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ABSTRACT

Remote sensing using multi- and hyperspectral imaging and analysis has been
used in resource management for quite some time, and for a variety of purposes. In the
studies to follow, hyperspectral imagery of Redfish Bay is used to discriminate between

species of seagrasses found below the water surface.

Water attenuates and reflects light and energy from the electromagnetic spectrum,
and as a result, subsurface analysis can be more complex than that performed in the
terrestrial world. In the following studies, an iterative process is developed, using ENVI
image processing software and ArcGIS software. Band selection was based on
recommendations developed empirically in conjunction with ongoing research into depth
corrections, which were applied to the imagery bands (a default depth of 65 cm was
used). Polygons generated, classified and aggregated within ENVI are reclassified in
ArcGIS using field site data that was randomly selected for that purpose. After the first
iteration, polygons that remain classified as ‘Mixed’ are subjected to another iteration of
classification in ENVI, then brought into ArcGIS and reclassified. Finally, when that
classification scheme is exhausted, a supervised classification is performed, using a
‘Maximum Likelihood’ classification technique, which assigned the remaining polygons
to the classification that was most like the training polygons, by digital number value.
Producer’s Accuracy by classification ranged from 23.33 % for the “MixedMono’ class to
66.67% for the ‘Bare’ class; User’s Accuracy by classification ranged from 22.58% for
the “MixedMono’ class to 69.57% for the ‘Bare’ classification. An overall accuracy of

37.93% was achieved. Producers and Users Accuracies for Halodule were 29% and 39%,
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respectively; for Thalassia, they were 46% and 40%. Cohen’s Kappa Coefficient was

calculated at .2988.

We then returned to the field and collected spectral signatures of monotypic
stands of seagrass at varying depths and at three sensor levels: above the water surface,
just below the air/water interface, and at the canopy position, when it differed from the
subsurface position. Analysis of plots of these spectral curves, after applying depth
corrections and Multiplicative Scatter Correction, indicates that there are detectable
spectral differences between Halodule and Thalassia species at all three positions.
Further analysis indicated that only above-surface spectral signals could reliably be used
to discriminate between species, because there was an overlap of the standard deviations
in the other two positions. A recommendation for wavelengths that would produce
increased accuracy in hyperspectral image analysis was made, based on areas where there
is a significant amount of difference between the mean spectral signatures, and no

overlap of the standard deviations in our samples.

The original hyperspectral imagery was reprocessed, using the bands
recommended from the research above (approximately 535, 600, 620, 638, and 656 nm).
A depth raster was developed from various available sources, which was resampled and
reclassified to reflect values for water absorption and water scattering, which were then
applied to each band using the depth correction algorithm. Processing followed the

iterative classification methods described above.

Accuracy for this round of processing improved; overall accuracy increased from
38% to 57%. Improvements were noted in Producer’s Accuracy, with the ‘Bare’

classification increasing from 67% to 73%, Halodule increasing from 29% to 63%,
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Thalassia increasing slightly, from 46% to 50%, and ‘MixedMono’ improving from 23%
to 42%. User’s Accuracy also improved, with the ‘Bare’ class increasing from 69% to

70%, Halodule increasing from 39% to 67%, Thalassia increasing from 40% to 7%, and

‘MixedMono’ increasing from 22.5% to 35%.

A very recent report shows the mean percent cover of seagrasses in Redfish Bay
and Corpus Christi Bay combined for all species at 68.6%, and individually by species:
Halodule 39.8%, Thalassia 23.7%, Syringodium 4%, Ruppia 1% and Halophila 0.1%.
Our study classifies 15% as ‘Bare’, 23% Halodule, 18% Thalassia, and 2% Ruppia. In
addition, we classify 5% as ‘Mixed’, 22% as ‘MixedMono’, 12% as ‘Bare/Halodule
Mix’, and 3% ‘Bare/Thalassia Mix’. Aggregating the ‘Bare’ and “Bare/species’ classes
would equate to approximately 30%, very close to what this new study produces. Other
classes are quite similar, when considering that their study includes no “‘Mixed’

classifications.

This series of research studies illustrates the application and utility of
hyperspectral imagery and associated processing to mapping shallow benthic habitats. It
also demonstrates that the technology is rapidly changing and adapting, which will lead
to even further increases in accuracy. Future studies with hyperspectral imaging should

include extensive spectral field collection, and the application of a depth correction.



viii

DEDICATION

This humble body of work is dedicated to:

... The memory of my father, Howard Anthony Wood, Sr., who taught me that hard work,

integrity, and perseverance is worth it in the end,

...To Dennis Pridgen, a friend and colleague who shared his love of the study area with
me over a warm cup of coffee on a cold sunny day with very little wind, with the
icy water lapping at the sides of our boats hitched side by side, and his desire to

protect and understand it, and who passed from this world at far too young an age,

...To my son, with the knowledge that it may not be perfect, but does strive to be so,

...To my grandchildren, with the hope that this may someday make a difference in your
lives, and in the world in which I hope you live a long, long time, and always

have time to enjoy,

... To my family and friends, who often encouraged me and seldom questioned my mental

state,

... and last but not least to my dear wife, for always being there, supporting me,

encouraging me and refusing to let me give up.



ACKNOWLEDGEMENTS

Over the last arduous and seemingly everlasting seven and one half years, there
have been many who have contributed both support and encouragement, in large and
small ways to the completion of this endeavor. | would be remiss if | did not
acknowledge Ed Harte and the Harte family, who had the vision to create the Harte
Research Institute, and the inspiration for many of us to ‘make a difference’. My
dissertation committee, composed of Jim Gibeaut, Wes Tunnell, Jim Simons and Gary
Jeffress, has been a valuable asset in the quest to become a better scientist. Those who
have offered advice and encouragement along the way will be silently remembered. To
those who have funded this research and invested considerable time (Jim Gibeaut, Wes
Tunnell, and Larry McKinney, NOAA Environmental Cooperative Science Center)
‘thanks!” will never be enough. To my long-time mentor and friend, Liz Smith, who
always has an encouraging word, | can only hope to repay you by being as good a mentor

to someone else along the way.



TABLE OF CONTENTS

Contents Page
A B ST R A CT e et e e e e e e e e e e e e e naa e e nraeeanreeans \
DEDICATION .ttt e et e et e e abe e e ste e e snaaeeansaeesnneeennneeans viil
ACKNOWLEDGEMENTS ...ttt aae e e e e e nnneas iX
LEST OF FIQUIES ..ottt bbb Xiii
LISt OF TADIES ... XVi
CHAPTER I: BACKGROUND AND HYPOTHESES .........cooi i, 1
] 8 oo 11 o1 [ ] o 1SR 1
Background and FEIEVANCE ...........coveiiiiiie ettt neas 3
Seagrass habitats are declining..........ccccovvevi e 5

The role of seagrass as an iNdiCator SPECIES .........cvvevverieeriesieeieere e ere e 8

Seagrass as a filter/sediment trap ........ccccceeveiieve e 10

Seagrass serves as a nursery habitat ..., 12
Monitoring Seagrass ECOSYSIEMS ........ccveiverieeiesieesie ettt 13
SWIMMING traNSECE SUNVEYS .....ccvveivieieiiieiie e cteeste e e 14

Remote sensing of benthic habitats.............c.ccccoeceiiiiieiiccceee, 14

Multispectral Imaging .........cccvevveieiieiice e 17

Hyperspectral imaging.........cccooveveieeiiiie e 20

Choices among monitoring teChNIQUES ..........ccveeiiciece e 22

Purpose, objectives and NYPOTNESES ..........coiiiiieiiiee s 25
Objectives and NYPOTNESES ........coveieiiiiiee e 25

ODBJECLIVE L. ..o 25

HYPOhESIS L. 25

Intended pProject results. ........ccoveeiieie e 26

ODBJECLIVE 2. ..o 26

HYPOhESIS 2. 26

Intended pProject results. ........ccoveeiieie e 26

ODBJECLIVE 3. ..t 27

HYPOhESIS 3. 27



Xi

Page

Intended Project results. ... 27

RS (L0 VAT L =T S 27
Dissertation OrganiZatiON............cceoeiieiieie e e sae e e e te e sreestesneesreeees 30

CHAPTER Il: HYPERSPECTRAL DISCRIMINATION OF BENTHIC HABITAT

TYPES < 31

ADSTFACT ... bbb bbbt 31
INEFOAUCTION ... bbbt sb e bbbt 31
IMIEENOMS ...ttt bbb 32
STUAY BIBA ... .eeueeeiee ettt sttt et e st et e nneenns 33

Field COlECted data........cccviieiiee e e 34

ACQUITed IMAGEIY At ........eeviriieiieie e e 36

IMAGE PrOCESSING ....vvereiiiieiteeieeie ettt ettt ettt ettt be et eneenres 40

VW ECTOT PIOCESSING ..uvieveeiteeieesieateesteesteeseesteesbesseesbe e beeseesreesbessbesreesbeeseesreesbeenee e 42

The field *“MaiNSPECIE ......ooiiiiieeee s 43

The field “grassTYPe’ ...vo e 45

The SECONA IEIAtION .....ocveiieeie e e 51

The third ITEratioN ......ccvceeieee e 53

The fOUrth ITEratioN........cveiieece s 53

RESUITS. ...ttt ettt et e s e st e e te e s e e te e teeneesreenbeaneenreeee s 56
ACCUIACY SSESSIMENT....ciiiieiiiieiiiie st e sttt e et e e b e e e nnneas 57

USEI™S QCCUTACY ..vvveeviieeiiieesitiessireesireesieeesnseeesnbeessnbeessnneessnneesnsneas 58

PrOAUCEI’S CCUNACY ....vvevveeveeireeieeiesieesieeeesteesreestesreestaeseesnnessaeneens 59

OVErall ACCUIACY ....cvviivieiicic et 60

Presence/Absence and accuraCy aSSeSSIMENTS.........ccverveiiereeresieesieesreseeseennens 60

Accuracy assessment for Presence/Absence classification............ 60

Cohen’s Kappa Coefficient...........ccevvieeiviie s 61

[ 1101 XS] o o T OSPRRTPSRPRN 62

CHAPTER I11: IDENTIFYING SPECTRAL DIFFERENCES IN SEAGRASS

SPECIES ... .o 66

A DS G e 66



xii

Page

ENEFOAUCTION <. e ettt e e e e e e e e ettt e e e e e e e e e e e e e e e e e e e e 67

VI EENOAS ...ttt e e e e e e ettt e e e e e e e e e aaaeaaaaaas 68

STUAY BB ...ttt bbb 68

Data aCQUISTTION ......veiiiiiiiiieieie ettt 69

Data ManipUIation ...........ccooeiiiiiii e 73

DESCUSSION <.ttt et e ettt e e e e e e e e et e e e e e e e e e et eeeeeeeeeeeeeeeaaeens 82
CHAPTER IV: HYPERSPECTRAL DISCRIMINATION OF BENTHIC

HABITAT TYPES: TAKE DEUX ....oooooiieieeeeeeeeeeeeeeaeeee, 88

AT ACT ...ttt e e e e e —————aaaaaaaa 88

ENEFOAUCTION <. ettt e e e e e e e e et e e e e e e e e e et e e e e e e e e e e 88

VI EENOAS <. et e ettt e e e e e e et e e e e e e e e e e raaaeaaaaaa 90

STUAY BB ...ttt 90

FIRIA Qata..c.coeeeeeeeeeeeeeeee e, 91

ACQUITE GALA ... bbbt 93

IMAQE PrOCESSING ...veeveereeteiteite sttt bttt bbbt 94

V/ECTON PrOCESSING ....vivieteeieeieete ettt ettt b bbb bbb as e 96

The SECONA HTEIALION ..., 97

The third TEEIatION ..o 98

The FOUtN HEIatION ..o, 98

RESUITS. ...ttt ettt e e e e e e e e e et e e e e e e e —aaaans 99

CONCIUSIONS ...ttt ettt et e e e e e e e e e et e e e e e e e e e e e e eeeeeeenaenaees 111

CHAPTER V: SUMMARY AND CONCLUSIONS ... 114

U 1110 4 T= 1 PSPPSR 114

CONCIUSIONS ...ttt ettt e e e e e e e et e e e e e e e e e e e eeeeeeeeenaeneees 119

SNOMCOMINGS ...ttt 119

FULUIE TESBAICH .o, 121

(] =) = L O] T O ) (=T TR TORRRRRRRR 123



Xiii
LIST OF FIGURES
Page
Figure 1.1. The extent of global seagrass diversity and distribution. From 2005 UNEP-

WCMC, as adapted by Short (2007)......cccceieiieiieieiiese e 3

Figure 1.2. Macroalgae covering Thalassia bed, possibly causing oxygen depletion and
HGNE SNAAING. ... e 7

Figure 1.3. The effects of sun angle and haze. Left: 2004 NAIP RGB imagery, flown
November 4-7 2004, Right: 2008 (Summer) NAIP Imagery flown May 2008..16

Figure 1.4. The portion of the electromagnetic spectrum most often used for digital
[T =T Y SR URPS 17

Figure 1.5. Relationship between spectral absorption (Ky) by an estuarine water column
of 2.1 m and the mean + SD spectral reflectance of 3 seagrass species
(Posidonia australis, Halophila ovalis and Zostera capricorni) with leaf
T 0] ][] 1 £ SRS PSP 21

Figure 1.6. Spectral responses for a) Halodule against a black panel, b) Thalassia against
a black panel, ¢) Halodule at 55 cm depth, d) Halodule at 46 cm, and e)
Thalassia at 105 cm depth (personal communications, Cho 2008).................... 22

Figure 1.7. Location and general layout of Redfish Bay, TeXas........ccccccevvriverrivesnennnn. 29
Figure 2.1. The Redfish Bay study area encompasses approximately 3,200 hectares......34
Figure 2.2. The processing flow within the ENVI EX and the ArcGIS software............. 42

Figure 2.3. The ArcPython Model Builder diagram for the selection process, showing the
selection of learning points that lay within the selected polygon class, and then
the selection of the polygons containing those learning points. ...........cccccceve.ee. 44

Figure 2.4. Classification of Redfish Bay benthic habitats after the first iteration with the
‘Mixed” and “NoO Clues’ Classes remMOVEd. ........ccocvveiiiinieieiene e 50

Figure 2.5. Classifications after the second iteration of processing, including results from
both iterations, but omitting the ‘Mixed” and ‘No Clues’ classifications........... 52

Figure 2.6. Final output from the classification of the benthic habitats in Redfish Bay,

Figure 2.7. Percentage of coverage of the study area by each habitat class. .................... 57



Xiv

Page

Figure 3.1. Contributions to the total upwelling radiance above the sea surface, (L,). is
depicted With the green arrOWS.. ........coveieeie e 70
Figure 3.2. Distribution of depths of recorded spectral readings...........cccocevvervriininnnnnn 71

Figure 3.3. Photographs of seagrass, taken from the water surface (left), and the
SUDSUITACE, (FTGNT). .o 70

Figure 3.4. Mean reflectance values for both Thalassia and Halodule of the entire
AALASEL. ..ttt 74

Figure 3.5. Thalassia reflectance captured from above the surface of the water, before
(o101 (=T [0 0L USRS PRPRRRP 74

Figure 3.6. Halodule reflectance captured from above the water surface, before
COrrections are apPlIEd. .......ccooiiiiiii e 75

Figure 3.7. Spectral curves from Thalassia, captured from below the water surface.......76

Figure 3.8. Reflectance curves for Thalassia have been normalized and the MSC

=Y 0] 01 11T 1 OSSO OUPSTPS 77
Figure 3.9. The effects of multiplicative and additive SCatter..............ccoocevireniriiininnnn, 77
Figure 3.10. Spectral curves of Halodule, captured from just below the surface............. 78
Figure 3.11. Spectra from Thalassia, captured at canopy level...........ccccooevveiviieinennen, 78
Figure 3.12. Thalassia spectra, captured at canopy level, and normalized. .................... 79
Figure 3.13. Halodule spectra, captured at canopy level...........cccooceveveeieicevnccecee, 79

Figure 3.14. Halodule spectra, captured at canopy level, and corrected for depth and
IMISC. ettt bttt r e 80

Figure 3.15. Mean, +/- STD of Thalassia and Halodule from Surface, Normalized and
S OSSPSR 81

Figure 3.16. Mean, +/- STD of Thalassia and Halodule, normalized and MSC, from the
SUDSUITACE. ...ttt bbbttt b bbb ere s 81

Figure 3.17. Mean, +/- STD of Thalassia and Halodule, measured at the canopy,
NOrMalized and MSC. ........oiiiiiiiiic e 81



XV

Page
Figure 3.18. Wavebands, marked in grey, that are recommended for discriminating
between Posidonia australis (P), Halophila ovalis (H) and Zostera capricorni
(2), from Fyfe and DekKer (2001). .......ccoiereriiiiinisisieeeeee e 82

Figure 3.19. Reflectance in the 400 — 1000 nm range of individual blades of Thalassia
testudinum, Syringodium filiforme and Halodule wrightii. ............c.cccovevvennnnne. 83

Figure 3.20. Suggested areas for band selection are between 600 — 660 nm, as well as
1S3 110 1 TP TR PP RURTOPR 84

Figure 3.21. Seagrass photographs from a) above the surface and b) below the surface. 86

Figure 3.22. Three different spectral responses from Thalassia testudinum blades:
Healthy blades with 32 ppt chlorophyll, yellowing and brown mottled leaves
which were losing their pigments, and black leaves which were dead............... 86

Figure 4.1. The study area, the northern part of Redfish Bay, in the Coastal Bend Area of
TBX@S. ettt R e n e 91

Figure 4.2. Three capture levels of spectral readings: surface, subsurface, and canopy. 92

Figure 4.3. Suggested areas for band selection between 600 — 660 nm, as well as 535 nm
for a reference point where there is little difference between the bands. ........... 95

Figure 4.4. Depth raster (bathymetry) of Redfish Bay derived from multiple sources. ...95

Figure 4.5. Results from first iteration. The “Mixed’ and ‘No Clues’ classes have been
=T 0001V T RSOSSN 100

Figure 4.6. Output polygons from the second iteration. The ‘Mixed” and ‘No Clues’

classes have Deen remMOVEd. ..........ccooviiiiiiiic e 102
Figure 4.7. The output from the third iteration of reprocessing........c.cccceevevevvevvinenne. 104
Figure 4.8. The final output from reprocessing using a depth correction and improved

DAN SEIECTION. ... s 106
Figure 4.9. The benthic habitat makeup of Redfish Bay, TeXas............cccccvevvvriverirrnnnne. 109
Figure 4.10. Benthic habitat proportions from Chapter Il. ...........ccccoevveieiiiiecireee, 109

Figure 5.1. Suggested areas for band selection would be between 600 — 660 nm, as well
as 535 nm for a reference point where there is little difference between the
DANGS. ..t 118



XVi

LIST OF TABLES

Table 1.1. Recommended minimum conditions for aerial imagery collection................. 16

Table 1.2. Conversion of photo scale to resolution, in meters or feet, for images scanned
at 600 dots per inch (DPI) or pixels per inch (PPI) for common scales or
(=110 (0110 01T 23

