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ABSTRACT

The development of the Capital Asset Pricing Model (CAPM) marks the birth of asset pricing

framework in finance. The CAPM is a simple and powerful tool to describe the linear relationship

between risk and expected return. According to the CAPM, all pricing errors should be jointly

equal to zero. Many empirical studies were conducted to test the validity of the model in various

stock markets. Traditional methods such as Black, Jensen, and Scholes (1972), Fama-MacBeth

(1973) and cross-sectional regression have some limitations and encounter difficulties because they

often involve estimation of the covariance matrix between all estimated price errors. It becomes

even more difficult when the number of assets becomes larger. Our research is motivated by the

objective to overcome the limitations of the traditional methods. In this study, we propose to use

bootstrap methods which can capture the characteristics of the original data without any covariance

estimation.

The principle philosophy of bootstrap procedures is to treat the data sample as the popula-

tion to draw bootstrap re-samples. The bootstrap methods comprise two general steps. First, we

use historical monthly returns to estimate the parameters using both ordinary least square and

the Cochrane-Orcutt method. Next, we implement model-based procedures to generate bootstrap

samples. Following the idea of the block bootstrap, we consider all assets at a point in time as

one block under different bootstrap schemes to capture the dependence structure between different

assets. With the assumption of no serial correlation in the CAPM, we conduct the independent

bootstrap over time scale. Furthermore, we introduce the block bootstrap with blocks over time to

capture the temporal dependence. The bootstrap tests were applied to the CAPM in the US and

Vietnam (VN) stock markets, providing some interesting results.
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CHAPTER I: INTRODUCTION

Risky asset valuation is one of the significant quantitative problems in financial economics. The

concept of investment returns measures the performance and profits of an investment. The ques-

tion is how risky assets are priced to measure investment returns in financial markets. The devel-

opment of many asset pricing models helps investors and portfolio managers with asset valuation.

Theories on risk and return and modern portfolio theory have contributed to the development of

many asset valuation models. This chapter provides a literature review in financial economics and

how asset pricing models were developed. The most popular model is the Capital Asset Pricing

Model (CAPM) introduced by William Sharpe (1964), John Litner (1965) and Jan Mossin (1966).

Sharpe’s contribution to the price information for financial assets won the 1990 Nobel Prize in

Economics [26].

1.1 Theoretical Background

The risk-return trade-off is a well-known fundamental principle in finance. Rational investors

expect to get higher returns when risks associated with the investment are higher to compensate

the increased uncertainty. In competitive financial markets, this concept holds true universally.

Markowitz (1959) pioneered a mean-variance theory in selecting investment portfolios to maxi-

mize the expected return for a given level of risk. Markowitz’s model framework assumes investors

are efficient and risk-averse and hence, the portfolio section depends on investor’s risk-return utility

function [24]. His modern portfolio theory mean-variance frontiers led to the 1990 Nobel Memo-

rial Prize in Economic Sciences. Most rational investors will choose the less risky alternative.

However, higher risk does not always equal higher realized returns since there are no guarantees.

Bearing additional risk gives investors the possibility of higher expected returns. Sharpe (1964)

and Lintner (1965) suggested a positive relationship between the market risk premium and the ex-

pected return of an asset or portfolio [32] [23]. Sharpe (1964) introduced two market prices: the
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price of time (pure interest rate over investment horizon) and the price of risk (additional expected

return for bearing additional risk) [32].

Derived from Markowitz’s modern portfolio theory (1959) and Tobin (1958), the CAPM of

Sharpe (1964), Lintner (1965), and Mossin (1966) marks the birth of asset pricing and valua-

tion.The CAPM describes the linear relationship between the systematic risks and expected returns

as a function of the risk-free rate, the asset’s beta, and the expected risk premium. Beta represents

the slope of the regression line and is typically estimated using the linear regression analysis of

investment returns against the market returns. Theoretically, the market portfolio has a beta of one.

Stocks with betas greater than one indicate a higher level of risk relative to the market’s move-

ments. In contrast, stocks with betas less than one tend to be less volatile than the market. Perold

(2004) discusses the four assumptions associated with the CAPM. Firstly, the key assumption of

the CAPM is that the return on asset is positive. Secondly, investors are risk-adverse meaning they

prefer a lower risk for a given level of return. They evaluate their investment portfolios and make

decisions solely regarding expected return and risk measured by the variance over the same single

holding period. Lastly, capital markets are perfect in several senses: no transaction costs, no short

selling restrictions or taxes; an ability to diversify all assets; capability to lend and borrow at the

risk-free rate; and availability of all information to investors [25].

