézo et al., 

2013). The first successful IVF was achieved in 1978 by Patrick Steptoe and Robert Edwards, 

which resulted in the birth of Louise Brown. From 1978 to 2013, five million IVF inf ants 

were born worldwide, and each year over 200,000 IVF babies are born (Qin et al., 2014). 

However, this does not mean that IVF always results in pregnancy. For example, the average 

pregnancy rate of IVF in different European countries was 29.2 per aspiration (Table 1). 

Furthermore, pregnancies lost to follow-up starting from the clinical pregnancy stage were 

 

7.3% for IVF, which implies that the mean delivery rate per aspiration for IVF is 22.4% 

(Kupka et al., 2014). Because of the low rate, most clinics transfer more than one embryo at 

each attempt to increase IVF success. As a result of this practice, the current rate of multiple 

gestational pregnancies in IVF pregnancies higher than the rate in spontaneously conceived 

(SC) pregnancies (Qin et al., 2014). Figure 1 shows the rate of multiple births (delivery of two 

or more children) in IVF/ICSI over 14 years in Europe. Multiple gestational pregnancies cause 

an economic burden and affect the health of both mother and infants. For instance, multiple 
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gestational pregnancies can cause premature delivery and cause ovarian hyperstimulation 
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syndrome (OHSS) (Kupka et al., 2014). 
 
 

 

 

To increase the pregnancy rate and embryo development, we need to develop a better 

clinical approach for selecting a viable embryo to transfer via IVF. There are two ways of selecting 

a viable embryo: invasive methods and non-invasive methods. An example of invasive techniques 

is pre-implantation genetic screening (PGS). PGS utilizes the recent advances in molecular-based 

screening technology, such as a generation sequencing platform and analyzing a fertilized embryo's 

chromosomal normalcy. However, this method has many disadvantages since it requires 

micromanipulation with an embryo of one or more blastomeres in the early development stages. 

Second, not all euploid embryos are developmentally competent, so not all of them result in healthy 

babies' pregnancy. Also, embryo mosaicism is still a challenge for PGS (e.g., Spinella et al. 2018). 

On the other hand, non-invasive methods do not involve interfering with the embryo. For 

example, morphological scoring has been used in clinics since the first successful IVF in 1978 until 

now (Rødgaard et al. 2015). However, the pregnancy rate prediction using this method is around 

30%. There is an urgent need to develop a new non-invasive approach that has higher predictivity. 

 
 



4  

 
 

The new approach should reflect the embryo's function or physiological state without affecting the 

embryo's viability. Recently, a few studies tried to use the culture media of embryos during the pre- 

implantation stages to assist the embryo selection, which are indirect and non-invasive methods 

(Rødgaard et al. 2016). These studies investigate the changes in proteomics or the selected number 

of targeted metabolites. However, none of 

those methods have been applied as clinic 

routine yet, and none of them utilize the 

untargeted metabolite approach. 

Metabolomes are the final downstream 

products of gene transcription (considered a 

molecular phenotype), which means any 

change in the embryo's biochemical pathways 

will be vastly amplified in the metabolomic 

profile relative to transcriptome and proteome 

profiles (see Figure 2). 

 

 

Figure 2. Diagram of Omics Cascade. Adopted 

from Dettmer (2007) 

1.2 RELATED WORK 

 

Analyzing culture media to determine the embryo's quality has not been applied as clinic 

methods yet, because they fail to validate the used analyzing technology. Most analytical 

techniques used showed poor reproductivity when involved in clinical trials (Sanchez, 2017). For 

example, some studies used Near-infrared (NIR) spectroscopic metabolomic profiling of spent 

embryo-culture media to assess the embryo potential for implementation (Ahlström et al., 2011). 

The study suggests that morphology and embryo metabolism are independent of one another. NIR 

is suitable for a clinic routine because of the minimal sample preparation. Still, there are two 



5  

significant NIR issues: First, NIR is limited to metabolomics because it only measures functional 

groups' vibrations and not the individual metabolite. Second, the NIR pregnancy rate did not show 

any advantage over morphology when applied in the clinical trial (Rødgaard et al., 2015). In 

another study, using the 1H-NMR technique, Pudakalakatti et al. (2013) found higher pyruvate 

uptake and a lower ratio of pyruvate/alanine in day three culture media for embryos result in 

pregnancy relative to the one that did not. In contrast with Pudakalakatti et al. (2013), Seli et al. 