Table 1.3. Conversion of pixel size to photo scale. ... 24

Table 2.1. Matrix of Seagrass Mixes observed in Redfish Bay. Sediment and Algae were

recorded sporadically, as background values. ..........cccccoevvvieieiienieece e 36
Table 2.2. Capabilities of the AISA Eagle sensor used in this project, .........cccccevverurenee. 38
Table 2.3. The flight parameters used for thiS Project. ...........ccocvvviiieieninereecee, 39
Table 2.4. Portion of an attribute table with classification data for Redfish Bay.. ........... 44
Table 2.5. Summary of the ArcGIS vector processing output for the first iteration,

showing the number and area of polygons in each classification...................... 47
Table 2.6. Description of ‘grassType’ attribUtes. ... 48

Table 2.7. Classification results from the second iteration including the number of
polygons and total areas found in each classification.............cccccoevveviviieinennnnn, 51

Table 2.8. Classification results from the third iteration, including the number of
polygons and area in each classification............ccccccooeiviiiicii i, 53

Table 2.9. Final number of polygons and sums of the area of each classification, as well
as the mean area of polygons within each class...........ccccooevieniiii i, 54

Table 2.10. Final number of polygons and the area of each class when the classes are
combined as described INthe tEXL.. ......ccoveeiiieiiec e 56

Table 2.11. Number of polygons, total area and mean area per polygon for bare and
aggregated grass-COVEIEU @rEaS. .........ccuevueieeiieerueiiesieeresreesieeseeseesssessesreesreeneens 57

Table 2.12. Confusion matrix and accuracy assessment for the final output. .................. 59

Table 2.13. Confusion matrix and accuracy assessment for aggregated *Grass’
ClaSSITICALIONS. ...eveeie ettt nne s 61

Table 3.1. Specification sheet for the Jaz Modular Spectrometer. ..........cccccevvevvevireeenne. 71



xvii

Page

Table 3.2. A typical data file as collected with the Jaz Spectrometer reveals the
parameters spectra acquisition, as well as time, date, wavelength (W), dark (D)
and reference readings (R), collected signal (S), and processed (P) signal. ....... 73

Table 4.1. Specifications for the Airborne Imaging Spectroradiometer for Applications

(AISA) Eagle Hyperspectral SENSO..........coviveieiieiieieiie e 93
Table 4.2. Attribute table with classification data for Redfish Bay. ............ccccoovvvinennee. 97
Table 4.3. Results from the first Iteration.. ..........cccovvereiiiiiiiicee s 101

Table 4.4. Combined results of iterations 1 and 2, showing total areas and numbers of
(010 )Y/ [0 41U SR STRSURR 103

Table 4.5. Combined output from the first three iterations.............ccooveeveiiieneienenn, 105

Table 4.6. Results of iterations 1-4, with area and number of polygons found in each
class. These are the final results of the reprocessing. ........cccccveveviverviieseennn, 107

Table 4.7. The final number of polygons and the area of each classification from the final
iteration in the first set of processing from Chapter Il...........cccccooeoveviviieiiennnn 108

Table 4.8. The differences in areas and number of polygons between the classifications
in Chapter [1 and Chapter 1V.. ... 108

Table 4.9. Confusion matrix details the accuracy assessment for the classifications
generated using the improved band selection and water depth corrections using
0 T 01 T ] -] SRS 111

Table 5.1. ArcGIS data table with classification data for Redfish Bay. Note that the first
line of the table contains fieldNamesS..........cocooviiiiiiiiie 116

Table 5.2. The final number of polygons and sums of the areas of each classification
from the initial ProCeSSING. .....cooviiiiiiiice e 116

Table 5.3. The accuracy assessment from the initial processing. .........cccccceveveverivereennn. 117

Table 5.4. Results of the accuracy assessment performed on the output from the second
processing of the hyperspectral imagery of Redfish Bay. ......c..ccccccovvveivennne. 119



CHAPTER I: BACKGROUND AND HYPOTHESES

INTRODUCTION"

The Texas coast is widely known for its rich natural resources (Tunnell and Judd
2002), and much of this richness and high biodiversity is attributable to vast estuarine
seagrass-dominated communities (Pulich and Onuf 2004). A small (6,180 hectares) but
important part of this coastal area is Redfish Bay, a major component of the 75,150
hectare Mission-Aransas National Estuarine Research Reserve (MANERR) (Beyer et al.
2007). This research reserve was established in 2007 and tasked with the mission to
ensure that coastal management decisions benefit flora and fauna, water quality, and
people by bringing together scientists, landowners, policy-makers, and the public (Bittler
2011). Redfish Bay is located between Aransas Pass and Port Aransas, and Halodule
wrightii and Thalassia testudinum are co-dominant seagrass species (Fry and Parker

1979) in this shallow estuarine ecosystem.

These seagrass beds have undergone intense research: Cowper (1978) studied the
drift algae community found interspersed within the blades; Pulich et al. (1976) studied
the trace metal cycles; Fry and Parker (1979) studied the animal diets within the

meadows; McMillan (1991) studied the longevity of the seed reserve; and Major and

' Format: Ecology



Dunton (2002) studied the effects of the variations in light-harvesting characteristics.

Short and Wyllie-Echeverria (1996) studied the effects of propeller scarring.

Between 2005 and 2040, the population of Texas coastal counties is predicted to
rise 108%. Furthermore, populations are becoming more mobile, and an increasingly
large number of coastal habitat users are coming from larger cities hundreds of miles
from the coast. With these increases come increasing stresses on the estuaries and coastal
environments that serve as an interface between the mainland and the seaward barrier

islands (Cohen et al. 1997).

These estuaries also are subject to increased environmental pressures from
nutrient enrichment in the watersheds that feed them (Montagna and Kalke 1992). As
populations in these areas increase, so have the industrial and agricultural influences.
Other influences include decreased freshwater inflows due to increasing demands for
fresh water, and increases in recreational and commercial fishing have increased turbidity
levels. Increased dredging to accommodate the growing populations has had a similar
effect. All of these stressors can impact the sustainability of our estuaries and coastal
habitats and systems. The goal of coastal management is to monitor and evaluate the
conditions of these habitats, which are recognized as essential to the well-being of fauna,
flora and the quality of human existence along the coast (Diaz et al. 2004). Remote
sensing provides a means to monitor many of these conditions on a regional or landscape

scale.



BACKGROUND AND RELEVANCE

Submerged aquatic vegetation (SAV) is a group of vascular plants that grow
below the water surface, but do not emerge, and includes what is commonly known as
seagrass. Seagrasses in the bays and estuaries of the northern Gulf of Mexico (Handley et
al. 2007) are important on national and even global scales. Figure 1.1 shows the global
diversity and distribution of seagrasses (Short et al. 2007). The meadows found in the
northern Gulf of Mexico cover the majority of the total distribution in the US, and over
5% of all seagrass found world-wide (Beck et al. 2007). In Texas, 85% of the total
seagrass vegetation for the entire coastal zone is found in the Laguna Madre. These
seagrass meadows cover over 730 km” of bay bottom, and are comprised of five different
species (Onuf and Ingold 2007). Five of 50 species found worldwide are in Coastal Bend
estuaries (Duarte 1999): Thalassia testudinum, Halodule wrightii, Syringodium filiforme,

Halophila engelmanni, and Ruppia maritima, with Halodule and Thalassia dominant.

Figure 1.1. The extent of global seagrass diversity and distribution. From 2005 UNEP-
WCMC, as adapted by Short (2007).



Seagrass meadows perform or contribute to at least twelve of the 17 recognized
ecosystem services, including gas regulation (regulation of atmospheric chemical
composition, such as CO,/O, balance, O; levels for UVB protection, and SOy levels),
disturbance regulation (including dampening the ecosystem responses to storms, floods
and droughts and other environmental variability), hydrologic flow regulation, erosion
control, soil formation, nutrient cycling, waste treatment, habitat and refuge, food
production, raw materials and recreational services (Costanza et al. 1997). Seagrasses
provide vital nursery and spawning habitat for many marine and estuarine fishes (Jagtap
et al. 2003), and they provide protected areas for juvenile and adult fish and shellfish.
Seagrasses and detrital material from them also serve as food sources for a variety of
microbes, juvenile fishes and benthic organisms, which in turn feed larger organisms,
fishes, molluscs, crustaceans, and echinoderms (Jagtap et al. 2003) which then serve as a
food source for waterfowl, turtles and mammals (Orth et al. 2006). They add oxygen to
the water column, help stabilize sediments (Jagtap et al. 2003), and diffuse and absorb
wave energy (Fonseca and Cahalan 1992). They alter water flows and trap sediments
(Orth et al. 2006). By affecting the currents and flows through the estuary, they collect
both organic and inorganic materials, which also help stabilize and bind the sediments
(Wood et al. 1969), preventing erosion and preserving the microflora found in sediments
and at the sediment/water interface. Seagrasses also support an extensive community of
macrophytes and epiphytes, further aiding in the trophic structure and diversity of
estuarine ecosystems (Harlin 1975). Detritus also provides organic matter necessary for
sulfur reduction and cycling. The vast beds of seagrasses are recognized as important

indicator species for estuarine environments (Ward 1987).



Remote sensing enables spatial analysis of seagrass and benthic habitats on a
landscape scale (Weng 2002). Researchers have used remote sensing to monitor and
analyze benthic habitats, algae, SAV distribution, and coral reef ecosystems, using a
variety of scales and both aerial and satellite platforms (Mishra et al. 2005). Much of this
research has been accomplished using multispectral imagery, often using the shorter
visible bands that have higher water penetration. In addition to monitoring the present
condition of these habitats, time series analysis can be performed with images from
different time periods (Dobson and Dustan 2000). The Near-Infrared (NIR) region of the
spectrum is seldom used due to its high spectral attenuation through water, despite
serving as the primary cue for discriminating vegetation type and a critical component for
vegetation indices such as the Normalized Difference Vegetation Index (Cho and Lu
2010), Green Leaf Area Index (Bréda 2003), MERIS Terrestrial Chlorophyll Index (Dash

and Curran 2004) and Wide-Dynamic Range Vegetation Index (Gitelson 2004).

Several states have attempted to estimate the economic value of their seagrass
habitat. The Texas Parks and Wildlife Department estimates the value of seagrass habitat
at $9,000 to $28,000 per acre in commercial, recreational and hydrologic economic
benefits (Handley et al. 2007). Likewise, the Florida Department of Environmental
Protection estimates a total economic benefit of $55.4 billion, equating to approximately
$20,500 per acre (Handley et al. 2007). Costanza et al. (1997) have calculated the value

in 2010 dollars to $34,000 per acre per year.

Seagrass habitats are declining
Declines in seagrass habitats have been occurring on local, regional and global

scales. The decline has been attributed to various anthropogenic and natural disturbances,



including dredging (Onuf 1994), nutrient enrichment, and propeller scarring from
recreational and commercial fishing boats (Quammen and Onuf 1993, Dunton and
Schonberg 2002, Burfeind and Stunz 2006). Loss of seagrass habitat has been
documented since the mid-1970s (Merkord 1978); Onuf performed a vegetation survey in
the Laguna Madre in 1988 (Onuf 1996), confirming a 140 km* decrease in cover between
the mid-60s and 1988. Much of this loss is attributed to increased turbidity (Baden et al.
2003) resulting in low light levels reaching the sediment layers. In Laguna Madre, this is
at least partly a result of maintenance dredging of the Gulf Intracoastal Waterway

(Quammen and Onuf 1993).

Degradation of seagrass habitats is a cause for concern for communities
throughout the northern Gulf of Mexico. Over the last 50 years, seagrass habitat losses
are estimated in ranges from 20-100% for most estuaries in Gulf coastal regions. As
coastal populations increase (Cohen et al. 1997), further stresses can be expected.
Increased nutrient loading, dredging, shoreline development, and boating are all expected

to increase simultaneously (Handley et al. 2007).

Irresponsible boating in shallow waters can contribute to undesirable changes in
the seagrass habitats by causing increased fragmentation. Propeller scarring creates
channels through the matrix of seagrass vegetation, dissecting continuous beds into
smaller patches causing an increase in edge-to-area ratios. These scars can have
permanent effects (Dunton and Schonberg 2002), although most will heal to some extent

in two to ten years (Uhrin and Holmquist 2003).

There are also natural stresses on seagrass habitats, including the hydrodynamics

and fetch of individual bay and estuary systems. Storms erode the sediments or bury



seagrasses beneath them. Changes in water levels expose seagrass to harsh climatic
conditions. Outbreaks of disease, overgrazing by nekton, and freshwater-caused changes
in salinity (Pulich 2007) also put great stresses on seagrasses. Light shading and oxygen

depletion are often caused by an overgrowth of macroalgae, as shown in Figure 1.2.

Figure 1.2. Macroalgae covering Thalassia bed, possibly causing oxygen depletion and
light shading.

Between 1990 and 1997, the microalga Aureoumbra lagunensis bloomed
constantly in the Laguna Madre (Buskey et al. 1998). This ‘brown tide’ bloom began
after an extended drought, which raised salinities in the hyper-saline lagoon far above
normal, to as much as ~60 PSU (Buskey et al. 1998). Reduced water clarity reduced the
distribution of seagrass from deeper water by reducing the amount of light available
(Dunton 1994, Onuf 1996, Burfeind and Stunz 2006). Stressed seagrass beds often signal
stresses on the whole coastal ecosystem. Along with a reduction in seagrass, reductions in
biomass and diversity of grazers were noted during the brown tide (Buskey and Hyatt

1995).



The role of seagrass as an indicator species
The evaluation and assessment of the environmental status of ecosystems is often
accomplished with the use of indicators and indices (Casazza et al. 2002, Fonseca et al.
2002). By analyzing the parameters of an appropriate indicator, information can be
gained about a complex system beyond what is directly associated with that indicator
(Casazza et al. 2002). Living organisms represent the most appropriate indicators for the
environmental quality of a water body, as they integrate biotic and abiotic components

through their adaptive responses (Casazza et al. 2002).

Seagrass is often considered to be a biological indicator for estuarine ecosystem
health. Bio-indicators are essential for monitoring the coastal environment because they
send complex messages in simplified and useful ways, providing insights about a trend or
event that cannot be observed directly. Because seagrass communities are stationary, and
tend to respond cumulatively to the effects of eutrophication, seagrasses can be used as
bio-indicators for long-term water quality (Harlin 1975). When used as a bio-indicator,
seagrass can serve as an early warning system of pollution or a degrading ecosystem,
helping to sustain other interrelated critical resources (Harlin 1975, Linton and Warner
2003). By observing and analyzing changes signaled by bio-indicators, managers can
monitor the state of the coastal environment and measure the effects of management
strategies, as well as environmental, social, and economic activities. Changes may be
indicated by seagrass presence/absence, condition, and growth rate. Declines in shoot
biomass and density can signal increased eutrophication levels. Excess nutrients increase

epiphyte loads (Harlin 1975), decrease irradiance (Tomasko and Lapointe 1991) and



lower seagrass productivity (Sand-Jensen 1977). These stressors can ultimately result in

seagrass die-off.

As an environmental status indicator, seagrass can provide a means of measuring
the results of policies and actions, as well as a means to monitor the impacts of
anthropogenic and other stressors. Seagrass can be used to assess current trends and
conditions, project future trends, and show the connections between social,
environmental and economic policies or actions (Linton and Warner 2003). Finding
patterns, such as quantitative differences in abundance and diversity of macrofaunal
organisms, root-to-shoot ratios, habitat use by sciaenid larvae and early juveniles, as well
as spatial and structural pattern characteristics such as patchiness, density,
contiguousness, biomass and blade length can indicate what stresses are present and help
identify the sources of stressors (Lewis et al. 1983, Edgar and Robertson 1992, Irlandi et
al. 1995, Rooker et al. 1998, Fourqurean et al. 2001). Measurements of growth rates,
rates of change, enzyme activities, and other biologic and physical parameters can
highlight the effects of those stressors on the community. Since communities generally
respond to stressors with a reduction in diversity and an increase in dominance by species
more tolerant to the particular type of stress, these changes may indicate what types of
stressors are active (Linton and Warner 2003). Seagrasses also require higher light levels
than most plants, and thus are sensitive to environmental changes that alter light
availability such as turbidity, suspended solids and water clarity (Orth et al. 2006).
Increased sediment loads directly affect seagrass productivity by reducing the light
intensity, which drives the photosynthesis in canopy tissue pigments (Ferwerda et al.

2007).
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Seagrass as a filter/sediment trap
One of the greatest threats to the ecological integrity of coastal ecosystems is
nutrient pollution. The world-wide trend of increasing human population densities in
coastal areas (Cohen et al. 1997) will shift population impacts from forested, agricultural,
suburban and urban land use areas to the coastal areas, with increasing delivery of
nutrients and sediments to these systems. This increase is a major stress to coastal

ecosystems, increasing turbidity and decreasing available light levels (Beck et al. 2007).

In tropical areas, sediments and nutrients (primarily phosphorous and nitrogen
compounds from agricultural fertilizers and the burning of fossil fuels) in freshwater
runoff are filtered first by coastal forests and then mangrove wetlands (Smith et al. 1999).
Seagrass beds provide a final filtration. This system of filters provides a buffer zone for
offshore reefs, and helps to create the oligotrophic conditions under which they thrive.
Reefs then act as a buffer between the open ocean and the onshore communities (Linton
and Warner 2003). In the Texas Coastal Bend area, there is no substantial offshore reef
system for many miles, thus the filtering process serves as the final filter between the

onshore communities and the open ocean.

Historically, the coastal system has been able to absorb large quantities of these
nutrients and sediments. For instance, results extrapolated from a study by Short and
Short (1984) showed nitrogen removal by seagrasses from the Indian River Lagoon in
Florida to be approximately 3890 metric tons annually, 11% of the nutrient load of the
Indian River. The system binds them up in plant biomass and the sediments that support
them, thereby improving water quality with lower water column nutrient concentrations

and phytoplankton biomass (McGlathery et al. 2007). Microalgae are able to bind up
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these nutrients for periods measured in days, and macroalgae are able to tie them up for
weeks, while seagrasses bind them on the scale of weeks to months (Valiela et al. 1992).
After this temporary sequestration, these nutrients are often re-mineralized or transferred
to microbial and other trophic systems and then excreted by grazers. These retention
times are often on the scale of years rather than months, further slowing the transport of

the nutrients to the sea (Duarte and Cebrian 1996).

In some areas, seagrass canopies are able to remove as much as 70% of the
suspended particles present within the canopy in less than an hour. There are two
processes involved: passive trapping occurs when the particles become attached to the
leaf surfaces, and active trapping occurs when the particles are ingested by phagotrophic
protozoans or filtered by suspension feeders in the seagrass community (Agawin and
Duarte 2002). The removal of phytoplankton from the water column by the epifauna
(hydrozoans, bryozoans, barnacles, and amphipods) found on seagrass leaves serves as an
important sink for phytoplankton biomass and seston loading in shallow seagrass
communities. Seagrass communities also trap and filter picophytoplankton, which may
explain negative picophytoplankton biomass and population growth rates found in some
seagrass meadows, even though the individual growth rates are high (Agawin and Duarte

2002).

