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ABSTRACT

This work provides an analysis of sea surface temperature (SST) data in the Gulf of Mexico (GoM),

and compares modeling methods to assess their performance through statistical simulation. The

GoM is a region of global economic and environmental importance, including the notable Flower

Garden Banks National Marine Sanctuary’s coral habitats. However, the area has largely not

been focused on in terms of advanced SST modeling. The objective of this work is to provide

insight into SST variability in the GoM by modeling time series data, concentrating on seasonal

patterns and the overall linear warming trend. In the study, varying methods compared include a

dynamic seasonal mean model, a dynamic sinusoidal regression model, a cyclic spline model, and

a seasonal mean regression model with sandwich estimator. At the 95% nominal confidence level,

methods ignoring the autocorrelation of error terms maintain empirical coverage between 60% and

80% to capture the linear yearly warming trends in the simulation. The recommended modeling

approach, a dynamic sinusoidal regression model, provides such coverage of approximately 91.6%.

It also offers a balance between accuracy, simplicity, and continuity, especially for frequently

collected data. Analysis estimates the East Flower Garden Bank has an annual warming trend of

approximately 0.028 ± 0.016°C. This comparative analysis of modeling techniques contributes to

a better understanding of SST dynamics in this critical marine ecosystem.
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1. INTRODUCTION

Sea surface temperature (SST) is a useful marker for understanding marine health and coastal

conditions (O’carroll et al., 2019). SST is an important covariate for many different oceanic

conditions, such as CO2, which can be used to assess oceanic acidification. In addition, changes in

SST can affect climate conditions including storm intensification. Warmer oceanic temperatures

also lead to the acceleration of thermal expansion.

The Gulf of Mexico (GoM) is the world’s largest gulf, encompassing approximately 600,000

square miles. Of great economic, ecological, and biological importance, the GoM is a major source

of oil and petroleum deposits and is home to many species of marine life such as sea turtles and

corals. Although SST modeling has been performed in many different areas, the GoM is typically

not analyzed despite its importance.

The interest in comprehensive comparative analysis derives from the myriad modeling methods

currently used throughout the world’s oceans. This work attempts to compare multiple methods of

SST modeling in the GoM to determine accuracy.

SST has been modeled across the world in different ways. In the Chinese Bohai Sea, there is

evidence of seasonal duration changes over time (Yuan et al., 2023). Seasons were determined

by the warmest and coolest percentiles of the inter-annual temperature range rather than by date.

Spring and fall were shown to be contributing factors for the magnitude of the lengthening and

shortening trend, most notably the wind speeds and cloud cover throughout the seasonal transition

periods.

In Australia, many analyses have been performed for SST. In Foster et al. (2014), remotely-

sensed data analysis was conducted using a seasonally decomposed linear model. Error terms are

random and normally distributed. Outliers were determined using a spline interpolation. Most

waters surrounding Australia warmed between 0 and 0.5°C per decade, with deeper waters warming

faster than coastal waters. Currents seem to play a large role in warming patterns.

SST analysis has also been performed in North America. In San Francisco, many data sets

were simulated and modeled for different scenarios (Bashevkin et al., 2022). To generate the
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models, each component received individual treatment. Residuals used an AR(1) model, spatial

components used a thin plate spline, the temperature slope was modeled using a tensor product,

seasonality used a cyclic spline, and time-of-day was corrected using a thin plate smooth function.

Time periods were varied for different analyses, which resulted in more accurate predictions for

each interval. Certain areas tended to warm quicker than others, specifically the northernmost

channels. Generally, winter has been warming the most seasonally.

In the Caribbean, regional averages of satellite data were aggregated into a time series for

analysis of SST and precipitation (Glenn et al., 2015). A correlation was found between ENSO (El

Niño-Southern Oscillation) and warmer SST. Late rainfall season is warming the fastest at 0.0209°C

per year, with no significant correlation with dry seasons. The Atlantic Warm Pool is growing over

time in the late rainfall season. Hydrological cycles are changing, which are associated with an

increase in SST and precipitation.

In the GoM, Empirical Orthogonal Function analysis was conducted on SOCAT data from

1996-2017 (Kealoha et al., 2020). The GoM was broken up into different subsections: three

coastal and six open ocean areas. CO2 and SST were found to frequently be correlated, in

addition to production and salinity. The article explains some biological drivers of variation in

these relationships, with the Mississippi Delta being a large catalyst for spatial changes as well as

seasonality. Coastal environments tended to fluctuate in conditions much more than open ocean

environments. Regarding CO2, different environments have different levels – certain areas are

CO2 sources while others are sinks. The relationship between CO2 is typically negative between

SST and salinity but can be positively correlated with salinity in some areas. Data collection was

inconsistent over time. The ocean is becoming acidified (coastal quicker than the ocean), with the

main factors most likely being human activity and an increase in SST.

Globally, the relationship between SST and Chlorophyll-A levels has been investigated (Dunstan

et al., 2018). Splines were used with varying knot points to determine deviating behavior. The

change in covariance between SST And Chl-a is associated with external factors such as wind

and precipitation. Generally, SST follows a Gaussian distribution, while Chl-a follows a Gamma
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distribution. It has also been found through linear analysis of global SST averages that more

warming occurs in the warmer months than in the cooler months (Gil-Alana et al., 2019).

Different methods have been developed for SST analysis. The most common types of analysis

used for SST include autoregressive–moving-average (ARMA) and spline models. B-splines have

been used to predict SST in the East and South China Seas (Liu et al., 2021). In this study, a model

that combined components of B-splines, attention mechanisms, and long short-term memory

(LSTM) networks was the most accurate and useful for interpolation.

The motivation for this work is to apply multiple existing models to a different context and

area. SST has been modeled in many ways in previous work, and this work aims to synthesize

and compare those model types. This work focuses on modeling specifically in the GoM. Much

of the previous work focuses on areas in the Pacific Ocean, so performing analysis in a different

body of water will further investigate the inter-oceanic variation of SST behavior. Additionally,

the novel introduction of statistical inference and simulation will provide more insight into the

precision of the models created. Because the GoM is an area of national and global importance,

improving SST modeling in the area can help aid researchers whose work depends on these models.