The CAPM has many implications in financial practice. At equilibrium, the CAPM provides

the basic estimate of the relationship between risks and returns known as the Security Market Line

(SML), which helps investors evaluate and possibly identify mispricings of an asset. In corporate

finance, the CAPM is used to determine the cost of equity as part of the Weighted Average Cost of

Capital (WACC).Three components can fully determine the expected return on an asset: (1) risk-

free rate, (2) asset’s beta to measure the asset’s price movements relative to the market itself and

(3) the market risk premium (Perold,2004) [25]. The simple equation of the SML is given below:

E[Ri] = R f +βi(E[Rm]−R f ) (1.1)

where E[Ri] is the expected return on asset i, asset beta βi, the risk-free rate R f , and the market risk

premium is E([Rm]−R f ).
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There are many factor pricing models used in financial economics. Linear factor pricing mod-

els are simple but most widely used in finance. The Arbitrage Pricing Theory (APT) is another

linear factor asset pricing model used in financial economics. The APT was first introduced by

Ross (1976)[29]. Ross’s theory predicts a linear relationship between the returns on portfolios or

individual securities by incorporating macroeconomic variables as independent explanatory fac-

tors such as unemployment rate, consumer price index (CPI), crude oil price, inflation, etc. One

of the advantages of the APT over the CAPM is that the APT has more flexible assumptions while

retaining the higher degree of generality [22]. An empirical study done by Cagnetti (2017) shows

that the APT performs better than the CAPM as it allows multiple sources of systematic risks, in all

tests considered for the Italian stock market (ISM) [3]. However, accordingly, to Cagnetti (2017),

the CAPM theory is intuitively simple and easy to apply in practice. The APT can be tested by

checking the pricing errors whiich are represented by the intercept α [3]. The APT k-factor model

holds when α=0 for the exact k-factors. Roll (1977) argues that the CAPM is untestable as the true

market portfolio is unobservable. Roll’s critique states that the market portfolio should include all

assets in the market [28]. In practice, the market proxies are used as the market portfolio in the

CAPM. The S&P 500 is often used as the market portfolio for the US stock market.

The CAPM calculates required returns based on a proxy measurement of the market risk. Ac-

cording to Markowitz’s theories, the central idea of mean-variance theory assumes that a risk-

averse investor will choose a portfolio which maximizes his/her expected return. That is, investors

will choose portfolios that: (1) maximize the expected return, for a given level of risk which is

measured by the portfolio variance and (2) minimize the level of risk, for a given expected return

(Markowitz 1959) [24]. The CAPM states that the expected return on an asset is the risk-free rate

plus beta times the expected excess rate of return. The risk-free rate of return is the rate expected

on an investments assumed to have no risks involved, typically the T-Bill or 10-year government

bond yield are used as the risk-free rate. Beta is equal to the covariance of the rate of return on the

asset and the market return divided by the variance of the market portfolio return [32]. The beta
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is a measure of non-diversifiable risk (systematic risk) which is correlated with the market port-

folio’s variance. In general, the market is efficient enough to incorporate and reflect all relevant

information.

Many mathematical and statistical methods are applied to financial economics to test a model’s

specifications and its validity in the empirical world. The fact that no such a model that fits all;

hence, mispricings are possible. As researchers and investors are always seeking an improved

model to make sound investment decisions, this study reviews previous method in testing asset

pricing models and proposes a modern method in testing validity of the CAPM using bootstrap

methods (Efron, 1979) in the US and Vietnam stock market. Due to some statistical model as-

sumptions, the bootstrap methods are preferred to the previous classical approaches.

1.2 Bootstrap Methods

Most classical approaches in statistics rely heavily on restrictive assumptions such as distributional

assumptions and stationarity. Bootstrapping is a non-parametric statistical procedure with many

practical applications to data analysis and statistical modeling. The bootstrap is a computer-based

method used to carry out statistical inferences and relies on the empirical distribution function. Fox

and Monette (2002) describe the general idea for the bootstrap method by the following analogy

”The population is to the sample as the sample is to the bootstrap samples” [12]. The bootstrap

method was first introduced by Efron (1979) inspired by earlier work on the jackknife as a modern

alternative to the classical approach. Efron’s bootstrap is basically a re-sampling with replacement

from the original data method and is a more computationally intensive method. Bootstrapping is

used to evaluate some properties of statistical parameters without making assumptions about the

distribution of the data [8]. By using re-sampling and simulation method, the bootstrap can give

an estimate of the distribution of test statistics based on the bootstrapped data with a high level of

accuracy and it also fits nicely into the data mining paradigm (Guszcza, 2005) [14].

The general idea for the bootstrap is quite simple. Let E1,E2....,EN be an independent and

identically distributed sample of size N from distribution Ψ and let E∗1 ,E
∗
2 , · · · ,E∗N be a bootstrap
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sample of size N from the original data (E1,E2....,EN). To get an approximation of the estimator

distribution, create many alternative versions of the data by repeating the data-generating procedure

for B times. Then the estimator θ̂ is calculated for each of the B re-sampled data sets, where α̂ =

s(E1,E2, · · · ,EN), with s denoting some function associated with some parameter α . The bootstrap

method allows us to approximate the empirical sampling distribution and use this approximation

to make statistical inferences such as confidence intervals, hypothesis tests, and so on [12].

There are two general types of bootstrapping: parametric and non-parametric bootstrap. The

parametric bootstrapping estimate assumes that the data comes from a distribution family with a

known probability density function (pdf). The parameters can be estimated from the sample data

then used to get the approximated empirical pdf. The parametric method is useful when some

knowledge about of the underlying distribution of the population is available [12]. On the other

hand, in the non-parametric bootstrapping approach, the empirical function is estimated for the

data by obtaining a corresponding probability density function from the histogram of the estimator

α̂ . In fact, if the approximation is close to Ψ, the statistical inferences based on this estimation

method become statistically reliable and accurate.

