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ABSTRACT 

Remote sensing using multi- and hyperspectral imaging and analysis has been 

used in resource management for quite some time, and for a variety of purposes. In the 

studies to follow, hyperspectral imagery of Redfish Bay is used to discriminate between 

species of seagrasses found below the water surface.  

Water attenuates and reflects light and energy from the electromagnetic spectrum, 

and as a result, subsurface analysis can be more complex than that performed in the 

terrestrial world. In the following studies, an iterative process is developed, using ENVI 

image processing software and ArcGIS software. Band selection was based on 

recommendations developed empirically in conjunction with ongoing research into depth 

corrections, which were applied to the imagery bands (a default depth of 65 cm was 

used). Polygons generated, classified and aggregated within ENVI are reclassified in 

ArcGIS using field site data that was randomly selected for that purpose. After the first 

iteration, polygons that remain classified as ‘Mixed’ are subjected to another iteration of 

classification in ENVI, then brought into ArcGIS and reclassified. Finally, when that 

classification scheme is exhausted, a supervised classification is performed, using a 

‘Maximum Likelihood’ classification technique, which assigned the remaining polygons 

to the classification that was most like the training polygons, by digital number value. 

Producer’s Accuracy by classification ranged from 23.33 % for the ‘MixedMono’ class to 

66.67% for the ‘Bare’ class; User’s Accuracy by classification ranged from 22.58% for 

the ‘MixedMono’ class to 69.57% for the ‘Bare’ classification. An overall accuracy of 

37.93% was achieved. Producers and Users Accuracies for Halodule were 29% and 39%, 
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respectively; for Thalassia, they were 46% and 40%. Cohen’s Kappa Coefficient was 

calculated at .2988.  

We then returned to the field and collected spectral signatures of monotypic 

stands of seagrass at varying depths and at three sensor levels:  above the water surface, 

just below the air/water interface, and at the canopy position, when it differed from the 

subsurface position. Analysis of plots of these spectral curves, after applying depth 

corrections and Multiplicative Scatter Correction, indicates that there are detectable 

spectral differences between Halodule and Thalassia species at all three positions. 

Further analysis indicated that only above-surface spectral signals could reliably be used 

to discriminate between species, because there was an overlap of the standard deviations 

in the other two positions. A recommendation for wavelengths that would produce 

increased accuracy in hyperspectral image analysis was made, based on areas where there 

is a significant amount of difference between the mean spectral signatures, and no 

overlap of the standard deviations in our samples.  

The original hyperspectral imagery was reprocessed, using the bands 

recommended from the research above (approximately 535, 600, 620, 638, and 656 nm). 

A depth raster was developed from various available sources, which was resampled and 

reclassified to reflect values for water absorption and water scattering, which were then 

applied to each band using the depth correction algorithm. Processing followed the 

iterative classification methods described above.  

Accuracy for this round of processing improved; overall accuracy increased from 

38% to 57%. Improvements were noted in Producer’s Accuracy, with the ‘Bare’ 

classification increasing from 67% to 73%, Halodule increasing from 29% to 63%, 
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Thalassia increasing slightly, from 46% to 50%, and ‘MixedMono’ improving from 23% 

to 42%. User’s Accuracy also improved, with the ‘Bare’ class increasing from 69% to 

70%, Halodule increasing from 39% to 67%, Thalassia increasing from 40% to 7%, and 

‘MixedMono’ increasing from 22.5% to 35%. 

A very recent report shows the mean percent cover of seagrasses in Redfish Bay 

and Corpus Christi Bay combined for all species at 68.6%, and individually by species: 

Halodule 39.8%, Thalassia 23.7%, Syringodium 4%, Ruppia 1% and Halophila 0.1%. 

Our study classifies 15% as ‘Bare’, 23% Halodule, 18% Thalassia, and 2% Ruppia. In 

addition, we classify 5% as ‘Mixed’, 22% as ‘MixedMono’, 12% as ‘Bare/Halodule 

Mix’, and 3% ‘Bare/Thalassia Mix’. Aggregating the ‘Bare’ and ‘Bare/species’ classes 

would equate to approximately 30%, very close to what this new study produces. Other 

classes are quite similar, when considering that their study includes no ‘Mixed’ 

classifications.  

This series of research studies illustrates the application and utility of 

hyperspectral imagery and associated processing to mapping shallow benthic habitats. It 

also demonstrates that the technology is rapidly changing and adapting, which will lead 

to even further increases in accuracy. Future studies with hyperspectral imaging should 

include extensive spectral field collection, and the application of a depth correction.  
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CHAPTER I:  BACKGROUND AND HYPOTHESES 

INTRODUCTION1 

The Texas coast is widely known for its rich natural resources (Tunnell and Judd 

2002), and much of this richness and high biodiversity is attributable to vast estuarine 

seagrass-dominated communities (Pulich and Onuf 2004). A small (6,180 hectares) but 

important part of this coastal area is Redfish Bay, a major component of the 75,150 

hectare Mission-Aransas National Estuarine Research Reserve (MANERR) (Beyer et al. 

2007). This research reserve was established in 2007 and tasked with the mission to 

ensure that coastal management decisions benefit flora and fauna, water quality, and 

people by bringing together scientists, landowners, policy-makers, and the public (Bittler 

2011). Redfish Bay is located between Aransas Pass and Port Aransas, and Halodule 

wrightii and Thalassia testudinum are co-dominant seagrass species (Fry and Parker 

1979) in this shallow estuarine ecosystem.  

These seagrass beds have undergone intense research: Cowper (1978)  studied the 

drift algae community found interspersed within the blades; Pulich et al. (1976) studied 

the trace metal cycles; Fry and Parker (1979) studied the animal diets within the 

meadows; McMillan (1991) studied the longevity of the seed reserve; and Major and 

                                                 

 

 

1 Format:  Ecology 
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Dunton (2002) studied the effects of the variations in light-harvesting characteristics. 

Short and Wyllie-Echeverria (1996) studied the effects of propeller scarring.  

Between 2005 and 2040, the population of Texas coastal counties is predicted to 

rise 108%. Furthermore, populations are becoming more mobile, and an increasingly 

large number of coastal habitat users are coming from larger cities hundreds of miles 

from the coast. With these increases come increasing stresses on the estuaries and coastal 

environments that serve as an interface between the mainland and the seaward barrier 

islands (Cohen et al. 1997). 

These estuaries also are subject to increased environmental pressures from 

nutrient enrichment in the watersheds that feed them (Montagna and Kalke 1992). As 

populations in these areas increase, so have the industrial and agricultural influences. 

Other influences include decreased freshwater inflows due to increasing demands for 

fresh water, and increases in recreational and commercial fishing have increased turbidity 

levels. Increased dredging to accommodate the growing populations has had a similar 

effect. All of these stressors can impact the sustainability of our estuaries and coastal 

habitats and systems. The goal of coastal management is to monitor and evaluate the 

conditions of these habitats, which are recognized as essential to the well-being of fauna, 

flora and the quality of human existence along the coast (Diaz et al. 2004). Remote 

sensing provides a means to monitor many of these conditions on a regional or landscape 

scale. 
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Seagrass meadows perform or contribute to at least twelve of the 17 recognized 

ecosystem services, including gas regulation (regulation of atmospheric chemical 

composition, such as CO2/O2 balance, O3 levels for UVB protection, and SOx levels), 

disturbance regulation (including dampening the ecosystem responses to storms, floods 

and droughts and other environmental variability), hydrologic flow regulation, erosion 

control, soil formation, nutrient cycling, waste treatment, habitat and refuge, food 

production, raw materials and recreational services (Costanza et al. 1997). Seagrasses 

provide vital nursery and spawning habitat for many marine and estuarine fishes (Jagtap 

et al. 2003), and they provide protected areas for juvenile and adult fish and shellfish. 

Seagrasses and detrital material from them also serve as food sources for a variety of 

microbes, juvenile fishes and benthic organisms, which in turn feed larger organisms, 

fishes, molluscs, crustaceans, and echinoderms (Jagtap et al. 2003) which then serve as a 

food source for waterfowl, turtles and mammals (Orth et al. 2006). They add oxygen to 

the water column, help stabilize sediments (Jagtap et al. 2003), and diffuse and absorb 

wave energy (Fonseca and Cahalan 1992). They alter water flows and trap sediments 

(Orth et al. 2006).  By affecting the currents and flows through the estuary, they collect 

both organic and inorganic materials, which also help stabilize and bind the sediments 

(Wood et al. 1969), preventing erosion and preserving the microflora found in sediments 

and at the sediment/water interface. Seagrasses also support an extensive community of 

macrophytes and epiphytes, further aiding in the trophic structure and diversity of 

estuarine ecosystems (Harlin 1975). Detritus also provides organic matter necessary for 

sulfur reduction and cycling. The vast beds of seagrasses are recognized as important 

indicator species for estuarine environments (Ward 1987).  



5 

Remote sensing enables spatial analysis of seagrass and benthic habitats on a 

landscape scale (Weng 2002). Researchers have used remote sensing to monitor and 

analyze benthic habitats, algae, SAV distribution, and coral reef ecosystems, using a 

variety of scales and both aerial and satellite platforms (Mishra et al. 2005). Much of this 

research has been accomplished using multispectral imagery, often using the shorter 

visible bands that have higher water penetration. In addition to monitoring the present 

condition of these habitats, time series analysis can be performed with images from 

different time periods (Dobson and Dustan 2000). The Near-Infrared (NIR) region of the 

spectrum is seldom used due to its high spectral attenuation through water, despite 

serving as the primary cue for discriminating vegetation type and a critical component for 

vegetation indices such as the Normalized Difference Vegetation Index (Cho and Lu 

2010), Green Leaf Area Index (Bréda 2003), MERIS Terrestrial Chlorophyll Index (Dash 

and Curran 2004) and Wide-Dynamic Range Vegetation Index (Gitelson 2004). 

Several states have attempted to estimate the economic value of their seagrass 

habitat. The Texas Parks and Wildlife Department estimates the value of seagrass habitat 

at $9,000 to $28,000 per acre in commercial, recreational and hydrologic economic 

benefits (Handley et al. 2007). Likewise, the Florida Department of Environmental 

Protection estimates a total economic benefit of $55.4 billion, equating to approximately 

$20,500 per acre (Handley et al. 2007). Costanza et al. (1997) have calculated the value 

in 2010 dollars to $34,000 per acre per year.  

Seagrass habitats are declining 

Declines in seagrass habitats have been occurring on local, regional and global 

scales. The decline has been attributed to various anthropogenic and natural disturbances, 
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including dredging (Onuf 1994), nutrient enrichment, and propeller scarring from 

recreational and commercial fishing boats (Quammen and Onuf 1993, Dunton and 

Schonberg 2002, Burfeind and Stunz 2006). Loss of seagrass habitat has been 

documented since the mid-1970s (Merkord 1978); Onuf performed a vegetation survey in 

the Laguna Madre in 1988 (Onuf 1996), confirming a 140 km2 decrease in cover between 

the mid-60s and 1988. Much of this loss is attributed to increased turbidity (Baden et al. 

2003) resulting in low light levels reaching the sediment layers. In Laguna Madre, this is 

at least partly a result of maintenance dredging of the Gulf Intracoastal Waterway 

(Quammen and Onuf 1993). 

Degradation of seagrass habitats is a cause for concern for communities 

throughout the northern Gulf of Mexico. Over the last 50 years, seagrass habitat losses 

are estimated in ranges from 20-100% for most estuaries in Gulf coastal regions. As 

coastal populations increase (Cohen et al. 1997), further stresses can be expected. 

Increased nutrient loading, dredging, shoreline development, and boating are all expected 

to increase simultaneously (Handley et al. 2007). 

Irresponsible boating in shallow waters can contribute to undesirable changes in 

the seagrass habitats by causing increased fragmentation. Propeller scarring creates 

channels through the matrix of seagrass vegetation, dissecting continuous beds into 

smaller patches causing an increase in edge-to-area ratios. These scars can have 

permanent effects (Dunton and Schonberg 2002), although most will heal to some extent 

in two to ten years (Uhrin and Holmquist 2003).  

There are also natural stresses on seagrass habitats, including the hydrodynamics 

and fetch of individual bay and estuary systems. Storms erode the sediments or bury 
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The role of seagrass as an indicator species 

The evaluation and assessment of the environmental status of ecosystems is often 

accomplished with the use of indicators and indices (Casazza et al. 2002, Fonseca et al. 

2002). By analyzing the parameters of an appropriate indicator, information can be 

gained about a complex system beyond what is directly associated with that indicator 

(Casazza et al. 2002). Living organisms represent the most appropriate indicators for the 

environmental quality of a water body, as they integrate biotic and abiotic components 

through their adaptive responses (Casazza et al. 2002). 

Seagrass is often considered to be a biological indicator for estuarine ecosystem 

health. Bio-indicators are essential for monitoring the coastal environment because they 

send complex messages in simplified and useful ways, providing insights about a trend or 

event that cannot be observed directly. Because seagrass communities are stationary, and 

tend to respond cumulatively to the effects of eutrophication, seagrasses can be used as 

bio-indicators for long-term water quality (Harlin 1975). When used as a bio-indicator, 

seagrass can serve as an early warning system of pollution or a degrading ecosystem, 

helping to sustain other interrelated critical resources (Harlin 1975, Linton and Warner 

2003). By observing and analyzing changes signaled by bio-indicators, managers can 

monitor the state of the coastal environment and measure the effects of management 

strategies, as well as environmental, social, and economic activities. Changes may be 

indicated by seagrass presence/absence, condition, and growth rate. Declines in shoot 

biomass and density can signal increased eutrophication levels. Excess nutrients increase 

epiphyte loads (Harlin 1975), decrease irradiance (Tomasko and Lapointe 1991) and 
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lower seagrass productivity (Sand-Jensen 1977). These stressors can ultimately result in 

seagrass die-off. 