(2011) did not show any correlation between the high intake of pyruvate or low pyruvate/alanine 

ratio pregnancy rate. Instead, Seli et al.'s (2011) study showed that more elevated glutamate, 

lower alanine levels, and a decrease in the alanine to lactate ratio are associated with embryo 

implantation. Nonetheless, NMR is not ideal for studying metabolites due to its low sensitivity 

 

 

Table2: Shows some studies that used culture media as non-invasive approach to evaluate 

embryos’ capability of implantation. 
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and difficulty identifying individual metabolites within a complex mixture. A summary of recent 

IVF studies and the used analytical techniques. Table 2 Shows 

This study aims to discover metabolomic biomarkers secreted by the embryo and the culture 

medium that could predict the implantation potential. We investigated the changes in the culture's 

metabolomic profile using ultraperformance liquid chromatography (UPLC) coupled with high 

resolution and high accuracy mass spectrometer (Fusion Orbitrap mass spectrometer). This study 

could increase the success rate of IVF, which will be beneficial in many ways: 1). It promotes a 

better chance of pregnancy for couples who suffer from infertility, 2). It minimizes the need to 

transfer more than one embryo at one process, alleviating the health complications arising from 

multiple pregnancies for both infants and mothers. 3). Economic wise, if the first IVF attempt is 

successful, no more trials would be needed, lowering the financial cost (Thompson, 2016). 
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CHAPTER II: METHODS & PROCEDURES 

 
 

2.1 SAMPLE PREPARATION 

 

We analyzed samples from two clinics (M1M1) and (M22) with different culture media 

collected from day five-stage (blastocyst stage, the embryo about 20 cells). Thirty-nine of those 

culture media samples lead to pregnancy (P), and Thirty-two culture media samples from an 

embryo did not result in pregnancy (NP). Overture Life Inc. provided these samples as a part of an 

analysis contract. 

We diluted 20µL of the sample with 480µL UPLC water to be a total of 500µL in 

Amicon® Ultra 0.5mL 3kDa centrifugal filters. Amicon® Ultra was spin at 14,000 x g at 4 oC for 

10 min to separate the metabolites from the proteins. The protein was recovered by flipping the 

membrane filter and spun again in a new tube at 4,000 x g at 4 oC for 3 min. We froze the protein 

extract at -20oC for future analysis. While we store the metabolomics fraction (~480 μL) frozen at 

-20ºC until the analysis by UPLC-Fusion Orbitrap mass spectrometer. 

 

2.2 METABOLOMIC ANALYSIS BY UPLC-ORBITRAP FUSION MASS SPECTROSCOPY 
 

The metabolomics approach has many challenges to be overcome, such as structural 

diversity, background interference, sample limitation (volume limitation, density limitation, and 

dynamic range of polarity). The recent coupling of ultraperformance liquid chromatography 

(UPLC) with an ultrahigh-resolution and high-mass accuracy mass analyzer (i.e., Orbitrap mass 

spectrometer) has overcome many these challenges. UPLC reduced metabolites' chemical 

complexity by separating the metabolites mixture on a second orthogonal dimension (retention 

time) to the first dimension (m/z) based on their polarity, electrical charge, and molecular size. 

High resolving power provides the ability to measure small mass differences required to assign 

the organic molecular formulas of different isobaric ions accurately. In this study, I used the 
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Orbitrap Fusion mass spectrometer (OT-FTMS), the state-of-the-art mass analyzer with a 

resolving power up to 500,000 Full-Width at Half Maximum peak Hight (FWHM) at m/z 200, 

and scan time is one second. On the other hand, the high mass accuracy analyzer allows 

determining the molecule's elemental composition by eliminating most other possibilities. Which 

make it an ideal mass analyzer for metabolomics and lipidomic that required at least two (2) ppm 

accuracy (Makarov and Scigelova, 2010), 

I analyzed the metabolomic extract's aliquots on Vanquish UPLC – coupled with heated 

ESI (H-ESI) source Orbitrap Fusion Tribrid Mass Spectrometer (UPLC-OT-FTMS) and operate 

in positive mode. I used a 1.7 μm ACQUITY UPLC BEH C18 reversed-phase column (Waters, 

30Å, 1.7 µm, 2.1 mm X 100 mm). Eluent A was Milli-Q water with 0.1% (v/v) formic acid, and 

eluent B was acetonitrile with 0.1% (v/v) formic acid. I used the following gradient: 5% of B for 

2 min; ramp to 65% B for 16 min; ramp to 100% B for 7 min and hold for 8 min. An 8 min 

column re-equilibration with the starting ratio of eluents was carried out between sample analyses. 

The flow rate was 0.2 ml⸱min-1 with an injection volume of 20 μL. The H-ESI setting was 3200 

volts, 30 Sheath gas, 10 Aux gas, 325oC ion transfer tube temp, and 200oC vaporizer temp. The 

Orbitrap full scan was run at 500,000 (FWHM at m/z 200) resolutions with a scan range of 100- 

1000 m/z and RF Lens at 40%. For MS2, the isolation window was set at 0.7 m/z with performing 

both collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) using 

an ion trap mass spectrometer as the detector. The AGC was set at 1.0e4. To increase the 

percentage of compounds that get MS/MS fragmentations, I applied a novel intelligent data- 

dependent technique called the "dynamic exclusion technique." The technique is based on adding 

the compounds m/z that have already been fragmented into a temporary exclusion list for 30-90 s, 

so they will not be fragment again, giving other molecular ions to get fragmented within that time. 
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2.3 STATICAL ANALYSIS 

We used Compound Discoverer software 3.1 to identify the metabolomics compounds and 

perform multivariate analyses (Volcano plot, Principal Components Analysis (PCA), and trend 

analysis). The retention times (RT) of all chromatography spectra were aligned using an adaptive 

curve with a maximum shift of 0.2 min and five ppm mass tolerance. To identify a compound, we 

required it to meet the following conservative criteria: 1) a signal-to-noise (S/N) above 3, 2) a 

minimum of 5 mass scans per chromatographic peak, 3) a minimum peak intensity of 50,000, and 