Re-contextualizing and further developing extant models will bring further understanding of SST

in the region.
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2. DATA

In this work, multiple data sets will be used for analysis. Each has its own benefits and

disadvantages.

One data set of this work originates from the Surface Ocean CO2 Atlas (SOCAT) (Bakker

et al., 2023). This database is an aggregation of oceanic data collected around the world. An

advantage of the use of this database is that despite data coming from multiple sources, all data

are quality-controlled and collected in situ rather than using interpolations generated by remote

sensing. In Foster et al. (2014), satellite observations tended to be cooler than drifter observations.

In utilizing the SOCAT, this disparity is eliminated.

Data were accessed online through the NOAA Live Access Server. Location was used to filter

data only in the GoM: the boundaries set were (18, 32)°N and (80, 100)°W. The time span of the

data set ranges from 1992 to 2022. Conditions including time, location, SST, CO2, bathymetry, and

pressure were recorded. In total, the data set contains 960,993 observations throughout time and

space. To reduce outliers, observations with temperature recordings < 10°C were excluded from

the final data set. The resulting final, filtered data set contains 960,948 observations from January

22, 1996, to December 8, 2022.

There is much variation in both the observational locations and observation frequency between

years. Histograms of the filtered SOCAT data in all locations grouped by different criteria are

displayed in Figure 2.3. Temporally, the data are unequally spaced. The distribution of observations

by time of day is approximately uniform, with 01:00-05:00 UTC slightly less frequent. Regarding

the distribution of observations throughout the year, the most frequently observed months include

September, July, and August, and the least frequently observed months include December, January,

and February. The majority of observations were recorded in the 21st century, with the most

observations occurring in 2009, 2013, and 2017. Observations collected in 2020 are very limited.

A map of SST observations throughout the GoM contained in the SOCAT in select years are

seen in Figure 2.2. The most common collection areas include the western coastline of Florida due

to a common docking location as well as coastal Louisiana. In later years, gulf-wide data collection
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occurred more often. The western Florida coast has been consistently observed throughout the

years, and the Gulf shoreline has been observed more often in recent years.

In addition to the SOCAT database, monthly observational data collected at the Flower Garden

Banks National Marine Sanctuary (FGB) were also accessed (Johnston et al., 2022). This data

set allows for the analysis of consistent observations through time at specific locations. The time

frame of the data spans from January 1989 to June 2021, resulting in 378 total observations. This is

considerably less dense than the SOCAT data. Across three locations, the Stetson Bank (STET), the

East Flower Garden Bank (EFGB), and the West Flower Garden Bank (WFGB), SST observations

were taken at 00:00 CST on the 16th day of each month regardless of daylight savings time. This

resulted in an equidistant data set of observations.

2.1 Data manipulation

Tables 2.1 and 2.2 depict the difference between the imported SOCAT data set and the working

data set used for analysis. As seen in Table 2.1, there are 27 variables in the original SOCAT data.

The variables of interest for this work include SST, CO2, time (date and time, year, month, and

hour), and location. These variables were selected from the original data set, and a date variable

was created. This resulted in the creation of the working data set as seen in Table 2.2.

With the large volume of observations in the SOCAT data set, using data manipulation to

aggregate data in different ways proved useful for summarizing. Data were stored by averaging

observations grouped by different variables into respective data sets: group by date, month, year,

and time of day were the primary methods.

The cyclic splines modeling intra-annual variability of SST and CO2 from the SOCAT data set

are shown in Figure 2.1. For SST, temperatures are warmest on average in early-mid August and

coolest in mid-February. CO2 behaves similarly, with the greatest value in August and the least

value in early February. However, the CO2 data are less smooth in pattern - there are local maxima

in early January, mid-May, early August, and late September. This can be due to the varying activity

of organisms throughout a given year whose productivity contributes to fluctuations in CO2 levels.

Within a day, both SST and CO2 peak in the evening, with SST being greatest around 21:00 and

5



Figure 2.1
Cyclic splines of SST and CO2 of SOCAT observations. A: SST aggregated by month; B: SST
aggregated by hour; C:CO2 aggregated by month; D:CO2 aggregated by hour.

CO2 around 18:00. The lowest CO2 levels occur in the early morning around 04:00, and SST has

four local minima located approximately at 00:30, 05:00, 10:30 and 14:30. The lack of smoothness

could be caused by varying atmospheric factors such as wind, which leads to mixing and changes

in SST.

It is obvious from the graphs that these trends are highly nonlinear. Therefore, nonlinear

modeling types will be needed to estimate smaller-scale effects of the data.

Because certain models are spatial in nature, sub-setting the data in a way that contains ob-

servations throughout the study area was useful in the model-building process. The subset used

for this analysis was determined as the collection of observations since 2010, aggregated daily.

Histograms of observations throughout different years from 2012 until 2022 are shown in Figure

2.4. Overall, the most common points of the year in which data are collected are in the spring and

late summer. However, the temporal distribution of these observations varies greatly from year to

year. Due to the irregularity of observations throughout time, the aggregation process allows for the

data set to be more complete. Additionally, due to the strong autocorrelation of these data, creating

a new, more regularly-spaced aggregated data set controls this effect between observations. It is
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important to note that instances with fewer observations (such as December observations aggre-

gated monthly) can account less for linear long-term trends than more observed instances (such as

September observations) due to less prevalent data throughout the years. If winter expeditions only

occurred from 2000-2005, controlling for yearly trends outside of that time frame is not possible.

Otherwise, if summer expeditions were completed each year, the yearly change in averages would

be accounted for in the averaging process for aggregation.

The inclusion of both SOCAT and FGB data allows for the comparison of modeling methods

for data sets of different natures. SOCAT data include a spatial component, are much more

observation-dense, and are irregularly spaced. FGB data are regularly spaced, simpler, and contain

significantly fewer observations. Models that are spatial, such as thin plate splines, can be created

using the SOCAT database, and models that favor regularity can be utilized with the FGB data.

