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ABSTRACT

Over the past few years, Nature has been the source of inspiration for many

proposed successful algorithms. This paper proposes a new nature-inspired K-means

clustering algorithm which is based on the concept of Electromagnetism. The pro-

posed algorithm starts by initializing a set of particles and later in the second step,

the best particle among them is chosen based on the fitness function. After choosing

the best particle, an objective function value is calculated for each particle which is

initialized. Then the force and movement are calculated for each particle except for

the current best particle. This way, the algorithm at each iteration searches for a

local best particle and then calculates objective function values. Due to this reason,

the position of the initialized particles also changes. Algorithm terminates when it

reaches the maximum iterations or when the change in Within Set Sum of Squared

Error (WSSSE) is less than 0.0001. The detailed explanation of this algorithm is

presented. From the results, Electromagnetism based K-means provides better ac-

curacy when compared to K-means clustering. This can be seen from the results

section.
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CHAPTER I: INTRODUCTION AND MOTIVATION

1.1 Introduction

Data Clustering is one of the important tasks in Pattern Recognition and Data Analysis. It is an

unsupervised technique, which is used to classify data into groups. There are mainly two types of

clustering methodologies: hierarchical and partitional clustering. In hierarchical, the large dataset

is broken down into smaller groups, and later the smaller groups are merged into their near cen-

troid. In case of the partitional clustering, data is partitioned into smaller clusters, each holding a

center. Based on the distance from the center, the data gets assigned to a cluster.

K-means clustering algorithm is one among the simple and efficient partitional clustering tech-

niques used in solving real-world problems [15] [7] . The K-means method attempts to classify the

given data set into K clusters, or groups. In the K-means method, each data is repeatedly assigned

to a suitable cluster by calculating the distance between the data and the center of the cluster. Due

to the lack of efficiency in K-means algorithm like the initialization, indefinite movement of cluster

centers in each iteration etc., This makes it not suitable for using it to cluster big data. The goal of

this research is to improve the K-means Clustering technique when applied to Big data sets. This is

achieved by using the Evolutionary computation techniques for improving K-means. The Nature

inspired local optimum finding technique called Electromagnetism is used for this purpose. In this

paper, we propose a new algorithm, which makes use of this nature-inspired technique, and cluster

technology to improve the K-means on Big data.

1.2 Motivation

Data Analysis and Machine Learning are some new fields, which have caught the attention of

the world. Seeing its power, many IT firms and researches have started working in these areas to

make their lives easier. Data Analysis helps us to predict the future trends in data, which can help
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in making needed improvements or precautions to business. While machine learning is put into use

for facial recognition, credit card fraud detection, building autonomous cars etc. In all these cases,

computers are learning things from the data available instead of explicitly being programmed for

a given task.

In all these areas of study, there is one common step which is very much needed to be performed

before we start these actual algorithms called Data Clustering.
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CHAPTER II: LITERATURE REVIEW

There are many known clustering techniques and all of them can be broadly classified into the

following four main classes.

• Connectivity Based Clustering

Connectivity based clustering is a kind of hierarchical clustering. The main idea is to build

a binary tree of the data that successively merges similar groups of points. These algorithms

connect objects to form clusters based on their distance’s. They do not provide a single

partition, instead they provide an extensive hierarchy of clusters that merge with each other

at certain distance. In these algorithms, we do not need a fixed count of clusters to be given

by the user, but it requires a termination condition. Some of the well-known algorithms that

fall under this category are Diana, Agnes, BIRCH, and CAMELEON [19].

• Centroid Based Clustering

In this method, we need to provide an input saying the number of clusters needed say K. In

this approach, a database D that contains n objects is partitioned into K clusters, such that

the sum of squared distances is minimized. The optimization problem here is known to be a

NP-Hard problem. The algorithms, which fall under this category, are K-means, K-medoids,

and CLARANS [14].

• Density Based Clustering

Here, clustering is performed based on connectivity and density based functions. The most

popular algorithm that falls under this category is the DBSCAN that is based on connecting

points within certain distance thresholds. However, it only connects points that satisfy a

density criterion, which is defined as a minimum number of objects, which belong to another

cluster present within its radius. Finally, a cluster in this method will consist of all density-

connected objects (which can form a cluster of an arbitrary shape, in contrast to many other

3



methods) plus all objects that are within its objects range. The other algorithms that fall

under this category are OPTICS [2] and Denclue [19].

• Distribution Based Clustering

One of the prominent models, which falls under this category, is the Gaussian mixture model.

Here the dataset is modelled with a fixed number of Gaussian distributions [19] that are

initialized randomly and whose parameters are iteratively optimized to fit better to the data

set. This will converge to a local optimum, so multiple runs may produce different results.

To obtain hard clusters, objects are often assigned to the Gaussian distribution they most

likely belong to. While in case of soft clustering, this is not necessary.

One of the most prominently used algorithms among all the above listed categories is the K-

means Clustering. Seeing some of the problems in K-means clustering algorithm, many nature-

inspired algorithms which have become popular are being used for improving K-means. Some

of the important algorithms of this kind are Particle Swarm Optimization (PSO), inspired from

the swarm behavior like the fish and bird schooling in nature [15]. The working theory of this

algorithm is based on two terms called particle (solutions) and swarm (population). The particles

will be moving around in the solution space by simultaneously adjusting their position and velocity.

They also exchange information about their current position with its neighbors in the search space

as prior of their own earlier experience. In groups, they travel in search of food or shelter, without

any collision among themselves. After communicating with their group, the particles modify their

positions and velocities as per the best position appeared in the current movement. Thus, the

particles would gradually get closer to the specified position and finally reach the optimal position

with the help of interactive cooperation.

2.1 Firefly Algorithm

The firefly algorithm (FA) [20] is a population-based optimization inspired by the flashing be-

havior of the fireflies in nature where the attractiveness of a firefly is proportional to its brightness.
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Fireflies that are less bright travel towards the brighter ones. The movement mainly consists of

three components: the current position, attraction to another firefly and a random walk element.

Some of the characteristics assumed in this algorithm are:

• Each particle present in the state space corresponds to a firefly within the problem state space.

The fitness, or evaluation value, of the particle relates to the light intensity or attractiveness.