4) at least one isotope peak (M+1) was detected. We have used the ratio of the M+1 to parent 

peaks to confirm the number of carbon atoms. We also used the M+2 peak ratio to confirm the 

presence of the S atom in the compound. The workflow considered the possibility of the presence 

of multiple positive adducts ([M+H] +1; [M+K]+1; [M+Na]+1; [M+NH4]+1; [2M+ACN+H]+1; 

[2M+ACN+Na]+1; [2M+H]+1; [2M+K]+1; [2M+Na]+1; [2M+NH4]+1; [M+2H]+2; [M+3H]+3; 

[M+ACN+2H]+2; [M+ACN+H]+1; [M+ACN+Na]+1; [M+H+K]+2; [M+H+MeOH]+1; 

[M+H+Na]+2; [M+H+NH4]+2; [M+H-H2O]+1; [M+H-NH3]+1). In case multiple adducts were 

detected, all adducts of the same compound were grouped with a tolerance of 0.2 min (in retention 

time). 

2.4 MOLECULAR FORMULA CALCULATOR 
 

I calculated the molecular formula for each peak using a molecular formula calculator software 

(Molecular Formula Calc version 1.0 NHMFL, 1998) with the following parameters: 

C1−72H2−200O0−50N0−10S0−3P0−3. I removed the molecular formulas that are unlikely to occur in nature (or 

that are not chemically possible), as described in detail in (Abdulla et al., 2013). In summary, I applied 

a modified version of the rules set in Kind and Fiehn (2007), which requires that formulas satisfy the 

following inequalities: H/C < 2.50, O/C ≤ 1.20, O/P ≥ 3.00, and N/C < 0.50. All assigned formulas were 

further tested for the physical existence of chemical structures using LEWIS and SENIOR chemical 



10  

rules, again according to Kind and Fiehn (2007). The molecular 13C isotope and 34S isotope peaks (when 

they were detected above the S/N thresh-old) were also validated with the chemical building block 

approach (e.g., CH2 homologies series) described by Koch et al. (2007). As I did not use internal 

standards when analyzing these samples, the calculated masses of the assigned formulas are within 2.0 

ppm of the masses detected by OT-FTMS. I used a Python code (designed by Breeana Cross) to filter 

the incorrect molecular formula results using the above parameters. De novo compound structure 

elucidation was identified based on the tandem mass spectrum and compared with fragmentation 

database software mzCloud and in silico fragmentation by Mass Frontier software. 

CHAPTER III: RESULTS & DISCUSSION 

 

Over 4200 unique metabolomics compounds were detected in 36 M2M2 samples by UPLC- 

OT-FTMS; out of that, we got MS/MS (MS2) fragmentation for 3100 metabolites. With our 

dynamic exclusion technique, I increased MS2 fragmentation for about 74% of detected 

metabolites. For our 32 M samples, I detected over 2800 metabolomic compounds, and out of 

these compounds, 2100 compounds were fragmented MS2 which accounts for 72% of the total 

compound detected. Analyzing all the samples together (both M1M1 and M22 samples), I was 

able to identify 5089 compounds, with 78 % of these detected compounds have MS2 

fragmentation. These results illustrate the percentage of compounds that get MS2 fragmentation to 

over 70% of the compound detected. These percentages are significantly higher than the typical 

data-dependent acquisition (DDA) technique that can only fragment around 20% of the compound 

detected in complex metabolomic samples, which increases our ability for structural elucidation 

higher number of metabolomics compounds in each sample. 
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3.1 Principal Components Analysis 
 

I applied principal components analysis (PCA) to investigate the differences in different 

samples' metabolomics profiles. PCA aims to reduce our dataset's dimensionality and identify 

new meaningful underlying variables between pregnant and non-pregnant. Applying PCA on 

M2M2 samples shows the first two principal components explained 42% of the conditioned media 

differences (Figure 5). We did not notice any clusters in pregnant (P) or non-pregnant (NP) 

samples, and we did not identify any sample outliers. For M1 samples, the first two principal 

components explained 44.7% of the different culture media samples (Figure 6). Even though I did 

not see any clustering for P and N samples, I identified three outlier samples. Taking a closer look 

at the raw spectrum of these three samples, I noticed an irregularity in their chromatographs 

relative to other samples. These three spectra have high intensity of a handful of compounds not 

observed in the other samples, indicating potential contamination of these three samples during 

the transfer for the analysis. I removed those outliers and conducted a new PCA again. In the new 

PCA of the M1 samples (n=29), I did not observe any P vs. NP samples' clustering, but the 

samples don't show any outliers (Figure 7). Combining M1M1 and M22 samples, I didn't also 

observe any clustering (Figure 8). 

Despite the PCA technique is used widely to highlight the difference between samples by 

reducing the dimensionality of extensive metabolomic data and maximizing the variance between 

the samples, it's not surprising that it cannot cluster each pregnant from non-pregnant samples. As 

PCA is an unsupervised learning technique, it doesn't consider if the sample results label 

(pregnant vs. non-pregnant). In my case, the samples share a similar metabolomics background 

(the original culture media), which makes it challenging to identify any differences between 

pregnant vs. non-pregnant samples using the unsupervised technique. Which makes PCA a non- 
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ideal technique to detect these minor differences, especially for achieving a supervise objective. 