7



Observation 1 Observation 2
DATETIME 20-MAR-2011 00:17 20-MAR-2011 06:17
LATITUDE 30 30

LONGITUDE -88 -88
SOCAT DOI 10.1594/PANGAEA.853509 10.1594/PANGAEA.853509

QC FLAG C C
SOCAT VERSION 3.0N 3.0N

DEPTH -1e+34 -1e+34
YEAR 2011 2011

MONTH 3 3
DAY 20 20

HOUR 0 6
MINUTE 17 17
SECOND 0 0

SAL 27.724 27.080
TEMP 20.507 20.951

TEMPERATURE EQUI 20.507 20.951
PRESSURE ATM -1e+34 -1e+34
PRESSURE EQUI 1023.1 1024.3

WOA SSS 32.9525 32.9525
PRESSURE NCEP SLP 1024.1 1024.4

ETOPO2 24.99972 24.99972
DIST TO LAND 55.65976 55.65976

GVCO2 395.769 395.769
FCO2 RECOMMENDED 341.1743 346.6720

FCO2 SOURCE 2 2
WOCE CO2 WATER 2 2

DELTA TEMP 0 0

Table 2.1
List of variables of original SOCAT data.
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Observation 1 Observation 2
lon -88 -88

datetime 2011-03-20 00:17:00 2011-03-20 06:17:00
date 2011-03-20 2011-03-20
year 2011 2011

month 3 3
hour 0 6
code 316420110319 316420110319
temp 20.507 20.951

co2 341.1743 346.6720

Table 2.2
SOCAT data variables after manipulation for analysis.

Figure 2.2
Maps of SOCAT SST observation locations. A: 2003, B: 2005, C:2008, D:2013, E:2018, F:2022.
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Figure 2.3
Histograms of grouped SOCAT data. A: time of day, B: day of year, C: month, D: year.

Figure 2.4
Histograms of daily-aggregated data by month. A: 2003, B: 2005, C: 2008, D: 2013, E: 2018, F:
2022.
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3. METHODS

A plot of observed monthly SST at the EFGB from 1989-2022 is depicted in Figure 3.1. As

seen in the plot, SST has one minimum and one maximum value each year. Over the observed

time domain, yearly maxima occur on average in August and yearly minima occur in February.

Also of note is the visible warming trend throughout the years, most notably shown in the winter

months. These two features of the data are the modeling methods’ focus - an overall linear trend

and a seasonal yearly pattern, including an error term for modeling randomness not captured in

these elements.

Figure 3.1
Monthly SST from January 16, 1989, to December 16, 2020, at the East Flower Garden Bank.

SST temporal variation is generally composed of seasonal and spatial effects, a yearly trend,

and randomness. Hence, the initial model for SST is as follows:

𝑌𝑖 = 𝑔(𝑡𝑖) + 𝛽𝑡𝑖 + 𝑒𝑖, 𝑖 = 1, ..., 𝑛. (3.1)

In this model, 𝑌𝑖 refers to the SST of the 𝑖-th observation in temporal order, 𝑡𝑖 refers to the number

of years elapsed since 𝑡1, 𝛽 refers to the linear yearly trend of SST, 𝑔(·) refers to the nonlinear

seasonal effects within each year, and 𝑒𝑖 refers to the dependent errors. This model has the form of

a partially linear model (PLM). For more information about PLMs, refer to Hardle et al. (2000).
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An advantage of using a PLM for modeling SST over time is its ability to isolate an overall

linear warming trend while also including nonlinear aspects of the data. Relationships between

variables can be complex and nonlinear, especially with environmental data. The use of PLMs

allows for the inclusion of both linear and nonlinear relationships in the same model. Across the

observed locations, SST behaves in a similar yet nonlinear fashion month-to-month, as depicted in

Figure 3.2. This suggests a strong seasonal trend within each year. This trend will be captured in

the nonlinear term 𝑔(·).

Typically, the error terms of a PLM comprise of independent and identically distributed (i.i.d.)

random variables with mean zero and finite variances 𝜎2
𝑖
= 𝐸𝑒2

𝑖
. Due to the autocorrelation of SST

data seen in Figure 4.2, the errors in the proposed model will be modeled by an ARMA time series.

The overall slope, 𝛽, in a model, can be used to quantify the overall warming trend of SST

each year. Different nonlinear modeling approaches such as cyclic splines, monthly means, and

sinusoidal regression can be used to estimate the nonlinear seasonal components 𝑔(·).

3.1 Statistical models

3.1.1 Dynamic seasonal mean model

First, the dynamic seasonal mean model (DSMM) will be considered for SST. Dynamic regres-

sion models are regression models in which the error terms are assumed to be dependent rather

than i.i.d. white noise terms (R. Hyndman & Athanasopoulos, 2021). This approach is particularly

useful in time series where it is known that previous values have an impact on further values, which

is the case with SST. In other words, previous SST values are known to affect future SSTs in some

way due to the thermal retention of seawater. For this analysis, the terms are modeled using an

auto-regressive integrated moving average (ARIMA) process.

The dynamic seasonal mean model for the monthly SST data is

𝑌𝑖 = `𝑖∗ + 𝛽𝑡𝑖 + 𝑒𝑖, (3.2)

where 𝑌𝑖 is the observed SST at 𝑖-th month, 𝑖 is the number of months after the beginning of the

time series, `𝑖 = `𝑖∗ , in which 𝑖∗ = (𝑖−1) mod (12) represents the overall mean temperature at the

𝑖∗-th month of the year, 𝛽 is the yearly linear slope of SST, 𝑡 is the number of years elapsed since 𝑡1,
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and 𝑒𝑖 represents error terms modeled by an ARIMA process. In this model, 𝑡𝑖 = 𝑖. Therefore, the

parameters `0, `1, · · · , `11 are the unknown true average temperature across time for each of the 12

months.