• The light intensity and distance are inversely proportional to each other.

• The moving direction of each firefly is stochastically fixed to be attracted by brighter flash-

light, which is produced by neighboring fireflies.

• Fireflies would be constantly moving in random directions if there were no attractive fireflies

present around their neighborhood.

Figure 2.1: Data Structure and Movement of Firefly

Recently, two algorithms [12] [8] were proposed on K-means which are based on the firefly

algorithm to resolve the data clustering problems. Both the algorithms consist of two stages:

• A quasi-optimal solution is sought by the FA algorithm.

• The quasi-optimal solution is then used as the initial cluster centers for the K-means methods.

5



The two algorithms differ in the data features stored in the fireflies. The value of each firefly in

the FAK-A [8] algorithm are the locations of K clusters, while the values of each firefly in the FAK-

B [12] algorithm are the cluster number of each data item. In other words, the FAK-A algorithm

moves the cluster centers towards quasi-best locations and the FAK-B algorithm reassigns the data

to quasi-optimal cluster numbers iteratively.

Figure 2.2: Clustering by Firefly Algorithm

In the standard FA algorithm, the brighter firefly exerts its influence over other fireflies and

attracts them towards itself in each iteration. Similarly, in both FAK-A and FAK-B algorithms, the

fireflies with the best solution in each iteration can attract and influence other firefly’s movement

and do not consider the combined influences of other fireflies in the current population. There is a

lack of proof, for stating that the FAK algorithms can escape from the local optima.

Based on this concept, the author has built an algorithm where in the first phase they assign

random cluster numbers to each data and run the firefly algorithm. Later, they apply the K-means

clustering on to the solution obtained to form the final clusters [12]. This infers that the firefly

algorithm has mainly tried to improve the initial step of the K-means clustering.
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2.2 Genetic Algorithm

Another Nature inspired algorithm for K-means is the K-means clustering through Genetic Al-

gorithm [17]. Using this algorithm, one can determine the number of clusters for the given data

set but for this, the right choice of genes must be given as the initial clusters. This algorithm starts

by selecting some of the chromosomes from the initial data point’s population for capturing the

clusters of different size and shape. Many of the clustering algorithms based on GAs suffer from

degeneracy. According to Radcliffe et al. [16], degeneracy occurs when multiple chromosomes

represent the same solution. Degeneracy can lead to inefficient coverage of the search space as

the same configurations of clusters are repeatedly explored [5]. For eradicating the problems in

GA based clustering, the following algorithms were proposed: Automatic Genetic Clustering for

Unknown K (AGCUK) [10] and Genetic Algorithm with Gene Rearrangement (GAGR) [5]. They

use the same kind of approach, but the initialization of the algorithm is done by the selection of

points to be as genes. Here, they propose a new approach by selecting the initial genes determin-

istically and randomly. This is expected to be more exploratory when compared to the other two

approaches. They also happen to propose a new fitness function and a cluster evaluation equation.

The Proposed Technique is explained below

• The initial set of data points are broken down to chromosomes and these chromosomes

consist of genes.

• For the selection of a chromosome, they initially assume a radius function which helps in

calculating the density of the data set.

• The upper limit of the radius is assumed lesser than 0.5 and ranges from 0 to upper limit.

This radius will be varying for each dataset.

• This way with help of the radius function genes are formed. The number of genes is based

on the best value of the radius.
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• Later, accurate formation of genes will be taken to be as the clusters. To reach this step,

several gene rearrangements are to be made.

• Finally, some of the chromosomes are also combined based on the distance to form one

chromosome and hence the final clusters are formed.

Figure 2.3: Chromosomes

The below picture shows scenario where in there are six different genes present in a single chro-

mosome.

Figure 2.4: Six genes in a CR
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The ant colony optimization was inspired from the behavior of a real ant colony, which de-

rives from ants being able to find the nearest distance between its nest and food source [7].

The honeybee mating optimization (HBMO) algorithm was inspired by the process of marriage

in real honeybees [11]. The Bat Algorithm (BA) was inspired by the echolocation behavior of

bats [21]. The simulated annealing (SA) algorithm was developed by modeling the steel annealing

process [9].These are some of the many algorithms proposed in recent days.

There were also some hybrid algorithms introduced based on the K-means. By hybridizing

ant colony optimization, particle swarm optimization, K-means was developed as APSO-K-means

clustering algorithm for speaker recognition. An improved PSO-based K-means algorithm was

developed by Xiangwei and Yuanjiang [1] to avoid the local optima problem in normal K-means

clustering.

The Efficient initialization of centroids plays a key role for improving the performance of the

K-means [4]. This, as a result, would reduce the complexity and the number of iterations to reach

and form the final clusters. There were many methods proposed to solve this and improve the accu-

racy of the algorithm. All these methods are broadly classified into the following three categories

• Linear Time-Complexity Initialization Methods

• Loglinear Time-Complexity Initialization Methods

• Quadratic Complexity Initialization Methods

Clustering is a very prominent and important method in various fields. The applications of

various nature-inspired algorithms have also increased and these algorithms are being used to solve

the challenges in various fields like engineering, computer science, computer vision, industry, data

mining etc.

2.3 K-Means Clustering and its Importance

As said above, Clustering is the method of grouping similar objects so that they form a group.

The K-means clustering technique falls under the NP-Hard Problem. The step by step process of
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performing K-means is explained below.

If there are N points, which are starting from g1,g2, . . . ,gN . The Rn space is partitioned into

K (the value of K is given in advance) sets and G1,G2,. . . ,GK as per their mutual similarity, which

satisfies the following.
8
>>>>>><

>>>>>>:

Gi 6= f for i = 1,2, . . . ,K

Gi\G j = f for i, j = 1,2, . . . ,K; i 6= j

[K
i=1Gi = {g1,g2, . . . ,gN}

Algorithm 1 Stepwise K-Means Clustering
1: Randomly choose K points from the N data points g1,g2, . . . ,gN as the initial cluster centers.
2: Assign each point to the cluster Gk, (k = 1,2, . . . ,K) where the point has the shortest distance

to the cluster’s centroid Ck, (k = 1,2,. . . ,K).
3: Calculate the mean value avgk of the points for each cluster Gk, and use avgk to update the

cluster centroid Ck.
4: Repeat Steps 2 and 3 until the centroids no longer change.