The general procedure for bootstrapping consists of three steps. Firstly, re-sampling the data for

a given number of times (500 times or more). Secondly, from each sample, statistics estimating the

unknown parameters of interest are calculated and stacked. Finally, the sample bootstrap statistics

are used to estimate the sampling distribution (bootstrap distribution) and based on the sampling

distribution, we can obtain the confidence intervals for the unknown parameters.

Bootstrap is also useful in regression analysis. Given an independent variable Xi, bootstrap

response values, Y b
i is Ŷi plus a randomly re-sampled residuals Eb

i , where Ŷi are the fitted values

of the regression model, for i = 1,2, · · · ,N is the number of assets. Then a regression model is fit

to the newly generated data to get the new estimators. We adopted the model-based bootstrapping

schematic illustrated by Shalizi (2017) [31] in Figure (1.1). It shows the schematic of the model-

based bootstrapping method used in this study. The bootstrap offers many advantages in modeling

and hypothesis testing. A great advantage of the bootstrapping method is its simplicity. It may
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Figure 1.1
Schematic for the model-based bootstrapping: new bootstrap generated data used to re-estimate
new estimators and compute test statistics. The diagram was adopted from Advanced Data
Analysis from an Elementary Point of View (Shalizi, 2017) [31]

practically provide more accurate inferences including valid standard errors, confidence intervals,

and hypothesis tests even when the sample size is small since it does not require distributional

assumptions. Bootstrapping requires can be implemented in an automatic way and for complex

data in which classical approaches may be difficult to apply. The estimators become more accurate

for a larger sample size given that the sample is more likely to be a representative sample from the

population.

Bootstrapping, on the other hand, has some disadvantages that the users need to be cautious

when using. The bootstrap method relies on the quality of the original sample. As a result, if the
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original sample is not representative of the population, the simulated distribution of any statistics

will not reflect the population accurately. It is possible that bootstrap may give results that are

entirely wrong.Many previous studies have reviewed the applications of bootstrap methods in fi-

nancial economics. Ruiz and Pascual (2002) point out two primary objectives for using bootstrap

tests of time series data. Firstly, a bootstrap method can be used to estimate the distribution of an

estimator or test statistic by re-sampling. Secondly, the probability distribution of returns can be

estimated directly by applying the bootstrap technique [30].

1.3 Research Problem

Traditional methods such as Black, Scholes, and Jensen (1972), time series estimation, cross-

sectional regression, and Fama and MacBeth (1973) were introduced and applied to test the pricing

errors of the CAPM. However, they encountered difficulties as the number of assets grows because

the number of covariances to be estimated grows quadratically with the number of assets. This task

becomes more difficult when the number of assets becomes larger. Our study portfolio contains

up to thirty individual assets; hence, testing all estimated pricing errors by calculating covariance

matrices may not be reliable.

According to the CAPM, all pricing errors αi should be indistinguishable from from zero. We

propose to use bootstrap methods to estimate the sampling distributions of the pricing errors α .

That is, under the null hypothesis H0, all αi should jointly be equal to zero. The bootstrap method

provides some advantages over the traditional methods. By re-sampling from the original data

and re-estimating estimators from bootstrap samples, we can preserve some characteristics of the

data in the presence dependence between the assets and temporal dependence. Finally, the p-value

under the null hypothesis H0 can be calculated from the bootstrap test statistics. Following the idea

of the block bootstrap, to capture the dependence structure between different assets, we consider

all assets at one point of time as one block under different bootstrap schemes. With the assumption

of no serial correlation in the CAPM, we conduct independent bootstrap over the time series. We

also introduce the block bootstrap with blocks over time to capture the temporal dependence.
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CHAPTER II: NOTATION AND METHODS

This chapter describes the CAPM’s notations and different empirical methods used in testing the

CAPM. Monthly prices of stocks cannot be used directly for analysis due to non-stationary process

of stock prices. Thus, we are interested in the stock returns rather than the stock prices themselves.

The first order logarithmic difference of the stock prices is applied to convert the non-stationary

process in stock prices to a stationary process. Throughout this paper, Ri used in the asset pricing

models denotes the monthly log return on asset ith. The continuously compounded returns or log

returns of the stocks are calculated using the equation below:

Rt = ln(
Pt

Pt−1
) (2.2)

where, Pt is the adjusted closing price of stock at time t and Pt−1 is the adjusted closing price of

stock at time (t−1).