As an environmental status indicator, seagrass can provide a means of measuring 

the results of policies and actions, as well as a means to monitor the impacts of 

anthropogenic and other stressors. Seagrass can be used to assess current trends and 

conditions, project future trends, and show the connections between social, 

environmental and economic policies or actions (Linton and Warner 2003). Finding 

patterns, such as quantitative differences in abundance and diversity of macrofaunal 

organisms, root-to-shoot ratios, habitat use by sciaenid larvae and early juveniles, as well 

as spatial and structural pattern characteristics such as patchiness, density, 

contiguousness, biomass and blade length can indicate what stresses are present and help 

identify the sources of stressors (Lewis et al. 1983, Edgar and Robertson 1992, Irlandi et 

al. 1995, Rooker et al. 1998, Fourqurean et al. 2001). Measurements of growth rates, 

rates of change, enzyme activities, and other biologic and physical parameters can 

highlight the effects of those stressors on the community. Since communities generally 

respond to stressors with a reduction in diversity and an increase in dominance by species 

more tolerant to the particular type of stress, these changes may indicate what types of 

stressors are active (Linton and Warner 2003). Seagrasses also require higher light levels 

than most plants, and thus are sensitive to environmental changes that alter light 

availability such as turbidity, suspended solids and water clarity (Orth et al. 2006). 

Increased sediment loads directly affect seagrass productivity by reducing the light 

intensity, which drives the photosynthesis in canopy tissue pigments (Ferwerda et al. 

2007).  
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Seagrass as a filter/sediment trap 

One of the greatest threats to the ecological integrity of coastal ecosystems is 

nutrient pollution. The world-wide trend of increasing human population densities in 

coastal areas (Cohen et al. 1997) will shift population impacts from forested, agricultural, 

suburban and urban land use areas to the coastal areas, with increasing delivery of 

nutrients and sediments to these systems. This increase is a major stress to coastal 

ecosystems, increasing turbidity and decreasing available light levels (Beck et al. 2007). 

In tropical areas, sediments and nutrients (primarily phosphorous and nitrogen 

compounds from agricultural fertilizers and the burning of fossil fuels) in freshwater 

runoff are filtered first by coastal forests and then mangrove wetlands (Smith et al. 1999). 

Seagrass beds provide a final filtration. This system of filters provides a buffer zone for 

offshore reefs, and helps to create the oligotrophic conditions under which they thrive. 

Reefs then act as a buffer between the open ocean and the onshore communities (Linton 

and Warner 2003). In the Texas Coastal Bend area, there is no substantial offshore reef 

system for many miles, thus the filtering process serves as the final filter between the 

onshore communities and the open ocean.  

Historically, the coastal system has been able to absorb large quantities of these 

nutrients and sediments. For instance, results extrapolated from a study by Short and 

Short (1984) showed nitrogen removal by seagrasses from the Indian River Lagoon in 

Florida to be approximately 3890 metric tons annually, 11% of the nutrient load of the 

Indian River. The system binds them up in plant biomass and the sediments that support 

them, thereby improving water quality with lower water column nutrient concentrations 

and phytoplankton biomass (McGlathery et al. 2007). Microalgae are able to bind up 



11 

these nutrients for periods measured in days, and macroalgae are able to tie them up for 

weeks, while seagrasses bind them on the scale of weeks to months (Valiela et al. 1992). 

After this temporary sequestration, these nutrients are often re-mineralized or transferred 

to microbial and other trophic systems and then excreted by grazers. These retention 

times are often on the scale of years rather than months, further slowing the transport of 

the nutrients to the sea (Duarte and Cebrian 1996). 

In some areas, seagrass canopies are able to remove as much as 70% of the 

suspended particles present within the canopy in less than an hour. There are two 

processes involved: passive trapping occurs when the particles become attached to the 

leaf surfaces, and active trapping occurs when the particles are ingested by phagotrophic 

protozoans or filtered by suspension feeders in the seagrass community (Agawin and 

Duarte 2002). The removal of phytoplankton from the water column by the epifauna 

(hydrozoans, bryozoans, barnacles, and amphipods) found on seagrass leaves serves as an 

important sink for phytoplankton biomass and seston loading in shallow seagrass 

communities. Seagrass communities also trap and filter picophytoplankton, which may 

explain negative picophytoplankton biomass and population growth rates found in some 

seagrass meadows, even though the individual growth rates are high (Agawin and Duarte 

2002). 

Seagrass meadows provide another valuable ecosystem service by altering the 

hydrologic flows and sediment deposition in lagoons and estuaries (Fonseca and Fisher 

1986). Different species tend to alter friction and flows differently and thus affect the 

deposition of sediments and nutrients. The different sizes, shapes and characteristics of 

the seagrasses affect the flow of water over, around and through the seagrass beds, which 
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in turn influences the sediment and particle types which are either deposited or eroded 

(Fonseca and Fisher 1986). These changes can affect not only the estuary and its 

inhabitants; they also influence the systems beyond, such as mangrove and reef systems. 

Seagrass serves as a nursery habitat 

A nursery habitat is defined as one in which a species recruits to the adult 

population at a greater rate than other areas, due to any combination of density, growth, 

survival and movement to adult habitats (Beck et al. 2001). The coastal ecosystem is 

recognized as one of the most productive ecosystems, supporting a diverse variety of 

macrofauna and invertebrates (Quammen and Onuf 1993, Beck et al. 2001). The 

structurally complex coastal ecosystems provide nursery habitat for diverse juvenile 

marine and estuarine fish species (Tolan et al. 1997), offering protection from predation, 

providing abundant food supplies, and encouraging high growth and survival rates (Stunz 

et al. 2002). Maximizing growth rates and minimizing time spent in vulnerable size 

classes can have positive effects on population demographics (Stunz et al. 2002). The 

relative values of coastal habitats are often determined by the density of nekton species. 

High values are determined by high densities, and indicate high productivity, habitat 

quality and preference (Rozas and Minello 1998). Seagrass meadows provide a habitat 

that will support high densities of juveniles for commercial and recreational fisheries 

(Quammen and Onuf 1993). However, the protection of these valuable habitats is not 

solely dependent on conserving the habitats; protecting the ecological processes that help 

support the increased growth and survival rates of species using them is also important 

(Burfeind and Stunz 2006). 
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Monitoring seagrass ecosystems 

Ecosystem-based management is one of the most effective ways to conserve and 

protect valuable seagrass habitats (Chen et al. 2007, Barbier et al. 2008, Halpern et al. 

2008). Recent studies have demonstrated that anthropogenic activities have had a major 

impact on all remaining coral reefs, seagrass beds and mangroves (Halpern et al. 2008). 

Monitoring these changes is one of the key themes of ecosystem-based management 

(Grumbine 1994). Many indicators of seagrass health have been identified and regular 

monitoring of those indicators is needed to respond quickly and efficiently to a variety of 

changes in the ecosystem (Beck et al. 2007, Chen et al. 2007). For example, estuarine 

water quality management plans should focus on understanding and mitigating inputs 

from storm water, river run-off, and dredging, as well as recreational and transportation 

activities (Chen et al. 2007). Mapping and monitoring aids in quantifying and 

understanding the spatial distribution of human impacts, helping in the evaluation of 

trade-offs between human use and ecosystem conservation (Halpern et al. 2008). 

Monitoring results are also an indispensable aid to policy makers and resource 

managers (Coles 2004). Maps of seagrass distribution and change provide coastal 

resource managers with valuable information that can be used in the continuing 

assessment of estuarine health (Dekker et al. 2005). There are several methods of 

monitoring and mapping seagrass and other benthic habitats in coastal areas, and each has 

shown varying degrees of success. Seagrass monitoring programs must consider the 

localized mechanisms which propagate stress responses. It is critical to continue seagrass 

status and trends monitoring at the landscape level on a 2 to 3 year interval basis (Pulich 

et al. 1997). 
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Swimming transect surveys  

Traditional surveys of seagrass beds in shallow waters involved swimming 

transects through the bed and estimating coverage along the transect line (Merkord 1978). 

Data collected typically includes species and the location along the transect line where 

species or coverage changes occur. Attempts to standardize the coverage estimates are 

sometimes facilitated with photographs. To shorten the time involved in this type of 

survey, submersible video equipment has been employed. Video techniques involve 

photographing the site along with some sort of scale indication, and then later estimating 

coverage in the laboratory (Duarte and Kirkman 2001, Yamamuro et al. 2002). This 

method can be used to develop very accurate habitat maps, but it is expensive, labor 

intensive, and best suited for particular sites rather than for landscape or regional-scale 

projects. 

Remote sensing of benthic habitats 

As pollution and habitat degradation escalates with coastal zone population 

increases, legislation is being introduced at national, regional and local levels, requiring, 

in part, more extensive monitoring. The demands of extensive monitoring of large areas 

pose difficulties for conventional monitoring techniques. Aerial remote sensing provides 

methods to assess and monitor large areas efficiently (Cracknell 1999), and terrestrial 

landscape monitoring using aerial remote sensing has proven highly effective. The 

coastal zone, however, may be the last frontier to benefit fully from modern aerial remote 

sensing techniques.  
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Image analysis of terrestrial habitats requires corrections for variability in 

atmospheric conditions; benthic habitats pose additional challenges in that many of the 

conditions that confound analysis are in a near-constant state of flux in terms of area and 

time. Tides can alter the chemical and biologic constituents on an hourly basis, stirring up 

sediments and changing the levels of salinity and particulates. Turbidity and production 

levels can change within hours, and wind velocities can increase almost instantaneously 

(Finkbeiner et al. 2001). Changes can occur in gradients over a study area, thus requiring 

collection of extensive field data from the entire study area, as close to the collection time 

as possible. In addition, sun angles change continuously, producing glare and glint rather 

than useable data streams if preflight planning doesn’t preclude it. Table 1.1 shows 

recommended conditions for aerial acquisitions over benthic habitats, while Figure 1.3 

shows the effects of haze and/or glint. 
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images, is also a concern (Cracknell 1999). Newer, higher resolution satellite imagery is 

available, but it is expensive for mapping large areas (Kelly et al. 2001). The remote 

sensing community has always been challenged to find affordable, high resolution data 

sets. IKONOS, QuickBird, RapidEye, and SPOT are costly and can be disadvantageous 

for regional mapping due to their small footprint and often limited spectral resolution 

(Watts et al. 2011).  

In the 1990s, benthic habitat and ecosystem researchers used true color analog 

aerial photography, which was then digitized, rectified, and manually interpreted to 

obtain estimates of coverage of seagrass and other benthic habitat types (Malthus and 

Mumby 2003). The resolution of aerial photography is quite good, often in the range of 

0.25 m. The data derived from this imagery is often used as a historic baseline for 

seagrass habitat loss studies (Ferwerda et al. 2007). However, because the imagery has to 

be digitized and then individually rectified, there are often problems with the spatial 

accuracy. The rectification process is labor intensive and photo interpretation is also 

subject to interpretation errors (Dekker et al. 2005). 

Fortunately, there have been numerous recent improvements in aerial 

photography, digital photogrammetry and imagery, and automated/semi-automated 

interpretation software (Malthus and Mumby 2003). Commercial remote sensing 

companies such as ENVI (Environment for Visualizing Images), ERDAS (Earth 

Resource Data Analysis Systems, and ER Mapper (Earth Resource Mapper) have 

developed processes and algorithms that can incorporate not only the digital number 

value of a pixel in an image, but also those pixels that surround that individual pixel and 

other ancillary data, into processes that will produce vector polygon data sets that 
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segment or group like areas which are in close proximity, according to parameters 

selected by the user. Object oriented programming can then be used to classify the 

polygons according to user input values. The processes described are referred to as 

‘automated’ processing; the computer is performing the calculations and using the 

algorithms that are developed without further human input. Very seldom is the output 

from such automated processing sufficient for habitat mapping purposes, thus, the user 

must use ‘semi-automated’ processing to supervise, manipulate and complete processing 

of the data. Semi-automated processing usually involves manual selection or digitizing to 

correct flaws in the data.  

In the early twenty-first century, digital multispectral and hyperspectral sensors 

mounted on specialized aircraft considerably reduced the costs associated with digital 

imagery acquisition (Malthus and Mumby 2003). These aircraft employ real-time Global 

Positioning Systems (GPS) and in-flight tilt and yaw compensation to deliver an imagery 

product that eliminates almost all post-processing rectification, and has superior 

positional and radiometric accuracy. Often, calibration and positional data are recorded 

simultaneously with the image. Many imagery characteristics, such as color balance and 

contrast, can be adjusted while in flight. Various resolutions can be obtained, with higher 

acquisition costs directly related to higher resolution. While analog imagery provides a 

map-based view of several square kilometers in each frame, many digital sensors collect 

imagery in continuous rows or bands, thus eliminating edge-matching and other tedious 

procedures necessary with analog imagery. While the equipment costs associated with 

advanced digital imagery collection are great, considerable savings are realized when the 

post-processing tasks are eliminated or reduced.  
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Hyperspectral imaging  

Hyperspectral scanning systems, also referred to as imaging spectrometers, can 

capture numerous very narrow (1.5 - 30 nm) bands within the spectral region of 

approximately 400-920 nm (Shull 2000). The high spatial and spectral resolution of these 

systems allows accurate mapping of terrestrial vegetation to the species level when the 

plants are spectrally distinct (Fyfe 2003). Hyperspectral imaging has also been used to 

study benthic habitats. Fyfe (2003) used hyperspectral imaging to differentiate Australian 

seagrass species, and developed a set of guidelines for selecting suitable bands for 

hyperspectral discrimination of seagrasses. Fyfe’s guidelines state that the optimal 

wavelengths for discrimination of seagrass species in coastal areas lie between 500 - 630 

nm. Further, researchers should select one or two regions of good separation between 

species in the absorption troughs and reflectance peaks of both the photosynthetic and the 

accessory pigments found in local seagrass species. One region should be selected where 

spectral separation is poor for use as a reference. Lastly, one or two regions of the 

spectrum should be selected where epiphytic fouling is an obvious feature, such as are 

found around 570, 595 and 620 nm. Figure 1.5 illustrates an effective selection of 

spectral regions for seagrasses found in Australia (Fyfe and Dekker 2001). Each of these 

bands form an additional ‘layer’ of data, which, when analyzed simultaneously, produce 

the information for a particular pixel location.  

Other researchers, including Mumby et al. (1998), have used hyperspectral 

imaging to delineate coral reefs. Durand et al. (2000)  developed algorithms to obtain 

bathymetry, bottom coverage, and calculate water clarity and reflectance using 

hyperspectral imagery (Mishra et al. 2007). Holden and LeDrew (2002), Maritorena 
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Recent studies (Pulich 2007) have implied that the best approach to mapping 

benthic habitats at a landscape or regional scale is manual digitization of 1:9,600 scale 

(presumably 0.4 m resolution, as in Table 1.2 and Table 1.3, below) aerial photography. 