The original K means was proposed in 1967. Since then, many new algorithms were proposed

for improving K-means.

One of the different problems is the initial assignment of data points as centroids [18]. The

right choice of centroid can reduce the computation and would help in improving the accuracy of

the clustering. Final output for K-means can be seen from Figure 2.5, which is present below. In

this image, there are 6 different clusters formed. All these clusters are being represented using 6

different colors. The centroids are highlighted using the symbol “+” which are being shown as a

part of the data points.

All the above listed evolutionary based algorithms were successfully able to improve K-means

but there are still some scope for improvements in them. In case of the K-means clustering al-

gorithm, the data movement between the centers is very high and the initialization process must

be improved as it does not cover the whole data space while picking the initial centers. In Firefly

algorithm, both the algorithms only improved the initialization process of K-means but there is a

problem of space complexity.When it comes to Genetic algorithm, the operational parameters are

10



Figure 2.5: Final Clusters formed after applying K-means Clustering

complex which increases the computation cost. This would effect the whole performance of the

algorithm. In case of the PSO, the convergence rate is slow.

Map-Reduce Frame Work:

Clustering Big-Data cannot be done directly. We need to reduce the dimensionality for pro-

cessing. For this purpose, we make use of the Map-Reduce Framework. There are two important

steps in the Map-Reduce Framework, the Map () and Reduce () functions. Some of the basic steps,

which are involved in the Map-Reduce can be seen below.

1. Map () Input is prepared

2. Map code () written by the user is put into execution at this stage

3. Map output is put to “Shuffle”, reducing the processors

4. “Reduce” code is now put into execution

11



5. Final output.

As mentioned above, the Map () and the Reduce () functions are user definable.

12



CHAPTER III: ELECTROMAGNETISM BASED GLOBAL OPTIMIZATION

Finding a Global Optimum solution is one of the important goals of the mathematical opti-

mization. Many real-life problems and research problems in various areas like Computer vision,

Chemistry and Biology involve many functions . They need an optimal solution for their prob-

lems, and they use mathematical tools to optimize, which can be difficult to use. To overcome

these difficulties, some search algorithms were proposed like the random search algorithm, Elec-

tromagnetism based global optimization etc.

Electromagnetism based global optimization [3] [6] is inspired from the concept of electro-

magnetism which is nothing but the physical interaction between charged particles due to the

electromagnetic forces present among them. Here, the charges of the particles play a key role,

as the force is directly proportional to charge. Therefore, the charge calculation is the objective

function for this algorithm. The better the value of the objective function, then the higher would

be the magnitude of attraction.

After the charge calculation, direction of movement for each particle in every iteration is de-

termined. Like the electromagnetic forces, even here the force is calculated by vectorially adding

forces from all the other particles which are calculated separately. Later, the amount of distance

travelled by each particle is calculated, and the direction of movement is based on the resultant

force.

This algorithm was used for solving the optimization problems in various fields such as the

engineering design, feature selection, vehicle routing problem etc. This algorithm mainly consists

of the following four steps as the core part

• Initialization of the particles

• Local optimum search

• Calculating the forces exerted on each individual particle.

13



• Distance moved along the direction of the particle.

The above steps are repeated for a fixed number of times, and this count is generally provided

as an input by the user. There were many Electromagnetism based algorithms like the Rocha’s

method of shrinking Population, Debels’s Method, Yurtkuran’s method for reducing Movement

etc. Many hybrid algorithms also came up which were mainly focused on the Local Optimum

search , Force calculation and Distance movement.

In the Initialization step, sampling of points from the dataset is performed. This can be a data

with n-dimensions. Later, the objective function for each of these points is calculated based on the

function f(x). The point, which has the best objective function, is stored as xbest .

The second step is the local optimum search. The purpose of this is to make the particle move

towards its local optimum. Various algorithms were proposed in verge of improving this local

optimum search, mainly to reduce the computation cost. The original Electromagnetism like algo-

rithm uses random line search. This random line search requires two parameters “d” and LSIter.

This LSIter represents the number of iterations to find the local optimum. The local search can be

limited to only the current best or to all particles. The algorithm for Local search optimization is

given below.

14



Algorithm 2 Local Search

INPUT: xp, LSIter, d
OUTPUT: xp

1: for d := 1 to D do

2: rd := d (ud� ld);
3: counter: = 0;
4: while counter < LSIter do

5: t := xp;
6: l := random 2 (�1,1) ;
7: td := td +l rd;
8: if f (t)< f (xp) then

9: xp := t;
10: counter := LSIter�1;
11: end if

12: counter := counter+1;
13: end while

14: end for

15: return xp;

The local search method is shown in Algorithm 1, which requires three parameters: the par-

ticle xp, the number of iteration LSIter, and the parameter d . The improvement in xp is sought

dimension-by-dimension (lines 1-14). For a give dimension d 2 (1, · · · ,D), first the maximum

feasible step length rd is calculated as the product of d and the range of dimension-d (i.e. udld)

(line 2). The particle xp is assigned into a temporary particle t to store the initial information (line

5). Next, a random number l 2 (�1,1) is selected as a step length and the particle xp is moved

along the dimension-d (lines 6-7). If f (xp) is reduced within LSIter, the particle xp is replaced by

t, and the neighborhood searching for the particle xp ends (lines 8-11).

In the third step, force exerted on each particle is calculated. This calculation is based on the

superposition principle of electromagnetism theory. According to this principle, the force exerted

on a charged particle is directly proportional to the product of their individual charges [13] and is

inversely proportional to the distance among the points. The charged particle will be influenced

and hence will be under moving according to Coulomb’s force produced by other particles. The

charge for each particle can be calculated by using the fitness value mentioned below in Equation

15



for calculating the charge on each particle.

Figure 3.6: Superposition principle

qp = exp(�D
f (xp)� f (xbest

Â h = 1m( f (xh)� f (xbest ),8p (3.1)

In the above equation, xbest is the particle with the smallest objective value in current pop-

ulation (i.e., xbest  argmin{ f (xp),8p}), m is the number of particles, and D is the number of

dimensions. The particles with smaller objective values have higher charges. Based on the cal-

culation of charges and force, we determine the direction, which is the final force vector. This is

evaluated for each particle by using the formula given below.