One of the advantages of the continuously compounded multi-period return is the simplifica-

tion of the additive process instead of multiplicative process. In modeling of financial time series

returns, it is far easier to derive the properties of additive processes than multiplicative processes

(Campbell et al., 1996) [4]. However, the continuously compounded return does have a disadvan-

tage. For portfolio with wi the simple return Rs = (Pt/Pt−1)− 1, is the weighted average of the

simple returns for individual assets themselves. Unfortunately, this property is not applicable to

the continuously compounded returns since the logarithm of a sum is not same as the sum of the

logs. In empirical applications, this problem is minor since the continuously compounded return

on a portfolio over short intervals of time is approximately close to the weighted average of the

continuously compounded returns on the individual assets (Campbell et al., 1996) [4].
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2.1 CAPM as One-factor model

Recall that the Capital Assets Pricing Model (CAPM) representing an asset’s return is represented

by three components:

Ri−R f = αi +βi(Rm−R f )+ εi (2.3)

The three important parameters of the model are alpha (pricing error), beta (slope), and standard

deviation for the εi terms (σi). The difference (Rm−R f ) is called the market risk premium. Beta

measures the asset’s systematic risks associated with the market-risk part. It follows from the

CAPM formula (2.3) that the error terms εi has mean zero, E(εi)=0, and are uncorrelated to with

market portfolio, cov(εi,Rm) is close to zero. The beta value can be computed as follows:

βi =
σi,m

σ2
m

=
Cov(Ri,Rm)

σ2
m

(2.4)

The beta value of an individual asset depends upon the choice of the proxy for the market portfo-

lio. For the US based investors, one of the common proxies for market portfolio is the return on

S&P 500 index could be used as the market portfolio. For Vietnam based investors, the return on

Vietnam Index (VNI) is used as the proxy in the CAPM. The other source of risk comes from σ2
i ,

which is known as specific risk associated with the asset’s own fluctuations. Assets with higher

betas indicate more sensitivity to the market., while a negative beta indicates the asset is negatively

correlated with the market meaning that cov(εi,Rm) < 0. According to CAPM, alpha for all as-

sets should equal zero. In practice, alpha is also referred as the pricing error or Jensen’s alpha.

Both beta and alpha are estimated based on historical performance and data. Sigma measures the

non-systematic risk has little correlation to the market risk. This type of risk is also known as

idiosyncratic risk and is diversifiable by diversifying assets in the portfolio.

Using the CAPM one-factor model (2.3), the total risk for an asset is decomposed into two primary

components: systematic and unsystematic risk. The unsystematic risk component is related to the

error term for εi of the model (2.3).

Var(Ri) = β
2
i Var(Rm)+Var(εi) (2.5)
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Suppose a portfolio has N assets equally weighted w = 1/N. The return of the would be:

Rp = wR1 +wR2 +wR3 + ....+wRN = (
1
N
)

N

∑
i=1

Ri = w
N

∑
i=1

Ri (2.6)

The portfolio beta is the sum of N equally weighted of the individually betas βi:

βp =
σm,p

σ2
m

=
n

∑
i=1

wβi (2.7)

Similarly, the variance of the portfolio is:

Var(Rp) = β
2Var(Rm)+

1
N

Var(εp) (2.8)

As N approaches infinity, the unsystematic risk portion of (2.8) of the portfolio will disappear due

to diversification and all that remains is the market risk of an asset. Thus, diversification help

investors reduce overall investment risk for the same level of expected return.

2.2 Ordinary Least Squares (OLS) Regression

Let rit be the excess return of the stock ith and the time t and rmt be the market risk premium at the

time t (rmt = Rmt −R f t). Ordinary least squares (OLS) regression can be applied to evaluate the

factor model E(rit) = βiE( f ), where f is the pricing factor for CAPM:

rit = αi +βi ft + εit (2.9)

where t = 1,2, · · · ,T

Comparing the expected factor model and the time-series regression model (2.9), all regression

intercepts αi should be zero for the CAPM to hold. In the other words, the regression intercepts

are equal to the pricing errors of the model. The standard OLS formula provides an estimate of α

and β . Statistical t-tests are applied to check whether the individual pricing errors (αi) are zero

assuming that residuals of the model (2.9) are uncorrelated and have constant variance. We are

interested in checking whether all pricing errors are jointly equal to zero. One of the classical

approaches is to perform the Wald test to test the joint significance of the coefficients.
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2.3 Time Series Estimation and Evaluation

The model (2.9) can be evaluated by following the time series approach proposed by Black, Jensen,

and Schole (1972) [19]. The time series regression method can also be applied to test asset pricing

models. The CAPM states that the differences in average returns for a cross-section of stocks

depends linearly on the betas. Cochrane (2000) describes the time series method in testing CAPM

below. With this approach, time series regression is run for each asset or portfolio over the period of

time (t = 1,2,3, · · · ,T ) to estimate coefficients αi and βi. Then, the regression could be described

as the cross section:

E([Rit ]−R f t) = αi +βi(E[Rmt ]−R f t) (2.10)

Let λ be the slope of the cross-sectional relationship between expected stock returns on assets

(E[Ri]−R f ) and βi. The estimate of the slope λ is the expected market risk premium λ = (E[Rm]−

R f ). The time series method gives the estimates of pricing error α̂ , β̂ , and λ̂ . The CAPM can be

tested under the null hypothesis that all α are jointly zero. Let Σ be the covariance matrix of

regression residuals. The test can be done by looking at α̂ ′Σα̂ [7].