For computational implementation, a model in matrix form equivalent to Equation (3.2) is

𝒀 = 𝑿𝜷+ 𝒆, (3.3)

where 𝒀 = (𝑦1, 𝑦2, · · · , 𝑦𝑖)𝑇 , an 𝑛×13 matrix

𝑿 =

©«

1 0 0 · · · 0 1

0 1 0 · · · 0 2
...
...
...
. . .

...
...

0 0 0 · · · 1 12

1 0 0 · · · 0 13
...
...
...
. . .

...
...

...
...
...
. . .

... 𝑛

ª®®®®®®®®®®®®®®®®®®¬

,

in which 𝜷 = (`1, `2, · · · , `12, 𝛽)𝑇 , and 𝒆 = (𝑒1, 𝑒2, · · · , 𝑒𝑖)𝑇 , where 𝑁 is the total number of months.

If the starting month is not January, then the first few rows will be removed accordingly.

ARIMA models are adopted to model the errors 𝑒𝑖 in Equation (3.2). ARIMA models combine

auto-regressive (AR) and moving-average models (MA) to estimate time series data, and differ-

encing (I) can be included to center the data (Box et al., 2015). The ARMA model is the basic

model to analyze classical time series, popularized by Whittle (1953). Both AR and MA models

use previous terms of a time series to predict future observations. In an AR model, a combination

of previous terms’ values estimates the following value. Conversely, in MA models, those previous

terms’ errors are used to estimate future terms.

In general, an ARMA model of errors 𝑒𝑖 is notated by

𝑒𝑖 =

𝑝∑︁
𝑘=1

𝜙𝑘𝑒𝑖−𝑘 +
𝑞∑︁
𝑘=1

\𝑘 + 𝜖𝑖−𝑘 , (3.4)

where 𝜖𝑡−𝑘 , 𝜖𝑡−𝑘+1, . . . , 𝜖𝑖 are i.i.d. white noise terms, 𝜙 are the parameters of the AR components,

\ are the parameters of the MA components, and 𝑝 and 𝑞 refer to the orders of the model. 𝑝
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indicates the AR order, and 𝑞 indicates the MA order. For example, if the model for the error term

is ARMA(1,1), the term 𝑒𝑖 has the form of

𝑒𝑖 = 𝜙1𝑒𝑖−1 + \1 + 𝜖𝑖−1.

3.1.2 Cyclic spline model

Second, the cyclic spline model will be considered. A spline is a component of a generalized

additive model where an interpolated piecewise polynomial function is used to produce a smooth

model (Hastie, 2017). The major advantage of the use of splines in model creation is their ability

to provide highly accurate interpolations of many functions (Ahlberg et al., 1967). Additionally,

splines produce continuous functions that can model discrete data, such as the monthly FGB data.

The most common form of spline models when modeling the seasonal component of SST in

literature the is B-spline. The defining characteristic of this spline is the use of ”knots” for the

function being approximated. These are based off of the Bézier curve (Racine, n.d.) and use basis

functions.

The formula for a B-spline model of a variable 𝑡 with 𝜏 knots is as follows:

𝑔(𝑡) = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝛽3𝑡

3 + 𝛽4(𝑡 − 𝜏1)3 + 𝛽5(𝑡 − 𝜏2)3 + .... (3.5)

The sequence of knots for K splines as defined in Perperoglou et al. (2019) is as follows:

b1 <= ... <= b𝑑 <= b𝑑+1 < b𝑑+2 < ... < b𝑑+𝐾+1 < b𝑑+𝐾+2 < b𝑑+𝐾+3 < ... < b2𝑑+𝐾+2. (3.6)

At these knots, the difference between the spline function and the observed function is 0. This

allows for the approximation to be accurate and anchored to the observed data at multiple points

within the function’s domain, and the spline interpolates between them.

A special case of the spline is the cyclic spline. A cyclic spline model of a variable 𝑡𝑖, 𝑖 = 1,2, · · ·

with a defined cycle of 𝑇 present throughout 𝑡 is defined as a spline in which

𝑔(𝑡1) = 𝑔(𝑡𝑛𝑇 ), 𝑔(𝑡2) = 𝑔(𝑡𝑛𝑇+1), . . . , 𝑛 ∈ N.

An advantage of cyclic B-splines is that they are able to be smoothly expanded across a domain,

given that a subset of it repeats itself in a regular pattern throughout the domain. Because this
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pattern is assumed as rigid and static, using a cyclic spline allows for the model’s time domain to

be extended freely using the subset as a model for the remainder of the data. In the context of time

series data, the use of cyclic splines is an efficient way to create a model with fixed seasonal trends

that span the entire time frame of observations.

A plot of monthly SST observations averaged throughout the years is pictured in Figure 3.2.

The behavior of this pattern is smooth, and the average SST in January is very similar to the average

SST in December. These two aspects of the data provide evidence that the seasonal effects of SST

are justifications for the data being accurately modeled through a cyclic spline.

Monthly SSTs cycle regularly each year throughout time at a set pattern, so utilizing a cyclic

spline produces an approximation of each month’s expected effect on the yearly average SST

independent of yearly warming trends. For example, the monthly effect of December 1996 is equal

to that of December 2022.

For SST, a cyclic spline mean model is as follows:

𝑌𝑖 = 𝑠(𝑚𝑖) + 𝛽𝑡𝑖 + 𝑒𝑖, (3.7)

where𝑌𝑖 and 𝑡𝑖 are equatable terms to Equation 3.2, 𝑠 is a cyclic spline to model the seasonal effects

of SST within each year, 𝑚𝑖 represents the number of months elapsed of the 𝑖th observation within

its respective year, and 𝑒𝑖 are i.i.d. errors. For an observation that was taken on the first day of

March, 𝑚𝑖 = 2.

3.1.2.1 Dynamic sinusoidal regression model

Next, the dynamic sinusoidal regression model will be considered. This model is a simple

approach that produces a smooth estimate for the seasonal component using sinusoidal functions.