F p =
m

Â
h6=p

8
>>>><

>>>>:

(xh� xp)
qpqh

||xh� xp||2
if f (xh)< f (xp)

(xp� xh)
qpqh

||xh� xp||2
if f (xh)� f (xp)

9
>>>>=

>>>>;

,8p (3.2)

Here, f (xh) < f (xp) represents that the particle xp attracts the particle xh, and f (xh) � f (xp)

represents that the particle xp repulses the particle xh. It is obvious that the particle xbest attracts all
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other particles in the population because f (xbest) has the minimum value. The vector Fp should be

normalized as follows:

F̂ p =
F p

||F p|| ,8p (3.3)

Now to make the particle move in that direction we use the below mentioned formula in Equa-

tion 3.4. The movement is based on a random value, which is generated and named as. This

random variable takes value between zero and one. The values ud and ld represent the lower and

upper boundaries respectively for a d-dimensional data set.

xp =

8
>><

>>:

xp +lF p(ud� xp
d) if F p > 0,

xp +lF p(xp
d � ld) if F p  0,

9
>>=

>>;
8p 6= best (3.4)

In the above equation, l is a random step length that is uniformly distributed in (0,1), F̂ p
d is

the dth element of the force vector F p, and ud and ld are the upper and lower limit for the dth

dimension, respectively. The resultant force F̂ p
d determines the movement of the particle xp. The

point xp moves towards the upper limit if F̂ p
d is positive, or xp moves toward the lowest boundary

if F̂ p
d is zero or negative. The best particle is not moved because other particles in the population

do not have enough force to attract or repel the best one.

The EM algorithm repeats the local search, force computation and movement steps until a

maximum iteration number is reached or the value f (xbest) is small enough.

17



CHAPTER IV: PROPOSED SYSTEM

The Electromagnetism based K-means clustering is a new optimization method in the field of

data clustering, which is inspired from the principle of Electromagnetism. The proposed EMK

algorithm considers the combined forces from all the particles. In addition, the EMK algorithm

constitutes both attraction and repulsion forces, which attract better solutions and repel worse ones.

The FAK algorithms only have the attraction effect that brighter firefly attracts its neighbors. Fur-

thermore, the K-means method is integrated into the EMK algorithm, while in the FAK algorithms,

the K-means is executed as a separate step after the optimization procedures.

As mentioned above, the electromagnetism like algorithm was mainly used for solving the op-

timization problems in various fields. Now in this paper, we use the Electromagnetism concept for

improving the K-means clustering. The four main steps used in this algorithm are Initialization,

Local search, Force calculation and Movement. These are slightly modified for optimizing the

K-means. The detailed explanation of this algorithm is present in this Chapter.

4.1 Initialization

At first, the K-means clustering algorithm starts by random selection of centroids. After the

random selection of centroids, based on Euclidean distance these points are assigned to its nearest

cluster. Similarly, in this Electromagnetism method m initial particles are generated with each

one xp(p = 1, · · · ,m) holding K elements, which are the randomly picked cluster centers from

the dataset, and they are represented as xpi (1  i  K). Each particle element xpi is in the

RD space. The objective function f (xp) is evaluated to determine the best particle xbest (where

xbest  argmin{ f (xp),8p}).

The objective function f (xp) is measured using the within cluster variation, which is the sum

of squared error between the data points g j 2 Gxpi and the centroid xpi for all the clusters, i.e.

f (xp) =
K

Â
i=1

Â
g j2Gxpi

(g j� xpi)2 (4.5)
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The best particle xbest is the one with the smallest squared error (where xbest argmin{ f (xp),8p}).

Here a data point g j is assigned to the cluster with the nearest cluster center. This comes under the

initialization step.

4.2 Local Optimum Search

After initialization of the data points, the local search is performed for all the particles, which

helps in reducing the risk of falling onto a local solution, but this is a relatively time-consuming

process. As mentioned above in the Electromagnetism approach, the step length is an important

factor to be considered for local search. This step length depends on the limits for each dimension

and determines the performance of the overall local search.

If xbest is the same as it was in the last iteration, to improve the efficiency of the local search, a

one-step K-Means algorithm named K-means operator (KMO) is introduced on xbest which yields

x ˜best . The following are the steps involved in the KMO

1. Reassign each data point to the cluster with the nearest cluster center;

2. Calculate the cluster centers.

If f (x ˜best) is smaller than f(xbest), the particle xbest is replaced by x ˜best , otherwise xbest is held.

Finally, the current best particle xbest is updated.

4.3 Charge and Force Calculation

The charge for each particle element is determined by its fitness value as follows:

qpi = exp
⇣
�n

f (xpi)� f (xbestk)

f (xworst)� f (xbest)

⌘
,8p,8i (4.6)

where xworst is the particle with the largest squared error (where xworst argmax{ f (xp),8p}), f (xpi)

is the sum of squared error between the data points g j 2 Gxpi and centroid xpi for cluster i 2

(1, · · · ,K) and f (xbestk) is the sum of squared error between the data points g j 2 Gxbestk and cen-

troid xbestk for cluster k 2 (1, · · · ,K). For all the elements in xp and xbest , xpi and xbestk has the
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shortest distance (where xpi and xbestk  argmin{||xpi�xbestk ||,8i,8k}. Else, if the objective func-

tion attains very big values, the fraction may become too small and cause an overflow problem in

computing the exponential function. Hence, K is used to avoid such a problem. By using this, the

above-mentioned charge equation (Equation 4.2) can be modified and written as follows.

qpi = exp
⇣
�DK

f (xpi)� f (xbestk)

f (xworst)� f (xbest)

⌘
,8p,8i (4.7)

While coming to the total force calculation, this is based on the principle of superposition,

which is mentioned above. The overall resultant force between all particle elements determines

the actual effect of the optimization process. The final force vector for each particle element is

evaluated under the Coulomb’s law and the superposition principle as follows:

F pi =
m

Â
h6=p

(xpi� xhk)
qpiqhk

||xhk� xpi ||2
if f (xhk)� f (xpi) (4.8)

F pi =
m

Â
h6=p

(xhk� xpi)
qpiqhk

||xhk� xpi ||2
if f (xhk)< f (xpi) (4.9)

Here, the distance between xpi and xhk is the shortest, i.e., xpi and xhk  argmin{||xpi �

xhk ||,8i,8k}.