2.4 Cross-sectional Estimation Method

Another empirical method for estimating and evaluating the CAPM is the cross-sectional regres-

sion approach. The general idea of this method is across assets. The cross-sectional regression is

a two-step procedure. First, we run time series regressions on the model (2.3) to get estimates of

βi. We denote the intercept in this step as a to differentiate the interest estimate of pricing error αi

for the analysis throughout the paper. The equation (2.3) can be rewritten as:

Rit−R f t = ai +βi(Rmt−R f t)+ εit (2.11)

The second step is to run the cross-sectional regressions across assets on β i to get an estimate of

λ :

(E[Ri]−R f ) = βiλ +αi i = 1,2, · · · ,N (2.12)
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Note that the equation (2.12) has no intercept to capture the pricing errors α as the intercept a

were already included in the time series regressions. The cross-section regressions are run on

the βi as the dependent variable. The slope of the regression line is λ in this case. Overall, this

method gives estimates of β̂ from the time series regression (first step), the slope coefficient λ̂

from the cross-section regression (step 2), and the pricing error α̂ = 1
T ∑

T
t=1 αi. The model can

be tested by checking by α̂ ′Cov[α̂, α̂ ′]−1α̂ ∼ χ2
N−1, where Cov[α̂, α̂ ′] is the covariance matrix of

the sample pricing errors from the cross-sectional regression. The cross-sectional R2 is used to

evaluate whether a beta pricing model explains the cross-section of expected returns across assets

well enough.The next stage is to test the linear relationship between betas and returns by adding

a second power of the estimated beta, β 2
i . If the coefficient of the second power of the estimated

beta is statistically different from zero, then the null hypothesis is rejected.

2.5 Fama and MacBeth Estimation Method

Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973) introduce a two-pass cross-

sectional methodology to evaluate the asset pricing models including the CAPM [11]. The Fama

and MacBeth method is a two-step procedure that regresses excess returns at each point in time

on betas (from the first pass) to estimate parameters. This method is preferred to time series and

cross-sectional regressions of the models in which the betas change over time. In the first pass,

the betas are estimated from the OLS regressions of monthly returns on the market premium factor

(Rm−R f ) then estimate the risk factor λ̂ from the cross-sectional regression of average returns

on the βi. In the second pass, the General Least Squares method (GLS) is applied to the second

stage of cross-sectional regressions. Since returns on time series are cross-sectionally correlated,

the GLS method is preferred to the OLS estimation method. This allows the error terms to be

correlated or have unequal variances. The GLS estimator λ̂ is given by:

λ̂ = (β ′Σ−1
β )−1

β
′
Σ
−1r̄p (2.13)

where, Σ = Cov(β̂ ) and r̄p is the vector of average excess monthly returns during the observed

periods for the US and VN stock market.
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Unlike time series regressions, standard errors for the Fama-MacBeth procedure are corrected

for cross-sectional correlation between assets. The Fama-MacBeth process applied to the CAPM

is given by:

• Step 1: Run regression on each asset’s excess returns against market risk premium factor

(Rm−R f ) to determine how exposed it is to the risk factor, which is measured in the betas

for N assets.

ri
t = αi +βi(Rmt−R f t)+ ε

i
t t = 1,2, ...,T (2.14)

• Step 2: Let ri= Ri−R f be the excess return on i asset. Perform T cross-sectional regressions

of the returns to obtain the estimates of betas (β̂ s) calculated from Step 1. Each regression

uses the same β̂ s found in Step 1. The goal is to determine how N expected returns are

correlated to the market risk factor loading over the time T.

ri,1 = λ1,0 +λ1,1β̂i + εi,1

ri,2 = λ2,0 +λ1,1β̂i + εi,2

...

ri,T = λT,0 +λ1,1β̂i + εi,T

(2.15)

where i = 1,2, ...,N for each t. The estimates of λ̂ and α̂ are estimated as follows:

λ̂ =
1
T

T

∑
t=1

λ̂t and α̂i =
1
T

T

∑
t=1

α̂it (2.16)

In fact, the εit in the Fama-MacBeth procedure above can be interpreted as the pricing errors, αi.

The model can be tested by checking the statistical significance of the intercepts. We want to know

if all αi are jointly zero for (2.16). This can be done by α̂ ′Cov[α̂, α̂ ′]−1α̂ ∼ χ2
N−1, where Cov[α̂, α̂ ′]

is the covariance matrix of the sample pricing errors given by:

Cov[α̂, α̂ ′] =
1

T 2

T

∑
t=1

(α̂t− α̂)(α̂t− α̂)′ (2.17)
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The equation (2.5) is used to calculate for the covariance matrix of the sample errors, which can

be troublesome if the sample size is huge. Therefore, calculating the covariance matrix for a

sample size of 30 assets over the 10-year period requires substantial computational effort and is

not practical when the number of assets becomes very large. In addition, the βi used in the first

pass are unknown so they need to be estimated, which could lead to bias.

2.6 Three-factor Model: Fama-French (1992)

In an attempt to test the CAPM, the Fama-French (1992) three-factor model describes the relation-

ship between risk and expected returns by adding two additional factors to the traditional CAPM.