Seagrass meadows provide another valuable ecosystem service by altering the
hydrologic flows and sediment deposition in lagoons and estuaries (Fonseca and Fisher
1986). Different species tend to alter friction and flows differently and thus affect the
deposition of sediments and nutrients. The different sizes, shapes and characteristics of

the seagrasses affect the flow of water over, around and through the seagrass beds, which
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in turn influences the sediment and particle types which are either deposited or eroded
(Fonseca and Fisher 1986). These changes can affect not only the estuary and its

inhabitants; they also influence the systems beyond, such as mangrove and reef systems.

Seagrass serves as a nursery habitat

A nursery habitat is defined as one in which a species recruits to the adult
population at a greater rate than other areas, due to any combination of density, growth,
survival and movement to adult habitats (Beck et al. 2001). The coastal ecosystem is
recognized as one of the most productive ecosystems, supporting a diverse variety of
macrofauna and invertebrates (Quammen and Onuf 1993, Beck et al. 2001). The
structurally complex coastal ecosystems provide nursery habitat for diverse juvenile
marine and estuarine fish species (Tolan et al. 1997), offering protection from predation,
providing abundant food supplies, and encouraging high growth and survival rates (Stunz
et al. 2002). Maximizing growth rates and minimizing time spent in vulnerable size
classes can have positive effects on population demographics (Stunz et al. 2002). The
relative values of coastal habitats are often determined by the density of nekton species.
High values are determined by high densities, and indicate high productivity, habitat
quality and preference (Rozas and Minello 1998). Seagrass meadows provide a habitat
that will support high densities of juveniles for commercial and recreational fisheries
(Quammen and Onuf 1993). However, the protection of these valuable habitats is not
solely dependent on conserving the habitats; protecting the ecological processes that help
support the increased growth and survival rates of species using them is also important

(Burfeind and Stunz 2006).
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Monitoring seagrass ecosystems

Ecosystem-based management is one of the most effective ways to conserve and
protect valuable seagrass habitats (Chen et al. 2007, Barbier et al. 2008, Halpern et al.
2008). Recent studies have demonstrated that anthropogenic activities have had a major
impact on all remaining coral reefs, seagrass beds and mangroves (Halpern et al. 2008).
Monitoring these changes is one of the key themes of ecosystem-based management
(Grumbine 1994). Many indicators of seagrass health have been identified and regular
monitoring of those indicators is needed to respond quickly and efficiently to a variety of
changes in the ecosystem (Beck et al. 2007, Chen et al. 2007). For example, estuarine
water quality management plans should focus on understanding and mitigating inputs
from storm water, river run-off, and dredging, as well as recreational and transportation
activities (Chen et al. 2007). Mapping and monitoring aids in quantifying and
understanding the spatial distribution of human impacts, helping in the evaluation of

trade-offs between human use and ecosystem conservation (Halpern et al. 2008).

Monitoring results are also an indispensable aid to policy makers and resource
managers (Coles 2004). Maps of seagrass distribution and change provide coastal
resource managers with valuable information that can be used in the continuing
assessment of estuarine health (Dekker et al. 2005). There are several methods of
monitoring and mapping seagrass and other benthic habitats in coastal areas, and each has
shown varying degrees of success. Seagrass monitoring programs must consider the
localized mechanisms which propagate stress responses. It is critical to continue seagrass
status and trends monitoring at the landscape level on a 2 to 3 year interval basis (Pulich

etal. 1997).
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Swimming transect surveys

Traditional surveys of seagrass beds in shallow waters involved swimming
transects through the bed and estimating coverage along the transect line (Merkord 1978).
Data collected typically includes species and the location along the transect line where
species or coverage changes occur. Attempts to standardize the coverage estimates are
sometimes facilitated with photographs. To shorten the time involved in this type of
survey, submersible video equipment has been employed. Video techniques involve
photographing the site along with some sort of scale indication, and then later estimating
coverage in the laboratory (Duarte and Kirkman 2001, Yamamuro et al. 2002). This
method can be used to develop very accurate habitat maps, but it is expensive, labor
intensive, and best suited for particular sites rather than for landscape or regional-scale

projects.

Remote sensing of benthic habitats

As pollution and habitat degradation escalates with coastal zone population
increases, legislation is being introduced at national, regional and local levels, requiring,
in part, more extensive monitoring. The demands of extensive monitoring of large areas
pose difficulties for conventional monitoring techniques. Aerial remote sensing provides
methods to assess and monitor large areas efficiently (Cracknell 1999), and terrestrial
landscape monitoring using aerial remote sensing has proven highly effective. The
coastal zone, however, may be the last frontier to benefit fully from modern aerial remote

sensing techniques.
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Image analysis of terrestrial habitats requires corrections for variability in
atmospheric conditions; benthic habitats pose additional challenges in that many of the
conditions that confound analysis are in a near-constant state of flux in terms of area and
time. Tides can alter the chemical and biologic constituents on an hourly basis, stirring up
sediments and changing the levels of salinity and particulates. Turbidity and production
levels can change within hours, and wind velocities can increase almost instantaneously
(Finkbeiner et al. 2001). Changes can occur in gradients over a study area, thus requiring
collection of extensive field data from the entire study area, as close to the collection time
as possible. In addition, sun angles change continuously, producing glare and glint rather
than useable data streams if preflight planning doesn’t preclude it. Table 1.1 shows
recommended conditions for aerial acquisitions over benthic habitats, while Figure 1.3

shows the effects of haze and/or glint.
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Table 1.1. Recommended minimum conditions for aerial imagery collection, adapted
from Finkbeiner et al. (2001).

Recommended Conditions for Aerial Imagery Flights

Turbidity  As low as possible. Avoid seasonal phytoplankton blooms, periods following heavy
rains or persistent strong winds. Water clarity should be confirmed the day of the
flight.

Phenology It is best to consider times of overlapping phenology, when biomass is highest for the
dominant species, if all other conditions are acceptable.

Sun Angle  Ideal sun angles are between 30 and 45 degrees for images at nadir

Tidal Stage Generally, the lower the tide, the better. Rising tides may improve the clarity by
bringing in clear marine water; however, this flow may also re-suspend sediments.

Wind and  Winds should be less than 7-10 mph. The direction, persistence, and fetch should all

Surface be considered. Whitecaps, wrack or debris lines, should not be visible from the air or
Waves in the imagery.
Clouds and

Haze Maximum recommended cloud cover is 5%. Haze should be minimal.

Figure 1.3. The effects of sun angle and haze. Left: 2004 NAIP RGB imagery, flown
November 4-7 2004, Right: 2008 (Summer) NAIP Imagery flown May 2008.
Note that the image on the right shows very little detail of the seagrasses found
below the surface of the water, while the image on the left shows a greater amount
of detail.
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Multispectral imaging

Researchers in the 1970s began using satellite-borne multispectral scanners to
map seagrass habitats (Ferwerda et al. 2007). Multispectral sensors collect data in a small
number of very broad bands, generally in the red, blue, green or near-infrared parts of the
spectrum (Figure 1.4). These satellite images proved to be of little use for ecosystem
monitoring. The resolution of these images (the old LANDSAT — Multi-Spectral data had
a resolution of 80 m, LANDSAT Thematic Mapper imagery has a resolution of 15 —30
m) does not permit enough detail for landscape scale mapping of estuarine and coastal

habitats (Malthus and Mumby 2003), although others have used Landsat Thematic
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Figure 1.4. The portion of the electromagnetic spectrum most often used for digital
imagery. In addition to the visible range, it includes both the ultraviolet and the
infrared spectrums. Adapted from Shull (2000).

Mapper (TM) and Landsat Multispectral Scanner (MSS) imagery to detect two species of
seagrass, Zostera marina and Ruppia maritima, and Armstrong used the visible bands of
Landsat TM to form an empirical estimate of seagrass biomass in the Bahamas (Ackleson

and Klemas 1987, Armstrong 1993). Temporal resolution, the time between subsequent
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images, is also a concern (Cracknell 1999). Newer, higher resolution satellite imagery is
available, but it is expensive for mapping large areas (Kelly et al. 2001). The remote
sensing community has always been challenged to find affordable, high resolution data
sets. IKONOS, QuickBird, RapidEye, and SPOT are costly and can be disadvantageous
for regional mapping due to their small footprint and often limited spectral resolution

(Watts et al. 2011).

In the 1990s, benthic habitat and ecosystem researchers used true color analog
aerial photography, which was then digitized, rectified, and manually interpreted to
obtain estimates of coverage of seagrass and other benthic habitat types (Malthus and
Mumby 2003). The resolution of aerial photography is quite good, often in the range of
0.25 m. The data derived from this imagery is often used as a historic baseline for
seagrass habitat loss studies (Ferwerda et al. 2007). However, because the imagery has to
be digitized and then individually rectified, there are often problems with the spatial
accuracy. The rectification process is labor intensive and photo interpretation is also

subject to interpretation errors (Dekker et al. 2005).

Fortunately, there have been numerous recent improvements in aerial
photography, digital photogrammetry and imagery, and automated/semi-automated
interpretation software (Malthus and Mumby 2003). Commercial remote sensing
companies such as ENVI (Environment for Visualizing Images), ERDAS (Earth
Resource Data Analysis Systems, and ER Mapper (Earth Resource Mapper) have
developed processes and algorithms that can incorporate not only the digital number
value of a pixel in an image, but also those pixels that surround that individual pixel and

other ancillary data, into processes that will produce vector polygon data sets that
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segment or group like areas which are in close proximity, according to parameters
selected by the user. Object oriented programming can then be used to classify the
polygons according to user input values. The processes described are referred to as
‘automated’ processing; the computer is performing the calculations and using the
algorithms that are developed without further human input. Very seldom is the output
from such automated processing sufficient for habitat mapping purposes, thus, the user
must use ‘semi-automated’ processing to supervise, manipulate and complete processing
of the data. Semi-automated processing usually involves manual selection or digitizing to

correct flaws in the data.

In the early twenty-first century, digital multispectral and hyperspectral sensors
mounted on specialized aircraft considerably reduced the costs associated with digital
imagery acquisition (Malthus and Mumby 2003). These aircraft employ real-time Global
Positioning Systems (GPS) and in-flight tilt and yaw compensation to deliver an imagery
product that eliminates almost all post-processing rectification, and has superior
positional and radiometric accuracy. Often, calibration and positional data are recorded
simultaneously with the image. Many imagery characteristics, such as color balance and
contrast, can be adjusted while in flight. Various resolutions can be obtained, with higher
acquisition costs directly related to higher resolution. While analog imagery provides a
map-based view of several square kilometers in each frame, many digital sensors collect
imagery in continuous rows or bands, thus eliminating edge-matching and other tedious
procedures necessary with analog imagery. While the equipment costs associated with
advanced digital imagery collection are great, considerable savings are realized when the

post-processing tasks are eliminated or reduced.
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Hyperspectral imaging

Hyperspectral scanning systems, also referred to as imaging spectrometers, can
capture numerous very narrow (1.5 - 30 nm) bands within the spectral region of
approximately 400-920 nm (Shull 2000). The high spatial and spectral resolution of these
systems allows accurate mapping of terrestrial vegetation to the species level when the
plants are spectrally distinct (Fyfe 2003). Hyperspectral imaging has also been used to
study benthic habitats. Fyfe (2003) used hyperspectral imaging to differentiate Australian
seagrass species, and developed a set of guidelines for selecting suitable bands for
hyperspectral discrimination of seagrasses. Fyfe’s guidelines state that the optimal
wavelengths for discrimination of seagrass species in coastal areas lie between 500 - 630
nm. Further, researchers should select one or two regions of good separation between
species in the absorption troughs and reflectance peaks of both the photosynthetic and the
accessory pigments found in local seagrass species. One region should be selected where
spectral separation is poor for use as a reference. Lastly, one or two regions of the
spectrum should be selected where epiphytic fouling is an obvious feature, such as are
found around 570, 595 and 620 nm. Figure 1.5 illustrates an effective selection of
spectral regions for seagrasses found in Australia (Fyfe and Dekker 2001). Each of these
bands form an additional ‘layer’ of data, which, when analyzed simultaneously, produce

the information for a particular pixel location.

Other researchers, including Mumby et al. (1998), have used hyperspectral
imaging to delineate coral reefs. Durand et al. (2000) developed algorithms to obtain
bathymetry, bottom coverage, and calculate water clarity and reflectance using

hyperspectral imagery (Mishra et al. 2007). Holden and LeDrew (2002), Maritorena
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(1996), Albert and Mobley (2003) and others have developed models, commonly called
‘water column corrections’ (Mumby et al. 1998), to adjust for the optical properties of the
water column, sea surface condition and other climatic and reflectance properties on
hyperspectral analysis, altering Lyzenga’s method for calculating a ‘depth-invariant
index’(Lyzenga 1981). The Lyzenga method is based on ratios of reflectance values
between hyperspectral bands (Tassan 1996). The alterations above have relied on a
variety of techniques, including using spectral libraries, measuring the spectral
characteristics of benthic habitat in situ (Maritorena 1996, Holden and LeDrew 2002), or
using the ratio of irradiance reflectance to the remote sensing reflectance (Albert and
Mobley 2003). Figure 1.6 shows uncorrected spectral response curves for two common

species of seagrass (personal communication, Cho 2008).
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Figure 1.5. Relationship between spectral absorption (Kg4) by an estuarine water column
of 2.1 m and the mean + SD spectral reflectance of 3 seagrass species (Posidonia
australis, Halophila ovalis and Zostera capricorni) with leaf epibionts. The grey
bars indicate suggested locations of wavebands for the remote sensing of benthic
vegetation (Fyfe and Dekker 2001). The thick solid line represents the spectral
absorption.
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Figure 1.6. Spectral responses for a) Halodule against a black panel, b) Thalassia against
a black panel, ¢) Halodule at 55 cm depth, d) Halodule at 46 cm, and ¢) Thalassia
at 105 cm depth (personal communications, Cho 2008). These spectral curves
have not been corrected for depth. Data collected during Redfish Bay fieldwork,
collected and processed by H.J. Cho, and combined and charted by the author.

Hyperspectral imaging opens up new dimensions in remote sensing of habitats;
however, it is more labor intensive, costly and time-consuming than multi-spectral
imaging. Sophisticated procedures requiring skills in mathematics, software, physics,
hardware and biogeochemistry are often required to derive data from hyperspectral

images.

Choices among monitoring techniques
There are many sources of digital imagery, and federal, state and local
jurisdictions often archive historic imagery, which is accessible by the public (Finkbeiner
et al. 2001). The data sets derived from these images can be used in Geographical
Information Systems (GIS), making remote sensing a valuable tool for assessing and

monitoring coastal habitats (Kelly et al. 2001).
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Recent studies (Pulich 2007) have implied that the best approach to mapping
benthic habitats at a landscape or regional scale is manual digitization of 1:9,600 scale
(presumably 0.4 m resolution, as in Table 1.2 and Table 1.3, below) aerial photography.
This result was determined by comparison of manual digitization of 1:9,600 scale images
with the manual digitization of 1:24,000 (presumably 1 m resolution, as in Table 1.2)
imagery (Pulich 2007). However, the manual digitization approach ignores recent
advancements in automated digital processing. Studies as early as 1998 have shown that
coastal areas can be mapped successfully using digital imagery and automated processing
at pixel sizes of 5 m or less (Finkbeiner et al. 2001). Digital imagery also allows for more
objective differentiation between objects that would appear similar in color to a photo
interpreter, but have slight differences in digital signature (Shull 2000). Minute amounts
of an object, such as sparse but continuous patches of seagrass, undetectable to the naked
eye even at extremely small scales, may affect the signature within a pixel or group of

pixels much larger than the object itself (Shull 2000).

Table 1.2. Conversion of photo scale to resolution, in meters or feet, for images scanned
at 600 dots per inch (DPI) or pixels per inch (PPI) for common scales or
resolutions. Adapted from Finkbeiner et al. (2001) and Pulich (2007).

Photo Scale 1: XXXX Pixel Size inm Pixel Size in ft
1:1,200 0.051 0.167
1:2,400 0.102 0.333
1:4,800 0.203 0.667
1:9,600 0.406 1.333
1:10,000 0.423 1.389
1:12,000 0.508 1.667
1:20,000 0.847 2.778
1:24,000 1.016 3.333
1:40,000 1.693 5.556
1:48,000 2.032 6.667

1:58,000 2.455 8.056
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Table 1.3. Conversion of pixel size to photo scale. Adapted from Finkbeiner et al.

(2001).
Pixel Size (m) Scale
0.1 1:2,362
0.25 1: 5,906
0.5 1:11,811
0.75 1:17,717
1.0 1:23,622
1.5 1:35,433
2.0 1:47,244
2.5 1:59,055

Resource managers are faced with choosing from a variety of monitoring options,
and those choices are best made after considering the scale of the research being
conducted. Patterns and processes in a local ecosystem can only be understood by
examining an area in a variety of scales and resolutions and levels of detail (Bostrom et
al. 2006). Recognizing this, a three-tiered approach has been suggested (Dunton et al.
2011), including a regional scale, incorporating a large geographic area such as an entire
bay or bay system, a landscape scale, covering a smaller area mapped from higher
resolution imagery (0.25 m - 0.5 m), and a more local or site-level scale, where field data
would be collected and sampled for biomass, root-to-shoot ratio, blade width and length,
shoot density, species composition, percent cover, water and sediment quality, light

response indicators, and plant nutrient response indicators (Dunton et al. 2011).



25

PURPOSE, OBJECTIVES AND HYPOTHESES

The purpose of this research is to examine the use of hyperspectral imagery in
characterizing the benthic habitats in coastal waters, and develop protocols for processing
the imagery. The first approach will examine the utility of hyperspectral analysis, a
relatively new technique, and its use to differentiate benthic habitats in a submerged area
of seagrass beds in Redfish Bay. The second objective will be to improve the processes
and protocols developed in the first objective, and the third objective will be to apply

those improvements and measure their effect.

Obijectives and hypotheses

Objective 1.

To develop and evaluate hyperspectral techniques for mapping seagrass species in
a shallow, microtidal lagoon: Redfish Bay State Scientific Area, Texas. This research will
develop a protocol for hyperspectral discrimination of species and benthic habitat,
allowing future researchers to analyze the changes in status and trends of this coastal
lagoon on a species level. This is important because changes in dominant species
distribution has numerous effects on the coastal ecosystem, and serves as an indicator of

system health.

Hypothesis 1.

Species of seagrasses can be differentiated in shallow water ecosystems using

hyperspectral imagery.
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Intended project results.

This project will demonstrate the effectiveness of hyperspectral imagery for
mapping benthic habitats in shallow water ecosystems, and discrimination of seagrass
species and presence or absence of seagrass coverage. The process will use band
selection recommendations from recent literature and employ a previously untested depth

correction algorithm found in contemporary literature.

Objective 2.

To compare spectral signatures of the two dominant species of seagrass in this
area, and determine if it is possible to discriminate between the species at varying depths,
and from three different positions: above the surface, just below the surface, and at

canopy level.

Hypothesis 2.

Species of seagrasses are spectrally distinct in situ.

Intended project results.