The vector F pi will be normalized by using the below equation:

ˆF pi =
F pi

||F pi || ,8p,8i (4.10)

4.4 Movement

The change of the d-coordinate (d(1, · · · ,K)) for each particle element xpi is computed with

respect to the resultant force as follows:

xpi
di
=

8
>><

>>:

xpi
di
+l F̂ pi

di
(ud� xp

d) if F̂ pi
di

> 0,

xpi
di
+l F̂ pi

di
(xpi

di
� ldi) if F̂ pi

di
 0,

9
>>=

>>;
8p 6= best,8i,8d (4.11)
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In the above equation, l is a random step length that is uniformly distributed between zero

and one. udi and ldi represent the upper and lower boundary for the d-coordinate in cluster i,

respectively.F̂ pi
di

represents the dith element of the vector F̂ pi . The particle moves towards the

highest boundary by a random step length if the resultant force is positive. Otherwise, it moves

toward the lowest boundary. The best particle does not move at all, because it holds the absolute

attraction pulling or repelling all others in the population.

Step 5: The KMO is performed on each particle except xbest . The particle xbest is replaced by xp if

f (xp) is smaller than f (xbest), otherwise there is no change to xbest .

Step 6: The iteration index is increased. If iteration = MAXITER (e.g., 25) or if the xbest particle

remains the same in next iteration and percentage change in f (xbest ) value is less than 1%, then

the algorithm is stopped and the flow jumps to step-7. Otherwise, it jumps to Step 2.

Step 7: The best particle xbest is selected from the last iteration.

Figure 4.7: Particles View

Same data set is replicated n types where n is number of particles. In this case, particle count

is 3, so we see that the data set is replicated 3 times as shown in Figure7.

21



Figure 4.8: Randomly Picked points in each particles

Randomly chosen points in each replica are called a particle in Figure 8. The cluster count

chosen to be 2 in this example.

Figure 4.9: Assigning data points

Clusters are formed after assigning the data points to the nearest random centroids formed in

the previous step, which can be seen in Figure 9.

Figure 4.10: New Centroid Calculation

22



Then we recalculate the cluster centers in each particle. The new centers can be seen in Figure

10.

Figure 4.11: Best particle

The best particle is chosen based on WSSSE value as in Figure 11. Here best particle is 2.

Figure 4.12: Charge Calculation

Later the charge calculation is performed for all the particles leaving the best particle, which

can be seen from the Figure 12.

Figure 4.13: New Population Generated

23



After the force calculation, we move the centers of the particles, which is not X-best and thus

end up getting new centers. This process can be seen from the above Figure 13.
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CHAPTER V: SYSTEM IMPLEMENTATION

To evaluate the performance of the proposed algorithm for small and big datasets, the imple-

mentation is performed in High Performance Computing System using Spark Library. The Spark

Library is available in three different languages: Python, Scala and Java. It is an open source li-

brary which provides an interface for programming entire clusters with implicit data parallelism

and fault tolerance and is mainly used for performing computations on Big data. It is developed to

overcome some of the disadvantages in Hadoop.

The usage of Python over other languages is due to the availability of libraries for performing

the scientific computations in a much faster way and, it is the most used open source languages in

the world.

Hardware and Software Components Used:

The hardware and the software components that were used for simulation are listed below.

• Environment: High Performance Computing System

• Operating System: Linux 2.6.32

• Framework: Spark 2.0.0

• Programming Language: Python 2.6.6

5.1 Apache Spark

Spark began life in 2009 as a project within the AMP Lab at the University of California,

Berkeley. Later it became an incubated project of the Apache Software Foundation in 2013. It

is general purpose data processing engine mostly used by data scientists to rapidly query, analyze

and transform data at scale. Mostly frequently associated tasks with Spark are queries across large

datasets, processing data streaming from sensors and several machine learning tasks. It can handle

several peta bytes of data at a time. It is often used alongside on the HDFS but it can also work
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well with several other data sources like HBase, Cassandra, MapR-DB, MongoDB and Amazon’s

S3.

RDD stands for Resilient Distributed Dataset. This is the default data structure used in spark.

Each dataset in RDD is divided into logical partitions, which may be computed on different nodes

of the cluster. These RDD’s are stored in main memory and can be of as much size and as long

possible. If once created, then RDD cannot be changed. These are immutable in nature.

Advantages of Spark:

The following are some of the important reasons for choosing the Spark library:

Simplicity: Spark’s capabilities are accessible via a set of rich APIs, all designed specifically for

interacting quickly and easily with data at scale. These APIs are well documented and structured

in a way that makes it straightforward for data scientists and application developers to quickly put

Spark to work.

Speed: Spark is designed for speed, operating both in memory and on disk. Spark can perform

even better when supporting interactive queries of data stored in memory. In those situations, there

are claims that Spark can be 100 times faster than Hadoop’s Map Reduce.

Support: Spark supports a range of programming languages, including Java, Python, R, and Scala.

Although often closely associated with HDFS, Spark includes native support for tight integration

with a number of leading storage solutions in the Hadoop ecosystem and beyond. Furthermore,

the Apache Spark community is large, active, and international. A growing set of commercial

providers including Data bricks, IBM, and all of the main Hadoop vendors deliver comprehensive

support for Spark-based solutions.
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Figure 5.14: Flow Chart

In the above flow chart, WSSSE stands for Within Set Sum of Squared Error. Slurm Jobs are

used for submitting the requests to HPC for running the code of proposed algorithm. In the Slurm

file, there are multiple parameters mentioned like the output file, error file, number of computa-

tional nodes etc. The parallelism parameter is also present in the Slurm job request file. The user

mentions the name of the code file in this Slurm file, then the Slurm manager executes the code
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mentioned in the request file and output is saved into a new file and is saved with the name speci-

fied by the requester. At the end of every Slurm job there will be two files created: output file and

error file.