This result was determined by comparison of manual digitization of 1:9,600 scale images 

with the manual digitization of 1:24,000 (presumably 1 m resolution, as in Table 1.2) 

imagery (Pulich 2007). However, the manual digitization approach ignores recent 

advancements in automated digital processing. Studies as early as 1998 have shown that 

coastal areas can be mapped successfully using digital imagery and automated processing 

at pixel sizes of 5 m or less (Finkbeiner et al. 2001). Digital imagery also allows for more 

objective differentiation between objects that would appear similar in color to a photo 

interpreter, but have slight differences in digital signature (Shull 2000). Minute amounts 

of an object, such as sparse but continuous patches of seagrass, undetectable to the naked 

eye even at extremely small scales, may affect the signature within a pixel or group of 

pixels much larger than the object itself (Shull 2000).  

Table 1.2.  Conversion of photo scale to resolution, in meters or feet, for images scanned 
at 600 dots per inch (DPI) or pixels per inch (PPI) for common scales or 
resolutions. Adapted from Finkbeiner et al. (2001) and Pulich (2007).  

Photo Scale 1: XXXX Pixel Size in m Pixel Size in ft 

1:1,200 0.051 0.167 
1:2,400 0.102 0.333 
1:4,800 0.203 0.667 
1:9,600 0.406 1.333 
1:10,000 0.423 1.389 
1:12,000 0.508 1.667 
1:20,000 0.847 2.778 
1:24,000 1.016 3.333 
1:40,000 1.693 5.556 
1:48,000 2.032 6.667 
1:58,000 2.455 8.056 
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Table 1.3.  Conversion of pixel size to photo scale. Adapted from Finkbeiner et al. 
(2001). 

Pixel Size (m) Scale 

0.1 1: 2,362 

0.25 1: 5,906 

0.5 1:11,811 

0.75 1:17,717 

1.0 1:23,622 

1.5 1:35,433 

2.0 1:47,244 

2.5 1:59,055 

 

Resource managers are faced with choosing from a variety of monitoring options, 

and those choices are best made after considering the scale of the research being 

conducted. Patterns and processes in a local ecosystem can only be understood by 

examining an area in a variety of scales and resolutions and levels of detail (Boström et 

al. 2006). Recognizing this, a three-tiered approach has been suggested (Dunton et al. 

2011), including a regional scale, incorporating a large geographic area such as an entire 

bay or bay system, a landscape scale, covering a smaller area mapped from higher 

resolution imagery (0.25 m - 0.5 m), and a more local or site-level scale, where field data 

would be collected and sampled for biomass, root-to-shoot ratio, blade width and length, 

shoot density, species composition, percent cover, water and sediment quality, light 

response indicators, and plant nutrient response indicators (Dunton et al. 2011). 
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PURPOSE, OBJECTIVES AND HYPOTHESES  

The purpose of this research is to examine the use of hyperspectral imagery in 

characterizing the benthic habitats in coastal waters, and develop protocols for processing 

the imagery. The first approach will examine the utility of hyperspectral analysis, a 

relatively new technique, and its use to differentiate benthic habitats in a submerged area 

of seagrass beds in Redfish Bay. The second objective will be to improve the processes 

and protocols developed in the first objective, and the third objective will be to apply 

those improvements and measure their effect. 

Objectives and hypotheses 

Objective 1.  

To develop and evaluate hyperspectral techniques for mapping seagrass species in 

a shallow, microtidal lagoon: Redfish Bay State Scientific Area, Texas. This research will 

develop a protocol for hyperspectral discrimination of species and benthic habitat, 

allowing future researchers to analyze the changes in status and trends of this coastal 

lagoon on a species level. This is important because changes in dominant species 

distribution has numerous effects on the coastal ecosystem, and serves as an indicator of 

system health.  

Hypothesis 1.  

Species of seagrasses can be differentiated in shallow water ecosystems using 

hyperspectral imagery. 
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Intended project results.  

This project will demonstrate the effectiveness of hyperspectral imagery for 

mapping benthic habitats in shallow water ecosystems, and discrimination of seagrass 

species and presence or absence of seagrass coverage. The process will use band 

selection recommendations from recent literature and employ a previously untested depth 

correction algorithm found in contemporary literature.  

Objective 2.  

To compare spectral signatures of the two dominant species of seagrass in this 

area, and determine if it is possible to discriminate between the species at varying depths, 

and from three different positions:  above the surface, just below the surface, and at 

canopy level.  

Hypothesis 2.  

Species of seagrasses are spectrally distinct in situ.  

Intended project results.  

This project will verify that species of seagrasses are spectrally distinct, and will 

investigate methods for determining the best spectral bands for separation. A depth 

correction will be applied, and the data will be normalized and a Multiplicative Scatter 

Correction applied to the corrected data.  
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Objective 3.  

To apply knowledge gained in the previous two projects to evaluate and confirm 

that they improve the analysis accuracy of benthic habitats using hyperspectral imagery. 

Specific differences will be the use of band selection derived from in situ data collection, 

and creation and use of a bathymetric surface. 

Hypothesis 3.  

Species of seagrass can be discriminated using hyperspectral imagery, and 

analysis will be improved by using in situ data collection to establish which specific 

spectral bands will best facilitate that analysis. Inclusion of bathymetric data will further 

enhance the accuracy of the analysis. 

Intended project results.  

This project will confirm the selection of bands and the application of the depth 

correction algorithm with a bathymetric dataset will significantly increase accuracy of 

hyperspectral image analysis of benthic habitats.  

STUDY AREA 

The study area is the Redfish Bay area of the Mission-Aransas National Estuary 

Research Reserve in the Coastal Bend area of Texas (Figure 1.7). This area is typical of 

many of the dynamic ‘grass flats’ and inland bays formed by the barrier islands found 

along the Texas coast (Oppenheimer 1963). These estuarine habitats are subjected to 

changes in salinity, depth, and temperature (McMillan and Moseley 1967), and 



28 

occasionally ravished by tropical storms and hurricanes (Oppenheimer 1963). The 

climate for the area is classified as dry sub-humid (Kornicker 1964). The area of study is 

bordered on the northeast by the Lydia Ann Channel, on the south by the Aransas Pass 

Channel and Causeway, and on the west by the Gulf Intracoastal Water Way, and Corpus 

Christi Bayou on the east side. The more open areas to the west are bisected by a series of 

intermittent islands and submerged rocks, which once served as the bed of a railroad 

track (Kornicker 1964). Other navigational hazards found in the area include shallow 

oyster reefs and mud flats.  
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DISSERTATION ORGANIZATION  

This dissertation is organized into five chapters. Chapter I presents an 

introduction, the background and relevance, the hypothesis and purpose and objectives of 

the research, and a description of the study area. Chapters II, III, and IV, will describe the 

research. These chapters are presented as suitable for publishing, and follow the Ecology 

journal format. Chapter V is brief summary and conclusions drawn from the creation of 

this dissertation. References for the entire document will follow the fifth and final 

chapter. Chapters may be taken from this dissertation and submitted for publication, so 

each contains individual introductions and conclusions.  
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CHAPTER II:  HYPERSPECTRAL DISCRIMINATION OF BENTHIC 

HABITAT TYPES 

ABSTRACT  

This study examines the use of hyperspectral imagery to map and classify benthic 

habitats found in Redfish Bay, located in the Coastal Bend area of Texas. The area is a 

shallow water estuary co-dominated by two species of seagrass:  Halodule wrightii and 

Thalassia testudinum. After mosaicking the imagery and applying a depth correction 

algorithm in ENVI imaging software, the image is classified. An iterative approach is 

used, employing a combination of supervised and unsupervised classification techniques, 

and further classification in ESRI’s ArcGIS. This iterative technique produces a 

comprehensive benthic habitat map with an overall thematic accuracy of 37.93%. The 

results from this study provide an areal estimation of the seagrass species found in 

Redfish Bay, as well as percent coverage by each species. The largest percentage of 

habitat (33%) is classified as mixed, while 26% is classified as bare, 19% is Thalassia 

testudinum, 12% is covered with Halodule wrightii, and 11% is covered by Ruppia 

maritima. The accuracy of these results is similar to those produced in similar studies at 

other locations.  

INTRODUCTION  

The seagrass beds of Redfish Bay, Texas have undergone intense research: Pulich 

et al. (1976) studied the trace metal cycles within the seagrass beds; Fry and Parker 

(1979) examined the animal diets and McMillian (1991) studied the longevity of the seed 

reserve, flowering and reproduction of seagrasses. Majors and Dunton (2002) studied the 

variations in light-harvesting techniques. Green and Finkbeiner (2008) conducted the 
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first-ever ‘simultaneous’ 3-sensor comparison for coastal mapping, by flying three 

different sensors over the bay in less than 4 hours. The DMC, UltraCam and ADS40 

digital multispectral sensors were flown over the same areas, with near-identical flight 

and water conditions, and compared for radiometric accuracy, imaging and spectral 

characteristics, under similar conditions (Green and Finkbeiner 2008).  

Redfish Bay seagrasses, primarily Halodule wrightii and Thalassia testudinum 

(Fry and Parker 1979), have been mapped extensively (Pulich and Onuf 2004, Pulich 

2007, Green and Finkbeiner 2008), however these mapping efforts have, for the most 

part, been conducted with either (analog) photographic images or multispectral imagery. 

Hyperspectral imagery has been used to map submerged vegetation and benthic habitats 

successfully in many areas around the world (Artigas and Yang 2004, Artigas and Yang 

2005, Green and Cole 2005, Artigas and Yang 2006, Ciraolo et al. 2006, Mishra 2006, 

Peneva et al. 2008). Likewise, Schalles (2012) and others have used hyperspectral 

imagery to map terrestrial components of these bay systems, such as mangrove canopies.  

METHODS 

Studies have indicated that the spectral signatures for different species of seagrass 

can be distinguished in laboratory settings (Ressom et al. 2003) and in the field (Fyfe and 

Dekker 2001). While multi-spectral images lack the spectral information (Louchard et al. 

2003) necessary to differentiate between bottom types or seagrass species, hyperspectral 

imagery, which has many spectral bands, is able to capture these differences.  
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Study area 

Redfish Bay is a shallow estuarine ecosystem located between Aransas Pass and 

Port Aransas in the Coastal Bend area of Texas, and a small (approximately 6,180 acres) 

but important part of the Mission-Aransas National Estuarine Research Reserve 

(MANERR) (Beyer et al. 2007). MANERR, established in 2007, covers an area of 

75,150 acres, and contains a diverse ecosystem with abundant flora and fauna. This area 

is typical of many of the dynamic grass flats and inland tidal bays found landward of the 

barrier islands along the Texas coast. While the climate is classified as ‘dry sub-humid’ 

(Kornicker 1964), these highly productive estuarine habitats are subject to extremes 

ranging from droughts that can last decades, to ravaging tropical storms and hurricanes 

(Oppenheimer 1963). These shallow habitats often are subjected to dramatic shifts in 

salinity, depth, and temperature, as well as turbidity that can change the depth of the 

photic zone in a matter of minutes. Redfish Bay is bounded by manmade channels: the 

Lydia Ann Channel on the east, the Aransas Pass Channel to the south, Gulf Intracoastal 

Water Way to the west, and is crisscrossed by others. Other than these channels, the bay 

has an average depth of .75 m and a maximum depth of about 2 m. The study area 

(Figure 2.1) was reduced from the entire area north of the Aransas causeway to 

encompass only the area (3,200 hectares) from approximately Corpus Christi Bayou west 

to the Gulf Intracoastal Water Way, due to clouds and cloud shadows in the imagery. 

Shallow mud flats, submerged rocks and intermittently submerged oyster beds and 

islands, and the bed of an old railway add navigational hazards to this challenging 

location.  
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these, approximately 350 hexagons were randomly chosen. A target location was then 

randomly chosen inside of each chosen hexagon. These more specific target locations 

were considered desirable but not mandatory. When practical, the survey team would get 

as close to the specific location as possible.  

Field work was completed in July, 2008. Although the fieldwork was 

meticulously planned to coincide with the image acquisition flight, that flight did not 

occur until October 2008. Two observers navigated to each preselected location with an 

onboard WAAS enabled GPS. At each location, species presence and approximate 

percent coverage were noted for a 1 m2 area, and the precise location was recorded with a 

Real-Time Kinetic (RTK) -enabled GPS to within 1 m horizontal accuracy.  No 

preconceived classes were used in the collection of this data; all data breaks were 

developed in the field as different combinations were encountered. Table 2.1 shows the 

combinations of seagrass species and benthic habitats found in Redfish Bay during this 

study. The collected data was later transcribed into an Excel 2003 spreadsheet, which was 

then imported into ArcGIS and converted to an ESRI (Environmental Systems Research 

Institute) point shapefile.  

The points created from the data gathered in the field were later separated into 

two groups: those used to develop and train the model (training or learning points), and 

those used later in the process to assess the accuracy of the model.  
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Table 2.1.  Matrix of Seagrass Mixes observed in Redfish Bay. Sediment and Algae were 
recorded sporadically, as background values. 