Nevertheless, PCA is a powerful technique to identify any outliers in the dataset or any 

irregularity. 
 

 i   re    a    rincipal component analysis           score plot of t e        samples  n        of 

metabolomic compo n s  etecte   by                            b       oa in  plots of         s 

metabolomic compo n s. 
 

 

 

 

Figure 4: a) Principal component analysis (PCA) score plot of the M 11 samples (n= 29) of 2800 

metabolomic compounds detected by UPLC-OT-FTMS B) PCA Loading plots of M1's 2800 

metabolomic compounds. 
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Figure 5: a) Principal component analysis (PCA) score plot of the M 11 samples (n= 29; 

removing three outlier samples) of 2800 metabolomic compounds detected by UPLC-OT-FTMS b) 

PCA Loading plots of M1's 2800 metabolomic compounds. 
 

 

 
 

Figure 6A) Principal component analysis (PCA) score plot of both M1M1 and M22 samples (n= 

68) of 5089 metabolomic compounds detected by UPLC-OT-FTMS B) PCA Loading plots of 5089 
metabolomic compounds detected in all samples. 
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Figure 7: : a) Principal component analysis (PCA) score plot of both M1M1 and M22 samples 

(n= 65; after removing three outlier samples) of 5089 metabolomic compounds detected by 
UPLC-OT-FTMS b) PCA Loading plots of 5089 metabolomic compounds detected in all samples. 

 

3.2 DIFFERENTIAL ANALYSIS (VOLCANO PLOTS) 

 

The differential analysis techniques' power is identifying quantitative changes in 

compounds between pregnant and non-pregnant sample groups. I used Volcano plots to determine 

the metabolomic biomarkers that are significantly different between pregnant and non-pregnant. 

The volcano plots evaluate these differences by plotting significance (-log10 of the p-value from 

an ANOVA or t-test) on the y-axis versus log2 of fold-change (FC) on the x-axis (Hur et al., 

2018). The compounds with p-values below the chosen significance level and log2 < FC threshold 

are considered significantly down-regulated (compounds associated with pregnancy) or 

significantly specific to the denominator, whereas the compounds meeting the same p-value 

threshold and log2 > FC threshold are considered significantly up-regulated (compounds 

associated with nonpregnancy) or significantly specific to the numerator. Compounds with 
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significant p-values and FC meeting the upper or lower FC threshold are particular to that group 

of samples or characteristic of that sample group. For all plots, the p-value was set to 0.05, and FC 

was set to 1. The larger the log2 FC, the higher intensity that compound has in that sample group 

compared to the other. The likelihood that a compound is present is higher with an increasingly 

more significant -log10 p-value. Thus, compounds in the upper left and upper right portions of the 

volcano plot are statistically more characteristic of that group and different from the other groups. 

It follows that these statistically distinct compounds can be isolated to explore how sample groups 

differ based on compound class and structure. Compound Discoverer 3.1 used the NOVA test to 

calculate P-value and then use -log10 p-value in the y-axes and log2 fold in the x-axes. I classified 

the up-regulated compounds (significant and higher than upper FC threshold) as non-pregnant 

biomarkers and down-regulated compounds (significant and less than the lower threshold) as 

pregnant biomarkers. In M2M2 samples, I identified 26 nonpregnant compounds and 72 pregnant 

compounds (see Figure 10). In M1 samples, before removing the outlier, there were eight 

nonpregnant compounds and ten pregnant compounds. On the other hand, there were 15 

nonpregnant compounds and 34 pregnant compounds (see Figures 11&12). When I ran all the 

samples without removing the three outliers, there were 14 nonpregnant compounds and 23 

pregnant compounds. After removing the outlying sample, there were 48 nonpregnant compounds 

and 29 pregnant compounds. Which approve that PCA could be a handy tool to identify outliers 
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which could remove and enhance volcano plots in identifying nonpregnant and pregnant 

compounds. 

 

Figure 8: Volcan plots for M2 samples, there were 26 nonpregnant compounds and 72 

pregnant compounds. 

 

 
Figure 9: Volcano plots for M1 samples before removing the outlier; there were eight 

pregnant compounds and ten pregnant compounds. 
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Figure 10: Volcano plots for M1 samples after removing the outlier, there were 15 

nonpregnant compounds and 34 pregnant compounds. 

 

 

Figure 11: Volcano plots for All samples; before removing the outlier, there were 14 

nonpregnant compounds and 23 pregnant compounds. 
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Figure 12: Volcano plots for All samples After removing the outlier, there were 48 

nonpregnant compounds and 29 pregnant compounds. 