Initialization:

First, a population of m particles are generated with each one containing K randomly and uni-

formly chosen data points as the centroids. Then the shortest distance between a data point and a

centroid is calculated using Map/Reduce.

Algorithm 1 map (key,value)

INPUT: cluster centroids X, cluster number K, population size m, the offset of a data point g as
key
OUTPUT: < id,pointObj > pair, where id is the cluster index of the data point g and pointObj is a
data structure that contains the data point g and the shortest distance to any centroid in the particle
xp

1: for p := 1 to m do

2: for k := 1 to K do

3: dis := calculateDistance(g� xp
k );

4: end for

5: index := the cluster index where the nearest centroid is;
6: id := “p”+ “� ”+“index";
7: instantiate a data structure pointOb j for the data point g;
8: create and store a (id, pointOb j) pair for the particle xp;
9: end for

10: return the set of < id, pointOb j > pairs of the data point g;

Each map function calculates the distances between a data point g of the dataset and the cluster

centroids of the whole population (represented as a single matrix C). The output of each map func-

tion is a set of < id, pointOb j > pairs, where id is the cluster index to which the data point g is

assigned and pointObj is a data structure that contains the data point g and the shortest distance dis

to any centroid in the particle xp.

Local Search:
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Algorithm 2 reduce (id,pointObj)

INPUT: id is the cluster index, pointObj is a data structure that contains the data point g and the
shortest distance dis to any centroid in the particle xp.
OUTPUT: < id,centroidObj > pair, where the id is the cluster index and centroidObj is a data
structure composed of the new centroid and the total distance between all the data points in the
same cluster and the new centroid of the particle xp.

1: initialize a counter count, a distance f and a vector S with attributes zero;
2: for all (id, pointObj) pairs do

3: f :=f + dis;
4: S :=S + pointValue;
5: count := count + 1;
6: end for

7: centroidValue: = S/count;
8: instantiate a data structure centroidObj;
9: return the < id,centroidOb j > pair;

If xbest is different from what it was in the last iteration, local search is performed to find xgbest

such that f (xbest) is smaller than f (xbest). This is done by one-step of K-means operator (KMO) is

performed on xbest . In the initialization, the new centroids xgbest have been computed, we only need

to calculate f (xgbest ) in the local search.

Algorithm 3 map (key,value)

INPUT: cluster centroids xbest , cluster number K, the offset of a data point g as key, the data point
g as value.
OUTPUT: < id,shortestDis > pair, where id is the cluster index of the data point g and
shortestDis is the shortest distance between the data point g and the K centroids in the particle
xbest .

1: for k: = 1 to K do

2: dis = calculateDistance(g� xbest
k );

3: end for

4: id: = the cluster index where the nearest centroid is;
5: shortestDis:= the shortest distance between the data point g and the K centroids;
6: return the < id,shortestDis > pair;

Each map function calculates the distances between a data point g of the dataset and the cluster
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centroids of the particle xbest . The output of each map function is a set of < id,shortestDis > pairs,

where id is the cluster index to which the data point g is assigned and shortestDis is the shortest

distance between the data point g and the K centroids in the particle xbest .

Algorithm 4 reduce (id, shortestDis)

INPUT: id is the cluster index of the data point g and the shortest distance between the data point
g and the K centroids in the particle xbest as shortestDis
OUTPUT: < id, totalDistance > pair, where the id is the cluster index of the data point g and
totalDistance is the total

1: initialize a distance f;
2: for (id,shortestDis) pairs do

3: f := f + shortestDis;
4: end for

5: totalDistance := f;
6: return the < id, totalDistance > pair;

The charge of each particle element qpi , i 2 (1,K) is calculated locally using the proposed charge

computation formula mentioned above.

Total Force Vector Computation:

Algorithm 5 map(key, value)

INPUT:the charge q, the objective function values f, the element index i of the particle xp as key,
the i-th element xpi as value
OUTPUT: < id, pairedForce > pair, where id is an integer pair < p, i > and pairedForce is the
resultant force between xpi and xhk(p! = h)

1: identify the element xhk that is closest to xpi;
2: if f (t)< f (xp) then

3: variation := xhk� xpi;
4: variation := xpi� xhk ;
5: end if

6: squaredDis:=computeSquaredDistance(xpi ,xhk);
7: return the set of < id, pointOb j > pairs of the data point g;

Each Map function here computes the paired force between each particle element present in xp with
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respect to particle elements present in xh. The particle xh is determined by xhk  argmin{||xpi �

xhk ||,8i,8k}.Later, the output of this map function is used by reduce function for computing the

magnitude of each < id, pairedForce > pair present.

Algorithm 6 reduce (id, pairedForce)

INPUT: id is an integer pair< p, i > and the resultant force between xp
i and xh

k(p! = h) as paired
force
OUTPUT:(id, overallForce) pair, where id is an integer pair < p,h > and overallForce is the
normalized overall resultant force exerting on xpi

1: initialize overallForce as zero;
2: overallForce := overallForce + pairedForce;
3: overallForce := overallForce/||overallForce||0;
4: return the < id,overallForce > pair;

Movement:

Because the size of each particle is small, the movement can be efficiently executed on one local

machine, and no map/reduce is needed.
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CHAPTER VI: RESULTS AND EVALUATION

In this part of the document, the testing using different datasets are explained in detail. Per-

centage of Correct Answers (PCA), running time and within-cluster sum of squared error are the

main parameters used to compare the performance of proposed algorithm with other algorithms.

The results of each experiment are provided in tables of values.

Experimentation Setup

The experimentation is carried on various small and big datasets. The small datasets used are

the Iris dataset, Glass Identification dataset, Breast Cancer Wisconsin (Diagnostic) dataset, Haber-

man’s Survival dataset. The Big data set used is the Watch-accelerometer dataset which is a part of

Heterogeneity Activity Recognition dataset. All the above-listed datasets are available in the UCI

machine learning library. The Big dataset consists 10 attributes and 3.5 million records.

This Big dataset consists of readings of two motion sensors commonly found in smartphones.

Reading were recorded while users executed activities scripted in no specific order carrying smart-

watches and smartphones. The information related to small dataset is preset in Table-1.