Halodule Thalassia Ruppia Syringodium Halophila Sediment Algae 
100 - - - - - - 
90 - 10 - - - - 
80 - 20 - - - - 
75 25 - - - - - 
75 - 25 - - - - 
70 30 - - - - - 
70 30 - - - -  
50 50 - - - - - 
50 - 50 - - - - 
50 - - 50 - - - 
40 30 30 - - - - 
40 20 40 - - - - 
40 - 60 - - - - 
25 25 50 - - - - 
20 80 - - - - - 
10 90 - - - - - 
10 80 10 - - - - 
10 40 50 - - - - 
10 40 - 50 - - - 
10 20 70 - - - - 
10 10 - - - 80 - 
10 - 90 - - - - 
- 100 - - - - - 
- 75 25 - - - - 
- 50 50 - - - - 
- 50 - 50 - - - 
- 50 - - 50 - - 
- 40 - - - 30 30 
- 30 30 - - - 40 
- 30 - - - 30 40 
- 20 - - - - 80 
- 10 90 - - - - 
- 10 - - - 90 - 
- - 100 - - - - 
- - - 100 - - - 

 

Acquired imagery data 

Hyperspectral imagery for the study area was acquired October 18th and 19th, 

2008 using an Airborne Imaging Spectroradiometer for Applications (AISA) Eagle 
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hyperspectral sensor. The sensor was flown by the Center for Advanced Land 

Management Information Technologies (CALMIT), in cooperation with the Nebraska 

Airborne Remote Sensing Program (NARSP) as part of their CALMIT Hyperspectral 

Aerial Monitoring Program (CHAMP), aboard a specially modified Piper Saratoga 

aircraft. The AISA hyperspectral imaging system was developed by SPECIM, Spectral 

Imaging LTD., Finland, and covers a spectral range of 400 to 1000 nm, in a possible 272 

bands. It collects a swath approximately 1000 m wide, at 1 m resolution, in a pushbroom 

fashion, from an approximate altitude of 1418 m. As the aircraft moves forward, the 

sensor collects “lines” or “frames” of data to build an image, each line 1024 pixels wide 

and one pixel tall (Green and Cole 2005). The AISA Eagle instrument incorporates a 

miniature, integrated 3-axial inertial navigation sensor with an integrated solid state 

gyroscope and real-time GPS.  These onboard sensors monitor the aircraft position and 

attitude, so imagery and positional data are acquired and stored synchronously (Bertels et 

al. 2005). For added recording capacity, the hard-drives can be swapped in flight. The 

band settings and bandwidths are programmable on this sensor to as little as 2.3 nm. 

Table 2.2 shows specifications of the sensor. 
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Table 2.2.  Capabilities of the AISA Eagle sensor used in this project, adapted from 
Bertels et al. (2005). 

Characteristic Value 

Field of view (FOV)  39.7º 

Instantaneous field of view (IFOV)  0.039 º 

Spatial resolution  0.5 - 10 m 

Spectral range  400 - 970 nm 

Spectral channels  max.  244 

Spectral sampling interval  2.3 nm 

Spectral resolution (FWHM) 2.9 nm 

Dynamic range  12 bits (4096) 

 

Proper interpretation of hyperspectral imagery can require a considerable 

groundtruthing effort. Most airborne sensors collect hundreds of bands of data for each 

pixel, and visits to the site at the approximate time of the flight help to select those bands 

useful for discriminating vegetation species. It is also necessary to determine the depth 

correction coefficients for volumetric scatter and water absorption, as well as to verify 

that field conditions are acceptable.  

Prior to delivery, the imagery was corrected for atmospheric distortions which are 

inherent in all aerial imagery. The FLAASH (Fast Line-of-Sight Atmospheric Analysis of 

Spectral Hypercubes) algorithm was used to remove atmospheric effects caused by 

molecular and particulate scattering and absorption.  Spectral Sciences, Inc. developed 

this MODTRAN4-based correction code in collaboration with the Air Force Research 

Laboratory, with assistance from the Spectral Information Technical Applications Center.  

The FLAASH algorithm takes the following form:  

L* = Aρ/(1-ρeS) + Bρe/(1-ρeS) + L*a (2.1) 



39 

where ρ represents the pixel surface reflectance, ρe is a surface reflectance averaged over 

the pixel and a surrounding region, S is the isotropic incident radiation of the atmosphere, 

L*a is the atmospherically backscattered radiance, and A and B are coefficients that 

depend on non-surface atmospheric and geometric conditions (Matthew et al. 2002). The 

FLAASH process transforms the data from spectral radiance to spectral reflectance, and 

was applied in ENVI.  

The atmospherically-corrected georectified imagery was received from CALMIT 

on a portable hard drive. This project was flown with the following parameters: 63 bands, 

each approximately 9 – 12 nm wide, and at a height to obtain a 1 m pixel, which is 

approximately 1538.6 m, as shown in Table 2.3. The stated horizontal accuracy was 10 

m, and the flight parameters and procedures met National Map Accuracy Standards 

(NMAS) at the 1:12,000 scale (personal communications, Perk, CHAMP program at 

UNL, 2012), which states that not more than 10% of the points tested shall be in error by 

more than 1/30 of an inch on the printed map for maps on publication scales larger than 

1:20,000, using well-defined points.   

Table 2.3.  The flight parameters used for this project (personal communications with 
Rick Perk, pilot at CHAMP program at UNL, 2012).

 Value 

Acquisition Date: 19 October 2008 

Acquisition Time: 18:59-20:05 UTC 

Flight Direction: NE/SW 

Ground Speed: 120 Knots 

Data Rate: 61.7 fps 

Integration Time: 14.0 ms 

Target Elevation: 0 m MSL 

Altitude: 1538.6 m AGL 
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Thirteen individual images were delivered from CHAMP via CALMIT by 

FEDEX for the original study area, each approximately 1000 m wide and ranging from 8 

to 14 km in length. Of these, 4 images were discarded, as they contained too many clouds 

and cloud shadows to be usable. From the remaining 9 images with 63 bands each, 5 

bands were selected for analysis. After numerous unsuccessful attempts to isolate bands 

suitable for species separation using Principal Component Analysis and Artificial Neural 

Networks (ANN), these wavelengths were selected based on personal communications 

with Dr. Hyun Jung Cho:  553.89 nm, 694.6 nm, 722.88 nm, 741.74 nm, and 808.84 nm.   

Image processing 

Images were mosiacked in ENVI version 4.8. After mosaicking, a water depth 

correction algorithm was applied to each of the 5 selected bands, using an assumed mean 

depth of 65 cm, and no turbidity. This algorithm was applied to each masked pixel in 

each of the five bands: 

 (Rw/10 – Rw) / (1- Aw/200)2 (2.2) 

where Rw  is equal to the percent surface and volumetric reflectance for a particular 

wavelength, and AW is the absorption by the water column in both upward and downward 

directions (Cho and Lu 2010). The output from this band math function is a new set of 5-

band imagery, adjusted for an average water depth of 65 cm. and no turbidity. Values for 

Aw and Rw were derived empirically by Cho and Lu (2010), using laboratory water tank 

spectral studies. Future applications by Cho will allow depth rasters (bathymetry) and 

turbidity measurements to be included as part of the algorithm input, which will greatly 

increase the value of this function. 
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This new corrected 5-band image is then opened in ENVI EX 4.8, where the 

classification workflow is initiated. The image is clustered into groups of similar pixels 

which are then categorized into classes, each having similar pixel values. Using a larger 

number of classes causes the clusters within a category to have less variation (more 

similarity to each other), while a smaller number would include more variety within a 

category. ENVI uses the Iterative Self-Organizing Data Analysis Technique (ISODATA) 

classification algorithm, which starts by calculating the pixel means distributed evenly 

throughout the data space, and then iteratively clustering the remaining pixels using a 

Minimum Distance technique. During each iteration of the clustering process mean 

values are recalculated and pixels are re-clustered with the new means. Clusters are split 

if the standard deviations are equal or greater than the user-defined threshold, and merged 

if the distance between them is less than the user-defined threshold (Ball and Hall 1965). 

The iterations continue until the percent of change meets or exceeds the threshold setting 

or until the maximum number of iterations is reached. After some experimentation, the 

defaults (2% change threshold and 10 iterations) were accepted. The default number of 

categories is five; however, that did not separate the species well, and all categories 

contained multiple species and species combinations during the ArcGIS processing. 

Experimentation with this parameter indicated starting with a larger number of categories 

would increase separation and overall efficiency of the process. Starting with a larger 

number of categories (25) and decreasing the number of categories at subsequent 

iterations provided the desired separation and processing efficiency.  

The resulting categorized clusters were then aggregated into groups with a 

minimum of 9 pixels. Until now, the data generated within the process has been in a 
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These data points were divided evenly into two groups using a random number generator 

which added an attribute field to the data table, and randomly assigned an even number of 

‘1’s or ‘0’s to the field. Each of these groups (‘1’s or ‘0’s) was exported into a new ESRI 

point shapefile; ‘ones’ were named ‘Learning Points’, and the ‘zeroes’ ‘Accuracy 

Assessment Points’.  The learning points were used to develop and classify the polygons 

generated in ENVI within the ArcGIS environment. The accuracy assessment points were 

used within the iteration process to aid in the evaluation of interim processes, as well as 

to ascertain the accuracy of the final output.  

The field ‘MainSpecie’ 

Within the ArcGIS polygon shapefile, all polygons of a class (‘Class 1’ in Table 

2.4) were selected, and then all the learning points that fell within that class were 

selected. All of the polygons that contained those learning points were then selected. 

Figure 2.3 displays the Python Model Builder diagram used to automate the selection-

reselection process. Each polygon that contained a learning point was labeled with the 

learning point habitat type and count, such as ‘1 B100, 2 H100, 1 H50T50’, representing 

1 ‘Bare’ point, 2 points of 100% Halodule, and 1 point that was 50% Halodule and 50% 

Thalassia (see the line with the Class_Name ‘Class 2’ in Table 2.4 below). Once each of 

the learning points that fell within a ‘Class’ were noted, all undesignated polygons in the 

class were assigned a derived attribute with a concatenated listing of the types of learning 

points(s) that fell within the class. An asterisk was used to denote this derived 

classification (see the third ‘Class 1’ in Table 2.4 below). 
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The field ‘grassType’ 

As shown in Table 2.4 above, a field named ‘grassType’ was added to the 

database. This field would be the final designation of habitat type, based on the 

‘MainSpecie’ types found within each class of polygons. If a polygon contained a 

learning point, the ‘grassType’ for that polygon would be the same as the decoded 

‘MainSpecie’ for that polygon (see the ‘grassType’ field for the first tuple in Table 2.4).  

If a single polygon contained more than one type of learning point, it received the 

‘Mixed’ attribute.  Table 2.6 below contains a description of each ‘grassType’ attribute 

value.  

If an entire class contained only one species (i.e. Halodule), the field ‘grassType’ 

for the entire class was filled with the species name as an attribute value, i.e. ‘Halodule’ 

or ‘Ruppia’. The majority of first-iteration classes contained more than one ‘MainSpecie’ 

designation, and therefore were classified as ‘Mixed’ polygons. A ‘Mixed’ classification 

could contain any number of permutations of habitats: one learning point of 100% 

Halodule, in the same class as a ‘Bare’ point, and perhaps two or three learning points 

that had a combination of Thalassia and Ruppia or Syringodium. When a class of 

polygons contained learning points of more than one species or species mix, it was 

classified as ‘Mixed’ under the field name ‘grassType’.  

When a point had more than one species or type of habitat within the observed 1 

m area in the field, it was designated as a ‘MixedMono’ point. An example of a 

‘MixedMono’ point would be one where both Thalassia and Halodule were found in 

equal proportions.  This point would be designated ‘H50T50’ in the ‘MainSpecie’ field 
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for the point file. That value would then be assigned to the ‘MainSpecie’ field in the 

polygon database for the polygon containing that point. In the ‘grassType’ field, it would 

be designated a ‘MixedMono’ polygon. This allows a class that has one polygon that is 

50% Halodule and 50% Thalassia to be grouped in the same ‘grassType’ as one that was 

60% Halodule and 40% Thalassia, but not with one that is 100% Halodule or with one 

that was 100% Thalassia.   

If a polygon class contained only unclassified polygons, the field ‘grassType’ was 

designated an ‘Unclassified’ class.  If a class contained no learning points, it was 

designated a ‘No Clues’ class. The polygons designated ‘Unclassified’, ‘No Clues’ or 

‘Mixed’ were used to create an inclusion mask for the next iteration of image processing 

in ENVI.  

This process of selecting and assigning attribute values was continued until all 25 

classes were designated either as Bare, Bare/Halodule Mix, Bare/Thalassia Mix, 

Halodule, Mixed, MixedMono, No Clues, Ruppia, Syringodium, or Thalassia. The 

designation ‘No Clues’ was used for Classes 13 and 22, because no learning points fell 

within any of their polygons. The number of polygons and the corresponding area in m2 

is shown in Table 2.5. Figure 2.4 shows the results from this iteration of processing.   

  



47 

 

Table 2.5.  Summary of the ArcGIS vector processing output for the first iteration, 
showing the number and area of polygons in each classification. 

Classification Number of Polygons Total Area in Class  
(m2) 

Bare 1,551 2,773,599 
Bare/Halodule Mix 2,245 587,547 
Bare/Thalassia Mix 8,856 1,041,989 
Halodule 1,821 1,625,965 
Mixed 122,001 17,331,652 
MixedMono 3,974 2,227,158 
No Clues 2,701 796,576 
Ruppia 823 198,987 
Syringodium 1 199 
Thalassia 18 480,439 
TOTALS 143,991 27,064,111 
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Table 2.6.  Description of ‘grassType’ attributes.  
Classification Description:

Bare: Devoid of any detectable submerged rooted vascular vegetation.  The 
polygons classified as Bare contained only Learning Points that were 
classified as Bare. This was a final designation, as these polygons 
would not be included in the mask for the next iteration.  

Bare/Halodule 
Mix: 

This class of polygons contains Halodule Learning Points and at least 1 
Bare learning point. (* 8 B100, 2 H100). This was a final designation, 
as these polygons would not be included in the mask for the next 
iteration. Final designation. 

Bare/Thalassia 
Mix: 

This class of polygons contains Thalassia Learning Points and at least 
one Bare learning Point.  The class as a whole contains both Thalassia 
and Bare learning points, as well as learning points that were a 
combination of Bare and Thalassia (B50T50, B10T90).  Final 
designation. 

Mixed: This class of polygons contains at least two different learning point 
classes.  They may be mono-specific (1 H100, 1 T100) or they may be 
any number or combination of mono-specific, MixedMono, and Bare 
(* 4 H100, 1 T80H20, 2 T100, 1 B90T10, 1 B70T30).  Polygons 
classified as ‘Mixed’ were used to generate the mask for the next 
iteration. 

MixedMono: This class of polygons contains only learning points that contained 
more than one species. (1 T80H20) would indicate that the class 
contained one learning point that was 80% covered with Thalassia, and 
20% covered with Halodule.  There may be several classes 
(MainSpecie) that have the ‘grassType’ ‘MixedMono’. They would all 
be aggregated into one ‘grassType’ class. Final designation. 

Halodule: This class of polygons contains only learning points that were 
classified as Halodule.  Final designation.