 

3.2.1 MOLECULAR FORMULA & PYTHON CODE 
 

After identifying pregnant and nonpregnant compounds, we run them through the 

Molecular Formula calculator. To assure that formulas from the compound discoverer for those 

compounds are correct, we compared both assigned formula (the MF calculator formula and 

Compound Discoverer formula) for each compound (See Tables 3 to 12) 
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3.3 BOX WHISKER CHART 

 

To confirm these biomarkers' identification, we used the Box Whisker chart to verify the 

statistically significant difference in these biomarkers' concentration between pregnancy and non- 

pregnancy. Some examples of Box Whisker charts are shown in Figures 13 and 14. 

 

 

 

Figure 13: Box Whisker chart of some nonpregnant compounds that are found in all samples 
run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure14: Box Whisker chart for some pregnant compounds for All samples 
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3.4. Identification of the Biomarker Chemical Structures 

 

I compared the MS2 fragmentation detected for each biomarker formula to either mzCloud and 

ChemSpider databases to identify the possible chemical structures. Besides, we generated in 

silico- fragmentation spectra (MS2) for the proposed structure using Mass Frontier software. 

These in silico fragmentation spectra were compared to the measured MS2 spectra for each 

biomarker by the FISh score node in the Compound Discoverer. The FISh score generates a 

similarity percentage score based on match and unmatched fragmentations from both in -silico and 

measured fragmentation spectra (see Figures 15 to 19). A list of the names and the chemical 

structures of the biomarkers identified is listed in Tables 13 -18. 

In M2M2 media samples, I was able to identify 26 nonpregnant compounds and 72 

pregnant compounds. Out of the 26 up-regulated compounds, I assigned the molecular formula of 

17 compounds (Table 4) and assigned the molecular structure for nine compounds with at least 

75% FISh coverage (Table 13). For the 72 pregnant compounds, I assigned the molecular formula 

for 13 compounds (Table 3) and identified the chemical structures for ten compounds (Table 14). 

For M media samples (after removing the outlier), I identified 15 nonpregnant compounds and 34 

pregnant compounds. Out of the 15 nonpregnant compounds, I assigned the molecular formula for 

11 compounds (Table 8) and identified four chemical structures (Table 15). On the other hand, out 

of the 34 pregnant compounds, I assigned the molecular formula for 23 compounds and the 

chemical structure for 20 compounds. However, I identified 48 nonpregnant compounds and 29 

pregnant compounds in processing the combined two media sample sets. From 48 nonpregnant 

compounds, I assigned the molecular formulas to 14 compounds (Table 12) and identified the 

chemical structure of 4 compounds (Table 17). In comparison, I assigned the molecular formula 
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for 11 compounds as pregnant compounds (Table 11) and identified the chemical structures for 

five out of the 11 compounds (Table 18). 

Comparing the chemical structures of identified biomarkers in the three culture media data 

sets (M1M1, M22, and the combined M1M1 and M22), I found that the 9 M2M2's nonpregnant 

chemical structure compounds were unique biomarkers for M2M2 culture media only. They didn't 

show a significant nonpregnant in the other media (M11 culture media) or the combined sample 

set. All the four M1 culture media nonpregnant chemical structure biomarkers were unique 

compounds for M1 samples only. Out of 10 identified chemical structures in M2M2 media 

samples for the pregnant biomarkers, six compounds were unique pregnant biomarkers for M2M2 

media samples. However, 3 of the nonpregnant biomarkers were also identified as nonpregnant 

biomarkers for the combined samples set (M1M1 and M22 media). These three compounds are 2- 

Hexylfuran (C10H16O), N-(2-Methoxybenzyl)-1-octanamine (C16H27NO), and tetrahydro-2- 

furanylmethyl 6-cyclohexylhexanoate (C17H30O3). We can consider those compounds as essential 

biomarkers since we can use them in the clinical application regardless of the used culture media. 

The differences in the identified biomarkers between the two-culture media could be 

attributed to that each media is made from a different mixture of nutrients and essential 

metabolites. This will lead the embryo to follow slightly different anabolic pathways in one media 

relative to synthesizing the important large biomolecules (like proteins, lipids, and carbohydrates). 

For example, suppose one of the media is missing phenylalanine amino acid. In that case, the 

embryo will use a phenylalanine amino acid anabolism from an organic acid or other amino acids 

to synthesis it so it can synthesis the required proteins. If phenylalanine is present in the original 

culture media, the embryo will not need to use a phenylalanine amino acid anabolism. This will 

reflect in different metabolomic profiles between these two media. 
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3.5. Metabolomic pathways 

 

I used two metabolomic databases to identify possible pathways for pregnant and non- 

pregnant media sample sets. For nonpregnant compounds in M2M2 samples, I could not identify 

any potential metabolomic pathways. However, using the KEGG database, I distinguished a 

potential metabolomic pathway that involves skatole (C9H9N), one of the nonpregnant compounds 

detected in the M1 media samples set (Figure 21). It's part of the tryptophan amino acid 

metabolomic pathway. This pathway is associated with many disorders’ defects syndrome such as 

Aromatic L-amino acid decarboxylase deficiency, Primary congenital glaucoma, and 3- 

Hydroxyacyl-CoA dehydrogenase deficiency. Aromatic L-amino acid decarboxylase deficiency is 

a human Nervous system disease associated with gene dopa decarboxylase (DDC). romatic L- 

amino acid decarboxylase (AADC) deficiency is an autosomal recessive disses of monoamine 

neurotransmitter metabolism, clinically characterized via way of means of vegetative symptoms, 

oculogyric crises, dystonia, and intense neurologic disorder in infancy. Mutations withinside the 

gene encoding for the enzyme AADC (DDC) cause a intense mixed deficiency of serotonin and 

the 2 catecholamines dopamine and norepinephrine (Brun et al., 2010, p. 67). Primary congenital 

glaucoma (Glaucoma 3) is also Human diseases, and it is Congenital malformations of eye. 