This can also be interpreted as a dynamic harmonic regression model with an order of 1. Because

sinusoidal functions are periodic with a singular local minimum and maximum each period, this

process reflects the yearly pattern of SST.

A general form of a sinusoidal mean model as described in R. Hyndman & Athanasopoulos

15



Figure 3.2
Monthly-aggregated SST observations in the three FGB locations. Maroon: EFGB; Blue: WFGB;
Green: STET.

(2021) is

𝑌𝑖 = 𝐴+𝐵 sin(2𝜋𝑡𝑖
𝑚

) +𝐶 cos(2𝜋𝑡𝑖
𝑚

) + 𝑒𝑡 ,

where 𝐴 is an intercept, 𝐵 and𝐶 are coefficients, 𝑚 is the seasonal period, and 𝑒𝑖 is a term assumed

to represent i.i.d. error terms.

Because the errors of SST modeling are established not to be i.i.d., a dynamic model will instead

be created. The seasonal period of monthly SST observations is 12 as there are 12 months in one

year, therefore 𝑚 = 12. A dynamic sinusoidal regression model of monthly SST data 𝑡 is notated as

follows:

𝑌𝑖 = 𝐴+𝐵 sin (2𝜋𝑡𝑖
12

) +𝐶 cos (2𝜋𝑡𝑖
12

) + 𝛽𝑡𝑖 + 𝑒𝑖, (3.8)

where 𝐴 is the mean observed SST value, 𝐵 and 𝐶 are coefficients, and 𝑒𝑖 are ARIMA-modeled

errors.

For computational implementation, a model in matrix form for the dynamic sinusoidal regres-

sion model is

𝒀 = 𝑿𝜷+ 𝒆, (3.9)
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where 𝒀 = (𝑦1, 𝑦2, · · · , 𝑦𝑖)𝑇 , 𝑿 is a 𝑛×4 matrix

𝑿 =

©«

1 sin (2𝜋 · 1
12 ) cos (2𝜋 · 1

12 ) 1

1 sin (2𝜋 · 2
12 ) cos (2𝜋 · 2

12 ) 2
...

...
...

...

1 sin (2𝜋 · 𝑖
12 ) cos (2𝜋 · 𝑖

12 ) 𝑖

...
...

...
...

1 sin (2𝜋 · 𝑛12 ) cos (2𝜋 · 𝑛12 ) 𝑛

ª®®®®®®®®®®®®®®®¬

,

𝜷 = (𝐴, 𝐵,𝐶, 𝛽)𝑇 , 𝒆 = (𝑒1, 𝑒2, · · · , 𝑒𝑖)𝑇 , and 𝑛 is the total number of months. As with the dynamic

seasonal mean model, if the starting month is not January, then the first few rows will be removed.

The auto.arima function in the forecast R package (R. J. Hyndman & Khandakar, 2008) uses

this matrix form.

3.1.2.2 Regression model with sandwich method

The final SST time series model considered is the regression model with sandwich method. The

dynamic seasonal mean model in Equation 3.2 can be simplified by assuming that the errors are i.i.d.

The calculations would be performed via ordinary-least-squares (OLS) methods, but there would be

model assumption failures in the correlation structure of the error terms. The sandwich estimator is

typically used to protect against these incorrect specifications of the correlation structure. An OLS

linear regressive model’s assumed errors are independent and homoskedastic, with stable variance

throughout the domain. Because the residuals of a linear regression model of SST are known to be

correlated, using the sandwich method is useful as this assumption is not necessary to produce a

valid estimator.

The sandwich estimator, also known as the robust covariance matrix estimator, of a regression

model is as follows:

Ψ = (1
𝑛
𝑋𝑇𝑋)−1 1

𝑛
Φ(1
𝑛
𝑋𝑇𝑋)−1, (3.10)

where Φ is the covariance matrix of score functions 𝛽 and and 𝑛 is the sample size (White, 1980).

Due to the robust nature of the estimate, the resulting confidence intervals are usually wider

than typical OLS estimators. In this analysis, HC4 estimates are used. These are White’s
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heteroskedasticity-consistent estimators with the formula of

𝐻𝐶4 = diag( 𝑢1
𝛿1

1− ℎ1
, . . . ,

𝑢𝑛
𝛿𝑛

1− ℎ𝑛
), (3.11)

where 𝛿𝑖 = min(4, 𝑛ℎ𝑖
ℎ̄
), 𝑖 = 1, ..., 𝑛, 𝑢 represents a matrix of errors, and ℎ represents the diagonal

of the hat matrix 𝐻 = 𝑋 (𝑋𝑇𝑋)−1𝑋𝑇 (Cribari-Neto, 2004). This process is applied to each model

using the sandwich R package Zeileis et al. (2020).

This estimate is less sensitive to high leverage points (observations with extreme x-values) than

other estimates(Cribari-Neto & da Silva, 2011).

3.1.2.3 Thin spline spatial model

To include the spatial variation of SST seen in the SOCAT observations to the PLM, a proposed

model is as follows:

𝑌𝑖 = 𝑠(𝑢𝑖, 𝑣𝑖) +𝑔(𝑡𝑖) + 𝛽𝑡𝑖 + 𝑒𝑖, (3.12)

where (𝑢𝑖, 𝑣𝑖) refer to the latitude and longitude rather than the month of the 𝑖-th observation, 𝑠 is

a spatial function that estimates the effect of SST for each location (𝑢, 𝑣), and the remaining terms

correspond to those in Equation 3.2.

Thin plate splines are used to analyze spatial differences across a domain. As a generalized

additive model, the smoothed parameters are spatial - in the case of SST, latitude and longitude.

For additional information regarding methodology, refer to Wood (2003). The thin plate splines in

this work are not temporal.