This project will verify that species of seagrasses are spectrally distinct, and will
investigate methods for determining the best spectral bands for separation. A depth
correction will be applied, and the data will be normalized and a Multiplicative Scatter

Correction applied to the corrected data.
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Obijective 3.

To apply knowledge gained in the previous two projects to evaluate and confirm
that they improve the analysis accuracy of benthic habitats using hyperspectral imagery.
Specific differences will be the use of band selection derived from in situ data collection,

and creation and use of a bathymetric surface.

Hypothesis 3.

Species of seagrass can be discriminated using hyperspectral imagery, and
analysis will be improved by using in situ data collection to establish which specific
spectral bands will best facilitate that analysis. Inclusion of bathymetric data will further

enhance the accuracy of the analysis.

Intended project results.

This project will confirm the selection of bands and the application of the depth
correction algorithm with a bathymetric dataset will significantly increase accuracy of

hyperspectral image analysis of benthic habitats.

STUDY AREA

The study area is the Redfish Bay area of the Mission-Aransas National Estuary
Research Reserve in the Coastal Bend area of Texas (Figure 1.7). This area is typical of
many of the dynamic ‘grass flats’ and inland bays formed by the barrier islands found
along the Texas coast (Oppenheimer 1963). These estuarine habitats are subjected to

changes in salinity, depth, and temperature (McMillan and Moseley 1967), and
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occasionally ravished by tropical storms and hurricanes (Oppenheimer 1963). The
climate for the area is classified as dry sub-humid (Kornicker 1964). The area of study is
bordered on the northeast by the Lydia Ann Channel, on the south by the Aransas Pass
Channel and Causeway, and on the west by the Gulf Intracoastal Water Way, and Corpus
Christi Bayou on the east side. The more open areas to the west are bisected by a series of
intermittent islands and submerged rocks, which once served as the bed of a railroad
track (Kornicker 1964). Other navigational hazards found in the area include shallow

oyster reefs and mud flats.
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Kilometers

Figure 1.7. Location and general layout of Redfish Bay, Texas. The study area is
bounded by Corpus Christi Bayou and Aransas Bay on the east, Aransas Channel
on the south, the Gulf Intracoastal Waterway on the west.
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DISSERTATION ORGANIZATION

This dissertation is organized into five chapters. Chapter I presents an
introduction, the background and relevance, the hypothesis and purpose and objectives of
the research, and a description of the study area. Chapters II, III, and I'V, will describe the
research. These chapters are presented as suitable for publishing, and follow the Ecology
journal format. Chapter V is brief summary and conclusions drawn from the creation of
this dissertation. References for the entire document will follow the fifth and final
chapter. Chapters may be taken from this dissertation and submitted for publication, so

each contains individual introductions and conclusions.
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CHAPTER Il: HYPERSPECTRAL DISCRIMINATION OF BENTHIC
HABITAT TYPES

ABSTRACT

This study examines the use of hyperspectral imagery to map and classify benthic
habitats found in Redfish Bay, located in the Coastal Bend area of Texas. The area is a
shallow water estuary co-dominated by two species of seagrass: Halodule wrightii and
Thalassia testudinum. After mosaicking the imagery and applying a depth correction
algorithm in ENVI imaging software, the image is classified. An iterative approach is
used, employing a combination of supervised and unsupervised classification techniques,
and further classification in ESRI’s ArcGIS. This iterative technique produces a
comprehensive benthic habitat map with an overall thematic accuracy of 37.93%. The
results from this study provide an areal estimation of the seagrass species found in
Redfish Bay, as well as percent coverage by each species. The largest percentage of
habitat (33%) is classified as mixed, while 26% is classified as bare, 19% is Thalassia
testudinum, 12% is covered with Halodule wrightii, and 11% is covered by Ruppia
maritima. The accuracy of these results is similar to those produced in similar studies at

other locations.

INTRODUCTION

The seagrass beds of Redfish Bay, Texas have undergone intense research: Pulich
et al. (1976) studied the trace metal cycles within the seagrass beds; Fry and Parker
(1979) examined the animal diets and McMillian (1991) studied the longevity of the seed
reserve, flowering and reproduction of seagrasses. Majors and Dunton (2002) studied the

variations in light-harvesting techniques. Green and Finkbeiner (2008) conducted the
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first-ever ‘simultaneous’ 3-sensor comparison for coastal mapping, by flying three
different sensors over the bay in less than 4 hours. The DMC, UltraCam and ADS40
digital multispectral sensors were flown over the same areas, with near-identical flight
and water conditions, and compared for radiometric accuracy, imaging and spectral

characteristics, under similar conditions (Green and Finkbeiner 2008).

Redfish Bay seagrasses, primarily Halodule wrightii and Thalassia testudinum
(Fry and Parker 1979), have been mapped extensively (Pulich and Onuf 2004, Pulich
2007, Green and Finkbeiner 2008), however these mapping efforts have, for the most
part, been conducted with either (analog) photographic images or multispectral imagery.
Hyperspectral imagery has been used to map submerged vegetation and benthic habitats
successfully in many areas around the world (Artigas and Yang 2004, Artigas and Yang
2005, Green and Cole 2005, Artigas and Yang 2006, Ciraolo et al. 2006, Mishra 2006,
Peneva et al. 2008). Likewise, Schalles (2012) and others have used hyperspectral

imagery to map terrestrial components of these bay systems, such as mangrove canopies.

METHODS

Studies have indicated that the spectral signatures for different species of seagrass
can be distinguished in laboratory settings (Ressom et al. 2003) and in the field (Fyfe and
Dekker 2001). While multi-spectral images lack the spectral information (Louchard et al.
2003) necessary to differentiate between bottom types or seagrass species, hyperspectral

imagery, which has many spectral bands, is able to capture these differences.
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Study area

Redfish Bay is a shallow estuarine ecosystem located between Aransas Pass and
Port Aransas in the Coastal Bend area of Texas, and a small (approximately 6,180 acres)
but important part of the Mission-Aransas National Estuarine Research Reserve
(MANERR) (Beyer et al. 2007). MANERR, established in 2007, covers an area of
75,150 acres, and contains a diverse ecosystem with abundant flora and fauna. This area
is typical of many of the dynamic grass flats and inland tidal bays found landward of the
barrier islands along the Texas coast. While the climate is classified as ‘dry sub-humid’
(Kornicker 1964), these highly productive estuarine habitats are subject to extremes
ranging from droughts that can last decades, to ravaging tropical storms and hurricanes
(Oppenheimer 1963). These shallow habitats often are subjected to dramatic shifts in
salinity, depth, and temperature, as well as turbidity that can change the depth of the
photic zone in a matter of minutes. Redfish Bay is bounded by manmade channels: the
Lydia Ann Channel on the east, the Aransas Pass Channel to the south, Gulf Intracoastal
Water Way to the west, and is crisscrossed by others. Other than these channels, the bay
has an average depth of .75 m and a maximum depth of about 2 m. The study area
(Figure 2.1) was reduced from the entire area north of the Aransas causeway to
encompass only the area (3,200 hectares) from approximately Corpus Christi Bayou west
to the Gulf Intracoastal Water Way, due to clouds and cloud shadows in the imagery.
Shallow mud flats, submerged rocks and intermittently submerged oyster beds and
islands, and the bed of an old railway add navigational hazards to this challenging

location.
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Figure 2.1. The Redfish Bay study area encompasses approximately 3,200 hectares.
Field collected data
Prior to fieldwork, a pattern of 6,945 hexagons covering the study area and
measuring 100 m across was generated using ‘Repeating Shapes for ArcGIS Version

1.5° (Jenness 2011). Hexagons that fell completely on land areas were eliminated. From
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these, approximately 350 hexagons were randomly chosen. A target location was then
randomly chosen inside of each chosen hexagon. These more specific target locations
were considered desirable but not mandatory. When practical, the survey team would get

as close to the specific location as possible.

Field work was completed in July, 2008. Although the fieldwork was
meticulously planned to coincide with the image acquisition flight, that flight did not
occur until October 2008. Two observers navigated to each preselected location with an
onboard WAAS enabled GPS. At each location, species presence and approximate
percent coverage were noted for a 1 m” area, and the precise location was recorded with a
Real-Time Kinetic (RTK) -enabled GPS to within 1 m horizontal accuracy. No
preconceived classes were used in the collection of this data; all data breaks were
developed in the field as different combinations were encountered. Table 2.1 shows the
combinations of seagrass species and benthic habitats found in Redfish Bay during this
study. The collected data was later transcribed into an Excel 2003 spreadsheet, which was
then imported into ArcGIS and converted to an ESRI (Environmental Systems Research

Institute) point shapefile.

The points created from the data gathered in the field were later separated into
two groups: those used to develop and train the model (training or learning points), and

those used later in the process to assess the accuracy of the model.
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Table 2.1. Matrix of Seagrass Mixes observed in Redfish Bay. Sediment and Algae were
recorded sporadically, as background values.

Halodule  Thalassia  Ruppia Syringodium Halophila  Sediment  Algae
100 - - -

90 i 10 i i i i
80 ; 20 i ; ; ;
75 25 i i ; ; ;
75 ) 25 i ] ] ;
70 30 i i i i i
70 30 ; i ; ;
50 50 i i i i i
50 ] 50 i ; ; ;
50 i i 50 i i i
40 30 30 i ; ; ;
40 20 40 i ] ] ;
40 ) 60 i ; ; ;
25 25 50 i ] ; ;
20 80 ) i ; ; ;
10 90 i i i i i
10 80 10 i ; ; ;
10 40 50 i i i i
10 40 ) 50 ; ; ;
10 20 70 i i i i
10 10 ] i ] 80 ;
_______ 0 - 9% - -
i 100 ) i . ; -
; 75 25 i ; ; ;
; 50 50 i ; ; ;
i 50 i 50 i i i
; 50 ; i 50 ; ;
i 40 i i i 30 30
; 30 30 i ; ) 40
i 30 i i i 30 40
; 20 ; i ; ] 80
i 10 90 i i i i
________ -0 - - - 9% -
________ - - ... - -
. i i 100 . ; -

Acquired imagery data
Hyperspectral imagery for the study area was acquired October 18th and 19th,

2008 using an Airborne Imaging Spectroradiometer for Applications (AISA) Eagle
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hyperspectral sensor. The sensor was flown by the Center for Advanced Land
Management Information Technologies (CALMIT), in cooperation with the Nebraska
Airborne Remote Sensing Program (NARSP) as part of their CALMIT Hyperspectral
Aerial Monitoring Program (CHAMP), aboard a specially modified Piper Saratoga
aircraft. The AISA hyperspectral imaging system was developed by SPECIM, Spectral
Imaging LTD., Finland, and covers a spectral range of 400 to 1000 nm, in a possible 272
bands. It collects a swath approximately 1000 m wide, at 1 m resolution, in a pushbroom
fashion, from an approximate altitude of 1418 m. As the aircraft moves forward, the
sensor collects “lines” or “frames” of data to build an image, each line 1024 pixels wide
and one pixel tall (Green and Cole 2005). The AISA Eagle instrument incorporates a
miniature, integrated 3-axial inertial navigation sensor with an integrated solid state
gyroscope and real-time GPS. These onboard sensors monitor the aircraft position and
attitude, so imagery and positional data are acquired and stored synchronously (Bertels et
al. 2005). For added recording capacity, the hard-drives can be swapped in flight. The
band settings and bandwidths are programmable on this sensor to as little as 2.3 nm.

Table 2.2 shows specifications of the sensor.
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Table 2.2. Capabilities of the AISA Eagle sensor used in this project, adapted from
Bertels et al. (2005).

Characteristic Value
Field of view (FOV) 39.7°
Instantaneous field of view (IFOV) 0.039°
Spatial resolution 0.5-10m
Spectral range 400 - 970 nm
Spectral channels max. 244
Spectral sampling interval 2.3 nm
Spectral resolution (FWHM) 2.9 nm
Dynamic range 12 bits (4096)

Proper interpretation of hyperspectral imagery can require a considerable
groundtruthing effort. Most airborne sensors collect hundreds of bands of data for each
pixel, and visits to the site at the approximate time of the flight help to select those bands
useful for discriminating vegetation species. It is also necessary to determine the depth
correction coefficients for volumetric scatter and water absorption, as well as to verify

that field conditions are acceptable.

Prior to delivery, the imagery was corrected for atmospheric distortions which are
inherent in all aerial imagery. The FLAASH (Fast Line-of-Sight Atmospheric Analysis of
Spectral Hypercubes) algorithm was used to remove atmospheric effects caused by
molecular and particulate scattering and absorption. Spectral Sciences, Inc. developed
this MODTRAN4-based correction code in collaboration with the Air Force Research
Laboratory, with assistance from the Spectral Information Technical Applications Center.

The FLAASH algorithm takes the following form:

L* = Ap/(1-peS) + Bpe/(1-peS) + L*, 2.1)
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where p represents the pixel surface reflectance, pe is a surface reflectance averaged over
the pixel and a surrounding region, S is the isotropic incident radiation of the atmosphere,
L*, is the atmospherically backscattered radiance, and A and B are coefficients that
depend on non-surface atmospheric and geometric conditions (Matthew et al. 2002). The
FLAASH process transforms the data from spectral radiance to spectral reflectance, and
was applied in ENVI.

The atmospherically-corrected georectified imagery was received from CALMIT
on a portable hard drive. This project was flown with the following parameters: 63 bands,
each approximately 9 — 12 nm wide, and at a height to obtain a 1 m pixel, which is
approximately 1538.6 m, as shown in Table 2.3. The stated horizontal accuracy was 10
m, and the flight parameters and procedures met National Map Accuracy Standards
(NMAS) at the 1:12,000 scale (personal communications, Perk, CHAMP program at
UNL, 2012), which states that not more than 10% of the points tested shall be in error by
more than 1/30 of an inch on the printed map for maps on publication scales larger than

1:20,000, using well-defined points.

Table 2.3. The flight parameters used for this project (personal communications with
Rick Perk, pilot at CHAMP program at UNL, 2012).

Value
Acquisition Date: 19 October 2008
Acquisition Time: 18:59-20:05 UTC
Flight Direction: NE/SW
Ground Speed: 120 Knots
Data Rate: 61.7 fps
Integration Time: 14.0 ms
Target Elevation: 0 m MSL

Altitude: 1538.6 m AGL
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Thirteen individual images were delivered from CHAMP via CALMIT by
FEDEX for the original study area, each approximately 1000 m wide and ranging from 8
to 14 km in length. Of these, 4 images were discarded, as they contained too many clouds
and cloud shadows to be usable. From the remaining 9 images with 63 bands each, 5
bands were selected for analysis. After numerous unsuccessful attempts to isolate bands
suitable for species separation using Principal Component Analysis and Artificial Neural
Networks (ANN), these wavelengths were selected based on personal communications

with Dr. Hyun Jung Cho: 553.89 nm, 694.6 nm, 722.88 nm, 741.74 nm, and 808.84 nm.

Image processing
Images were mosiacked in ENVI version 4.8. After mosaicking, a water depth
correction algorithm was applied to each of the 5 selected bands, using an assumed mean
depth of 65 cm, and no turbidity. This algorithm was applied to each masked pixel in

each of the five bands:
(Ry/10 = Ry) / (1- A/200)

where Ry, is equal to the percent surface and volumetric reflectance for a particular
wavelength, and A is the absorption by the water column in both upward and downward
directions (Cho and Lu 2010). The output from this band math function is a new set of 5-
band imagery, adjusted for an average water depth of 65 cm. and no turbidity. Values for
Ay and Ry, were derived empirically by Cho and Lu (2010), using laboratory water tank
spectral studies. Future applications by Cho will allow depth rasters (bathymetry) and
turbidity measurements to be included as part of the algorithm input, which will greatly

increase the value of this function.

(2.2)
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This new corrected 5-band image is then opened in ENVI EX 4.8, where the
classification workflow is initiated. The image is clustered into groups of similar pixels
which are then categorized into classes, each having similar pixel values. Using a larger
number of classes causes the clusters within a category to have less variation (more
similarity to each other), while a smaller number would include more variety within a
category. ENVI uses the Iterative Self-Organizing Data Analysis Technique (ISODATA)
classification algorithm, which starts by calculating the pixel means distributed evenly
throughout the data space, and then iteratively clustering the remaining pixels using a
Minimum Distance technique. During each iteration of the clustering process mean
values are recalculated and pixels are re-clustered with the new means. Clusters are split
if the standard deviations are equal or greater than the user-defined threshold, and merged
if the distance between them is less than the user-defined threshold (Ball and Hall 1965).
The iterations continue until the percent of change meets or exceeds the threshold setting
or until the maximum number of iterations is reached. After some experimentation, the
defaults (2% change threshold and 10 iterations) were accepted. The default number of
categories is five; however, that did not separate the species well, and all categories
contained multiple species and species combinations during the ArcGIS processing.
Experimentation with this parameter indicated starting with a larger number of categories
would increase separation and overall efficiency of the process. Starting with a larger
number of categories (25) and decreasing the number of categories at subsequent

iterations provided the desired separation and processing efficiency.

The resulting categorized clusters were then aggregated into groups with a

minimum of 9 pixels. Until now, the data generated within the process has been in a
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virtual raster format, which means the attribute values for the categories are inaccessible

but presumably are integer values. These refined categorized clusters were then converted

to an ESRI polygon shapefile and exported. The processing in ENVI EX (see the left

section of Figure 2.2) produced 143,991 polygons covering 27,064,111 m?, with a mean

area of 487.9 m2; the largest area was 456,138, and the smallest was 10 m’.
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Figure 2.2. The processing flow within the ENVI EX and the ArcGIS software.

Vector processing

The 143,991 polygons generated in ENVI EX are categorized as ‘Class 1°, ‘Class

2’, and so on through ‘Class 25°. These categories represent groups of clusters with

similar pixel values; in order to define what the species makeup within these categories

might be, the categories are classified in ESRI’s ArcGIS 10.0. The categorized polygons

exported from ENVI were imported into ESRI’s ArcGIS 10.0 as a shapefile. The data

points created from the fieldwork site visits were added to the ArcGIS map document.
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These data points were divided evenly into two groups using a random number generator
which added an attribute field to the data table, and randomly assigned an even number of
‘I’s or ‘0’s to the field. Each of these groups (‘1’s or ‘0’s) was exported into a new ESRI
point shapefile; ‘ones’ were named ‘Learning Points’, and the ‘zeroes’ ‘Accuracy
Assessment Points’. The learning points were used to develop and classify the polygons
generated in ENVI within the ArcGIS environment. The accuracy assessment points were
used within the iteration process to aid in the evaluation of interim processes, as well as

to ascertain the accuracy of the final output.