GLC3A) CYP1B1 and (GLC3D) LTBP2. Primary congenital glaucoma (PCG) is a intense shape 

of glaucoma that offers early in life. PCG effects from developmental abnormalities that have an 

effect on the aqueous humor outflow pathway. PCG scientific capabilities consist of multiplied 

IOP, corneal edema, expansion of the globe (buphthalmos), corneal expansion, rupture of 

Descemets membrane, and optic nerve damage. Two genes had been said to reason PCG, 

CYP1B1 and LTBP2. Both genes reason a recessive shape of this disease (Azmanov et al., 2010, 
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p. 328). 3-Hydroxyacyl-CoA dehydrogenase deficiency known also as HADH deficiency or 

SCHAD deficiency. It is a human disease and it is a congenital disorders of metabolism and 

mitochondrial diseases. Gene associated with this pathway is hydroxyacyl-CoA dehydrogenase 

(HADH). -Hydroxyacyl-CoA dehydrogenase (HADH, SCHAD) deficiency is an autosomal 

recessive metabolic ailment, on account of mutations withinside the HADH gene. HADH 

deficiency is one of the mitochondrial fatty acid oxidation ailment that has been the maximum 

these days defined best in some sufferers. The medical phenotype of maximum sufferers which 

have been defined is recurrent hypoglycemia related to hyperinsulinism. 
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Figure 15: Tryptophan amino acid metabolomic pathway that is associated with non-pregnant 

samples. 

In addition, I was able to identify another metabolomic pathway for pregnant samples 

 

using a pregnant compound, ((R)-2,3-dihydroxy-3-methylbutanoic acid, C5H10O4) that identified 

in M11 samples only. This metabolomic pathway was identified in both Metabolica and KEGG 

pathways databases. (R)-2,3-dihydroxy-3-methylbutanoic acid is considered involved in branched 

chain amino acid biosynthesis pathway like valine, leucine, and isoleucine biosynthesis. 
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Interestingly we also detected 16 other compounds in our metabolomic profile that also involved 

in this specific pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: branched chain amino acid biosynthesis pathway like valine, leucine, and isoleucine 

biosynthesis that is associated with the pregnant sample that has 16 identified pathway 
compounds 
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Figure 17: Metabolism of cofactors and vitamins 
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CHAPTER IV: CONCLUSION 

 

In this study, I used a non-invasive method to evaluate the embryo quality using the 

culture media. I used UHPLC- Orbitrap Fusion Tribrid mass spectrometer to analyze the 

metabolomic samples, which enhanced the metabolite separation, mass accuracy, and resolution. 

We used Dynamic Data Acquisition to get fragmentation for 72% of the total compound detected. 

For our statistical analysis, I used a combination of PCA, volcano plots, and Box Whisker chart. 

Using PCA was not enough analysis since there are not any clustered samples for pregnant non- 

nonpregnant. However, it helps us in identifying three outlier samples. Volcano plots enabled me 

to recognize nonpregnant compounds associated with non-pregnant samples and down-regulated 

compounds associated with pregnant samples. I used the Box Whisker chart to confirm those 

identified compounds are significant biomarkers. Then, I structure elucidated those biomarkers 

using mzClould and FISh coverage. 

One significant finding of this study is detecting one pathway associated with a down- 

regulated compound, (R)-2,3-dihydroxy-3-methylbutanoic acid. The metabolic result shows that 

16 other compounds were found and identified in our samples: (3-methyl-2-oxobutatanoate, L- 

Glutamate, L-valine, 2-Isopropylmaleate, (2S)-2-Isopropyl-3oxosuccinate, 4-Methyl-2- 

oxopentatnoate, and the final product, which is L-leucine), (2-3-Dihydroxy-3-methylpentanoate, 

(S)-2-Aceto-2-hydroxybutanoate, 2-Oxobutanoate, 2-iminobutanoate, (2Z)-2-Aminobut-2-enoate 

and final product L-threonine) and L-Isoleucine. When I use the KEGG database, it provides us 

with the same information and more pathways (2S)-2-Isopropyl-3oxosuccinate, 4-Methyl-2- 

oxopentatnoate in like pantothenate and CoA biosynthesis. This could imply that this compound 

is a possible key biomarker of pregnancy. 
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One of my study limitations is that I had only 71 samples and only two types of culture 

media. So, it is not sufficient to call pregnant and nonpregnant compounds that I detected 

universal biomarkers for all IVF culture media. Especially that we cannot compare the similarities 

and differences between different kinds of culture media because IVF companies who make the 

culture media, they do not reveal the culture media compositions. 