Following by Fama and Macbeth (1972) approach, Fama and French (1992) find that the relation-

ship between the market betas (referred as β in the CAPM) and the average returns on NYSE,

AMEX, and NASDAQ stocks are not significant during the test period of 1963-1990. However,

when the variation of β that is related to size and book-to-market equity is allowed in the model,

the average return is positively related to β [9]. In other words, their tests did not support the

world of CAPM in which the market β is the only explanatory variable and positively related to

the average stock’s return. The Fama-French three-factor model argues that stock returns can be

explained by the three factors: market risk premium, the out-performance of size (SMB), and the

performance of Book-To-Market (BTM) ratio.

As many empirical studies have shifted to the anomalies in the CAPM framework, the Fama-

French (1992) three-factor model is used as an alternative to test the CAPM in different stock

markets. Their model has become one of the popular statistical models for asset pricing and val-

uation in finance. Amanda and Husodo (2015) find that stocks with small capitalization outper-

formed stocks with large capitalization for the Indonesian stock market from 2003 to 2013. Fama

and French (1996) also show that firms with high Book-To-Market (BTM) are sensitive to small

changes in business conditions[10].

The most widely used Fama-French three-factor model included two additional factors of SMB

14



(small minus big) and HML (high minus low) is given by

Ri−R f = αi +β1(Rm−R f )+β2SMB+β3HML+ εi (2.18)

where Ri is the average stock return on the stock i, Rm is the return on a stock market index

(S&P 500), SMB is defined as the difference in returns on well-diversified portfolios of small

and big stocks, and HML is defined as the difference in returns on well-diversified portfolios of

high and low book value-to market ( B/M) stock (Fama and French, 1992). The development of

the three-factor model by Fama and French (1992) is to better explain the systematic variation

in average return of an asset by multiple factors rather than using the market risk alone. These

factors are used in classifying stocks in terms of growth and value. Fama-French (1992) three-

factor model also has some practical implications for portfolio evaluation. Portfolio managers

of pension funds or mutual funds can compare their average returns of their portfolios with the

average returns of the benchmark portfolios with similar size and BTM and decide whether or

not making changes to achieve investment goals. Fama and French (1993, 2015) later extend

the Fama-French (1992) three-factor model by adding profitability (RMW-robust minus weak) and

investment (CMA-conservative minus aggressive) factors, which significantly raises the possibility

for new anomalies in returns for the CAPM whose explanatory variable is the only market β .

2.7 Previous Empirical Results

The validity of CAPM is debated in the finance literature. Many empirical studies were conducted

to test the model across the global financial markets. The empirical results are mixed and do not

fully support CAPM. Banz (1981) finds the relationship between return and market capitalization

(market size) of NYSE stocks, which suggests that the CAPM is misspecified. On average, small

NYSE firms had higher risk-adjusted returns than larger companies for the 1926-1975 period [2].

A study conducted by Bajpai and Sharma (2015) show that CAPM is still significant in the Indian

equity market during the testing period. Another study done by Abusharbeh and Sous (2016) for

the Palestinian Exchange Market reveals that the intercept of the CAPM is insignificantly different

from zero and the beta (regression slope) is equal to the excess return of market return [1].
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Hasan et al (2011) investigate the risk-return relationship for the CAPM in the Dhaka Stock

Exchange using monthly stock returns from 2005-2009. The results refute the CAPM hypothesis

that the intercept term should be equal to zero, which provides empirical evidence against the

CAPM in DSE market during the observed period [16].This result is consistent with Bilgin and

Basti (2011) that there is no significant relationship between betas and risk premium in Istanbul

Stock Exchange (ISE); hence, the CAPM is not valid for ISE over the sample period [1]. Koseoglu

and Mercangoz (2013) also performed a study to test the validity of the standard and zero beta

CAPM in ISE. They find that both models are still proper in ISE; however, the zero beta form

of CAPM is more valid [20], which contradicts Bilgin and Bastin (2011). An analysis of the

cross section of returns for Equity Real Estate Investment Trust (EREIT) done by Friday, Howton,

and Conover (2000) found no significant relationship between EREIT returns and a constant beta.

However, when betas are allowed to vary across bull markets, there exists a positive relationship

between the betas and cross-sectional returns [13].

Model analysis and statistics testing provide many implications in financial economics. The

pricing errors in the CAPM are referred to as Jensen’s alpha (1967, 1968) [18], which is the ab-

normal rate of return (if any) of an asset or portfolio. Jensen’s alpha measures the risk-adjusted

performance of a portfolio or asset derived from the CAPM. In other words, Jensen’s alpha is the

excess return above the expected required return based on the CAPM. Investors seek to buy under-

priced funds (positive alpha) to get abnormal returns on investment, which are above the efficient

frontier). In contrast, negative alpha indicates that funds are overpriced.
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CHAPTER III: DATA, METHODOLOGY AND ANALYSIS

3.1 Data

This section documents the data used in this study for the US and Vietnam financial market.

Monthly closing prices of 20 selected non-financial stocks traded on the Ho Chi Minh City Stock

Exchange (HOSE) are collected during the period from November 2007 through October 2017.