Thalassia: This class of polygons contains only learning points that were 
classified as Ruppia.  Final designation. 

Ruppia: This class of polygons contains only learning points that were 
classified as Thalassia.  Final designation. 

Syringodium: This class of polygons contains only learning points that were 
classified as Syringodium.  Final designation.

No Clues This class of polygons contained no learning points, hence, gave no 
clue as to what ‘grassType’ it should be assigned to. Polygons 
classified as ‘No Clues’ were included in the mask for the next 
iteration. Intermediate designation. 

Unclassified Polygons classified as ‘Unclassified’ were used to generate the mask 
for the next iteration.  These would be polygons that for some reason 
were not classified during the previous iteration. Intermediate 
designation. 
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The learning points used in the first iteration were buffered 3 m, and the buffers 

visually re-evaluated over a true-color image and any point buffer that was spatially 

ambiguous, for example a learning point buffer designated as being bare, but that 

appeared to be over a grassy area or very close to a grassy area, was eliminated. If the 

majority of the buffered area fell into a differently designated area, it was eliminated.  

The remaining buffers were merged with the ‘Mixed’ and ‘No Clues’ classes to form a 

new mask containing the polygon buffers around the learning points as well as the areas 

previously classified as ‘Mixed’ or ‘No Clues’. The buffered areas allowed the re-

inclusion of the previously used learning points in the ENVI classification workflow.  
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The second iteration 

The original, corrected 5-band image and the newly created mask were then 

reprocessed in ENVI EX 4.8, producing ten classes of similar pixel values. By using only 

ten classes, it was more likely that pixels representing the same species would be classed 

together; the range of digital number values within each group would be larger within 

each individual group. The only areas which were being categorized were those that were 

previously classified as ‘Mixed’ or ‘No Clues’ and the areas around learning points that 

had been merged into the mask. The resulting categories were again aggregated into a 

minimum of 9 contiguous pixels, which were then exported as a shapefile. This shapefile 

was then opened in ArcGIS 10.0, and reclassified using the same process described for 

the previous iteration, based on the learning points, as shown in Figure 2.5.  Table 2.7 

shows the number and area of each classification of polygons. 

Table 2.7.  Classification results from the second iteration including the number of 
polygons and total areas found in each classification.  

Classification Number of Polygons Total Area in Class (m2) 

Bare 21 363,346 

Halodule 13 233,740 

Mixed 94,133 14,893,124 

MixedMono 17 190,640 

No Clues 4,854 1,277,626 

Ruppia 3 81 

Syringodium 1 37,810 

Thalassia 12 1,081,866 

TOTALS 99,054 18,078,233 
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The third iteration 

For the third iteration, only 5 classes were created in ENVI EX. By decreasing the 

number of classes, the amount of variation within a class increases. After the image 

processing, the output shapefile was opened in ArcGIS. The same classification 

procedure was followed in ArcGIS as in the first two iterations, and all the monospecific 

polygons were retained and merged with previous outputs. The ‘Mixed’ and ‘No Clues’ 

polygons were used to create a mask for the fourth and final categorization iteration in 

ENVI. Table 2.8 shows the output from the third iteration.  No map is shown because the 

difference between the second and third iterations is barely distinguishable at this scale. 

Table 2.8.  Classification results from the third iteration, including the number of 
polygons and area in each classification. 

Classification Number of Polygons Total Area in Class (m2)

Bare 13 384 

Bare/Thalassia Mix 16,487 2,434,175 

Halodule 14 4,534 

Mixed 48,459 12,453,024 

MixedMono 12 606 
No Clues 1,372 403,536 

Ruppia 1 801,940 

Thalassia 10 66,620 

TOTALS 66,368 16,164,819 

 

The fourth iteration 

For the fourth iteration, a ‘supervised’ classification was used. This classification 

method was chosen because the unsupervised method was not producing a substantial 

number of changes in classifications. The supervised method of classification puts each 

output segment or polygon into one of the user-specified classes based on user-defined 

training data. The polygon training set was developed by creating a 3 m buffer of a 
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selected subset of the learning points. Each pixel is classified based on the Minimum 

Distance Classification (MDC) function. The MDC uses the mean vectors of each 

training member, and calculates the Euclidean distance from the vector of each unknown 

pixel to the mean vector for each class. The like-classified pixels were then aggregated to 

a minimum grouping of 9 pixels, which were the exported as an ESRI polygon shapefile. 

The output shapefile was again opened in ArcGIS, and merged with the output from 

previous iterations. Figure 2.6 shows the final classification of seagrasses in the study 

area. Table 2.9 shows the final number of polygons within each class, as well as the areas 

in each classification, and the mean areas within each classification. 

Table 2.9.  Final number of polygons and sums of the area of each classification, as well 
as the mean area of polygons within each class. 

Classification Number of Polygons Total Area in Class Mean Area/Polygon (m2) 
Thalassia 22,038 4,976,130 225.80 

Mixed 19,108 4,362,722 228.32 

MixedMono 19,511 3,701,172 189.70 

Halodule 13,968 3,608,193 258.32 

Ruppia 12,656 3,585,130 283.28 

Bare 2,954 3,537,991 1197.69 

Bare/Thalassia Mix 25,343 3,476,164 137.16 

Bare/Halodule Mix 2,245 587,547 261.71 

Syringodium 2 38,009 19,004.50 

TOTALS 117,825 27,873,058 2695.09 
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RESULTS 

The results from this study indicate that Thalassia covers the most area and has 

the greatest number of polygons, followed by Mixed, MixedMono, Halodule, Ruppia, 

Bare and Syringodium. However, if the ‘Mixed’ and ‘MixedMono’ classes are combined, 

the ‘Mixed Class’ would be the largest in both respects; likewise, if the ‘Bare/Thalassia’ 

and ‘Bare/Halodule’ classes are combined with the ‘Bare’ class, the ‘Bare’ class would 

be the second-largest class, and contain the second-largest number of polygons. Table 

2.10 show the number of polygons for non-aggregated classes and those aggregated as 

described above, while Figure 2.7 shows the percentage of coverage in a pie chart for 

ease of visualization. 

 
Table 2.10.  Final number of polygons and the area of each class when the classes are 

combined as described in the text. The classes were aggregated thusly for the 
accuracy assessment.  

Classification Number of 
Polygons 

Total Area (m2) in 
Class 

Mean Area/Polygon 
(m2) 

Mixed - MixedMono 38,619 8,063,894 208.81 

Bare - Bare Mixed 30,542 7,601,702 248.89 

Thalassia 22,038 4,976,130 225.80 

Halodule 13,968 3,608,193 258.32 

Ruppia 12,656 3,585,130 283.28 

Syringodium 2 38,009 19,004.50 

TOTALS 117,825 27,873,058  
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the database of whether or not the point was in agreement with the classification of the 

polygon that it fell within. By visually inspecting each accuracy point location, the 

observer can assure that there were no duplicate points, and note such phenomenon as the 

proximity of the accuracy point to a change in classification. If a point was in doubt, it 

was confirmed by comparison with the field notes. If the point was not in agreement with 

the polygon classification, the correct classification of the polygon was noted.  

User’s accuracy 

A measure of commission error is obtained by dividing the total number of 

correctly identified areas by the total number of areas that were classified as being in that 

category (Strahler et al. 2006). This is known as the ‘User’s Accuracy’ and indicates the 

reliability or the probability that an area on the output map actually represents what 

would be found at that site (Story and Congalton 1986). The results of this analysis 

indicate a 69.57% probability that an area mapped as ‘Bare’ would actually be found to 

be bare on the ground (or in this case, at the site). An area marked as Halodule or 

Thalassia has roughly a 40% probability of being correctly identified, while an area 

shown on the map to be ‘Mixed’ has a 22.58% chance of actually being mixed seagrasses 

and for areas marked as Ruppia, there is no chance of there actually being Ruppia at the 

site. 

Table 2.12 shows the confusion matrix from the accuracy assessment.  
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Producer’s accuracy 

‘Producer’s Accuracy’ is defined as a measure of the accuracy of a particular 

classification scheme, and shows the percentage of a particular class that can be correctly 

classified, and is a measure of omission error (Congalton 1991). Producer’s accuracy is 

calculated by dividing the total number of correctly identified areas by the total number 

in the reference data (Strahler et al. 2006). The accuracy analysis indicates that 66.67% 

of the bare areas are correctly classified, 29.03% of the areas covered with Halodule are 

correctly classified, 46.15% of the areas covered with Thalassia are correctly classified, 

0% of the areas containing Ruppia are correctly classified, and 23.33% of areas 

containing mixed species are correctly classified.  

Table 2.12.  Confusion matrix and accuracy assessment for the final output.  

Bare Halodule Thalassia Ruppia Mixed Mono/ Mixed 

Bare 16 5 3 0 0 

Halodule 2 9 5 3 12 

Thalassia 1 3 12 2 8 

Ruppia 0 0 1 0 4 

MixedMono/Mixed 4 6 9 4 7 

Producer’s Accuracy  User’s Accuracy 

Bare 66.67% Bare 69.57% 

Halodule 29.03% Halodule 39.13% 

Thalassia 46.15% Thalassia 40.00% 

Ruppia 0.00% Ruppia 0.00% 

MixedMono/Mixed 23.33% MixedMono/Mixed 22.58% 
 
Overall Accuracy  37.93%   

Cohen's Kappa  0.2988    
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Overall accuracy 

The overall accuracy of the map is obtained by dividing the sum of correct 

classifications by the sum of all the classifications, n. In this case, there were 116 

classifications in the accuracy assessment, and of those, 44 were correctly classified 

giving us an overall accuracy of 37.93%. 

Presence/Absence and accuracy assessments 

"A pessimist sees the difficulty in every opportunity; an optimist sees the 

opportunity in every difficulty."   ~ Sir Winston Churchill 

As often happens in research, additional information may be gleaned from data, 

extending its value. This research can be used for quantifying the presence or absence of 

seagrasses in the study area. To do this, we aggregate the ‘Grass’ classes (Halodule, 

Thalassia, Ruppia, Mixed and MixedMono) into one single class, essentially producing a 

‘Presence/Absence’ classification scheme. In the study area, 87% of the benthic habitat, 

24,335,067 m2, is classified as having some type of seagrass coverage, leaving 13%, or 

3,537,991 m2, uncovered or bare, including submerged oyster reefs.  

Accuracy assessment for Presence/Absence classification 

When the ‘Grass’ classifications are aggregated to examine presence/absence, a 

separate analysis of accuracies is needed. This accuracy assessment is performed using 

the same accuracy assessment points as before, with all grass classifications aggregated 

into a simple ‘Grass’ classification. As indicated in Table 2.13, the results are quite 

different from those using all the species-related classes. Producer’s Accuracy values 
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were as follows: of the 24 assessment points classified as ‘Bare’, 16 (66.67%) were 

correctly classified, as before. However, of the 92 assessment points that had been 

previously classified according to species, 86 (93.5%) were correctly classified as ‘Grass’ 

after aggregation. User’s Accuracies were 72.7% for ‘Bare’ and 91.5% for ‘Grass’ 

classes. Overall accuracy for aggregated classification was 87.93%.  

Table 2.13.  Confusion matrix and accuracy assessment for aggregated ‘Grass’ 
classifications. 

Bare Grass 

Bare 16 8 

Grass 6 86 
 

Producer’s Accuracy User’s Accuracy 

Bare 66.7% Bare 72.7% 

Grass 93.5% Grass 91.5% 

Overall Accuracy  87.93%     
Cohen’s Kappa .6206   

 

Cohen’s Kappa Coefficient 

The Producer’s and User’s accuracy assessment methods above have been 

occasionally criticized for the possibility that some cases may have been correctly 

classified merely by chance. Cohen’s Kappa Coefficient (Cohen 1960) is suggested as an 

additional index of classification accuracy that compensates for chance agreement and 

may be used to calculate a variance term which may be used in the statistical testing for 

significance of the difference between two coefficients (Foody 2002). Kappa is 

calculated by subtracting the hypothetical probability of a chance agreement (of two 

observations) from the relative observed agreement, and yields a number between 0 and 
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1. A zero would indicate that accuracy in classification was merely coincidental, while a 

one indicates that there is no probability that there is a chance agreement (Strahler et al. 

2006).  

As with most statistical procedures, there are some assumptions and conditions 

that must be met. Cohen’s Kappa Coefficient of Agreement supposes that the units are 

independent of one another, the categories are mutually exclusive and exhaustive, and 

that the selection (judges) operate independently (Cohen 1960). The accuracy 

assessments above (see Table 2.12 and Table 2.13) meet those presumptions at least in 

theory; Halodule cannot be Thalassia, and a polygon classified as MixedMono cannot be 

classified simultaneously as either.  

The Cohen’s Kappa Coefficient calculated for the accuracy assessment matrices 

indicates a fair amount of chance agreement for the final output of the classification by 

species, the least accurate of the two, is possible, and a lesser probability of chance 

agreement in the classification of aggregated grasses and bare subsurface.  

DISCUSSION 

This project demonstrates that hyperspectral imagery can be used successfully to 

discriminate between species of seagrass in optically shallow waters. While single 

iteration classification techniques have traditionally been used for terrestrial classification 

schemes, using multiple iterations to distill information from hyperspectral imagery can 

improve thematic accuracy. As techniques are improved and methods developed, such as 

the water depth correction developed by Cho (Cho and Lu 2010), hyperspectral imagery 

will be a valuable tool in the resource manager’s toolbox.  
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Likewise, hyperspectral imagery is useful and highly accurate for determining 

presence/absence of seagrass in large spatial areas such as Redfish Bay. Previous studies 

(Peneva et al. 2008) conducted off Horn Island, Mississippi, had achieved accuracies as 

high as 89% from a variety of supervised classification techniques including Spectral 

Angle Mapping (SAM), Maximum Likelihood (ML) and Minimum Distance to Mean 

(MDM). Peneva (2008) noted that different classification techniques produced better 

results depending on depth, water turbidity and variability of intensity for bottom types. 

The methods described for this study employ a variety of both supervised and 

unsupervised techniques, and allow a choice of classification methods at each iteration 

based on the highest output accuracy. The results indicate that having a diverse range of 

techniques available enhances the accuracy of the analysis. 