Another limitation to this study is that metabolites differ in polarity. Some are very polar 

compounds and others are nonpolar. Since we run our samples in positive mode and in a reversed- 

phase column, we can detect compounds that are nonpolar. This technique is a very poor 

technique to detect polar compounds. However, using UPLC in the negative mode is not 

beneficial due to the UPLC column is made from silica which will be affected if we use (0.1%) 

volatile base to promote deprotonation. 

Also, that the scarcity of knowledge about human embryo metabolomic pathways and 

 

limited metabolomic pathways in databases make it hard for us to detect possible pathways. And 

even harder to connect the embryos’ metabolomic to the embryos’ genomics. 

In conclusion, the metabolomic profiling of preimplantation of human IVF could be a 

potential tool to evaluate the embryo capability of implantation and also could be used to predict 

the aneuploidy of the embryo which is a major cause of pregnancy loss. Also, new methods can 

be improved to detect polar metabolites. Allowing us to detect polar and nonpolar metabolomic 

biomarkers. 
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APPENDICES 
 

Appendix 1: M2M2 samples pregnant compounds that we can identify using MF calculator 

and python code. 
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Appendix 2: M2M2 samples nonpregnant compounds that we're able to identify using MF 
calculator and python code, which are highlighted, match compound discoverer result. 
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Appendix 3: M11 samples pregnant compounds before removing the outlier that we're able 

to identify using MF calculator and python code, compounds that are highlighted are 

matching compound discoverer result. 
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Appendix 4: M11 samples nonpregnant compounds before removing the outliers that we're able to 
identify using MF calculator and python code, compounds that are highlighted are matching 

compound discoverer result. 
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Appendix 5: M11 samples pregnant compounds After removing the outliers, we can identify using 
the MF calculator and python code, which are highlighted match compound discoverer results. 

 

 
\ 
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Appendix 6: M11 samples nonpregnant compounds After removing the outliers, we can identify 
using the MF calculator and python code, which are highlighted match compound discoverer 

results. 
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Appendix 7: All samples pregnant compounds before removing the outliers that we're able to 
identify using MF calculator and python code, compounds that are highlighted are matching 

compound discoverer result. 
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Appendix 8: All samples of nonpregnant compounds before removing the outliers that we're able 
to identify using the MF calculator and python code, which are highlighted, match compound 

discoverer results. 
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Appendix 9: All samples pregnant compounds After removing the outliers that we can identify 
using MF calculator and python code, highlighted compounds match compound discoverer result. 
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Appendix 10: All samples nonpregnant compounds After removing the outliers that we're able to 
identify using MF calculator and python code, compounds that are highlighted are matching 
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Appendix 11: Structures for nonpregnant compounds M2M2 samples 
 

Compound name Compound 

formula 

Compound 

structure 

∆Mass(ppm) FISh 
scoring% 

2,3,4-Tri-O-methyl-L- 

three-pentitol 

C8H18O5 

 

 

1.41  

75.86 

5-(3,4,5- 

Trimethoxyphenyl)-4H- 

pyrazole-3-carboxylic 

acid 

C13H14N2O5  

 

2.15 75.26 

11-Aminoundecanoic 

acid 

C11H23NO2 

 

1.54 94.44 

1-(2-Methoxypropoxy)-2- 

propanol 

C7H16O3 

 

 

2.30 76.92 

3-(4-Butoxyphenyl)-3- 

methyl-2,5- 

pyrrolidinedione 

C15H19NO3 
 

 

2.21 89.80 

N-benzyl-3-pyrrolidinone C11H13NO 
 

 

2.03 77.78 

(±)-2-amino-octanoic 

acid 

C8H17NO2 

 

 

3.00 93.65 

N-[2-(2- 

Hydroxyethoxy)ethyl]-N- 

(2- 

hydroxyethyl)octanamide 

C14H29NO4 
 

 

1.83 96.15 

3-Aminoheptanoic acid C7H15NO2 

 

2.83 88.73 
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Appendix 12: Structures for pregnant compounds M2M2 samples 
 

 
 

Compound name Compound 

formula 

Compound 

structure 

∆Mass(ppm) FISh 
scoring 

2,6,10-Trimethyl- 

5,9-undecadienal 

C14H24O 
 

 

2.46 84.81 

2-Hexylfuran C10H16O  
O 

 

 

 

 

CH
3 

3.0 89.47 

(E)-methyl 

isoeugenol 

C11H14O2 

 

2.47 82.35 

3,3'-Ethane-1,2- 

diyldicyclohexene 

C14H22 

 

2.61 70.31 

1,6-Dimethyl-1,3,5- 

cycloheptatriene 

C9H12 

 

3.19 76.67 

N-(2- 

Methoxybenzyl)-1- 

octanamine 

C16H27NO 

 

2.43 86.81 

Tetrahydro-2- 

furanylmethyl 6- 

cyclohexylhexanoate 

C17H30O3 

 

2.50 87.32 

MO4650000 C6H14O3 

 

2.92 85.82 

4-Methyl-1- 

Tetralone 

C11H12O 

 

2.54 77.78 

Ethyl (2E)-4-oxo-2- 

pentenoate 

C7H10O3 

 

2.66 97.96 
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Appendix 13: Structures for nonpregnant compounds M11 samples 
 