Table 6.1: List of Datasets and its information

Dataset Instances Attributes present Clusters Attributes taken

Iris 150 4 3 4
Glass 214 9 6 9

Cancer-Int 699 9 2 9
Haberman 306 3 2 3

Watch-accelerometer 3.5M 10 6 3

Watch-accelerometer 1.5M 10 3 3

6.1 Results with Small Dataset

Iris Dataset

The Iris Dataset as mentioned above in table-2 consists of 150 instances and it consists of values
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pertaining to three flowers (Setosa, Versicolor, and Virginica). The attributes present provides in-

formation like sepal length, sepal width, petal length, petal width in cm that are classified into three

clusters.

Glass Dataset

This dataset contains information related to various glasses and they are classifies based on oxide

levels. The dataset has 214 instances with 9 attributes (RI, Na, Mg, Al, Si, K, Ca, Ba, and Fe)

that are classified into 6 clusters (building windows float processed, building windows non-float

processed, vehicle windows float processed, containers, tableware, and headlamps).

Cancer-Int Dataset

This data is based on the diagnosis of Breast Cancer Wisconsin (Original) dataset. It provides

information pertaining to patient if one is malignant or benign. It consists of 9 attributes and 699

instances. The data is grouped into 2 clusters.

Haberman Dataset

This dataset consists of 306 records with 3 attributes and 2 clusters. The data provides information

on patients who survived from breast cancer by undergoing surgery. The cluster states information

about patients who survived more than 5 years and who survived less than 5 years.

Table 6.2: PCA and Run Time values for small datasets

Algorithm Measurements Iris Glass Cancer-Int Haberman

EMK PCA(%) 89.4 59.8 61.76 68.4
K-means PCA(%) 77.1 53.5 60.6 67.3

EMK Time(SS) 30 48 9 72
K-means Time(SS) 3 5 5 6

In case of above-mentioned small datasets, the parameters set for running the proposed algo-

rithm are number of particles which varies from 20 to 60, number of iterations is fixed to 100 and
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number of computational nodes used are 6. There is a common break condition used, when the

percentage change in the WSSSE value is less than 1% for a particle, loop breaks and centers in

that loop are taken as the final cluster centers. For each dataset, 10 trails are performed using EMK

and K-means algorithms. The results shown above are the average PCA and time for 10 trails.

For PCA calculation, the initial targets provided in data set are taken for calculating the ac-

curacy of clustering. After running the proposed clustering algorithm, the initial data is grouped

into clusters based on the targets provided in the dataset. Later the initial grouping is used for

calculating the accuracy of the clusters formed by the two algorithms mentioned above table.

6.2 Results with Big Dataset

In case of Big datasets, the parameters set for running the proposed algorithm are number of

particles which is fixed to 20, number of iterations is fixed to 10 and number of computational

nodes used are 6. The break condition used is same as the one used for the small dataset, when the

percentage change in the WSSSE value is less than 1% for a particle, loop breaks and centers in

that loop are taken as the final cluster centers. For each dataset, 10 trails are performed using EMK

and K-means algorithms. The results shown above are the average WSSSE values for 10 trails.

The results while using Big data can be seen in below Table – 3.

Watch-accelerometer

The dataset consists of 3.5million records with 10 attributes and 6 clusters. Out of which only

three attributes were taken during clustering named (x, y, and z). These consists of information of

six axes from the accelerometer.

A new file is also created holding only 1.5 million records and three clusters (walk, bike, stairs

up). This is a portion from the Watch-accelerometer data. The number of attributes remain the

same, which is three.

The PCA calculation for 3.5 million records is not available, as the dataset was not provided
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Table 6.3: Values for Big datasets Using EMK and K-means

Algorithm Instances Clusters PCA(%) WSSSE Time (HH:MM:SS)

EMK 3.5 M 6 9564016.28 5:10:0
K-means 3.5 M 6 14986221.11 0:13:40

EMK 1.5 M 3 44.86 8614425.12 01:26:16
K-means 1.5 M 3 41.22 8725422.22 00:01:51

with crisp target values, which ended up showing inaccurate PCA values. There is huge difference

in run times of both the algorithms, this do to the Local search, charge, force and movement cal-

culation present in the proposed algorithm. While coming to K-means it only calculates the mean

for finding the new centers at every iteration. If the equations can be optimized, there can be a

significant decrease in the run time of the algorithm.

Figure 6.15: Convergence Curve using the EMK Algorithm for Iris Data

The WSSSE value recorded at the end of EMK Algorithm is 97.22 .
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Figure 6.16: Convergence Curve using the K-means Algorithm for Iris Data

The WSSSE value recorded at the end of EMK Algorithm is 97.35
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CHAPTER VII: CONCLUSION AND FUTURE WORK

From above the results, it is seen that the performance of EMK algorithm is better when com-

pared to K-means clustering algorithm. The PCA and WSSSE values for EMK is more than the

K means algorithm. Accuracy is an important factor to be considered while clustering. Formation

of accurate clusters would help in grouping future unseen data more efficiently. The Time taken

by EMK is very huge when compared to that with K-means clustering algorithm. Some improve-

ments can be done in the algorithm level to decrease the time taken by the algorithm.

Since, the coding is done using Spark 2.0.0 and Python 2.6.6, there are some limitations in

coding. RDD’s are the data structures used while programing the proposed algorithm, If RDD

were to be replaced with Data Frames, there could be an in increase in the speed of clustering of

the proposed system, when compared to that of the current run time. Spark 2.2.0 is a strong library

with lot of support provided for data frames. By using Python version 2.7 or 3.5, would help in

using more effective and efficient default functions and could also serve as good replacements for

some of the current functions used in the code. Testing is done using only few datasets as shown

above, testing with more number of labeled big datasets would help in knowing more about the

performance of the proposed algorithm. Testing with increased count of nodes would also help in

increasing the performance of proposed clustering. This would also require increasing the paral-

lelism while reading the input data into the code to serve the purpose of increased nodes.

The input file type taken here is CSV; there are many other file formats present, which can be

used as input for the proposed algorithm. Some of the data types like HDFS, parquet would help in

increasing the performance of proposed clustering technique. They would also help in increasing

the parallelism in spark.
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APPENDIX A: STEPS TO IMPLEMENT THE ALGORITHM IN HPC CLUSTER

This simulation requires HPC access. HPC stands for High Performance Computing envi-

ronment, which are generally used to solve large problems in Science, Engineering, or Business.