We exclude financial stocks because they usually have higher leverage ratios. Economic distress

in financial firms results in a higher leverage ratio, which does not have the same meaning as the

leverage ratios for non-financial firms. The monthly returns on the Vietnam Index (VNI) are used

as the market portfolio return Rm and the monthly 10-year government bond yields are used as the

risk-free rate R f of the CAPM. The data of monthly prices for the 20 selected VN stocks and the

10-year government bond were collected from Quandl Core Financial Data.

For the US stock market, the monthly closing price for the fifteen largest non-financial firms

listed on S&P 500 (a value-weighted portfolio of S&P 500 stocks) by market capitalization.The

top holdings for S&P 500 non-financial companies ranked by market capitalization were obtained

from the Morningstar website. Similarly, the fifteen top holdings were selected from the Russell

2000 small market capitalization index. The monthly return for S&P 500 index was used as the

market proxy for the market return in the regression model (2.3). The data of the monthly stock

prices for the US stock market used were obtained from the Center for Research in Security Prices

(CRSP) database. The data covers the period from January 2007 through December 2016. The

interest rate on the three-month US T-Bill is used as the risk-free rate R f used in the CAPM (2.3).

The monthly yield data on the US T-Bill is obtained from the Federal Reserve Economic Data

(FRED) during the period of January 2007 through December 2016.

Table 3.2 provides a summary of descriptive statistics of the 30 selected US stocks during

the period 2007-2016. The second column summarizes the mean of monthly log-returns for each

stock. The estimates of intercepts (α̂i) and β̂i were obtained from the OLS regressions for (2.3)
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Figure 3.2
Monthly S&P 500 Market Return and 3-Month T-Bill Yield from January 2007 through
December 2016. (Data: CRSP)

Figure 3.3
Monthly VNI Market Return and 10-Year Government Bond Yield November 2007 through
December 2017 (Data: Quandl)
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Table 3.1
Descriptive Summary Statistics of 20 Selected VN Stocks January 2008 through October 2017

Sticker Mean Std. Dev Min Max Sknewness Kurtosis Intercept t-value Beta

GIL -0.0009 0.1104 -0.3119 0.3109 -0.1478 1.0608 (0.0286) (2.2192) 0.6914
ACL -0.0144 0.1216 -0.5661 0.3611 -0.5221 5.2430 (0.0219) (1.7342) 0.9091
ANV -0.0126 0.1756 -0.7328 0.5348 -0.0733 2.9427 0.0089 0.4495 1.2219
BMC -0.0184 0.1757 -0.5341 0.6812 0.7596 3.0295 0.0111 0.6242 1.3070
CDC -0.0087 0.1884 -0.5987 0.7053 0.2183 2.1045 0.0401 2.1823 1.5156
DPM -0.0103 0.0940 -0.2661 0.2952 0.0012 1.1645 (0.0239) (2.9040) 0.8425
DPR -0.0061 0.1092 -0.6096 0.3360 -1.0844 8.3614 (0.0135) (1.2454) 0.9101
DXV -0.0082 0.1313 -0.4234 0.3499 -0.0787 0.9862 (0.0278) (1.7669) 0.7785
GTA -0.0078 0.1033 -0.3216 0.3028 -0.1408 1.0212 (0.0266) (2.3598) 0.7872
HAX 0.0059 0.1628 -0.3185 0.7115 0.9809 3.0374 0.0246 1.3631 1.1914
BMP 0.0084 0.1245 -0.3365 0.3462 -0.1769 0.8904 0.0175 1.5194 1.0878
KHP -0.0087 0.0939 -0.3244 0.3762 0.1902 3.1599 (0.0277) (2.9424) 0.7858
GMC 0.0028 0.1346 -0.3598 0.6187 1.1634 5.9075 0.0086 0.6268 1.0517
ICF -0.0234 0.1332 -0.3836 0.5671 0.4682 3.0438 (0.0277) (1.9000) 0.9443
KDC 0.0004 0.1307 -0.4533 0.3984 0.0099 1.8438 0.0202 1.7768 1.2038
PET -0.0127 0.1360 -0.4768 0.4414 0.1547 2.0032 0.0098 0.8684 1.2328
PVD -0.0120 0.1136 -0.2877 0.2744 -0.0092 -0.0113 (0.0237) (2.0761) 0.8634
VSC 0.0092 0.1079 -0.3495 0.3259 0.2035 1.5935 (0.0086) (0.7516) 0.7973
VNM 0.0165 0.0815 -0.2157 0.3145 0.1937 1.6637 (0.0172) (1.9254) 0.6277
SSC 0.0034 0.1214 -0.3976 0.3971 0.3095 1.9398 (0.0120) (0.8701) 0.8239

on the original historical data over the observed period. The residuals then are re-sampled in the

bootstrap procedures to generate bootstrap samples.

Figure 3.2 provides the plots of historical monthly S&P 500 returns and 3-Month T-Bill yields

over the period 2007-2016. The S&P 500 comprises of 500 large-cap US stocks. The S&P 500 the

is value-weighted index as the performance indicator for the US stock market. We chose the S&P

500 index as the benchmark for the US stock market. The monthly 3-month T-Bill yield in Figure

3.2 is used as the risk-free rate R f for the equation (2.3).

19



Ta
bl

e
3.