Field work for this study was conducted by visiting a series of randomly selected 

field points, documenting the type and density of coverage, and the depth. A similar 

study was being conducted coincidentally and almost simultaneously in the Eastern 

Banks off Moreton Bay, Australia, by a group of highly respected remote sensing experts 

(Phinn et al. 2008), comparing a variety of aerial and satellite platforms. The Australian 

study employed a series of 100 m photo transects, with transect sites chosen to cover the 

range of species and densities, and adjusted so that they would be over gradients or 

boundaries in seagrass coverage or densities. Digital photographs were then taken at 2 m 

intervals along the transect line, and positioned 1 m above the benthos, which produced a 

digital image with approximately 1 m x 1 m field of view. Each photo was then analyzed 

by placing 24 points on each photo in a regular grid, and entering species or bottom type 

for each point into a database, and coverage was then determined by the percentage of 



64 

those 24 points per photo which contained seagrass. Coordinates for each photo were 

then estimated, and that data assigned to that referenced point. This tedious process was 

undertaken to “take into account the positional accuracy of the GPS measurements (at 

least +/- 5.0 m) and mis-registration of the image data” (Phinn et al. 2008).  

The study described in this paper and that conducted in Australia produced 

comparable accuracy levels for similar imagery types. However, the methodology 

employed for the Redfish Bay study field work was less labor intensive. Both studies 

were limited by the spatial inaccuracies within the imagery. Future studies should 

concentrate on methods to reduce those inaccuracies, as well as restrain the costs of field 

research.  

Future studies should follow the guidelines found in 'Guidance For Benthic 

Habitat Mapping: An Aerial Photographic Approach' (Finkbeiner et al. 2001). In addition 

to these guidelines, several other caveats should guide attempts to use hyperspectral 

imagery to distinguish seagrass species in coastal estuarine environments: 

1. Obtain a very good bathymetric data set for the study area. This should be done 

before the fieldwork is attempted, as it will be critical in establishing accessibility 

of field points, and necessary to verify that the randomly selected sampling points 

cover the range of depths well.  

2. Timing of both the aerial acquisition and fieldwork are critical to the success of 

this type of mission. In addition to calm seas, light winds and cloud-free skies, 

clear water and the minimum of epibiotic fouling are essential. Minimum fouling 
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usually occurs in late spring or early summer; unfortunately, this is also one of the 

most unpredictable seasons, as far as clear, calm water are concerned.  

3. If at all possible, a spectrometer should be used to capture the spectral readings at 

each field site. Although this will add some valuable time to the field portion of 

the project, the information gained should prove well worth the effort.  

4. Select 50% more field sites than are estimated to be necessary. A lack of suitable 

field sites is likely to be problematic. 

5. Copious and accurate field notes are a must. Note the amount of macroalgae, drift 

algae, wrack or other confounding influences. Note the amount of sediment 

visible for patchy areas. Notes should accurately reflect what will be visible in the 

imagery; decide how to classify an area that is 100% Halodule but 50% coverage 

before going to the field.  
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CHAPTER III:  IDENTIFYING SPECTRAL DIFFERENCES IN SEAGRASS 

SPECIES  

ABSTRACT 

In order to determine effective hyperspectral imagery bands for species 

differentiation, spectral reflectance signatures of two species of seagrass, Thalassia 

testudinum and Halodule wrightii, were collected using a portable spectrometer at three 

positions in situ:  just above the surface/water interface, directly below the surface/water 

interface, and at the canopy level.  

These signatures were imported into Microsoft Excel, separated into worksheets 

containing a single species from a single position (i.e.: Halodule at the surface, Thalassia 

at the canopy, etc.), and a depth correction algorithm applied.  Each of these data sets 

were then normalized using a maximum normalization technique, and a Multiplicative 

Scatter Correction was applied. 

The mathematical means for these spectral curves were compared by collection 

position. Results for this analysis show that the spectral signatures of these two 

seagrasses are distinct at all collection levels.  However, large variances were noted in the 

subsurface and canopy spectral curves. Recommendations for band selections were made, 

and it is noted that these recommendations were valid for this particular site under these 

particular conditions. Final recommendations include the collection and analysis of 

spectral data at the time of imagery collection. This method of in situ spectral collection 

and comparison provides valuable insight into proper band selection for subaquatic 

vegetation analysis and species discrimination. 
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INTRODUCTION 

Hyperspectral imaging has been used for a variety of terrestrial classification, 

with remarkable results (Tamilarasan et al. 1983, Zomer et al. 2009, Xie et al. 2011). 

Land use/land cover, species differentiation, fire susceptibility modeling, invasive species 

detection, and wetlands vegetation mapping all have been successfully mapped using 

hyperspectral imagery (Hirano et al. 2003).  

Hyperspectral imaging has also been used in aquatic environments for a variety of 

purposes, at a variety of scales, and with varying results. Methods were developed for 

using hyperspectral imagery to map coral reef features and discriminate healthy from 

diseased corals as early as 2000 (Holden and LeDrew 2000). Researchers have 

successfully detected harmful algal blooms (HAB) from shipside (Craig et al. 2006), as 

well as from satellite platforms such as the SeaWiFS (Sea-viewing Wide Field-of-view 

Sensor) (Tang et al. 2003).  

Researchers have examined the use of hyperspectral imagery to detect the 

presence or absence of seagrass (Barillé et al. 2010, Guimarães et al. 2012), as well as 

attempt to differentiate between species (Wabnitz et al. 2008, Cho and Lu 2010). This 

project examines the effect of the water column on the spectral signature of the seagrass 

canopy (Rundquist 2001). The rationale behind this research is simple:  the effects of the 

atmosphere, which are widely recognized, are virtually the same whether imaging the 

terrestrial or the aquatic environment (Kutser et al. 2006, Gao et al. 2009). Air - water 

interface influences can be ephemeral, varying with the wind, clouds and other 

parameters over very short times, even a matter of minutes, and can easily vary within a 

single image. What happens below the water surface is also of interest. While subsurface 
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conditions can be somewhat ephemeral and can be influenced by spatially restricted 

events, such as a boat passing through the area, these events generally are more consistent 

throughout an area and last longer than the time it takes to acquire imagery, as compared 

to the lifetime of an individual cloud.   

This research seeks to confirm that, without the effects of atmospheric distortion 

and surface influences, seagrasses, particularly Halodule wrightii and Thalassia 

testudinum, are spectrally distinct in situ, and as observed through the water column.  

METHODS 

In June of 2012, we used a portable spectrometer to capture spectral signatures of 

seagrasses in situ from three positions:  above the surface/water interface, just below the 

surface/water interface, and just above the canopy. These signatures were collected above 

monotypic stands of Halodule wrightii and Thalassia testudinum in Redfish Bay, in the 

Coastal Bend area of Texas.  

Study area 

Redfish Bay is a shallow estuary located between Aransas Pass and Port Aransas, 

Texas, and extends almost to Rockport Texas to the north, and is typical of many of the 

dynamic grass flats and inland tidal bays found along the Texas coast. The area is dry 

sub-humid (Kornicker 1964), and frequented by hurricanes and tropical storms 

(Oppenheimer 1963). The maximum depth of Redfish Bay is around 2 m, with the 

average depth being .75 m. Bottom sediment types vary considerably.  
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Data acquisition 

Portable spectrometers are able to capture the characteristic spectral signatures of 

seagrasses. For this research, we used an Ocean Optics Jaz Modular Sensing Suite, a 

highly portable, expandable spectrometer with water-resistant sensing probes. The 

specifications for this spectrometer are shown in Table 3.1. This research examines the 

light returning from the canopy of different species of seagrass, from above the water 

surface, just below the surface and at the canopy level. Figure 3.1 graphically depicts the 

contributions to total upwelling, as well as other vectors that radiance (light) travels. By 

holding the sensing probe just below the surface of the water, the effects of the surface 

reflection, shown as Lr in Figure 3.1, are eliminated from the resulting spectral curve. The 

effects of scattering in the water column are determined by examining the differences 

between the response from the canopy and that obtained from just below the surface. 

Samples were acquired, in situ, for the range of 190 to 1029 nm within 4 hours of solar 

maximum with a sensor having a fore optic with a 25º Field of View (FOV), and using a 

+/- 99% white Spectralon plate as a reflectance reference. Unlike the methods described 

by Fyfe (2001) and others, these samples were taken in place, from either just above the 

water surface, just below the water/surface interface (see Figure 3.2), and just above the 

canopy level. Figure 3.3 shows the distribution of depths of the sampling effort.  
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The spectrometer module requires a Reflectance Standard Reference (R), obtained 

by sensing the reflected light from a Spectralon panel, which is then considered the 

maximum amount of light available. A dark reference standard (D), the minimum amount 

of light available, is also recorded. R and D are stored within the Jaz unit, and when a 

signal (S) is recorded, R, D, and S are recorded in a single data file, along with the 

wavelength (Table 3.2). Once the spectrometer is turned off or another mode is selected, 

the current reference and dark (R and D) standards are discarded, and new ones are 

required for the next measurement. 

Data is stored within the Jaz unit on a removable SD (Secure Digital) memory 

card in delimited text format and may be viewed in an Excel Spreadsheet, as in Table 3.2. 

The data may also be viewed within Ocean Optic’s proprietary SpectraSuite software, 

and the data files may be opened in an Excel spreadsheet for further analysis.   

From the data table, Percent Reflectivity for each wavelength (R) can be 

calculated by dividing the reflected radiance (S) at each  by the reflectance standard 

reference (RSR), and multiplying by 100: 

 R = S/RSR * 100 (3.1). 

Location data, sample number and type, date, time and depth were recorded 

within the Excel datasheet. The data was segregated by sensor position: above surface 

(SURF), subsurface (SUBS) or canopy (CAN). Spectra were then further separated by 

species. Spectra for each species were then normalized and their standard deviations 

calculated and plotted.  
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Table 3.2.  A typical data file as collected with the Jaz Spectrometer reveals the 
parameters spectra acquisition, as well as time, date, wavelength (W), dark (D) 
and reference readings (R), collected signal (S), and processed (P) signal.  

Jaz Data File 
Date: Sat Jun 09 10:53:39 2012 
User: jaz 
Dark Spectrum Present: Yes 
Reference Spectrum Present: Yes 
Processed Spectrum Present: Yes 
Spectrometers: JAZA1552 
Integration Time (usec): 35000 (JAZA1552) 
Spectra Averaged: 1 (JAZA1552) 
Boxcar Smoothing: 0 (JAZA1552) 
Correct for Electrical Dark: No (JAZA1552) 
Strobe/Lamp Enabled: Yes (JAZA1552) 
Correct for Detector Non-linearity: No (JAZA1552) 
Correct for Stray Light: No (JAZA1552) 
Number of Pixels in Processed Spectrum: 2048 
>>>>>Begin Processed Spectral Data<<<<< 

W D R S P 
190.2256 521.5109 722.2695 653.0424 65.51724 
190.6828 625.3516 671.503 655.35 65.00005 
192.054 673.8105 722.2695 696.8863 47.61913 

… 
 

Data manipulation 

Figure 3.4 shows the mean spectral values for Thalassia and Halodule from all 

three positions, as well as their respective standard deviations. Figure 3.5 and Figure 3.6 

show the above-surface spectral curves for each species type before normalization.  
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This research examined differences in reflectance value for two species of 

seagrass, Thalassia and Halodule, which are dominant in estuarine water bodies in Texas. 

Spectral signals were collected at three positions:  at the canopy level, just below the 

water surface, and just above the surface/water interface. These signals were collected as 

reflected radiance, converted to reflectance, normalized, and corrected for scatter. The 

mean values and standard deviation were calculated for each species at each level of 

collection. Figure 3.16 through Figure 3.18 show the means and standard deviations for 

each species at each level of collection. Each collection level has a detectable difference 

between mean responses, but only those collected at the above-surface level showed a 

significant difference in means and exhibited small enough standard deviations to avoid 

overlapping the means of the other species. This condition persisted throughout the range 

from approximately 515 and 660 nm.  

Figure 3.20 shows the difference between surface-collected mean values of 

Halodule and Thalassia spectra after normalizing and applying an MSC. The standard 

deviations for each species are also shown. Between 500 nm and 700 nm, there is about a 

10% difference in normalized spectral values. Both Halodule and Thalassia spectra 

standard deviations remain consistently below 10%.  

The results from this research indicate that a better separation of species can be 

obtained from above the surface than below the surface/water interface. While this seems 

rather perplexing, it is perhaps a matter of the signals measured at the canopy reflecting 

from individual leafs rather than a coalesced background of leaves, as sensed from above 

the surface/water interface. Although the above-surface images were taken within 

millimeters of the surface, and all the sites were under 1 m depth, given the rather small 
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As the sensor is moved farther from the individual leaves, the spectral responses 

coalesce to return one ‘averaged’ signal, and minor changes in ‘color’ or shadow are 

melded into a single response. This also helps explain why areas with a high degree of 

macroalgae will still be classified as seagrass because the seagrass signal is dominant, 

and the macroalgal signals either aren’t strong enough for detection or occur in different 

locations along the visible spectrum. 

This research demonstrates that the seagrass species Thalassia testudinum and 

Halodule wrightii have distinct spectral signals and that the differences in spectral 

signature are detectable using hyperspectral sensors and advanced processing techniques.  
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CHAPTER IV:  HYPERSPECTRAL DISCRIMINATION OF BENTHIC 

HABITAT TYPES: TAKE DEUX 

ABSTRACT 

Hyperspectral imagery of Redfish Bay on the Texas coast was classified for 

seagrass species using a band selection determined by in situ spectral sampling and the 

application of spectral water depth corrections. An iterative classification scheme was 

used. Three iterations included unsupervised classifications and field site classification 

matching, and the fourth iteration employed a supervised classification with the 

Maximum Likelihood procedure. Results showed an increase in accuracy from similar 

studies using other band combination recommendations found in recent literature, 

developed empirically and with other methods of in situ sampling. Kappa Coefficients 

indicate that the results are not due to a chance occurrence.   

The methods employed in this study allow flexibility in classification methods 

used at each iteration, and employ depth corrections that were previously unavailable.    

INTRODUCTION  

In 2008, as part of a National Oceanic and Atmospheric Administration (NOAA) 

Environmental Cooperative Science Center (ECSC) funded project, hyperspectral 

imagery was collected over Redfish Bay, Texas.  The 63 hyperspectral bands were 

collected with an AISA Eagle imaging spectrometer aboard a specially modified Piper 

Saratoga aircraft.  