The field ‘MainSpecie’

Within the ArcGIS polygon shapefile, all polygons of a class (‘Class 1’ in Table
2.4) were selected, and then all the learning points that fell within that class were
selected. All of the polygons that contained those learning points were then selected.
Figure 2.3 displays the Python Model Builder diagram used to automate the selection-
reselection process. Each polygon that contained a learning point was labeled with the
learning point habitat type and count, such as ‘1 B100, 2 H100, 1 H50T50’, representing
1 ‘Bare’ point, 2 points of 100% Halodule, and 1 point that was 50% Halodule and 50%
Thalassia (see the line with the Class Name ‘Class 2’ in Table 2.4 below). Once each of
the learning points that fell within a ‘Class’ were noted, all undesignated polygons in the
class were assigned a derived attribute with a concatenated listing of the types of learning
points(s) that fell within the class. An asterisk was used to denote this derived

classification (see the third ‘Class 1’ in Table 2.4 below).
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Figure 2.3. The ArcPython Model Builder diagram for the selection process, showing the
selection of learning points that lay within the selected polygon class, and then the
selection of the polygons containing those learning points.

It is important to remember that each ‘Class’ (fieldname ‘Class Name’) is made
up of polygons corresponding to segments with similar pixel values within the five
selected bands. The ‘MainSpecie’ field notes which types of ‘learning points’ were found
within each class, and each polygon within that class that does not contain a learning
point is then designated a derived ‘MainSpecie’ attribute, based on its similarity to those
in the same class that do contain a learning point. These derived attributes are denoted

with asterisks (*) preceding the learning point designations.

Table 2.4. Portion of an attribute table with classification data for Redfish Bay. Each row
represents an individual polygon. Asterisks denote a derived classification.

CLASS_ NAME | AREA MainSpecie grassType
Class 1 47 1 H100 Halodule
Class 1 150,020 | 1 H75T25 MixedMono
Class 1 4,687 | * 1 HI100,1H75T25 Mixed

Class 2 12 *1B100,2 H100, 1 H50T50 Mixed




45

The field ‘grassType’

As shown in Table 2.4 above, a field named ‘grassType’ was added to the
database. This field would be the final designation of habitat type, based on the
‘MainSpecie’ types found within each class of polygons. If a polygon contained a
learning point, the ‘grassType’ for that polygon would be the same as the decoded
‘MainSpecie’ for that polygon (see the ‘grassType’ field for the first tuple in Table 2.4).
If a single polygon contained more than one type of learning point, it received the
‘Mixed’ attribute. Table 2.6 below contains a description of each ‘grassType’ attribute

value.

If an entire class contained only one species (i.c. Halodule), the field ‘grassType’
for the entire class was filled with the species name as an attribute value, i.e. ‘Halodule’
or ‘Ruppia’. The majority of first-iteration classes contained more than one ‘MainSpecie’
designation, and therefore were classified as ‘Mixed’ polygons. A ‘Mixed’ classification
could contain any number of permutations of habitats: one learning point of 100%
Halodule, in the same class as a ‘Bare’ point, and perhaps two or three learning points
that had a combination of Thalassia and Ruppia or Syringodium. When a class of
polygons contained learning points of more than one species or species mix, it was

classified as ‘Mixed’ under the field name ‘grassType’.

When a point had more than one species or type of habitat within the observed 1
m area in the field, it was designated as a ‘MixedMono’ point. An example of a
‘MixedMono’ point would be one where both Thalassia and Halodule were found in

equal proportions. This point would be designated ‘H50T50’ in the ‘MainSpecie’ field
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for the point file. That value would then be assigned to the ‘MainSpecie’ field in the
polygon database for the polygon containing that point. In the ‘grassType’ field, it would
be designated a ‘MixedMono’ polygon. This allows a class that has one polygon that is
50% Halodule and 50% Thalassia to be grouped in the same ‘grassType’ as one that was
60% Halodule and 40% Thalassia, but not with one that is 100% Halodule or with one

that was 100% Thalassia.

If a polygon class contained only unclassified polygons, the field ‘grassType’ was
designated an ‘Unclassified’ class. If a class contained no learning points, it was
designated a ‘No Clues’ class. The polygons designated ‘Unclassified’, ‘No Clues’ or
‘Mixed’ were used to create an inclusion mask for the next iteration of image processing

in ENVL

This process of selecting and assigning attribute values was continued until all 25
classes were designated either as Bare, Bare/Halodule Mix, Bare/Thalassia Mix,
Halodule, Mixed, MixedMono, No Clues, Ruppia, Syringodium, or Thalassia. The
designation ‘No Clues’ was used for Classes 13 and 22, because no learning points fell
within any of their polygons. The number of polygons and the corresponding area in m*

is shown in Table 2.5. Figure 2.4 shows the results from this iteration of processing.



Table 2.5. Summary of the ArcGIS vector processing output for the first iteration,
showing the number and area of polygons in each classification.

Classification Number of Polygons Total Area in Class
(m”
Bare 1,551 2,773,599
Bare/Halodule Mix 2,245 587,547
Bare/Thalassia Mix 8,856 1,041,989
Halodule 1,821 1,625,965
Mixed 122,001 17,331,652
MixedMono 3,974 2,227,158
No Clues 2,701 796,576
Ruppia 823 198,987
Syringodium 1 199
Thalassia 18 480,439
TOTALS 143,991 27,064,111




48

Table 2.6. Description of ‘grassType’ attributes.

Classification

Description:

Bare:

Devoid of any detectable submerged rooted vascular vegetation. The
polygons classified as Bare contained only Learning Points that were
classified as Bare. This was a final designation, as these polygons
would not be included in the mask for the next iteration.

Bare/Halodule
Mix:

This class of polygons contains Halodule Learning Points and at least 1
Bare learning point. (* 8 B100, 2 H100). This was a final designation,
as these polygons would not be included in the mask for the next
iteration. Final designation.

Bare/Thalassia
Mix;

This class of polygons contains Thalassia Learning Points and at least
one Bare learning Point. The class as a whole contains both Thalassia
and Bare learning points, as well as learning points that were a
combination of Bare and Thalassia (BS0T50, B10T90). Final
designation.

Mixed:

This class of polygons contains at least two different learning point
classes. They may be mono-specific (1 H100, 1 T100) or they may be
any number or combination of mono-specific, MixedMono, and Bare
(* 4 H100, 1 T80H20, 2 T100, 1 BOOT10, 1 B70T30). Polygons
classified as ‘Mixed’ were used to generate the mask for the next
iteration.

MixedMono:

This class of polygons contains only learning points that contained
more than one species. (1 T80H20) would indicate that the class
contained one learning point that was 80% covered with Thalassia, and
20% covered with Halodule. There may be several classes
(MainSpecie) that have the ‘grassType’ ‘MixedMono’. They would all
be aggregated into one ‘grassType’ class. Final designation.

Halodule:

This class of polygons contains only learning points that were
classified as Halodule. Final designation.

Thalassia:

This class of polygons contains only learning points that were
classified as Ruppia. Final designation.

Ruppia:

This class of polygons contains only learning points that were
classified as Thalassia. Final designation.

Syringodium:

This class of polygons contains only learning points that were
classified as Syringodium. Final designation.

No Clues

This class of polygons contained no learning points, hence, gave no
clue as to what ‘grassType’ it should be assigned to. Polygons
classified as ‘No Clues’ were included in the mask for the next
iteration. Intermediate designation.

Unclassified

Polygons classified as ‘Unclassified” were used to generate the mask
for the next iteration. These would be polygons that for some reason
were not classified during the previous iteration. Intermediate
designation.
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The learning points used in the first iteration were buffered 3 m, and the buffers
visually re-evaluated over a true-color image and any point buffer that was spatially
ambiguous, for example a learning point buffer designated as being bare, but that
appeared to be over a grassy area or very close to a grassy area, was eliminated. If the
majority of the buffered area fell into a differently designated area, it was eliminated.
The remaining buffers were merged with the ‘Mixed’ and ‘No Clues’ classes to form a
new mask containing the polygon buffers around the learning points as well as the areas
previously classified as ‘Mixed’ or ‘No Clues’. The buffered areas allowed the re-

inclusion of the previously used learning points in the ENVI classification workflow.
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Figure 2.4. Classification of Redfish Bay benthic habitats after the first iteration with the
‘Mixed’ and ‘No Clues’ classes removed.



51

The second iteration
The original, corrected 5-band image and the newly created mask were then

reprocessed in ENVI EX 4.8, producing ten classes of similar pixel values. By using only
ten classes, it was more likely that pixels representing the same species would be classed
together; the range of digital number values within each group would be larger within
each individual group. The only areas which were being categorized were those that were
previously classified as ‘Mixed’ or ‘No Clues’ and the areas around learning points that
had been merged into the mask. The resulting categories were again aggregated into a
minimum of 9 contiguous pixels, which were then exported as a shapefile. This shapefile
was then opened in ArcGIS 10.0, and reclassified using the same process described for
the previous iteration, based on the learning points, as shown in Figure 2.5. Table 2.7

shows the number and area of each classification of polygons.

Table 2.7. Classification results from the second iteration including the number of
polygons and total areas found in each classification.

Classification Number of Polygons Total Area in Class (m?)
Bare 21 363,346
Halodule 13 233,740
Mixed 94,133 14,893,124
MixedMono 17 190,640
No Clues 4,854 1,277,626
Ruppia 3 81
Syringodium 1 37,810
Thalassia 12 1,081,866

TOTALS 99,054 18,078,233
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The retained classes from the first and second iterations were then merged. As in
the first iteration, the ‘Mixed’ and ‘No Clues’ classifications were then merged with the
learning point buffers (created earlier) and used to create the mask for the next iteration.

Note that there were no ‘Unclassified’ classes during this iteration.

Habitat Types
Bare

Bare/ Halodule Mix
Halodule

Bare/ Thalassia Mix
Thalassia
MixedMono

Ruppia

Syringodium

Figure 2.5. Classifications after the second iteration of processing, including results from
both iterations, but omitting the ‘Mixed’ and ‘No Clues’ classifications.
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The third iteration

For the third iteration, only 5 classes were created in ENVI EX. By decreasing the
number of classes, the amount of variation within a class increases. After the image
processing, the output shapefile was opened in ArcGIS. The same classification
procedure was followed in ArcGIS as in the first two iterations, and all the monospecific
polygons were retained and merged with previous outputs. The ‘Mixed’ and ‘No Clues’
polygons were used to create a mask for the fourth and final categorization iteration in
ENVI. Table 2.8 shows the output from the third iteration. No map is shown because the

difference between the second and third iterations is barely distinguishable at this scale.

Table 2.8. Classification results from the third iteration, including the number of
polygons and area in each classification.

Classification Number of Polygons  Total Area in Class (m®)
Bare 13 384
Bare/Thalassia Mix 16,487 2,434,175
Halodule 14 4,534
Mixed 48,459 12,453,024
MixedMono 12 606
No Clues 1,372 403,536
Ruppia 1 801,940
Thalassia 10 66,620
TOTALS 66,368 16,164,819

The fourth iteration
For the fourth iteration, a ‘supervised’ classification was used. This classification
method was chosen because the unsupervised method was not producing a substantial
number of changes in classifications. The supervised method of classification puts each
output segment or polygon into one of the user-specified classes based on user-defined

training data. The polygon training set was developed by creating a 3 m buffer of a
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selected subset of the learning points. Each pixel is classified based on the Minimum

Distance Classification (MDC) function. The MDC uses the mean vectors of each

training member, and calculates the Euclidean distance from the vector of each unknown

pixel to the mean vector for each class. The like-classified pixels were then aggregated to

a minimum grouping of 9 pixels, which were the exported as an ESRI polygon shapefile.

The output shapefile was again opened in ArcGIS, and merged with the output from

previous iterations. Figure 2.6 shows the final classification of seagrasses in the study

area. Table 2.9 shows the final number of polygons within each class, as well as the areas

in each classification, and the mean areas within each classification.

Table 2.9. Final number of polygons and sums of the area of each classification, as well
as the mean area of polygons within each class.

Classification Number of Polygons Total Area in Class Mean Area/Polygon (m®)
Thalassia 22,038 4,976,130 225.80
Mixed 19,108 4,362,722 228.32
MixedMono 19,511 3,701,172 189.70
Halodule 13,968 3,608,193 258.32
Ruppia 12,656 3,585,130 283.28
Bare 2,954 3,537,991 1197.69
Bare/Thalassia Mix 25,343 3,476,164 137.16
Bare/Halodule Mix 2,245 587,547 261.71
Syringodium 2 38,009 19,004.50
TOTALS 117,825 27,873,058 2695.09
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Figure 2.6. Final output from the classification of the benthic habitats in Redfish Bay,
Texas.
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RESULTS

The results from this study indicate that Thalassia covers the most area and has
the greatest number of polygons, followed by Mixed, MixedMono, Halodule, Ruppia,
Bare and Syringodium. However, if the ‘Mixed’ and ‘MixedMono’ classes are combined,
the ‘Mixed Class’ would be the largest in both respects; likewise, if the ‘Bare/Thalassia’
and ‘Bare/Halodule’ classes are combined with the ‘Bare’ class, the ‘Bare’ class would
be the second-largest class, and contain the second-largest number of polygons. Table
2.10 show the number of polygons for non-aggregated classes and those aggregated as
described above, while Figure 2.7 shows the percentage of coverage in a pie chart for

ease of visualization.

Table 2.10. Final number of polygons and the area of each class when the classes are
combined as described in the text. The classes were aggregated thusly for the
accuracy assessment.

Classification Number of Total Area (mz) in Mean Area/Polygon
Polygons Class (m?)
Mixed - MixedMono 38,619 8,063,894 208.81
Bare - Bare Mixed 30,542 7,601,702 248.89
Thalassia 22,038 4,976,130 225.80
Halodule 13,968 3,608,193 258.32
Ruppia 12,656 3,585,130 283.28
Syringodium 2 38,009 19,004.50

TOTALS 117,825 27,873,058
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Figure 2.7. Percentage of coverage of the study area by each habitat class.

This dataset can be used to determine the Presence/Absence of seagrasses if the
classes are aggregated to ‘Bare’ and ‘Grass’. Doing so shows that there are 3,537,991 m’
of bare areas, as before, and 24,335,067 m? of areas covered with grass; these numbers do
not indicate, however, the density of grasses. Table 2.11 shows the results of that

aggregation.

Table 2.11. Number of polygons, total area and mean area per polygon for bare and
aggregated grass-covered areas.

Classification Number of Polygons  Total Area in Class Mean Area/Polygon (m”)
Bare 2,954 3,537,991 1,197.69

Grass 114,871 24,335,067 211.85
TOTALS 117,825 27,873,058

Accu racy assessment
To assess the accuracy of the output dataset, the points that had previously been
reserved for accuracy assessment were intersected with the classified polygons from the

final iteration. Each point was visually inspected, and an indication was inserted within
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the database of whether or not the point was in agreement with the classification of the
polygon that it fell within. By visually inspecting each accuracy point location, the
observer can assure that there were no duplicate points, and note such phenomenon as the
proximity of the accuracy point to a change in classification. If a point was in doubt, it
was confirmed by comparison with the field notes. If the point was not in agreement with

the polygon classification, the correct classification of the polygon was noted.

User’s accuracy

A measure of commission error is obtained by dividing the total number of
correctly identified areas by the total number of areas that were classified as being in that
category (Strahler et al. 2006). This is known as the ‘User’s Accuracy’ and indicates the
reliability or the probability that an area on the output map actually represents what
would be found at that site (Story and Congalton 1986). The results of this analysis
indicate a 69.57% probability that an area mapped as ‘Bare’ would actually be found to
be bare on the ground (or in this case, at the site). An area marked as Halodule or
Thalassia has roughly a 40% probability of being correctly identified, while an area
shown on the map to be ‘Mixed’ has a 22.58% chance of actually being mixed seagrasses
and for areas marked as Ruppia, there is no chance of there actually being Ruppia at the

site.

Table 2.12 shows the confusion matrix from the accuracy assessment.
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Producer’s accuracy

‘Producer’s Accuracy’ is defined as a measure of the accuracy of a particular
classification scheme, and shows the percentage of a particular class that can be correctly
classified, and is a measure of omission error (Congalton 1991). Producer’s accuracy is
calculated by dividing the total number of correctly identified areas by the total number
in the reference data (Strahler et al. 2006). The accuracy analysis indicates that 66.67%
of the bare areas are correctly classified, 29.03% of the areas covered with Halodule are
correctly classified, 46.15% of the areas covered with Thalassia are correctly classified,
0% of the areas containing Ruppia are correctly classified, and 23.33% of areas

containing mixed species are correctly classified.

Table 2.12. Confusion matrix and accuracy assessment for the final output.

Bare Halodule  Thalassia Ruppia Mixed Mono/ Mixed

Bare 16 5 3 0 0
Halodule 2 9 5 3 12
Thalassia 1 3 12 2 8
Ruppia 0 0 0

MixedMono/Mixed 4 6 9 4 7

Producer’s Accuracy User’s Accuracy

Bare 66.67% Bare 69.57%
Halodule 29.03% Halodule 39.13%
Thalassia 46.15% Thalassia 40.00%
Ruppia 0.00% Ruppia 0.00%
MixedMono/Mixed 23.33% MixedMono/Mixed 22.58%

Overall Accuracy 37.93%
Cohen's Kappa 0.2988
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Overall accuracy

The overall accuracy of the map is obtained by dividing the sum of correct
classifications by the sum of all the classifications, n. In this case, there were 116
classifications in the accuracy assessment, and of those, 44 were correctly classified

giving us an overall accuracy of 37.93%.

Presence/Absence and accuracy assessments
"A pessimist sees the difficulty in every opportunity; an optimist sees the

opportunity in every difficulty." ~ Sir Winston Churchill

As often happens in research, additional information may be gleaned from data,
extending its value. This research can be used for quantifying the presence or absence of
seagrasses in the study area. To do this, we aggregate the ‘Grass’ classes (Halodule,
Thalassia, Ruppia, Mixed and MixedMono) into one single class, essentially producing a
‘Presence/Absence’ classification scheme. In the study area, 87% of the benthic habitat,
24,335,067 m?, is classified as having some type of seagrass coverage, leaving 13%, or

3,537,991 m?, uncovered or bare, including submerged oyster reefs.

Accuracy assessment for Presence/Absence classification

When the ‘Grass’ classifications are aggregated to examine presence/absence, a
separate analysis of accuracies is needed. This accuracy assessment is performed using
the same accuracy assessment points as before, with all grass classifications aggregated
into a simple ‘Grass’ classification. As indicated in Table 2.13, the results are quite

different from those using all the species-related classes. Producer’s Accuracy values
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were as follows: of the 24 assessment points classified as ‘Bare’, 16 (66.67%) were
correctly classified, as before. However, of the 92 assessment points that had been
previously classified according to species, 86 (93.5%) were correctly classified as ‘Grass’
after aggregation. User’s Accuracies were 72.7% for ‘Bare’ and 91.5% for ‘Grass’

classes. Overall accuracy for aggregated classification was 87.93%.

Table 2.13. Confusion matrix and accuracy assessment for aggregated ‘Grass’
classifications.

Bare Grass
Bare 16 8
Grass 6 86
Producer’s Accuracy User’s Accuracy

Bare 66.7% Bare 72.7%
Grass 93.5% Grass 91.5%

Overall Accuracy 87.93%

Cohen’s Kappa .6206

Cohen’s Kappa Coefficient

The Producer’s and User’s accuracy assessment methods above have been
occasionally criticized for the possibility that some cases may have been correctly
classified merely by chance. Cohen’s Kappa Coefficient (Cohen 1960) is suggested as an
additional index of classification accuracy that compensates for chance agreement and
may be used to calculate a variance term which may be used in the statistical testing for
significance of the difference between two coefficients (Foody 2002). Kappa is
calculated by subtracting the hypothetical probability of a chance agreement (of two

observations) from the relative observed agreement, and yields a number between 0 and
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1. A zero would indicate that accuracy in classification was merely coincidental, while a
one indicates that there is no probability that there is a chance agreement (Strahler et al.