Producing splines in the same location in different years can illustrate the spatial variation of

the data over time. This was performed in the western GoM due to frequent sampling as previously

stated. The observations used for the splines are shown in Figure 3.3, and the resulting contour

plots of those splines are shown in Figure 4.3.
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Figure 3.3
Maps of observational data used to create the thin plate spline model. Clockwise from top left:
2012-2013; 2014-2015; 2018-2019; 2016-2017.
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4. RESULTS

4.1 Simulation

Statistical tests and simulations will be performed to determine the models’ performance. Sta-

tistical simulation is a practical approach to modeling otherwise difficult-to-handle data (Boulesteix

et al., 2020). Additionally, statistical simulation is used for comparative studies, as more variation

present in noisy observed data can be held constant. This allows for more of a focus on model

performance.

For data with unknown processes, using simulation data can help control for certain signals

that are of interest for modeling. Other factors, such as data that do not adhere to certain modeling

assumptions, can lead to statistical simulation being beneficial. Using simulation to test model

accuracy is advantageous due to the ability to control aspects of the data that are not possible when

using collected data.

Because the true behavior of SST is unknown and likely fluctuates over time, using simulated

data allows for certain aspects of the observed data to be controlled. In the case of this project, the

true observed 𝛽 in the EFGB data set cannot be determined, so it is important to understand how

the different models perform with different 𝛽 values. As seen later, this approach is useful due to

different model types performing better than others depending on the value of 𝛽.

The simulation process for this project entailed creating many simulated time series in which its

key features such as 𝛽 were controlled, and then different models were produced numerous times

to try to model the simulated data. A simulated time series was created for each iteration, and the

models in each simulation were fitted to that singular respective time series before re-simulating

the time series in the next iteration.

The basis of the simulated time series is the monthly EFGB data. Before the simulation can

begin, certain features of the basis data need to be selected as these alter the properties of the

simulated time series. These included 𝛽, or the overall linear trend, as well as monthly averages (a

part of 𝑔). An error term similar to the original data’s natural variance was then added in order to

preserve some randomness for the models to try to capture.
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The specified 𝛽 values for each simulation range from 0.00 (no linear overall trend) to 0.2°C

each year. According to Wang et al. (2023), the Gulf of Mexico has been warming at a yearly rate

of approximately 0.019°C between 1970 and 2020, with an error of 0.005°C.

Each month’s average SSTs were calculated through a linear model, passed in R by

lm(sst_{sim} ˜ fmonth + t).

The resulting coefficients of monthly averages listed in Table 4.1. In the table, it is important to note

that the intercept in the model is 1, or January. The other monthly values are relative to January’s

estimated temperature. The resulting estimated yearly warming trend is 0.028°C.

1 2 3 4 5 6

20.86 -0.52 -0.19 1.24 3.94 6.92
7 8 9 10 11 12

8.24 8.60 7.86 6.01 3.62 1.56
Table 4.1
Estimates of monthly coefficients from the linear model of EFGB observed SST data. The estimated
slope is 0.028, and the intercept of the model refers to January.

To produce the error model, an ARIMA model was created for the EFGB data with monthly

averages and linear trends removed to stabilize the time series. The simulated series resulted from

the forecast::arima.sim R function in which the orders of the simulated ARIMA time series

as well as its standard deviation were equal to the EFGB ARIMA model’s orders. The length of

the simulated time series can vary, but n = 500 simulated monthly observations were selected.

The simulation was iterated 1,000 times for each specified 𝛽 value and seed. For each of the

1,000 iterations of the simulation process, a simulated time series based on the EFGB monthly

data’s ARIMA and error behaviors was created and a specified 𝛽 slope term was added. From this,

a model from each type was produced (dynamic seasonal mean, cyclic spline, dynamic sinusoidal

regression, and regression with sandwich method) for the simulated data. The fits for the models

were then extracted, including 𝛽 and seasonal estimates. Deviation from the known ”true” values

of the simulated time series was then calculated and stored in a vector for each simulation iteration.

Finally, a 95% confidence interval (CI) for each simulated model’s 𝛽 was calculated - if the CI

captured the known 𝛽 value, a count would be added to be totaled after the simulation process.
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When the simulation process is completed, performance metrics are calculated for the models.

These give insight into how well each model can estimate 𝛽. The performance metrics used for

each model include mean absolute error (MAE) and variance of 𝛽, as well as the proportion of

simulations in which the specified 𝛽 value was captured by the models’ resulting 95% CIs.

Simulation results are given in Table 4.2. Both spline and seasonal methods performed similarly

in estimating the specified 𝛽 when assessed by error and variance. However, spline models more

consistently captured the specified 𝛽 value throughout varying specified 𝛽s.

The ARIMA error models fit to the simulated data most commonly resulted in an order of

(1,0,0), or an AR(1) model. Although each automatically-fitted model had the same order, any

order ARIMA model is possible. Orders were selected by the least conditional sum of squares and

maximum likelihood (R. J. Hyndman & Khandakar, 2008). A regression model with an AR(1)

error possesses the formula

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖, (4.13)

where 𝛽0 represents the intercept, 𝛽1 represents the linear trend over time, and 𝑒𝑖 is an AR(1) model

behaving as follows:

𝑒𝑖 = 𝜙1𝑒𝑖−1 + 𝜖𝑖 . (4.14)

𝜖 represents a series of residuals not accounted for in the regression or AR(1) model of errors.

For the mean square error (MSE) of seasonal components, some lower 𝛽 values resulted in

NA values for the ARIMA models. Because ARIMA models are more complex than the other

modeling techniques used, it is possible that this is the reason that mean components could not be

accurately calculated.

Overall, dynamic modeling resulted in the greatest CI capture proportion in each specified

𝛽 value. Both the dynamic seasonal mean model and sinusoidal models performed the most

consistently, being the only simulated models in which over 90% of the simulated CIs contained

the specified 𝛽 value. Other models captured 𝛽 less than 80% of the time. The worst-performing
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model was the linear method with sandwich estimator - this is a less complex method, so variance

not captured in the model likely resulted in a lower accuracy despite a low variance of 𝛽 values.

The warming trend value in Wang et al. (2023), 0.019, was simulated, and the performance of

the models is listed in Table 4.2. If taken as the true 𝛽 value for observed SST in the GoM, spline

and seasonal methods would produce the least errors and variance, but ARIMA and sinusoidal

models most consistently capture 𝛽 in a 95% CI.