Redfish Bay is in the Texas Coastal Bend area and is part of the Mission-Aransas 

National Estuarine Research Reserve (MANERR). Data collection was performed with 
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several goals in mind, including mapping the seagrasses and benthic habitats of Redfish 

Bay, mapping and analyzing the invasive black mangroves, and mapping the marsh 

vegetation at Aransas National Wildlife Refuge, to the north of the MANERR. This set of 

collaborative projects is designed to increase knowledge of these habitats, while 

providing research and cooperative study opportunities in geospatial technologies to a 

diverse group of students from a wide area.  

Hyperspectral imagery has previously been used to map benthic and wetland 

habitats. Mumby et al. (1998) used hyperspectral sensors (Landsat MSS, Landsat TM, 

SPOT-XS and SPOT Pan, and CASI) to discriminate between coral reef species and 

seagrasses in the Turks and Caicos Islands, British West Indies. Fyfe and Dekker (2001) 

determined that 3 species of seagrasses found in southeastern Australia were spectrally 

distinct, regardless of whether they had epiphytic coverage. Peneva et al. (2008) were 

successful in determining seagrass distribution and coverage of seagrasses around Horn 

Island, MS. Phinn et al. (2008) mapped seagrass species, cover and biomass in Moreton 

Bay in Australia.  

Cho et al. and Fyfe have both published recommendations for band selections to 

be used to discriminate between seagrass species (Fyfe and Dekker 2001, Fyfe 2004, Cho 

and Lu 2010). Cho developed these recommendations based on laboratory tank studies, 

while Fyfe took spectral readings in situ, using species found in Australian estuaries. Cho 

and Lu (2010) devised a depth correction algorithm to correct for absorption and 

scattering within the water column. In Chapter II, a study in which this correction was 

applied using a default value of 60 cm depth to hyperspectral images is described, in 

which  accuracy improvements in mapping Redfish Bay seagrasses are noted (Cho et al. 
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2012). In that study, Cho’s band recommendations were also adopted because they were 

believed to be ideally suited for the species of seagrasses found in the Redfish Bay 

estuary.  

Subsequent in situ spectral sampling and analysis during 2012 indicated that 

certain bands may be more effective in discriminating seagrass species found in Redfish 

Bay than those spectral bands previously suggested by Fyfe or Cho. Chapter III describes 

details on the processing and analysis of the spectral samples collected with the Jaz 

Spectrometer, Chapter II details the original image analysis.  This chapter will discuss the 

reprocessing of the images, using the band selection developed in Chapter III.   This 

chapter presents these new findings and compares the results of earlier studies with those 

using spectral bands suggested as a result of the 2012 studies. 

METHODS 

Hyperspectral imagery was collected in the Redfish Bay study area during 

October 2008, and delivered as a georectified, atmospherically corrected data set in 

November 2008. The data set contained 9 images, which were approximately 1 km wide 

and 8-14 km long. These images were mosaicked into one single image for processing.   

Study area 

Redfish Bay is a shallow estuarine bay located between Aransas Pass and Port 

Aransas, Texas, in an area known as the Texas Coastal Bend. The study area portion of 

Redfish Bay is bounded by the Aransas Channel on the south, Corpus Christi Bayou on 

the east, the Lydia Ann channel on the north, and the Gulf Intracoastal Waterway on the 

west. Redfish Bay is an integral part of the Mission-Aransas National Research Reserve, 
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Acquired data  

Hyperspectral imagery was collected over Redfish Bay in October 2008, and 

delivered as atmospherically corrected, georeferenced digital images in mid-November, 

2008. These images have 63 bands, of approximately 10 nm bandwidth each. These 

images were acquired using an Airborne Imaging Spectroradiometer for Applications 

(AISA) Eagle Hyperspectral sensor, developed in Finland by SPECIM Spectral Imaging 

Ltd. The AISA sensor is mounted in a specially modified Piper Saratoga aircraft owned 

and operated by the Center for Advanced Land Management Information Technologies 

(CALMIT), in cooperation with the University of Nebraska-Lincoln. Table 4.1 shows 

several pertinent specifications for the sensor. Chapter II contains a detailed description 

of the collection system. 

Table 4.1.  Specifications for the Airborne Imaging Spectroradiometer for Applications 
(AISA) Eagle Hyperspectral sensor and is adapted from Bertels et al. (2005).   

Characteristic Value 

Field of view (FOV)  39.7º 

Instantaneous field of view (IFOV)  0.039 º 

Spatial resolution  0.5 - 10 m 

Spectral range  400 - 970 nm 

Spectral channels  max. 244 

Spectral sampling interval  2.3 nm 

Spectral resolution (FWHM) 2.9 nm 

Dynamic range  12 bits (4096) 

 

The images were delivered in mid-November 2008, on a portable hard drive. The 

Redfish Bay collection contained 13 images, each with 63 bands and approximately 1 km 

wide and 8 – 14 km long. Of these 13 images, 9 were selected for further processing. 
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where R is the reflectance value, the pixel value found in each band pixel, expressed as a 

percentage, Rw is the water scattering coefficient for the depth found in the bathymetry 

raster, and Aw is the water absorption coefficient for the depth found in the bathymetry 

raster. After corrections, the bands were re-stacked and opened in ENVI 5.0 for 

classification using ENVI’s classification workflow.  

The first step in the ENVI process is to specify the image being processed and any 

mask to be used. A mask specifies that area which is to be analyzed, and conversely, the 

areas to be omitted from analysis. The mask for this iteration eliminates processing of 

land areas within the study area. In future iterations, the mask will reduce the analysis to 

only areas which are to be reprocessed.  

The workflow in ENVI categorizes pixels within the image into groups of pixels 

with similar characteristics. For the first iteration, 25 categories were created, each 

having similar pixel values. These categories were then aggregated into polygons with a 

minimum of 9 pixels (9 m2). These categorized polygons were then exported as ESRI 

shapefiles.  

Vector processing 

The polygons generated in ENVI version 5 are categorized as ‘Class 1’, ‘Class 2’, 

through ‘Class 25’. Each of these categories represents groups of pixels with similar pixel 

digital numbers, with no association to species types. To derive species types from these 

classes, the polygons are reclassified in ESRI’s ArcGIS 10.0. Each class is attributed with 

the learning points that fall within the polygons of that class. A custom process was 

created that selects all the learning points that fell within a selected class, and then selects 

all the polygons that contain those learning points. Each selected polygon was then 
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attributed with the codes for learning points that fell within them, and then with the 

species names or descriptive note, as shown in Table 4.2. Asterisks indicate that an 

attribute has been derived, based on the learning points that fell within other polygons 

within the same class. The entire class was then selected and attributed with a list of all 

the codes that fell within that class, and then the species code or descriptive note. This 

process was repeated for the next class, until all the classes of polygons were processed 

and attributed.  

Table 4.2.  Attribute table with classification data for Redfish Bay. Asterisks denote a 
derived classification.  

CLASS_NAME AREA MainSpecie grassType 

Class 1 47 1 H100 Halodule 

Class 1 150,020 1 H75T25 MixedMono 

Class 1 4,687 * 1 H100, 1 H75T25 Mixed 

… … … … 

Class 2 12 * 1 B100, 3 H100, 1 T100, 1 T50S50, 1 Mixed 

… … …  

After all the classes were attributed thusly, the ‘Mixed’ and ‘No Clues’ categories were 

removed, and used to create a mask for the next iteration.  

The second iteration 

A set of training points was selected and buffered. Buffering refers to a process 

that creates a polygon of a specified width that surrounds the location of the training 

point. The polygons created in the first iteration that were classed as ‘Mixed’ or ‘No 

Clues’ were removed from the first iteration output.  The buffers from the training points 

and the removed classes were merged to create a mask for the second iteration. This mask 



98 

was opened in ENVI along with the corrected 5-band image. The classification workflow 

was again initiated, and the masked area of the image was categorized into 10 categories 

of similar pixels, which were then aggregated into groups of 9 or more contiguous pixels, 

similar to the process described in Chapter II.  

The third iteration 

The ‘Mixed and ‘No Clues’ classes from the second iteration formed the mask for 

the third iteration, along with the buffered learning point polygons. These were again 

processed in ENVI 5.0, which created categories of like pixel values and then assigned to 

one of five output categories, which were then aggregated to minimum groupings of 9 

contiguous pixels. These were exported as an ESRI shapefile, which were then 

reclassified using the learning points, as described above.  

The fourth iteration 

A mask formed from the ‘Mixed’ and ‘No Clues’ classes from the third iteration 

was applied to the classification workflow within ENVI 5.0 to the same depth-corrected 

image. In this iteration, a supervised classification was selected, using a training data set 

developed previously and described in Chapter II. The supervised classification, using the 

‘Most Likely’ classification algorithm, classed each polygon as being either ‘Bare’, 

‘Halodule’, ‘Ruppia’, ‘Thalassia’, MixedMono, or ‘Unclassified’, to match those of the 

training data set. Since the unclassified category was ‘Mixed’ before the last iteration, it 

will be returned to a ‘Mixed’ category. 
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RESULTS 

Figure 4.5 shows the classified polygons from the first iteration, and Table 4.3 

shows the area and number of polygons in each class. Figure 4.6 shows the polygons 

from the first and second iterations. Table 4.4 shows the combined results of iterations 

one and two. Figure 4.7 shows the polygon output from the third iteration of processing. 

Table 4.5 shows the combined number and area of polygons. Table 4.7, from Chapter II, 

shows the final output from that previous processing, while the final output polygons 

from this chapter are mapped in Figure 4.8. The number of polygons and area of each 

class may be found in Table 4.6 and represents the final results of the processing from 

this chapter. Table 4.8 below shows the differences between those two tables. There are 

approximately 17,265 more Thalassia polygons in the processing from Chapter IV, 5,183 

fewer ‘Mixed’ polygons, 12,034 more polygons classified as ‘MixedMono’, 19,241 more 

polygons classified as Halodule, 5,219 fewer classified as Ruppia, 3,528 more classified 

as ‘Bare’, 24,158 fewer classified as ‘Bare/Thalassia Mix’, 26,890 more classified as 

‘Bare/Halodule Mix’, and one less polygon classified as Syringodium.  
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Table 4.3.  Results from the first iteration. The number of polygons in the ‘Mixed’ and 
‘No Clues’ Classes were unavailable.  

Classification Number of Polygons Total Area in Class (m2) 

Bare 766 2,797,248 

Bare/Halodule Mix 7,302 1,327,681 

Bare/Thalassia Mix 1,185 767,466 

Halodule 629 1,553,438 

Mixed  19,528,531 

MixedMono 28 527,852 

No Clues  89,608 

Ruppia 5 40,667 

Syringodium 1 1,042 

Thalassia 18 409,374 

TOTALS N/A 27,042,907 
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Table 4.4.  Combined results of iterations 1 and 2, showing total areas and numbers of 
polygons. 

Classification Number of Polygons Total Area in Class (m2) 

Bare 769 3,193,578 

Bare/Halodule Mix 29,135 3,115,812 

Bare/Thalassia Mix 1,185 767,466 

Halodule 20,496 3,288,339 

MixedMono 18,915 2,829,819 

Ruppia 6 41,449 

Syringodium 1 1,042 

Thalassia 18,658 2,488,805 

TOTALS 89,165 15,726,310 
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Table 4.5.  Combined output from the first three iterations.  

Classification  Number of Polygons Total Area in Class 

Bare 773 3,195,229 

Bare/Halodule Mix 29,135 3,115,812 

Bare/Thalassia Mix 1,185 767,466 

Halodule 20,505 3,305,144 

MixedMono 18,925 3,583,676 

Ruppia 7 41,478 

Syringodium 1 1,042 

Thalassia 18,661 2,489,748 

TOTALS 89,192 16,499,595 
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Table 4.6.  Results of iterations 1-4, with area and number of polygons found in each 
class. These are the final results of the reprocessing. 

Classification Number of Polygons Total Area in Class 

(m2)

Mean Area/Polygon 

(m2)
Thalassia 39,303 4,857,068 123.5 

Mixed 13,925 1,350,628 96.99 

MixedMono 31,545 6,016,575 190.73 

Halodule 33,209 6,125,249 184.445 

Ruppia 7,437 462,619 62.205 

Bare 6,482 4,120,545 635.6904 

Bare/Thalassia Mix 1,185 767,466 647.6506 

Bare/Halodule Mix 29,135 3,115,812 106.944 

Syringodium 1 1,042 1042 

TOTALS 162,222 26,817,004 165.31 

 

  



108 

Table 4.7.  The final number of polygons and the area of each classification from the final 
iteration in the first set of processing from Chapter II.  

Classification Number of Polygons Total Area in Class 
(m2) 

Mean Area/Polygon 
(m2) 

Thalassia 22,038 4,976,130 225.80 

Mixed 19,108 4,362,722 228.32 

MixedMono 19,511 3,701,172 189.70 

Halodule 13,968 3,608,193 258.32 

Ruppia 12,656 3,585,130 283.28 

Bare 2,954 3,537,991 1197.69 

Bare/Thalassia Mix 25,343 3,476,164 137.16 

Bare/Halodule Mix 2,245 587,547 261.71 

Syringodium 2 38,009 19,004.50 

TOTALS 117,825 27,873,058 21,786.48 
 

Table 4.8.  The differences in areas and number of polygons between the classifications 
in Chapter II and Chapter IV. Results from Chapter II were subtracted from those 
from Chapter IV.  