2006).

As with most statistical procedures, there are some assumptions and conditions
that must be met. Cohen’s Kappa Coefficient of Agreement supposes that the units are
independent of one another, the categories are mutually exclusive and exhaustive, and
that the selection (judges) operate independently (Cohen 1960). The accuracy
assessments above (see Table 2.12 and Table 2.13) meet those presumptions at least in
theory; Halodule cannot be Thalassia, and a polygon classified as MixedMono cannot be

classified simultaneously as either.

The Cohen’s Kappa Coefficient calculated for the accuracy assessment matrices
indicates a fair amount of chance agreement for the final output of the classification by
species, the least accurate of the two, is possible, and a lesser probability of chance

agreement in the classification of aggregated grasses and bare subsurface.

DISCUSSION

This project demonstrates that hyperspectral imagery can be used successfully to
discriminate between species of seagrass in optically shallow waters. While single
iteration classification techniques have traditionally been used for terrestrial classification
schemes, using multiple iterations to distill information from hyperspectral imagery can
improve thematic accuracy. As techniques are improved and methods developed, such as
the water depth correction developed by Cho (Cho and Lu 2010), hyperspectral imagery

will be a valuable tool in the resource manager’s toolbox.
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Likewise, hyperspectral imagery is useful and highly accurate for determining
presence/absence of seagrass in large spatial areas such as Redfish Bay. Previous studies
(Peneva et al. 2008) conducted off Horn Island, Mississippi, had achieved accuracies as
high as 89% from a variety of supervised classification techniques including Spectral
Angle Mapping (SAM), Maximum Likelihood (ML) and Minimum Distance to Mean
(MDM). Peneva (2008) noted that different classification techniques produced better
results depending on depth, water turbidity and variability of intensity for bottom types.
The methods described for this study employ a variety of both supervised and
unsupervised techniques, and allow a choice of classification methods at each iteration
based on the highest output accuracy. The results indicate that having a diverse range of

techniques available enhances the accuracy of the analysis.

Field work for this study was conducted by visiting a series of randomly selected
field points, documenting the type and density of coverage, and the depth. A similar
study was being conducted coincidentally and almost simultaneously in the Eastern
Banks off Moreton Bay, Australia, by a group of highly respected remote sensing experts
(Phinn et al. 2008), comparing a variety of aerial and satellite platforms. The Australian
study employed a series of 100 m photo transects, with transect sites chosen to cover the
range of species and densities, and adjusted so that they would be over gradients or
boundaries in seagrass coverage or densities. Digital photographs were then taken at 2 m
intervals along the transect line, and positioned 1 m above the benthos, which produced a
digital image with approximately 1 m x 1 m field of view. Each photo was then analyzed
by placing 24 points on each photo in a regular grid, and entering species or bottom type

for each point into a database, and coverage was then determined by the percentage of
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those 24 points per photo which contained seagrass. Coordinates for each photo were
then estimated, and that data assigned to that referenced point. This tedious process was
undertaken to “take into account the positional accuracy of the GPS measurements (at

least +/- 5.0 m) and mis-registration of the image data” (Phinn et al. 2008).

The study described in this paper and that conducted in Australia produced
comparable accuracy levels for similar imagery types. However, the methodology
employed for the Redfish Bay study field work was less labor intensive. Both studies
were limited by the spatial inaccuracies within the imagery. Future studies should
concentrate on methods to reduce those inaccuracies, as well as restrain the costs of field

research.

Future studies should follow the guidelines found in 'Guidance For Benthic
Habitat Mapping: An Aerial Photographic Approach' (Finkbeiner et al. 2001). In addition
to these guidelines, several other caveats should guide attempts to use hyperspectral

imagery to distinguish seagrass species in coastal estuarine environments:

1. Obtain a very good bathymetric data set for the study area. This should be done
before the fieldwork is attempted, as it will be critical in establishing accessibility
of field points, and necessary to verify that the randomly selected sampling points

cover the range of depths well.

2. Timing of both the aerial acquisition and fieldwork are critical to the success of
this type of mission. In addition to calm seas, light winds and cloud-free skies,

clear water and the minimum of epibiotic fouling are essential. Minimum fouling
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usually occurs in late spring or early summer; unfortunately, this is also one of the

most unpredictable seasons, as far as clear, calm water are concerned.

. If at all possible, a spectrometer should be used to capture the spectral readings at
each field site. Although this will add some valuable time to the field portion of

the project, the information gained should prove well worth the effort.

Select 50% more field sites than are estimated to be necessary. A lack of suitable

field sites is likely to be problematic.

Copious and accurate field notes are a must. Note the amount of macroalgae, drift
algae, wrack or other confounding influences. Note the amount of sediment

visible for patchy areas. Notes should accurately reflect what will be visible in the
imagery; decide how to classify an area that is 100% Halodule but 50% coverage

before going to the field.
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CHAPTER I11: IDENTIFYING SPECTRAL DIFFERENCES IN SEAGRASS
SPECIES

ABSTRACT

In order to determine effective hyperspectral imagery bands for species
differentiation, spectral reflectance signatures of two species of seagrass, Thalassia
testudinum and Halodule wrightii, were collected using a portable spectrometer at three
positions in situ: just above the surface/water interface, directly below the surface/water

interface, and at the canopy level.

These signatures were imported into Microsoft Excel, separated into worksheets
containing a single species from a single position (i.e.: Halodule at the surface, Thalassia
at the canopy, etc.), and a depth correction algorithm applied. Each of these data sets
were then normalized using a maximum normalization technique, and a Multiplicative

Scatter Correction was applied.

The mathematical means for these spectral curves were compared by collection
position. Results for this analysis show that the spectral signatures of these two
seagrasses are distinct at all collection levels. However, large variances were noted in the
subsurface and canopy spectral curves. Recommendations for band selections were made,
and it is noted that these recommendations were valid for this particular site under these
particular conditions. Final recommendations include the collection and analysis of
spectral data at the time of imagery collection. This method of in situ spectral collection
and comparison provides valuable insight into proper band selection for subaquatic

vegetation analysis and species discrimination.
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INTRODUCTION

Hyperspectral imaging has been used for a variety of terrestrial classification,
with remarkable results (Tamilarasan et al. 1983, Zomer et al. 2009, Xie et al. 2011).
Land use/land cover, species differentiation, fire susceptibility modeling, invasive species
detection, and wetlands vegetation mapping all have been successfully mapped using

hyperspectral imagery (Hirano et al. 2003).

Hyperspectral imaging has also been used in aquatic environments for a variety of
purposes, at a variety of scales, and with varying results. Methods were developed for
using hyperspectral imagery to map coral reef features and discriminate healthy from
diseased corals as early as 2000 (Holden and LeDrew 2000). Researchers have
successfully detected harmful algal blooms (HAB) from shipside (Craig et al. 2006), as
well as from satellite platforms such as the SeaWiFS (Sea-viewing Wide Field-of-view

Sensor) (Tang et al. 2003).

Researchers have examined the use of hyperspectral imagery to detect the
presence or absence of seagrass (Barillé et al. 2010, Guimaraes et al. 2012), as well as
attempt to differentiate between species (Wabnitz et al. 2008, Cho and Lu 2010). This
project examines the effect of the water column on the spectral signature of the seagrass
canopy (Rundquist 2001). The rationale behind this research is simple: the effects of the
atmosphere, which are widely recognized, are virtually the same whether imaging the
terrestrial or the aquatic environment (Kutser et al. 2006, Gao et al. 2009). Air - water
interface influences can be ephemeral, varying with the wind, clouds and other
parameters over very short times, even a matter of minutes, and can easily vary within a

single image. What happens below the water surface is also of interest. While subsurface
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conditions can be somewhat ephemeral and can be influenced by spatially restricted
events, such as a boat passing through the area, these events generally are more consistent
throughout an area and last longer than the time it takes to acquire imagery, as compared

to the lifetime of an individual cloud.

This research seeks to confirm that, without the effects of atmospheric distortion
and surface influences, seagrasses, particularly Halodule wrightii and Thalassia

testudinum, are spectrally distinct in situ, and as observed through the water column.

METHODS

In June of 2012, we used a portable spectrometer to capture spectral signatures of
seagrasses in situ from three positions: above the surface/water interface, just below the
surface/water interface, and just above the canopy. These signatures were collected above
monotypic stands of Halodule wrightii and Thalassia testudinum in Redfish Bay, in the

Coastal Bend area of Texas.

Study area
Redfish Bay is a shallow estuary located between Aransas Pass and Port Aransas,
Texas, and extends almost to Rockport Texas to the north, and is typical of many of the
dynamic grass flats and inland tidal bays found along the Texas coast. The area is dry
sub-humid (Kornicker 1964), and frequented by hurricanes and tropical storms
(Oppenheimer 1963). The maximum depth of Redfish Bay is around 2 m, with the

average depth being .75 m. Bottom sediment types vary considerably.
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Data acquisition

Portable spectrometers are able to capture the characteristic spectral signatures of
seagrasses. For this research, we used an Ocean Optics Jaz Modular Sensing Suite, a
highly portable, expandable spectrometer with water-resistant sensing probes. The
specifications for this spectrometer are shown in Table 3.1. This research examines the
light returning from the canopy of different species of seagrass, from above the water
surface, just below the surface and at the canopy level. Figure 3.1 graphically depicts the
contributions to total upwelling, as well as other vectors that radiance (light) travels. By
holding the sensing probe just below the surface of the water, the effects of the surface
reflection, shown as L, in Figure 3.1, are eliminated from the resulting spectral curve. The
effects of scattering in the water column are determined by examining the differences
between the response from the canopy and that obtained from just below the surface.
Samples were acquired, in situ, for the range of 190 to 1029 nm within 4 hours of solar
maximum with a sensor having a fore optic with a 25° Field of View (FOV), and using a
+/- 99% white Spectralon plate as a reflectance reference. Unlike the methods described
by Fyfe (2001) and others, these samples were taken in place, from either just above the
water surface, just below the water/surface interface (see Figure 3.2), and just above the

canopy level. Figure 3.3 shows the distribution of depths of the sampling effort.
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Figure 3.1. Contributions to the total upwelling radiance above the sea surface, (L,). The
sun's unscattered beams are shown as yellow arrows; orange arrows depict the
atmospheric path radiance (L,); red is surface-reflected radiance (L;) is depicted
with red arrows; water-leaving radiance (Ly) is depicted with green arrows. The
upwelling radiance (L) is depicted with the green arrows. Thick arrows illustrate
single-scattering contributions; thin arrows represent multiple scattering
contributions. Theta (0) represents the nadir angle, while phi (¢) represents the
azimuthal angle and lambda (A) represents the wavelength. Adapted from Ocean
Optics Web Book at http://alturl.com/w2zon.

Figure 3.2. Photographs of seagrass, taken from the water surface (left), and the
subsurface, (right).
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Figure 3.3. Distribution of depths of recorded spectral readings.

Table 3.1. Specification sheet for the Jaz Modular Spectrometer. Adapted from Ocean
Optics Jaz Modular Spectroscopy Catalog at
http://www.oceanoptics.com/catalog/Ocean_Optics Jaz.pdf.

Selected Jaz Spectrometer Specifications

Wavelength range

Optical resolution
Signal-to-noise ratio
A/D resolution

Dark noise

Dynamic range
Integration time
Stray light
Sensitivity

Fiber optic connector
Electronics connector

Channels supported
OEM integration supported
Inputs/Outputs

Grating dependent (extended-range grating available for
200-1025 nm coverage)

~0.3-10.0 nm FWHM

250:1 (at full signal)

16 bit

50 RMS counts

8.5 x 107 (system); 1300:1 for a single acquisition

870 is to 65 seconds (20 s typical maximum)

<0.05% at 600 nm; <0.10% at 435 nm

75 photons/count at 400 nm; 41 photons/count at 600 nm

SMA 905 to 0.22 numerical aperture optical fiber
19-pin MHDMI connector; use ADP-MHDMI-RS232
adapter to interface to RS-232

Up to 8 spectrometers

Yes

4 onboard digital user-programmable GPI1Os
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The spectrometer module requires a Reflectance Standard Reference (R), obtained
by sensing the reflected light from a Spectralon panel, which is then considered the
maximum amount of light available. A dark reference standard (D), the minimum amount
of light available, is also recorded. R and D are stored within the Jaz unit, and when a
signal (S) is recorded, R, D, and S are recorded in a single data file, along with the
wavelength (Table 3.2). Once the spectrometer is turned off or another mode is selected,
the current reference and dark (R and D) standards are discarded, and new ones are

required for the next measurement.

Data is stored within the Jaz unit on a removable SD (Secure Digital) memory
card in delimited text format and may be viewed in an Excel Spreadsheet, as in Table 3.2.
The data may also be viewed within Ocean Optic’s proprietary SpectraSuite software,

and the data files may be opened in an Excel spreadsheet for further analysis.

From the data table, Percent Reflectivity for each wavelength (R;) can be
calculated by dividing the reflected radiance (S) at each A by the reflectance standard

reference (RSR), and multiplying by 100:

R, = S/RSR * 100

Location data, sample number and type, date, time and depth were recorded
within the Excel datasheet. The data was segregated by sensor position: above surface
(SURF), subsurface (SUBS) or canopy (CAN). Spectra were then further separated by
species. Spectra for each species were then normalized and their standard deviations

calculated and plotted.

3.1).
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Table 3.2. A typical data file as collected with the Jaz Spectrometer reveals the
parameters spectra acquisition, as well as time, date, wavelength (W), dark (D)
and reference readings (R), collected signal (S), and processed (P) signal.

Jaz Data File
Date: Sat Jun 09 10:53:39 2012
User: jaz
Dark Spectrum Present: Yes
Reference Spectrum Present: Yes
Processed Spectrum Present: Yes
Spectrometers: JAZA1552
Integration Time (usec): 35000 (JAZA1552)
Spectra Averaged: 1 (JAZA1552)
Boxcar Smoothing: 0 (JAZA1552)
Correct for Electrical Dark: No (JAZA1552)
Strobe/Lamp Enabled: Yes (JAZA1552)
Correct for Detector Non-linearity: No (JAZA1552)
Correct for Stray Light: No (JAZA1552)
Number of Pixels in Processed Spectrum: 2048
>>>>>Begin Processed Spectral Data<<<<<
W D R S P

190.2256

521.5109

722.2695

653.0424

65.51724

190.6828

625.3516

671.503

655.35

65.00005

192.054

673.8105

722.2695

696.8863

47.61913

Data manipulation
Figure 3.4 shows the mean spectral values for Thalassia and Halodule from all
three positions, as well as their respective standard deviations. Figure 3.5 and Figure 3.6

show the above-surface spectral curves for each species type before normalization.
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Figure 3.4. Mean reflectance values for both Thalassia and Halodule of the entire
dataset. Note that this is before applying normalization and Multiplicative Scatter
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Correction (MSC). Also note that the standard deviations for Thalassia envelop those for

Halodule.
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Figure 3.5. Thalassia reflectance captured from above the surface of the water, before

corrections are applied
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Figure 3.6. Halodule reflectance captured from above the water surface, before
corrections are applied.

Figure 3.7 shows the subsurface reflectance curves for Thalassia. Figure 3.8
shows the same spectra, after normalization and Multiplicative Scatter Correction (MSC).
MSC is a transformation method used to compensate for additive and/or multiplicative
effects in spectral data. It has also been successfully used to adjust for path length
problems, offset shifts, and interference. It removes the effects of amplification and
offset, which can otherwise dominate the information in the data table, as shown in
Figure 3.9. Offset is a type of noise and refers to an undesired increase or variability in
amplitude along an entire spectral curve (Ganssle 1990). MSC performs two simple
transformations by calculating two correction coefficients from regression of each
individual spectrum onto the average spectrum. The first coefficient, a, is the intercept

(offset) and coefficient b is the slope of this regression line.

The equation used to perform MSC is:
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Mnew(i,k) = (M(i,k) — a)/b (3.2)

where M is the Matrix to be corrected, i is the ith element in the kth column of M, a is the

coefficient for the intercept and b is the coefficient for the slope of the regression line.

Before performing the MSC, the data must be normalized. These matrices were
normalized using the maximum normalization equation, which divides each row by its

maximum absolute value, as expressed in Equation 3.3:

X(i,k) = X(i,k)/ max(IX(, )|) (3.3).
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Figure 3.7. Spectral curves from Thalassia, captured from below the water surface.
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Figure 3.8. Reflectance curves for Thalassia have been normalized and the MSC applied.
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Figure 3.9. The effects of multiplicative and additive scatter. These effects are removed
using The Unscrambler Multiplicative Scatter Correction utility.

Similar plots were created for each species (Thalassia and Halodule), before and
after normalization, as captured from just below the surface and from just above the

canopy. These plots are shown in Figure 3.10 through Figure 3.14.
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Figure 3.10. The spectral curves of Halodule, captured from just below the surface.
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Figure 3.11. Spectra from Thalassia, captured at canopy level.
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Figure 3.13. Halodule spectra, captured at canopy level.
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Figure 3.14. Halodule spectra, captured at canopy level, and corrected for depth and
MSC.

After the spectra were normalized, mean values, standard deviations, and mean plus and
minus one standard deviation for each wavelength were calculated, by species, at each

level of collection. These are plotted in Figure 3.15 through Figure 3.17.
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Figure 3.15. Mean, +/- STD of Thalassia and Halodule from Surface, Normalized and

MSC.
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Figure 3.16. Mean, +/- STD of Thalassia and Halodule, normalized and MSC, from the

subsurface.
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Figure 3.17. Mean, +/- STD of Thalassia and Halodule, measured at the canopy,

normalized and MSC.

Once these means and standard deviations were established for each species at

each sensing position, they were then compared and plotted.
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DISCUSSION

In her study of Australian seagrasses, Fyfe (2003) examined leaf samples of three
species of seagrass found in several estuaries in southeastern Australia. She identified
several key wavelengths where spectral signatures had no overlap between the three
species of seagrasses. These spectral differences are attributed to differing proportions of
red, orange, yellow and brown carotenoids (Fyfe and Dekker 2001). For that study, the
green reflectance peak, found at 540-560 nm, and the red absorption trough, around 670-
680 nm, allowed separation of the grasses Posidonia australis, Halophila ovalis and
Zostera capricorni based on chlorophyll content (Figure 3.18). These separations were
evident regardless of epibiont coverage, which can include microalgae, juvenile
macroalgae, and sessile invertebrates. A peak in reflectance observed between 560 and
670 nm are attributed to those epibionts. It is important to note that these leaf samples

were brought to the surface, rather than sampled through the water column.
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Figure 3.18. Wavebands, marked in grey, that are recommended for discriminating
between Posidonia australis (P), Halophila ovalis (H) and Zostera capricorni (Z), from
Fyfe and Dekker (2001). K4 is the absorption coefficient.
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Thorhaug et al. (2007) compared Thalassia, Halodule and Syringodium in their
study, along with several species of siphonaceous macroalgae and detected small
differences in reflection between the three seagrasses in the 500 — 530 nm and 680 — 720
nm ranges, as shown in Figure 3.19. Thorhaug’s samples were brought into the laboratory
alive and rooted, and scans were carried out under controlled low-light conditions with
plants in various incubation treatments, and at live, senescing and dead stages. Samples

were brought to the surface for scanning.