Programs are run on HPC by using the Slurm system. Using Slurm job, a request is submitted to

run a particular code. Later, the output files and the error files are generated by the system. To run

the code against any dataset the following steps needs to be followed.

Procedure:

1. Login to “hpcm.tamucc.edu" with the login credentials using Putty Software.

2. Load the code into HPCM server using the below command.

scp filename location

Ex: scp file1.py lsmith@hpcm.tamucc.edu/home

3. As mentioned above, A Slurm file needs to be prepared consisting of program names and

user preferred names for the output and error files.

4. Copy the dataset into the same location where the code file is present in the HPCM server.

5. Make sure all the three files are present in the same path in the HPCM server.

6. Update the parameters in code for selecting the number of clusters and choosing the attributes

for clustering.

7. Update the values of targets in the code for accuracy calculation.

8. Increase the maximum user processes to 5000 before you run the job using the below com-

mand.

Ulimit –u 5000

9. Use the command below to submit a job in HPCM.

Sbatch “slurm file name”
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10. To see the status of the job use the below command.

Figure 8.17: Putty Software

Figure 8.18: Login Screen
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Figure 8.19: Sample Slurm File
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APPENDIX B: CODE FOR THE PROJECT

1)The input parameters, no of particles, no of clusters needed etc are provided to the program

through the follwoing set of instructions.

no_of_attributes = 10

no_of_particles = 20

no_of_clusters = 3

no_of_iterations = 10

#Place the input file for which the clustering

needs to be performed in the below "data" variable

data = sc.textFile("Watch-1.5.csv",minPartitions=200)

header = data.first()

data_valid = data.filter(lambda row: row != header)

.map(lambda p:data_validation(p))

grped_data_valid = data_valid

.reduceByKey(lambda x,y:add_tuples_tolist(x,y))

2)Based on the no of input particles provided, randomly centroids are picked from the input to

form particles

for i in range(no_of_particles):

index_list.append(i)

for i in range(no_of_particles):

ran_num = random.randrange(0,100)

new_arr[i] = data6.takeSample(False,no_of_clusters,ran_num)

final_temp[i] = map(list,list(zip(index_list,new_arr[i])))

dict1 = dict(zip(index_list,final_temp))
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3)This function takes only the specified attributes from the inpur csv file and load then into an

RDD. The comma seperated values are split and saved column wise into RDD.

def initial_data(p,cnt):

z = []

cols = [3,4,5]

after_split = p.split(’,’)

for i in range(len(after_split)):

if i in cols:

if i < cnt:

z.append(float(after_split[i]))

return z

4)This function calculates the distance between centroid and the data point and return backs the

index of the closest centroid for each data point.This is repeated for all the particles present.

def closestPoint(p, dict):

bestIndex = 0

particle = 0

closest = float("+inf")

key_iterator = 0

final_new_array = [[]] * no_of_particles

for key,value in dict.items():

v1= value

for i in range(len(v1)):

tempDist = numpy.sqrt

(numpy.sum(numpy.subtract(p, v1[i][1]) ** 2))
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if tempDist < closest:

closest = tempDist

bestIndex = v1[i][0]

particle = key

key_iterator =

key_iterator + 1

final_new_array[key] =

((particle,bestIndex), [p, closest])

closest = float("+inf")

return final_new_array

5)Function used for calculating the charge of each particle element.

def chargefun(p,q,r,s):

charge = []

for u in range(len(q)):

if q[u][0][0] == p[0][0][0]:

best_dist = q[u][1]

mul_factor = s

for i in range(len(p)):

numerator = p[i][1][1] - best_dist

temp_fin_val = numpy.exp((-mul_factor)*(numerator/r))

charge.append((p[i][0],temp_fin_val))

return charge

6)Following function is used for calculating the movement. This return the new positions of each

centroid present in particle.
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def movement_fun(p,q,cnt):

lam = numpy.random.random(1)[0]

final_move = []

nan_val = 0

tot = p[1][0]

if p[0][0] != q[0]:

if nan_val == 0:

if tot <= 0:

move = lam * tot

sub = list(numpy.subtract(p[1][1],p[1][3][0]))

final_move = list(numpy.multiply(move,sub))

else:

move = lam * (p[1][0] + p[1][1])

sub = list(numpy.subtract(p[1][2][0],p[1][1]))

final_move = list(numpy.multiply(move,sub))

return (p[0],list(numpy.sum([p[1][1],final_move],axis=0)))

elif p[0][0] == q[0]:

return (p[0],p[1][1])

else:

return 0

7)This function is used for preparing the input dataset into clusters based on the targets in the

dataset. These are used for accuracy calculation of the clusters formed from EMK algorithm.

def data_validation(p):

z = []

target = 9

cols = [3,4,5]
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k = []

after_split = p.split(’,’)

for i in range(len(after_split)):

if i in cols:

z.append(float(after_split[i]))

if after_split[target] == ’walk’:

mm = 0s

elif after_split[target] == ’bike’:

mm = 1

elif after_split[target] == ’stairsup’:

mm = 2

else:

print after_split[target]

return (mm,tuple(z))
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ABSTRACT

Over the past few years, Nature has been the source of inspiration for many proposed successful

algorithms. This paper proposes a new nature-inspired K-means clustering algorithm which is

based on the concept of Electromagnetism. The proposed algorithm starts by initializing a set of

particles and later in the second step, the best particle among them is chosen based on the fitness

function. After choosing the best particle, an objective function value is calculated for each particle

which is initialized. Then the force and movement are calculated for each particle except for the

current best particle. This way, the algorithm at each iteration searches for a local best particle and

then calculates objective function values. Due to this reason, the position of the initialized particles

also changes. Algorithm terminates when it reaches the maximum iterations or when the change

in Within Set Sum of Squared Error (WSSSE) is less than 0.0001. The detailed explanation of

this algorithm is presented. From the results, Electromagnetism based K-means provides better

accuracy when compared to K-means clustering. This can be seen from the results section.
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