Due to the strong performance of the sinusoidal models, it can be concluded that seasonal trends

are constant throughout time. This is a differing conclusion from what is being observed in the

Bohai Sea as reported by Yuan et al. (2023).
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4.1.1 Data analysis

The models used in the simulation analysis were performed on observed data as well. Both the

EFGB data (the basis for the simulated time series), as well as SOCAT data, give insight into how

the models perform with simulated compared to observed data.

Because the SOCAT data are not regularly spaced, time series modeling including the ARIMA

modeling process were not able to be applied to the data set. Similarly, the FGB data are not

applicable to a thin plate spline model as the data are not spatial. The models’ estimates and 95%

CIs for 𝛽 of the EFGB data set are listed together in Table 4.3 for convenience.

First, the monthly means of the EFGB data were produced by creating a linear model of SST

predicted by the month of the year and the numeric date. This date variable was produced by

combining an integer of the number of years since 1989 with a decimal corresponding to the

proportion of the year that has passed as of the date and time that the observation was recorded.

The process was completed by using the lubridate R package (Grolemund & Wickham, 2011).

The resulting monthly means are listed in Table 4.1 and were used for time series simulation.

This series of means is relative to the mean value of January for a given year. The model estimates

the average difference of monthly means in a given year, excluding yearly mean changes due to 𝛽.

The average 𝛽 from each model is 0.0283, and the 95% CI is given in Table 4.3.

Second, the dynamic seasonal mean model was fitted to the EFGB data. Because the SOCAT

data are not uniformly spaced, the ARIMA modeling process does not apply as it relies on lags.

These lags are defined by previous observations - since the time difference between observations

is not constant, this type of model would not give useful insight with respect to modeling a time

series.

First, dummy variables for each observation’s month as explained in Equation 3.3 were produced.

Then, using the forecast::auto.arima R function, an ARIMA model was fit to the data frame,

and a matrix of the monthly dummy variables were passed as external regressors. The function

iteratively fits differently-ordered ARIMA models to the data, selecting the model with an optimized

AIC value.
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The model coefficients are listed in Table 4.4, and the estimated 𝛽 and the resulting CI are listed

in Table 4.3. The intercept of this model is the monthly mean of December, or fmonth 12. Note

that this is different from the previous model. The other fmonth values’ estimates are relative to the

December estimated SST. For example, the estimated SST of fmonth 2, or February, is 2.1069°C

less than December’s estimate: this would result in an SST of 20.3597°C. The coefficient of the

ar1 term is the coefficient of the autoregressive component of the ARIMA time series. Finally, the

𝛽 value is stored in the t variable, and the 95% CI of 𝛽 is listed in Table 4.3. This model’s CIs are

the least conservative, with the most narrow range of all dynamic model types. This could be what

resulted in a lower CI capture rate than the other methods.

Next, the cyclic spline model was used. This model was applied to both the EFGB and SOCAT

data in slightly different ways. Because the EFGB data are collected monthly, producing a model

based on months results in the data being discrete. However, SOCAT data are collected irregularly

and on a finer scale than monthly, so these observations are widely dispersed within the domain

in a continuous manner. This is interesting because the SOCAT fitted model’s marginals can be

calculated throughout each month, rather than only in the middle of the month. In the EFGB data,

there are exactly 12 observations each year. In the SOCAT, there are considerably more.

The model was fitted to the EFGB data by creating a spline based on the month of the year

and the numeric date using a similar process to the dynamic seasonal mean model. The model

was fitted to the SOCAT data by creating a new column, the numeric month, akin to the numeric

date. This was created by combining an integer of a month with a decimal representing the day of

observation out of the total number of days in the given month. The fitted models are displayed in

Figure 4.1.

An autocorrelation function (ACF) plot of the residuals residuals of the cyclic spline performed

on the EFGB data is shown in Figure 4.2. The significantly large, moderately strong autocorrelation

seen at lag 1 indicates that these residuals are not independent and a given month’s SST is correlated

with the month prior. This is justification for producing a dynamic model, as an ARIMA model for

errors would be able to capture this aspect of the data.
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Figure 4.1
Fitted cyclic spline models to observed data. Left: SOCAT; right: EFGB.

The dynamic sinusoidal regression model was then applied to the EFGB data. Two dummy

variables were created as external regressors, equal to sin(num date) and cos(num date),

where num date corresponds to the numeric date as described in the dynamic seasonal mean

model. Similarly, forecast::auto.arima is used with the external regressors to select the

best-performing model.

Figure 4.2
ACF plot of residuals from cyclic spline model of centered observed data.

The model’s estimates are shown in Table 4.5, and the resulting 95% CI for 𝛽 is included in

Table 4.3. This model’s estimate and CI are comparable to that of the monthly means model and

its sandwich estimator. The external regressors do not include easily interpretable insights when

compared to the monthly external regressors, but these results provide a simpler model to produce

as seen in Equation 3.8.
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The final temporal model produced was the regression model with sandwich estimator. This

model was applied to the EFGB data, as it relates to a previously-generated ARIMA model. The

sandwich estimator for 𝛽 was created from the monthly means estimate. The HC4 estimator was

calculated to provide an updated variance of the 𝛽 value estimated in the monthly means model,

and a new 95% CI was produced from the sandwich variance.

The new CI range from the sandwich process is 0.0133, which is less than the monthly means

CI range of 0.0240. Using the sandwich method allows, in this case, for a narrower interval that is

still as confident as the previous CI, as seen in Table 4.3.