Both Thorhaug and Fyfe converted scans to percent reflectance, then calculated
the mean percent reflectance as the mean of the percent reflectance at each wavelength

across all samples of a particular species (Fyfe and Dekker 2001, Thorhaug et al. 2007).

Spectral reflectance of seagrasses
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Figure 3.19. Reflectance in the 400 — 1000 nm range of individual blades of Thalassia
testudinum, Syringodium filiforme and Halodule wrightii (Thorhaug et al. 2007).

The methods for this project followed similar procedures to the Thorhaug and
Fyfe research. One major difference between this project and earlier studies is that the
spectra in this project were collected in situ and through the water column. As shown in

Figure 3.15 through Figure 3.18 (surface, subsurface and canopy), a clear separation of



84

the means is apparent, however, measurements at the canopy level show only a slight
separation, and standard deviations between the two species overlap almost continuously.
At the subsurface level, there is a good separation between the means between 515 and
620 nm, but again, the standard deviation for the Halodule measurements overlaps the
mean and higher standard deviation of the Thalassia measurements in this range. At the
surface level, the separation between species is much more apparent and there is no
overlap of the standard deviations in the range between 490 nm to around 660 nm. Figure
3.20 shows the difference between the means of the surface-captured reflectance between
these two species, after the spectral values are normalized and a MSC is applied, as well

as the mean standard deviations for Thalassia and Halodule.
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Figure 3.20. Suggested areas for band selection are between 600 — 660 nm, as well as
535 nm. These areas are selected because there is a useable amount of difference between
the species but little variation within the species from surface collected data.
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This research examined differences in reflectance value for two species of
seagrass, Thalassia and Halodule, which are dominant in estuarine water bodies in Texas.
Spectral signals were collected at three positions: at the canopy level, just below the
water surface, and just above the surface/water interface. These signals were collected as
reflected radiance, converted to reflectance, normalized, and corrected for scatter. The
mean values and standard deviation were calculated for each species at each level of
collection. Figure 3.16 through Figure 3.18 show the means and standard deviations for
each species at each level of collection. Each collection level has a detectable difference
between mean responses, but only those collected at the above-surface level showed a
significant difference in means and exhibited small enough standard deviations to avoid
overlapping the means of the other species. This condition persisted throughout the range

from approximately 515 and 660 nm.

Figure 3.20 shows the difference between surface-collected mean values of
Halodule and Thalassia spectra after normalizing and applying an MSC. The standard
deviations for each species are also shown. Between 500 nm and 700 nm, there is about a
10% difference in normalized spectral values. Both Halodule and Thalassia spectra

standard deviations remain consistently below 10%.

The results from this research indicate that a better separation of species can be
obtained from above the surface than below the surface/water interface. While this seems
rather perplexing, it is perhaps a matter of the signals measured at the canopy reflecting
from individual leafs rather than a coalesced background of leaves, as sensed from above
the surface/water interface. Although the above-surface images were taken within

millimeters of the surface, and all the sites were under 1 m depth, given the rather small
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aperture of the sensor, and a FOV of 25°, this explanation seems quite possible. As seen
in Figure 3.21 and noted by Thorhaug, there can be substantial variation in seagrass
blades, depending on numerous factors including epiphyte coverage, stage of senescence
or morbidity (Thorhaug et al. 2007). Figure 3.22 shows the spectral responses of

Thalassia in three different states of morbidity.

Figure 3.21. Seagrass photographs from a) above the surface and b) below the surface.
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Figure 3.22. Three different spectral responses from Thalassia testudinum blades:
Healthy blades with 32 ppt chlorophyll, yellowing and brown mottled leaves
which were losing their pigments, and black leaves which were dead. From
Thorhaug et al. (2007).
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As the sensor is moved farther from the individual leaves, the spectral responses
coalesce to return one ‘averaged’ signal, and minor changes in ‘color’ or shadow are
melded into a single response. This also helps explain why areas with a high degree of
macroalgae will still be classified as seagrass because the seagrass signal is dominant,
and the macroalgal signals either aren’t strong enough for detection or occur in different

locations along the visible spectrum.

This research demonstrates that the seagrass species Thalassia testudinum and
Halodule wrightii have distinct spectral signals and that the differences in spectral

signature are detectable using hyperspectral sensors and advanced processing techniques.
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CHAPTER IV: HYPERSPECTRAL DISCRIMINATION OF BENTHIC
HABITAT TYPES: TAKE DEUX

ABSTRACT

Hyperspectral imagery of Redfish Bay on the Texas coast was classified for
seagrass species using a band selection determined by in situ spectral sampling and the
application of spectral water depth corrections. An iterative classification scheme was
used. Three iterations included unsupervised classifications and field site classification
matching, and the fourth iteration employed a supervised classification with the
Maximum Likelihood procedure. Results showed an increase in accuracy from similar
studies using other band combination recommendations found in recent literature,
developed empirically and with other methods of in situ sampling. Kappa Coefficients

indicate that the results are not due to a chance occurrence.

The methods employed in this study allow flexibility in classification methods

used at each iteration, and employ depth corrections that were previously unavailable.

INTRODUCTION

In 2008, as part of a National Oceanic and Atmospheric Administration (NOAA)
Environmental Cooperative Science Center (ECSC) funded project, hyperspectral
imagery was collected over Redfish Bay, Texas. The 63 hyperspectral bands were
collected with an AISA Eagle imaging spectrometer aboard a specially modified Piper

Saratoga aircraft.

Redfish Bay is in the Texas Coastal Bend area and is part of the Mission-Aransas

National Estuarine Research Reserve (MANERR). Data collection was performed with
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several goals in mind, including mapping the seagrasses and benthic habitats of Redfish
Bay, mapping and analyzing the invasive black mangroves, and mapping the marsh
vegetation at Aransas National Wildlife Refuge, to the north of the MANERR. This set of
collaborative projects is designed to increase knowledge of these habitats, while
providing research and cooperative study opportunities in geospatial technologies to a

diverse group of students from a wide area.

Hyperspectral imagery has previously been used to map benthic and wetland
habitats. Mumby et al. (1998) used hyperspectral sensors (Landsat MSS, Landsat TM,
SPOT-XS and SPOT Pan, and CASI) to discriminate between coral reef species and
seagrasses in the Turks and Caicos Islands, British West Indies. Fyfe and Dekker (2001)
determined that 3 species of seagrasses found in southeastern Australia were spectrally
distinct, regardless of whether they had epiphytic coverage. Peneva et al. (2008) were
successful in determining seagrass distribution and coverage of seagrasses around Horn
Island, MS. Phinn et al. (2008) mapped seagrass species, cover and biomass in Moreton

Bay in Australia.

Cho et al. and Fyfe have both published recommendations for band selections to
be used to discriminate between seagrass species (Fyfe and Dekker 2001, Fyfe 2004, Cho
and Lu 2010). Cho developed these recommendations based on laboratory tank studies,
while Fyfe took spectral readings in situ, using species found in Australian estuaries. Cho
and Lu (2010) devised a depth correction algorithm to correct for absorption and
scattering within the water column. In Chapter II, a study in which this correction was
applied using a default value of 60 cm depth to hyperspectral images is described, in

which accuracy improvements in mapping Redfish Bay seagrasses are noted (Cho et al.
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2012). In that study, Cho’s band recommendations were also adopted because they were
believed to be ideally suited for the species of seagrasses found in the Redfish Bay

estuary.

Subsequent in situ spectral sampling and analysis during 2012 indicated that
certain bands may be more effective in discriminating seagrass species found in Redfish
Bay than those spectral bands previously suggested by Fyfe or Cho. Chapter III describes
details on the processing and analysis of the spectral samples collected with the Jaz
Spectrometer, Chapter II details the original image analysis. This chapter will discuss the
reprocessing of the images, using the band selection developed in Chapter III. This
chapter presents these new findings and compares the results of earlier studies with those

using spectral bands suggested as a result of the 2012 studies.

METHODS

Hyperspectral imagery was collected in the Redfish Bay study area during
October 2008, and delivered as a georectified, atmospherically corrected data set in
November 2008. The data set contained 9 images, which were approximately 1 km wide

and 8-14 km long. These images were mosaicked into one single image for processing.

Study area
Redfish Bay is a shallow estuarine bay located between Aransas Pass and Port
Aransas, Texas, in an area known as the Texas Coastal Bend. The study area portion of
Redfish Bay is bounded by the Aransas Channel on the south, Corpus Christi Bayou on
the east, the Lydia Ann channel on the north, and the Gulf Intracoastal Waterway on the

west. Redfish Bay is an integral part of the Mission-Aransas National Research Reserve,
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and has been designated as a state scientific area by Texas Parks and Wildlife
Department. Figure 4.1 shows many of the features of Redfish Bay, and there is a more

complete description in Chapters I and II.

Figure 4.1. The study area, the northern part of Redfish Bay, in the Coastal Bend Area of
Texas. This shallow estuarine bay is located within the Mission-Aransas National
Estuarine Research Reserve, and is bounded by the Aransas ship channel, the Gulf
Intracoastal Waterway, Corpus Christi Bayou and Lydia Ann channel.

Field data
Three hundred locations were randomly selected within Redfish Bay as field sites.
Each of these sites was visited in July 2008, and the presence or absence of seagrass,

species present, and their approximate percent coverage and water depth, were recorded
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in a field book. These details were then transcribed into an Excel 2003 spreadsheet and
subsequently imported into an ESRI ARCGIS point vector shapefile. Locations were then
randomly split into working data and accuracy assessment data categories using a random

binary number generator.

In addition to the original field work, spectral signatures were collected in June
2012. These signatures were collected over monotypic areas with 100% seagrass
coverage. Sensor positions for collection were at the top of the canopy, just below the
water surface, and just above the water surface, as shown in Figure 4.2. Chapter III
describes the collection process and the collected data in detail. Analysis of that data

indicated that certain bands were well suited for species separation.

Surface

Subsurface

Canopy

Figure 4.2. Three capture levels of spectral readings: surface, subsurface, and canopy. At
each level, new reference and dark standard signals were collected. In shallow
locations, the canopy and subsurface readings were often the same.
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Acquired data

Hyperspectral imagery was collected over Redfish Bay in October 2008, and
delivered as atmospherically corrected, georeferenced digital images in mid-November,
2008. These images have 63 bands, of approximately 10 nm bandwidth each. These
images were acquired using an Airborne Imaging Spectroradiometer for Applications
(AISA) Eagle Hyperspectral sensor, developed in Finland by SPECIM Spectral Imaging
Ltd. The AISA sensor is mounted in a specially modified Piper Saratoga aircraft owned
and operated by the Center for Advanced Land Management Information Technologies
(CALMIT), in cooperation with the University of Nebraska-Lincoln. Table 4.1 shows
several pertinent specifications for the sensor. Chapter II contains a detailed description

of the collection system.

Table 4.1. Specifications for the Airborne Imaging Spectroradiometer for Applications
(AISA) Eagle Hyperspectral sensor and is adapted from Bertels et al. (2005).

Characteristic Value
Field of view (FOV) 39.7°
Instantaneous field of view (IFOV) 0.039°
Spatial resolution 0.5-10m
Spectral range 400 - 970 nm
Spectral channels max. 244
Spectral sampling interval 2.3 nm
Spectral resolution (FWHM) 2.9 nm
Dynamic range 12 bits (4096)

The images were delivered in mid-November 2008, on a portable hard drive. The
Redfish Bay collection contained 13 images, each with 63 bands and approximately 1 km

wide and 8 — 14 km long. Of these 13 images, 9 were selected for further processing.
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These 9 images were then mosaicked into a single image containing 63 bands, as

described in Chapter II.

Image processing

Bands 16 (535.61 nm), 23 (600.58 nm), 25 (619.39 nm), 27 (638.19 nm) and 29
(656.49 nm) were selected, based on results of the field spectra analysis described in
Chapter III, and depicted in Figure 4.3. These bands were separated from the larger
image set. Coefficients for water absorption and water scattering were calculated for each
wavelength from data supplied by Cho (personal e-mail communications, 2012). A
bathymetry layer was created from multiple data sources, including field measurements,
existing bathymetry point data, fishing maps and other sources. The depth raster shown in
Figure 4.4 was re-sampled to match the 1 m pixel size of the imagery. This bathymetry
layer was then reclassified to the Ry, and Ay, coefficients at each depth to be used in the

algorithm developed by Cho and Lu (2010).
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Figure 4.3. Suggested areas for band selection between 600 — 660 nm, as well as 535 nm
for a reference point where there is little difference between the bands. These
areas are selected because there is a useable amount of difference between the
species at wavelengths where there is not large amounts of variation within the
species. Details of the analysis are presented in Chapter I1I.

Figure 4.4. Depth raster (bathymetry) of Redfish Bay derived from multiple sources.
Areas outside of the study area or on land were masked during the process.

Cho’s depth correction algorithm (Equation 4.1) was then applied to each of the 5

bands, to correct for depth attenuation:

(R+ 14 —Ry) / (1- A/200) >

4.1)
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where R is the reflectance value, the pixel value found in each band pixel, expressed as a
percentage, Ry, is the water scattering coefficient for the depth found in the bathymetry
raster, and A, is the water absorption coefficient for the depth found in the bathymetry
raster. After corrections, the bands were re-stacked and opened in ENVI 5.0 for

classification using ENVI’s classification workflow.

The first step in the ENVI process is to specify the image being processed and any
mask to be used. A mask specifies that area which is to be analyzed, and conversely, the
areas to be omitted from analysis. The mask for this iteration eliminates processing of
land areas within the study area. In future iterations, the mask will reduce the analysis to

only areas which are to be reprocessed.

The workflow in ENVI categorizes pixels within the image into groups of pixels
with similar characteristics. For the first iteration, 25 categories were created, each
having similar pixel values. These categories were then aggregated into polygons with a
minimum of 9 pixels (9 m?). These categorized polygons were then exported as ESRI

shapefiles.

Vector processing
The polygons generated in ENVI version 5 are categorized as ‘Class 1°, ‘Class 2°,
through ‘Class 25°. Each of these categories represents groups of pixels with similar pixel
digital numbers, with no association to species types. To derive species types from these
classes, the polygons are reclassified in ESRI’s ArcGIS 10.0. Each class is attributed with
the learning points that fall within the polygons of that class. A custom process was
created that selects all the learning points that fell within a selected class, and then selects

all the polygons that contain those learning points. Each selected polygon was then
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attributed with the codes for learning points that fell within them, and then with the
species names or descriptive note, as shown in Table 4.2. Asterisks indicate that an
attribute has been derived, based on the learning points that fell within other polygons
within the same class. The entire class was then selected and attributed with a list of all
the codes that fell within that class, and then the species code or descriptive note. This
process was repeated for the next class, until all the classes of polygons were processed

and attributed.

Table 4.2. Attribute table with classification data for Redfish Bay. Asterisks denote a
derived classification.

CLASS NAME | AREA MainSpecie grassType
Class 1 47 1 H100 Halodule
Class 1 150,020 | 1 H75T25 MixedMono
Class 1 4,687 | * 1 HI100,1H75T25 Mixed
Class 2 12 *1B100,3 H100, 1 T100, 1 T50S50, 1 Mixed

After all the classes were attributed thusly, the ‘Mixed’ and ‘No Clues’ categories were

removed, and used to create a mask for the next iteration.

The second iteration
A set of training points was selected and buffered. Buffering refers to a process
that creates a polygon of a specified width that surrounds the location of the training
point. The polygons created in the first iteration that were classed as ‘Mixed’ or ‘No
Clues’ were removed from the first iteration output. The buffers from the training points

and the removed classes were merged to create a mask for the second iteration. This mask
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was opened in ENVI along with the corrected 5-band image. The classification workflow
was again initiated, and the masked area of the image was categorized into 10 categories
of similar pixels, which were then aggregated into groups of 9 or more contiguous pixels,

similar to the process described in Chapter I1.

The third iteration
The ‘Mixed and ‘No Clues’ classes from the second iteration formed the mask for
the third iteration, along with the buffered learning point polygons. These were again
processed in ENVI 5.0, which created categories of like pixel values and then assigned to
one of five output categories, which were then aggregated to minimum groupings of 9
contiguous pixels. These were exported as an ESRI shapefile, which were then

reclassified using the learning points, as described above.

The fourth iteration

A mask formed from the ‘Mixed’ and ‘No Clues’ classes from the third iteration
was applied to the classification workflow within ENVI 5.0 to the same depth-corrected
image. In this iteration, a supervised classification was selected, using a training data set
developed previously and described in Chapter II. The supervised classification, using the
‘Most Likely’ classification algorithm, classed each polygon as being either ‘Bare’,
‘Halodule’, ‘Ruppia’, ‘Thalassia’, MixedMono, or ‘Unclassified’, to match those of the
training data set. Since the unclassified category was ‘Mixed’ before the last iteration, it

will be returned to a ‘Mixed’ category.
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RESULTS

Figure 4.5 shows the classified polygons from the first iteration, and Table 4.3
shows the area and number of polygons in each class. Figure 4.6 shows the polygons
from the first and second iterations. Table 4.4 shows the combined results of iterations
one and two. Figure 4.7 shows the polygon output from the third iteration of processing.
Table 4.5 shows the combined number and area of polygons. Table 4.7, from Chapter II,
shows the final output from that previous processing, while the final output polygons
from this chapter are mapped in Figure 4.8. The number of polygons and area of each
class may be found in Table 4.6 and represents the final results of the processing from
this chapter. Table 4.8 below shows the differences between those two tables. There are
approximately 17,265 more Thalassia polygons in the processing from Chapter IV, 5,183
fewer ‘Mixed’ polygons, 12,034 more polygons classified as ‘MixedMono’, 19,241 more
polygons classified as Halodule, 5,219 fewer classified as Ruppia, 3,528 more classified
as ‘Bare’, 24,158 fewer classified as ‘Bare/Thalassia Mix’, 26,890 more classified as

‘Bare/Halodule Mix’, and one less polygon classified as Syringodium.
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Habitat Type
Bare
Bare/Halodule Mix
I Halodule
B Ruppia

MixedMono

B Syringodium

Bare/Thalassia Mix

075 1.5

Kilometers

Figure 4.5. Results from first iteration. The ‘Mixed’ and ‘No Clues’ classes have been
removed.
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Table 4.3. Results from the first iteration. The number of polygons in the ‘Mixed’ and
‘No Clues’ Classes were unavailable.

Classification Number of Polygons ~ Total Area in Class (m?)