Classification Number of Polygons Total Area in Class Mean Area/Polygon (m2) 

Thalassia 17,265 -119,062 -102 

Mixed -5,183 -3,012,094 -131 

MixedMono 12,034 2,315,403 1 

Halodule 19,241 2,517,056 -74 

Ruppia -5,219 -3,122,511 -221 

Bare 3,528 582,554 -562 

Bare/Thalassia Mix -24,158 -2,708,698 510 

Bare/Halodule Mix 26,890 2,528,265 -155 

Syringodium -1 -36,967 -17,963 
 

There are also major differences in the area within each class, with the largest 

declines in the areas classified as Ruppia, with 312 fewer hectares, ‘Mixed’ with 300 
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The accuracy assessment for the final iteration of this processing, shown in Table 

4.9, shows a substantial improvement from the methods used in Chapter II. The overall 

accuracy improved from 38% to approximately 57%. Producer’s accuracy for the ‘Bare’ 

class increased from 66.67% to 73.08%, for Halodule, the increase was from 29% to 

63.89%. The accuracy for Thalassia actually decreased from 46.15% to 45.83%, while 

accuracy for the ‘MixedMono’ class increased from 23.33% to 47.37%. User’s accuracies 

also show a dramatic increase in all classes except ‘Bare’, which decreased from almost 

70% to 66%. Halodule accuracy went up from 39% to 64%, Thalassia accuracy 

increased from 40% to 55%, and ‘MixedMono’ increased from 22.58% to 39%.  The 

Kappa Coefficient also increased, from 0.2988 to 0.4459, providing another indication 

that there is an even less likelihood that an area was classified correctly by chance 

agreement only.  

When the ‘Grass’ classes are aggregated to calculate Presence/Absence as in 

Chapter II, very little difference in Accuracy Assessment is noted.  The overall accuracy 

actually decreased from 87.93% to 86.11%, while the User’s accuracy for the ‘Bare’ class 

increased from 72.7% to 73.08%, and the ‘Grass’ class User’s accuracy decreased from 

91.5% to 90.24%.  Producer’s accuracies increased from 66.7% for the ‘Bare’ class to 

70.4%, while the ‘Grass’ class Producer’s accuracy decreased from 93.5% to 91.4%.   

Kappa Coefficient for this calculation is 0.641, a very slight increase from the .6206 

obtained in Chapter II.   
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Table 4.9.  Confusion matrix details the accuracy assessment for the classifications 
generated using the improved band selection and water depth corrections using a 
depth raster. 

Accuracy Assessment and Confusion Matrix 

Bare Halodule Ruppia Thalassia MixedMono  

Bare 19 3 0 1 3  73% 

Halodule 2 24 0 4 6  63% 

Ruppia 0 1 0 0 2  0% 

Thalassia 3 5 0 12 4  50% 

MixedMono 3 3 1 4 8  42% 

70% 67% 0% 57% 35%  57% 

   

Producer’s Accuracy User’s Accuracy 

Bare 73% Bare 70% 

Halodule 63% Halodule 67% 

Ruppia 0% Ruppia 0% 

Thalassia 50% Thalassia 57% 

MixedMono 42% MixedMono 35% 

Overall Accuracy  57% 

Kappa Coefficient .4459      
 

CONCLUSIONS 

The addition of a depth (bathymetric) raster and application of a depth correction 

combined with band selection based on in situ spectral sampling greatly improved the 

accuracy of benthic habitat classification using hyperspectral imagery. These findings 

concur with those of Fyfe and Dekker (2001).  However, the specific wavelengths 

recommended by Fyfe are different than those used in this research. Therefore, it is 

highly recommended that future seagrass mapping efforts using hyperspectral imagery 
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include not only extensive field site visits, but also include the extensive use of portable 

spectrometer data collection and analysis of that data to determine the best bands for the 

species of seagrasses that may be present.  

Lee (2003)  extolls the virtues of the fusion of complementary data sets, such as 

hyperspectral imagery and bathymetry, in benthic habitat mapping research. Lee used 

airborne laser bathymetry in conjunction with hyperspectral imaging, as did Lyzenga 

(1985). Lee points out that such fusion comes with its own set of problems; there are 

varying levels of abstraction at which the fusion may take place, and data sets must be 

registered with each other and brought to a common scale or resolution. There are also 

limits to which this fusion is applicable. Lee uses the term Maximum Surveyable Depth 

(MSD), describing the maximum depth at which existing mapping standards can be met. 

According to Lee, the MSD for Airborne Lidar Bathymetry (ALB) can range from 50 m 

in clear waters to 10 m in murky waters, or usually two to three times the Secchi depth. 

Wang and Philpot (2007) concur with Lee, but point out one critical factor:  there is also 

a minimum depth at which ALB is capable of capturing accurate measurements – stated 

at 1.5 m. Since the study area average depth is less than 1.5 m, and the maximum natural 

depth is around 2 m, ALB may not be suitable for fusion into the hyperspectral image 

processing. Bachmann (2008) states that at less than 2 m, ALB systems do not provide 

reliable depth retrieval. 

So, depth measurements (bathymetry) are critical to accurately discriminating 

species of SAV using hyperspectral imagery, but ALB measurements aren’t reliable 

under 2 m, the depth where seagrass is found in these shallow bays systems. But there is 

good news:  scientists with the U.S. Army Engineer Research and Development Center 
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are developing an integrated hyperspectral imaging/lidar collecting system, capable of +/- 

30 cm vertical accuracy with a 4 m spot spacing. While this is still not quite accurate 

enough to take full advantage of the depth correction algorithm developed by Cho (2010), 

this is a sign that improved technology available in the near future may do just that.  

This research demonstrates that increases in accuracy of benthic habitat mapping 

are achievable by using depth corrections and site specific band selection.  While depth 

corrections described in Chapter II were calculated using an approximation of depth, an 

average 65 cm, calculations in this chapter were accomplished using a bathymetry 

developed from various sources of varying and unverifiable accuracy.  Therefore, it is 

difficult to determine which factor – depth corrections or site specific band selection – 

would have the largest influence in the accuracy of the output data set.  
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CHAPTER V:  SUMMARY AND CONCLUSIONS  

SUMMARY 

The research described in this dissertation is part of a collaborative effort 

organized and funded by the National Oceanic and Atmospheric Administration 

(NOAA), through the Environmental Science Cooperative Science Center (ECSC). A 

series of hyperspectral imaging flights were executed over Texas Coastal Bend areas, 

including over Redfish Bay, located between Aransas Pass and Port Aransas, Texas. One 

of several planned uses of this imagery was to discriminate between species of seagrasses 

in Redfish Bay. 

This hyperspectral imagery was collected with an AISA (Airborne Imaging 

Spectroradiometer for Applications) Eagle Hyperspectral sensor capable of collecting 

spectral data in the range of 400 – 1000 nm, in as many as 272 bands (Green and Cole 

2005). For these missions, 63 bands were collected, each about 9-10 nm wide. Imagery is 

collected in a ‘pushbroom’ fashion, one line containing 1024 pixels at a sweep, followed 

by the next line, and so forth. The instrument incorporates an integrated inertial system, 

GPS and gyroscope, so that imagery and positional data are collected simultaneously and 

stored synchronously (Bertels et al. 2005).  

Prior to imagery collection, a field survey team visited approximately 250 

randomly selected sites, and recorded the location with an RTK-enabled GPS, noting 

depth, and species presence, absence and makeup. These were transcribed into an Excel 

spreadsheet, which was then converted into an ESRI (Environmental Systems Research 

Institute) shapefile for later use. 
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Georectified imagery was saved on a portable hard drive and was atmospherically 

corrected before delivery. This project used 9 of the delivered images, each covering 

approximately 1 km width, and 8 – 14 km in length. The images were mosaicked to form 

one image, covering approximately 3250 hectares. From this image, 5 bands were 

selected, based on recommendations found in literature (Fyfe 2003, Cho and Lu 2010).  

The selected bands were then corrected for depth, using an algorithm developed 

by Cho (2010), using an average depth of 65 cm that was applied to the individual bands 

in ENVI (ENvironment for Visualizing Images) 4.8, using the ‘Band Math’ function, and 

the formula  

 (Rw/10 – Rw) / (1- Aw/200)2 (5.1) 

where Rw is the percent surface and volumetric reflectance, and Aw is the coefficient for 

water absorption in the water column in both up and down directions.  

After depth correction, the image was opened in ENVI EX 4.8, and a 

classification workflow initiated. In this workflow, the image is segmented into groups of 

like pixel values, and then classified into 25 classes of similar segments. These classes 

were aggregated into no fewer than 9 similar pixels, and exported as an ESRI shapefile.  

This shapefile was then opened in ESRI’s ArcGIS 10.0, and a classification was 

selected. Using this selection, all points representing field sites that fell within selected 

polygons were then selected, as shown in Table 5.1. Each polygon that contained a field 

site point was then attributed with the type of seagrass found there. This was repeated 

until all 25 classes were exhausted.  Once all the classes were reclassified, the ‘Mixed’ 

classes were then exported for use as a mask for the next iteration.  
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Table 5.1.  ArcGIS data table with classification data for Redfish Bay. Note that the first 

line of the table contains fieldnames.  

CLASS_NAME AREA MainSpecie grassType 

Class 1 47 1 H100 Halodule 

Class 1 150,020 1 H75T25 MixedMono 

Class 1 4,687 * 1 H100, 1 Mixed 

… … … … 

Class 2 12 * 1 B100, 3 Mixed 

… … …  

The image was then reopened in ENVI, and the classification/segmentation 

process repeated for only those areas within the newly created mask. The ENVI output 

was then subjected to the same process in ArcGIS. This reiterative processing was 

repeated through 3 iterations, and then again, using a ‘supervised’ classification. All 

output files were then merged into a single shapefile (see Table 5.2) and an accuracy 

assessment was performed, with the results as shown in Table 5.3.  

Table 5.2.  The final number of polygons and sums of the areas of each classification 
from the initial processing. 

Classification Number of Polygons Total Area in Class 

Bare 2,954 3,537,991 

Bare/Halodule Mix 2,245 587,547 

Bare/Thalassia Mix 25,343 3,476,164 

Halodule 13,968 3,608,193 

Mixed 19,108 4,362,722 

MixedMono 19,511 3,701,172 

Ruppia 12,656 3,585,130 

Syringodium 2 38,009 

Thalassia 22,038 4,976,130 

TOTALS 117,825 27,873,058 
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Table 5.3.  The accuracy assessment from the initial processing.  

Producer’s Accuracy  User’s Accuracy 

Bare 66.67%
 

Bare 69.57%

Halodule 29.03%
 

Halodule 39.13%

Thalassia 46.15%
 

Thalassia 40.00%

Ruppia 0.00%
 

Ruppia 0.00%

MixedMono 23.33%
 

MixedMono 22.58%

Overall Accuracy  37.93%   

Cohen's Kappa  0.2988    

 

To further understand these results, we returned to Redfish Bay with an Ocean 

Optics Jaz portable spectrometer and collected reflected radiance spectra. These samples 

were collected over areas with 100% coverage of Halodule or Thalassia at various depths 

up to 110 cm. The sensor was placed at three positions: above the surface of the water, 

just below the air/water interface, and at the canopy level. Each spectral sample was 

imported into an Excel spreadsheet, where it was converted from spectral irradiance to 

percent reflectance. Mean spectra of both species at each level were plotted (see Figure 

5.1) and analyzed. We found that there are detectable spectral differences between 

Halodule and Thalassia, at all three positions.  
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bandwidth. The bands were then re-stacked, and classified in ENVI, then reclassified to 

species in ArcGIS, following the same iterative procedures detailed earlier. Accuracy 

assessments were performed for the output classified polygons, and the results of that 

assessment are shown in Table 5.4.    

Table 5.4.  Results of the accuracy assessment performed on the output from the second 
processing of the hyperspectral imagery of Redfish Bay. The results were 
considerably better with the new band selections and depth corrections applied via 
a depth raster (bathymetry). 

Producer’s Accuracy User’s Accuracy 

Bare 73% Bare 70%

Halodule 63% Halodule 67%

Ruppia 0% Ruppia 0%

Thalassia 50% Thalassia 57%

MixedMono 42% MixedMono 35%

Overall Accuracy  57% 

Kappa Coefficient .4459 
 

CONCLUSIONS 

Shortcomings 

As with most research, there are several shortcomings related to this study. A 

good bathymetry dataset is critical to the analysis of hyperspectral imagery. This critical 

component to many research projects is severely lacking not only in Redfish Bay and in 

Texas, but throughout the estuarine research community. A 1999 survey by the NOAA 

Coastal Services Center identified near-shore bathymetry, coastal topography and bay 

bathymetry as “very useful” by at least two-thirds of the respondents, and who listed it in 

the top ten data needs (Gesch and Wilson 2001). Studies of these dynamic environments 
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that experience both erosion and accretion require a high-resolution, up-to-date 

measurements. Besides being a huge asset to planning, navigation and field site 

placement, bathymetry is a necessary component for depth correction, which is critical 

for analysis at subsurface levels. Fortunately, the need for highly accurate bathymetry is 

recognized, and the USGS and NOAA’s National Ocean Service and others are working 

collaboratively to develop tools and techniques for meeting that need. Two leading 

technologies are emerging: LiDAR and Optical Analytical both offer hope for high 

resolution datasets with accuracies approaching 15 cm and the ability to cover large areas 

(Sánchez-Carnero et al. 2012).  

Another shortcoming recognized within this research is that benthic coverage by 

drift macroalgae is basically ignored, although it can and does cover as much as 90% of 

the benthic habitat. Drift macroalgae is ephemeral, drifting over the top and settling on 

the seagrass beds and in depressions such as scars. As the currents change, the drifting 

algae shift positions. Drift material is a valuable resource because it tends to have 

elevated nitrogen levels (Britton-Simmons et al. 2012). In this study, macroalgae is 

treated more as a confounding element rather than a substantial contribution to the 

benthic community.  

Likewise, another important benthic habitat is considered as ‘Bare’, when it 

deserves its own classification. Oyster reefs found in numerous locations throughout the 

study area remain classified as ‘Bare’, although they are often far from being bare, but 

rather are recognized as a productive benthic habitat in their own right, serving multiple 

ecologic functions including improving water clarity and providing shoreline protection 

(Pollack et al. 2011).  
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Future research 

Research in this area will no doubt continue, and should include the use of 

spectrometer sampling at numerous locations, expanding to include not only seagrass 

beds, but several other benthic habitat types such as oyster reefs and shell hash bare 

areas. Collection of signatures from several types of bare areas could allow 

discrimination of these important habitat types, as well as aid in discrimination of 

seagrass types.  

Future studies of this type will benefit from incorporating bathymetric measuring 

systems such as LiDAR. There are several studies being conducted that will aid in 

melding the spectral and bathymetric data sets. As well, future studies should also include 

mapping both real and potential biomass, as well as predicting areas of species expansion 

based on contemporary conditions. Finally, future studies should examine the relationship 

between accretion of sediment and decreases in bathymetry in relationship to sea level 

rise. 
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