For additional analysis, thin plate spline models of the SOCAT data were created. From Figure

4.3, it can be concluded that spatial effects vary throughout time. This is a phenomenon that has

been explored, with others attributing this to the prevalence of eddies and currents (Foster et al.,

2014), (Wang et al., 2023).
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𝛽 = 0.00, seed = 12345 MAE Variance CI Capture Proportion
Spline 9.451e-05 4.029e-06 0.791
DSMM 0.003 0.005 0.944
Sinusoidal 0.068 2.477 0.924
Seasonal 5.021e-05 4.029e-06 0.734
Seasonal t Sandwich 0.734

𝛽 = 0.01, seed = 1234 MAE Variance CI Capture Proportion
Spline 1.9988e-05 4.357e-06 0.774
DSMM 6.9557e-05 4.344e-06 0.944
Sinusoidal 0.0002 4.351e-06 0.923
Seasonal 6.4758e-05 4.358e-06 0.703
Seasonal t Sandwich 0.706

𝛽 = 0.019, seed = 2345 MAE Variance CI Capture Proportion
Spline 5.190e-05 4.725e-06 0.744
DSMM 0.002 0.003 0.927
Sinusoidal 0.030 0.883 0.908
Seasonal 9.643e-05 4.725e-06 0.673
Seasonal t Sandwich 0.678

𝛽 = 0.05, seed = 23456 MAE Variance CI Capture Proportion
Spline 8.591e-05 4.201e-06 0.785
DSMM 0.002 0.003 0.944
Sinusoidal 5.5669e-05 4.207e-06 0.915
Seasonal 4.140e-05 4.201e-06 0.721
Seasonal t Sandwich 0.734

𝛽 = 0.15, seed = 45678 MAE Variance CI Capture Proportion
Spline 6.848e-05 4.468e-06 0.766
DSMM 1.992e-05 4.433e-06 0.933
Sinusoidal 8.085e-05 4.457e-06 0.919
Seasonal 2.388e-05 4.471e-06 0.699
Seasonal t Sandwich 0.697

𝛽 = 0.20, seed = 456789 MAE Variance CI Capture Proportion
Spline 0.0001 4.547e-06 0.762
DSMM 9.911e-05 4.556e-06 0.925
Sinusoidal 4.529e-06 4.564e-06 0.907
Seasonal 0.0001 4.548e-06 0.685
Seasonal t Sandwich 0.682

Table 4.2
Simulation results: MAE, variance, and the CI capture proportion of various models. Model
names: Spline (cyclic spline), DSMM (dynamic seasonal mean), Sinusoidal (dynamic sinusoidal
regression), Seasonal (seasonal mean regression), Seasonal t Sandwich (seasonal mean regression
with sandwich estimator).
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Method 𝛽 95% CI
Monthly means 0.0283 (0.0151, 0.0391)
Sandwich 0.0283 (0.0216, 0.0349)
DSMM 0.0271 (0.0114, 0.0429)
Sinusoidal 0.0278 (0.0175, 0.0381)
Spline 0.0282 (0.0194, 0.0370)

Table 4.3
Estimated linear yearly trend and associated 95% CIs of EFGB observed data.

ar1 12 t 1 2 3 4

0.5633 22.4666 0.0271 -1.5910 -2.1069 -1.7739 -0.3473
5 6 7 8 9 10 11

2.3525 5.3364 6.6499 7.0176 6.2771 4.4279 2.0490
Table 4.4
Estimates of coefficients from the dynamic monthly means model of EFGB observed data. The
errors are modeled by a ARIMA(1,0,0) model. Please note the intercept of the model refers to
December.

ar1 ar2 intercept t sin.x cos.x

0.6120 -0.1718 24.8475 0.0278 -3.1143 -3.5257
Table 4.5
[Estimates of coefficients from the dynamic sinusoidal regression model of EFGB observed data.
The errors are modeled by an ARIMA(2,0,0) model.
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Figure 4.3
Contour plots of thin plate spline fit for SST in the Western GoM. Clockwise from top-left: 2012-
2013; 2014-2015; 2018-2019; 2016-2017.
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5. CONCLUSION

5.1 Summary

This work sought to provide an analysis of observed sea surface temperature (SST) data in the

Gulf of Mexico (GoM). Different model types were statistically simulated based on time series

data in the Flower Garden Banks National Marine Sanctuary (FGB). From these simulations and

supporting models of observed data, a recommendation of modeling strategies for estimating SST

in the region could be made. Understanding monthly seasonal effects and providing the slope for

an overall linear warming trend, 𝛽, was the goal of the modeling process.

Regarding estimating observed data, a study conducted by Wang et al. (2023) concluded that

the GoM is warming by about 0.019°C each year on average. At the East Flower Garden Bank

(EFGB), a site known for its temperature-sensitive coral population, it was estimated that this trend

is comparable. Model outputs estimated the EFGB 𝛽 to be between 0.0114 and 0.0429°C at 95%

confidence, with an average 𝛽 of 0.02785°C. Additionally, thin plate splines were explored to verify

that SST variation is also spatial in nature, with SST distributions altering over time spatially.

For simulated data, dynamic models performed much better than non-dynamic models. In

particular, the dynamic seasonal mean model outlined in Equation 3.2 outperformed across all

specified 𝛽 values for simulated data sets in terms of consistently capturing the correct value inside

a 95% confidence interval (CI). However, the resulting CIs were noticeably wider than other models,

such as the slightly under-performing dynamic sinusoidal regression model. Due to the continuous

and smooth nature of the spline model, using dynamic sinusoidal regression for modeling SST over

time is recommended.

5.2 Discussion

The recommendation of the dynamic sinusoidal regression model stems from the balance of

accuracy and specificity. Because the dynamic seasonal mean models treat monthly SSTs as static,

this method would lose accuracy as non-discrete data are fit to the model. For this reason, the use

of the continuous sinusoidal model would be advantageous in many instances, specifically for data

that are collected more frequently than one time each month.
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Modeling a complex environmental process such as SST can have many approaches, and it is

important to note that covariates such as wind, CO2, or other variables were not utilized in the

modeling process for this work. Other aspects of the data such as spatial variability were also not

included in the central FGB data and should be explored in future research. To extend this work,

the simulation of the proposed spatial model in Equation 3.12 using SOCAT observations can be

performed to estimate the spatio-temporal behavior of SST in the GoM.
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