Bare 766 2,797,248
Bare/Halodule Mix 7,302 1,327,681
Bare/Thalassia Mix 1,185 767,466
Halodule 629 1,553,438
Mixed 19,528,531
MixedMono 28 527,852
No Clues 89,608
Ruppia 5 40,667
Syringodium 1 1,042
Thalassia 18 409,374
TOTALS N/A 27,042,907
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Habitat Types

Bare
BareMu
B Halodule
Mixed'Bare
MixedMono
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Figure 4.6. Output polygons from the second iteration. The ‘Mixed’ and ‘No Clues’
classes have been removed.



Table 4.4. Combined results of iterations 1 and 2, showing total areas and numbers of
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polygons.
Classification Number of Polygons Total Area in Class (m?)

Bare 769 3,193,578
Bare/Halodule Mix 29,135 3,115,812
Bare/Thalassia Mix 1,185 767,466
Halodule 20,496 3,288,339
MixedMono 18,915 2,829,819
Ruppia 6 41,449
Syringodium 1 1,042
Thalassia 18,658 2,488,805
TOTALS 89,165 15,726,310
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Habitat Type
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Figure 4.7. The output from the third iteration of reprocessing.



Table 4.5. Combined output from the first three iterations.

Classification Number of Polygons Total Area in Class
Bare 773 3,195,229
Bare/Halodule Mix 29,135 3,115,812
Bare/Thalassia Mix 1,185 767,466
Halodule 20,505 3,305,144
MixedMono 18,925 3,583,676
Ruppia 7 41,478
Syringodium 1 1,042
Thalassia 18,661 2,489,748
TOTALS 89,192 16,499,595
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Habitat Type
Bare
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Figure 4.8. The final output from reprocessing using a depth correction and improved
band selection.
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Table 4.6. Results of iterations 1-4, with area and number of polygons found in each
class. These are the final results of the reprocessing.

Classification Number of Polygons ~ Total Area in Class Mean Area/Polygon
(m*) (m>)
Thalassia 39,303 4,857,068 123.5
Mixed 13,925 1,350,628 96.99
MixedMono 31,545 6,016,575 190.73
Halodule 33,209 6,125,249 184.445
Ruppia 7,437 462,619 62.205
Bare 6,482 4,120,545 635.6904
Bare/Thalassia Mix 1,185 767,466 647.6506
Bare/Halodule Mix 29,135 3,115,812 106.944
Syringodium 1 1,042 1042

TOTALS 162,222 26,817,004 165.31
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Table 4.7. The final number of polygons and the area of each classification from the final
iteration in the first set of processing from Chapter II.

Classification Number of Polygons Total Area in Class Mean Area/Polygon
(m®) (m?)
Thalassia 22,038 4,976,130 225.80
Mixed 19,108 4,362,722 228.32
MixedMono 19,511 3,701,172 189.70
Halodule 13,968 3,608,193 258.32
Ruppia 12,656 3,585,130 283.28
Bare 2,954 3,537,991 1197.69
Bare/Thalassia Mix 25,343 3,476,164 137.16
Bare/Halodule Mix 2,245 587,547 261.71
Syringodium 2 38,009 19,004.50
TOTALS 117,825 27,873,058 21,786.48

Table 4.8. The differences in areas and number of polygons between the classifications
in Chapter II and Chapter IV. Results from Chapter II were subtracted from those

from Chapter IV.

Classification Number of Polygons Total Area in Class Mean Area/Polygon (m?)
Thalassia 17,265 -119,062 -102
Mixed -5,183 -3,012,094 -131
MixedMono 12,034 2,315,403 1
Halodule 19,241 2,517,056 74
Ruppia 5,219 -3,122,511 221
Bare 3,528 582,554 -562
Bare/Thalassia Mix 24,158 -2,708,698 510
Bare/Halodule Mix 26,890 2,528,265 -155
Syringodium -1 -36,967 -17,963

There are also major differences in the area within each class, with the largest

declines in the areas classified as Ruppia, with 312 fewer hectares, ‘Mixed” with 300
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fewer hectares, ‘Bare/Thalassia Mix’ with 270 fewer hectares. Increases were noted in
the areas of ‘MixedMono’ classification, with 232 more hectares than previous, Halodule

with 252 more hectares, and ‘Bare/Halodule Mix’, with 252 more hectares.

Figure 4.9 shows the proportions of coverage by each class from Chapter IV,
while Figure 4.10 shows the proportions from the classification performed in Chapter I1

for comparison.

Bare
" Mixed
MixedMono

Bare/Halodule Mix
» Halodule

8 Ruppia

“ Bare/ThalassiaMix

® Thalassia

Figure 4.9. The benthic habitat makeup of Redfish Bay, Texas.

Percent Coverage by Species

m  Mixed - MixedMono

u Halodule

Bare - Bare Mixed

Figure 4.10. Benthic habitat proportions from Chapter II.
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The accuracy assessment for the final iteration of this processing, shown in Table
4.9, shows a substantial improvement from the methods used in Chapter II. The overall
accuracy improved from 38% to approximately 57%. Producer’s accuracy for the ‘Bare’
class increased from 66.67% to 73.08%, for Halodule, the increase was from 29% to
63.89%. The accuracy for Thalassia actually decreased from 46.15% to 45.83%, while
accuracy for the ‘MixedMono’ class increased from 23.33% to 47.37%. User’s accuracies
also show a dramatic increase in all classes except ‘Bare’, which decreased from almost
70% to 66%. Halodule accuracy went up from 39% to 64%, Thalassia accuracy
increased from 40% to 55%, and ‘MixedMono’ increased from 22.58% to 39%. The
Kappa Coefficient also increased, from 0.2988 to 0.4459, providing another indication
that there is an even less likelihood that an area was classified correctly by chance

agreement only.

When the ‘Grass’ classes are aggregated to calculate Presence/Absence as in
Chapter I1, very little difference in Accuracy Assessment is noted. The overall accuracy
actually decreased from 87.93% to 86.11%, while the User’s accuracy for the ‘Bare’ class
increased from 72.7% to 73.08%, and the ‘Grass’ class User’s accuracy decreased from
91.5% to0 90.24%. Producer’s accuracies increased from 66.7% for the ‘Bare’ class to
70.4%, while the ‘Grass’ class Producer’s accuracy decreased from 93.5% to 91.4%.
Kappa Coefficient for this calculation is 0.641, a very slight increase from the .6206

obtained in Chapter II.



Table 4.9. Confusion matrix details the accuracy assessment for the classifications
generated using the improved band selection and water depth corrections using a

depth raster.
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Accuracy Assessment and Confusion Matrix

Bare  Halodule Ruppia

Thalassia MixedMono

Bare 19 3 0 1 3 73%
Halodule 2 24 0 4 6 63%
Ruppia 0 1 0 0 2 0%
Thalassia 3 5 0 12 4 50%
MixedMono 3 3 1 4 8 42%
70% 67% 0% 57% 35% 57%
Producer’s Accuracy User’s Accuracy
Bare 73% Bare 70%
Halodule 63% Halodule 67%
Ruppia 0% Ruppia 0%
Thalassia 50% Thalassia 57%
MixedMono 42% MixedMono  35%
Overall Accuracy 57%
Kappa Coefficient 4459
CONCLUSIONS

The addition of a depth (bathymetric) raster and application of a depth correction

combined with band selection based on in situ spectral sampling greatly improved the

accuracy of benthic habitat classification using hyperspectral imagery. These findings

concur with those of Fyfe and Dekker (2001). However, the specific wavelengths

recommended by Fyfe are different than those used in this research. Therefore, it is

highly recommended that future seagrass mapping efforts using hyperspectral imagery
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include not only extensive field site visits, but also include the extensive use of portable
spectrometer data collection and analysis of that data to determine the best bands for the

species of seagrasses that may be present.

Lee (2003) extolls the virtues of the fusion of complementary data sets, such as
hyperspectral imagery and bathymetry, in benthic habitat mapping research. Lee used
airborne laser bathymetry in conjunction with hyperspectral imaging, as did Lyzenga
(1985). Lee points out that such fusion comes with its own set of problems; there are
varying levels of abstraction at which the fusion may take place, and data sets must be
registered with each other and brought to a common scale or resolution. There are also
limits to which this fusion is applicable. Lee uses the term Maximum Surveyable Depth
(MSD), describing the maximum depth at which existing mapping standards can be met.
According to Lee, the MSD for Airborne Lidar Bathymetry (ALB) can range from 50 m
in clear waters to 10 m in murky waters, or usually two to three times the Secchi depth.
Wang and Philpot (2007) concur with Lee, but point out one critical factor: there is also
a minimum depth at which ALB is capable of capturing accurate measurements — stated
at 1.5 m. Since the study area average depth is less than 1.5 m, and the maximum natural
depth is around 2 m, ALB may not be suitable for fusion into the hyperspectral image
processing. Bachmann (2008) states that at less than 2 m, ALB systems do not provide

reliable depth retrieval.

So, depth measurements (bathymetry) are critical to accurately discriminating
species of SAV using hyperspectral imagery, but ALB measurements aren’t reliable
under 2 m, the depth where seagrass is found in these shallow bays systems. But there is

good news: scientists with the U.S. Army Engineer Research and Development Center
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are developing an integrated hyperspectral imaging/lidar collecting system, capable of +/-
30 cm vertical accuracy with a 4 m spot spacing. While this is still not quite accurate
enough to take full advantage of the depth correction algorithm developed by Cho (2010),

this is a sign that improved technology available in the near future may do just that.

This research demonstrates that increases in accuracy of benthic habitat mapping
are achievable by using depth corrections and site specific band selection. While depth
corrections described in Chapter Il were calculated using an approximation of depth, an
average 65 cm, calculations in this chapter were accomplished using a bathymetry
developed from various sources of varying and unverifiable accuracy. Therefore, it is
difficult to determine which factor — depth corrections or site specific band selection —

would have the largest influence in the accuracy of the output data set.
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CHAPTER V: SUMMARY AND CONCLUSIONS

SUMMARY

The research described in this dissertation is part of a collaborative effort
organized and funded by the National Oceanic and Atmospheric Administration
(NOAA), through the Environmental Science Cooperative Science Center (ECSC). A
series of hyperspectral imaging flights were executed over Texas Coastal Bend areas,
including over Redfish Bay, located between Aransas Pass and Port Aransas, Texas. One
of several planned uses of this imagery was to discriminate between species of seagrasses

in Redfish Bay.

This hyperspectral imagery was collected with an AISA (Airborne Imaging
Spectroradiometer for Applications) Eagle Hyperspectral sensor capable of collecting
spectral data in the range of 400 — 1000 nm, in as many as 272 bands (Green and Cole
2005). For these missions, 63 bands were collected, each about 9-10 nm wide. Imagery is
collected in a ‘pushbroom’ fashion, one line containing 1024 pixels at a sweep, followed
by the next line, and so forth. The instrument incorporates an integrated inertial system,
GPS and gyroscope, so that imagery and positional data are collected simultaneously and

stored synchronously (Bertels et al. 2005).

Prior to imagery collection, a field survey team visited approximately 250
randomly selected sites, and recorded the location with an RTK-enabled GPS, noting
depth, and species presence, absence and makeup. These were transcribed into an Excel
spreadsheet, which was then converted into an ESRI (Environmental Systems Research

Institute) shapefile for later use.
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Georectified imagery was saved on a portable hard drive and was atmospherically
corrected before delivery. This project used 9 of the delivered images, each covering
approximately 1 km width, and 8 — 14 km in length. The images were mosaicked to form
one image, covering approximately 3250 hectares. From this image, 5 bands were

selected, based on recommendations found in literature (Fyfe 2003, Cho and Lu 2010).

The selected bands were then corrected for depth, using an algorithm developed
by Cho (2010), using an average depth of 65 cm that was applied to the individual bands
in ENVI (ENvironment for Visualizing Images) 4.8, using the ‘Band Math’ function, and

the formula
(Rw/10 — Ry) / (1- Ay/200)>

where Ry, is the percent surface and volumetric reflectance and A, is the coefficient for

water absorption in the water column in both up and down directions.

After depth correction, the image was opened in ENVI EX 4.8, and a
classification workflow initiated. In this workflow, the image is segmented into groups of
like pixel values, and then classified into 25 classes of similar segments. These classes

were aggregated into no fewer than 9 similar pixels, and exported as an ESRI shapefile.

This shapefile was then opened in ESRI’s ArcGIS 10.0, and a classification was
selected. Using this selection, all points representing field sites that fell within selected
polygons were then selected, as shown in Table 5.1. Each polygon that contained a field
site point was then attributed with the type of seagrass found there. This was repeated
until all 25 classes were exhausted. Once all the classes were reclassified, the ‘Mixed’

classes were then exported for use as a mask for the next iteration.

(5.1)
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Table 5.1. ArcGIS data table with classification data for Redfish Bay. Note that the first
line of the table contains fieldnames.

CLASS NAME | AREA | MainSpecie | grassType
Class 1 47 1 H100 Halodule
Class 1 150,020 | 1 H75T25 | MixedMono
Class 1 4,687 | *1HI100, 1 Mixed
Class 2 12 *1B100, 3 Mixed

The image was then reopened in ENVI, and the classification/segmentation

process repeated for only those areas within the newly created mask. The ENVI output

was then subjected to the same process in ArcGIS. This reiterative processing was
repeated through 3 iterations, and then again, using a ‘supervised’ classification. All

output files were then merged into a single shapefile (see Table 5.2) and an accuracy

assessment was performed, with the results as shown in Table 5.3.

Table 5.2. The final number of polygons and sums of the areas of each classification
from the initial processing.

Classification Number of Polygons  Total Area in Class
Bare 2,954 3,537,991
Bare/Halodule Mix 2,245 587,547
Bare/Thalassia Mix 25,343 3,476,164
Halodule 13,968 3,608,193
Mixed 19,108 4,362,722
MixedMono 19,511 3,701,172
Ruppia 12,656 3,585,130
Syringodium 2 38,009
Thalassia 22,038 4,976,130
TOTALS 117,825 27,873,058
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Table 5.3. The accuracy assessment from the initial processing.

Producer’s Accuracy User’s Accuracy
Bare 66.67% Bare 69.57%
Halodule 29.03% Halodule 39.13%
Thalassia 46.15% Thalassia 40.00%
Ruppia 0.00% Ruppia 0.00%
MixedMono 23.33% MixedMono 22.58%

Overall Accuracy 37.93%

Cohen's Kappa 0.2988

To further understand these results, we returned to Redfish Bay with an Ocean
Optics Jaz portable spectrometer and collected reflected radiance spectra. These samples
were collected over areas with 100% coverage of Halodule or Thalassia at various depths
up to 110 cm. The sensor was placed at three positions: above the surface of the water,
just below the air/water interface, and at the canopy level. Each spectral sample was
imported into an Excel spreadsheet, where it was converted from spectral irradiance to
percent reflectance. Mean spectra of both species at each level were plotted (see Figure
5.1) and analyzed. We found that there are detectable spectral differences between

Halodule and Thalassia, at all three positions.
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Figure 5.1. Suggested areas for band selection would be between 600 — 660 nm, as well
as 535 nm for a reference point where there is little difference between the bands.
These areas are selected because there is a detectable amount of difference
between the species at these wavelengths and no overlap in the standard of
deviations of the spectral curves.

We also noted that, for subsurface and canopy levels, there was considerable
overlap of the standard deviations of the spectral curves. However, there was no overlap
for spectral curves of above-surface spectral measurements. This indicates that areas with
larger differences in the mean spectral curves, but having smaller standard deviations,

would be acceptable recommendations for bands discriminating between the species.

Armed with this new information, we returned to the original hyperspectral
imagery collected over Redfish Bay. We selected from the original, uncorrected 63 band
imagery 5 bands, centered on 535, 600, 619, 638 and 656 nm. These bands were
separated and individually corrected for depth, using a depth raster that had been

reclassified as coefficients for water absorption and water scattering relative to each
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bandwidth. The bands were then re-stacked, and classified in ENVI, then reclassified to
species in ArcGIS, following the same iterative procedures detailed earlier. Accuracy
assessments were performed for the output classified polygons, and the results of that

assessment are shown in Table 5.4.

Table 5.4. Results of the accuracy assessment performed on the output from the second
processing of the hyperspectral imagery of Redfish Bay. The results were
considerably better with the new band selections and depth corrections applied via
a depth raster (bathymetry).

Producer’s Accuracy User’s Accuracy

Bare 73% Bare 70%
Halodule 63% Halodule 67%
Ruppia 0% Ruppia 0%
Thalassia 50% Thalassia 57%
MixedMono 42% MixedMono 35%
Overall Accuracy 57%

Kappa Coefficient 4459

CONCLUSIONS

Shortcomings
As with most research, there are several shortcomings related to this study. A
good bathymetry dataset is critical to the analysis of hyperspectral imagery. This critical
component to many research projects is severely lacking not only in Redfish Bay and in
Texas, but throughout the estuarine research community. A 1999 survey by the NOAA
Coastal Services Center identified near-shore bathymetry, coastal topography and bay
bathymetry as “very useful” by at least two-thirds of the respondents, and who listed it in

the top ten data needs (Gesch and Wilson 2001). Studies of these dynamic environments
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that experience both erosion and accretion require a high-resolution, up-to-date
measurements. Besides being a huge asset to planning, navigation and field site
placement, bathymetry is a necessary component for depth correction, which is critical
for analysis at subsurface levels. Fortunately, the need for highly accurate bathymetry is
recognized, and the USGS and NOAA’s National Ocean Service and others are working
collaboratively to develop tools and techniques for meeting that need. Two leading
technologies are emerging: LIDAR and Optical Analytical both offer hope for high
resolution datasets with accuracies approaching 15 cm and the ability to cover large areas

(Sanchez-Carnero et al. 2012).

Another shortcoming recognized within this research is that benthic coverage by
drift macroalgae is basically ignored, although it can and does cover as much as 90% of
the benthic habitat. Drift macroalgae is ephemeral, drifting over the top and settling on
the seagrass beds and in depressions such as scars. As the currents change, the drifting
algae shift positions. Drift material is a valuable resource because it tends to have
elevated nitrogen levels (Britton-Simmons et al. 2012). In this study, macroalgae is
treated more as a confounding element rather than a substantial contribution to the

benthic community.

Likewise, another important benthic habitat is considered as ‘Bare’, when it
deserves its own classification. Oyster reefs found in numerous locations throughout the
study area remain classified as ‘Bare’, although they are often far from being bare, but
rather are recognized as a productive benthic habitat in their own right, serving multiple
ecologic functions including improving water clarity and providing shoreline protection

(Pollack et al. 2011).
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Future research
Research in this area will no doubt continue, and should include the use of
spectrometer sampling at numerous locations, expanding to include not only seagrass
beds, but several other benthic habitat types such as oyster reefs and shell hash bare
areas. Collection of signatures from several types of bare areas could allow
discrimination of these important habitat types, as well as aid in discrimination of

seagrass types.

Future studies of this type will benefit from incorporating bathymetric measuring
systems such as LiIDAR. There are several studies being conducted that will aid in
melding the spectral and bathymetric data sets. As well, future studies should also include
mapping both real and potential biomass, as well as predicting areas of species expansion
based on contemporary conditions. Finally, future studies should examine the relationship
between accretion of sediment and decreases in bathymetry in relationship to sea level

rise.
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