Compound name Compound 

formula 

Compound 

structure 

∆Mass(ppm 

) 

FISh 

scorin 

g 

Butenylcarnitine C11H20NO4 
CH3 

H C 
+ 

CH 
3 N 3 

O 

 
O OH 

 
 

H3C O 

2.77 95.56 

L-Prolyl-L-leucine C4H8N6O 

 

3.72 100 

Skatole C9H9N NH 

 

 

 
CH3 

2.94 48.35 

N-Isobutyl-N-(4- 

methoxyphenylsulfonyl)glyc 

yl hydroxamic acid 

C13H20N2O5 

S 

CH3 

 
O CH3 

HO N 
NH S O 

O O CH3 

-0.17 82.19 
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Appendix 14: Structures for pregnant compounds M1 samples 
 

Compound name Compound 

formula 

Compound 

structure 

∆Mass(ppm) FISh 

scorin 

g 

1-[4-(2-Aminoethyl)-1- 

piperazinyl]-2-(4-methyl-1- 

piperazinyl)-1,2- 
ethanedione 

C13H25N5O2 

 

-2.44 73.08 

N-Undecanoylglycine C13H25NO3  2.44 83.87 

2-(decanoylamino)acetic 

acid 

C12H23NO3  2.95 88.34 

(R)-2,3-dihydroxy-3- C5H10O4 
CH3 O 3.63 60.53 

methylbutanoic acid  H3C OH   
  OH   

  OH   

1-(2-Ethylhexyl)-2,6- 

piperidinedione 

C13H23NO2 

 

2.54 70.59 

Elaeokanine C C12H21NO2 

 

2.78 84.72 

2,4-Heptadien-1-ol, (E, E)- C7H12O 

 

3.48 80.95 

4- 

Oxocyclohexanecarboxylic 

acid 

C7H10O3 

 

2.33 90.48 

Imagabalin C9H19NO2 

 

2.76 93.55 

(6E)-8-oxogeranial C10H14O2 

 

2.84 81.03 



49  

5,5-Dimethyl-3- 

piperidinocyclohex-2-enone 

C13H21NO 

 

2.82 85.37 

Methyprylon C10H17NO2 

 

 

3.01 96.30 

3-acetyl-2-(2,6-dimethyl-5- 

heptenyl)oxazolidine 

C14H25NO2 

 

2.78 87.23 

2-(1'-Hydroxyoctyl)-3- 

hydroxymethylbutanolide 

C13H24O4 

 

2.81 86.67 

3-Propylproline C8H15NO2 

 

2.56 81.90 

MFCD01940516 C10H16N4O2 

 

3.03 75.41 

2-Methyl-2-propanyl (2,3- 

dimethyl-2-{[(1-methyl-1H- 

1,2,3-triazol-4- 

yl)methyl]amino}butyl)car 

bamate 

C15H29N5O2 

 

-1.34 85.00 

1-(2-Aminoethyl)-N-(2- 

ethylbutyl)-1H-1,2,3- 

triazole-4-carboxamide 

C11H21N5O 

 

-2.94 83.75 

3-Ethoxy-1-[6-hydroxy-4- 

(1H-1,2,3-triazol-4- 

ylmethyl)-1,4-diazepan-1- 

yl]-1-propanone 

C13H23N5O3 

 

-1.60 100.0 

0 

Tricarballylic acid 

trimethyl ester 

C9H14O6 

 

2.82 85.51 
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Appendix 15: Structures for nonpregnant compounds all samples 
 

Compound name Compound 

formula 

Compound 

structure 

∆Mass(ppm) FISh 

scoring 

Pyroglutamylglycine C7H10N2O4 

 

2.42 90.16 

2-Aminoindan C9H11N 
 

 

2.70 77.78 

LV1850000 C7H8O3 

 

2.62 85.88 

1,2,3,4-Tetrahydro-4- 

isoquinolinecarboxylic 

acid 

C10H11NO2 

 

2.34 83.64 
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Appendix 16: All the pregnant compounds in All samples group 
 

Compound name Compound 

formula 

Compound structure ∆Mass(pp 

m) 

FISh 

scoring 

1,6-Dimethyl-1,3,5- 
cycloheptatriene 

C9H12 

 

3.19 76.67 

2-Hexylfuran C10H16O  
O 

 

 
 

 

CH
3 

3.0 89.47 

N-(2- 

Methoxybenzyl)-1- 

octanamine 

C16H27NO 

 

2.43 86.81 

2,4-Heptadien-1-ol, 

(E, E)- 

C7H12O 

 

3.48 80.95 

Tetrahydro-2- 

furanylmethyl 6- 
cyclohexylhexanoate 

C17H30O3 

 

2.50 87.32 
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Appendix 17: FISh spectra for two identified nonpregnant compounds in M2M2 samples 

with high FISh coverage. 
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Appendix 18: FISh spectra for pregnant compounds in M2 M2 samples 
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Appendix 19: FISh spectra for nonpregnant compounds in M11 samples 
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Appendix 20: some of FISh spectra for pregnant compounds in M11 samples 
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Appendix 21: FISh spectra for two nonpregnant compounds in all samples. 

 
 