2
D

es
cr

ip
tiv

e
Su

m
m

ar
y

St
at

is
tic

s
of

30
Se

le
ct

ed
U

.S
.S

to
ck

s
20

07
-2

01
6

St
oc

k
M

ea
n

St
d.

D
ev

M
in

M
ax

Sk
ew

ne
ss

K
ur

to
si

s
In

te
rc

ep
t

t-
va

le
B

et
a

A
A

PL
0.

00
25

3
0.

20
12

7
-1

.9
18

6
0.

21
33

-7
.5

73
29

71
.2

69
56

(0
.0

03
94

)
(0

.2
12

81
)

0.
07

76
6

M
SF

T
0.

00
58

8
0.

07
21

0
-0

.1
81

1
0.

22
27

-0
.0

28
03

0.
57

86
4

(0
.0

00
04

)
(0

.0
06

18
)

0.
35

88
3

PM
0.

00
58

8
0.

07
21

0
-0

.1
58

0
0.

24
82

-0
.0

28
03

0.
57

86
4

0.
00

02
0

0.
03

62
1

0.
11

33
0

A
M

Z
N

0.
02

51
3

0.
10

04
8

-0
.2

93
1

0.
43

27
0.

16
47

8
2.

18
57

9
0.

01
89

2
2.

05
73

8
0.

20
77

8
JN

J
0.

00
45

8
0.

04
18

5
-0

.1
43

1
0.

10
36

-0
.4

22
57

1.
02

48
5

(0
.0

01
73

)
(0

.4
23

66
)

0.
15

96
3

X
O

M
0.

00
45

8
0.

04
18

5
-0

.1
43

1
0.

10
36

-0
.4

22
57

1.
02

48
5

(0
.0

01
73

)
(0

.4
23

66
)

0.
15

96
3

PG
0.

00
40

3
0.

05
97

4
-0

.1
59

0
0.

14
16

-0
.1

87
64

0.
01

53
6

(0
.0

02
39

)
(0

.4
30

11
)

0.
10

15
2

C
V

X
0.

00
21

8
0.

04
34

2
-0

.1
26

0
0.

10
17

-0
.3

70
23

0.
43

92
3

(0
.0

04
15

)
(1

.0
07

95
)

0.
15

10
1

T
-0

.0
01

11
0.

08
67

2
-0

.3
54

4
0.

22
41

-0
.8

41
95

2.
86

67
0

(0
.0

07
15

)
(0

.8
89

63
)

0.
29

90
6

PF
E

0.
00

17
9

0.
05

51
1

-0
.1

94
5

0.
12

84
-0

.5
30

12
0.

83
45

1
(0

.0
04

33
)

(0
.8

24
45

)
0.

25
59

6
G

E
0.

00
10

3
0.

05
20

1
-0

.1
69

2
0.

09
87

-0
.6

58
01

0.
59

96
6

(0
.0

05
47

)
(1

.0
93

09
)

0.
06

31
9

H
D

0.
00

46
1

0.
07

20
6

-0
.2

33
9

0.
16

53
-0

.5
83

39
0.

68
40

5
(0

.0
01

67
)

(0
.2

47
11

)
0.

17
63

5
U

N
H

0.
01

00
1

0.
06

44
3

-0
.1

87
5

0.
14

89
-0

.3
69

04
0.

50
43

5
0.

00
38

5
0.

61
37

9
0.

23
44

2
IN

T
C

0.
00

94
1

0.
08

12
0

-0
.3

65
8

0.
23

59
-1

.5
96

49
5.

58
30

2
0.

00
35

1
0.

46
09

4
0.

37
18

1
K

O
-0

.0
01

21
0.

08
40

0
-0

.7
70

3
0.

13
27

-6
.6

19
13

59
.9

88
81

(0
.0

07
71

)
(0

.9
93

50
)

0.
06

02
0

E
X

A
S

0.
01

31
0

0.
22

16
4

-0
.7

70
0

0.
96

09
0.

16
33

0
3.

89
40

3
0.

00
86

1
0.

43
03

7
1.

09
78

8
K

N
X

0.
00

47
4

0.
07

20
0

-0
.1

89
3

0.
17

95
0.

08
30

8
0.

06
16

5
(0

.0
01

69
)

(0
.2

47
39

)
0.

09
52

2
M

K
SI

0.
00

84
0

0.
09

19
8

-0
.2

59
5

0.
38

81
0.

19
38

4
2.

21
74

2
0.

00
21

2
0.

24
60

0
0.

17
63

6
C

W
0.

00
79

5
0.

07
76

0
-0

.2
08

4
0.

16
98

-0
.3

98
85

0.
23

50
2

0.
00

17
2

0.
23

95
3

0.
20

10
4

L
FU

S
0.

01
32

4
0.

10
40

2
-0

.4
65

8
0.

39
97

-0
.7

06
43

4.
59

49
0

0.
00

79
5

0.
85

54
1

0.
68

32
5

ID
A

0.
00

65
5

0.
05

11
2

-0
.1

79
0

0.
16

50
-0

.0
81

80
1.

32
11

7
0.

00
01

2
0.

02
37

6
0.

09
68

9
H

L
S

0.
00

47
7

0.
10

13
5

-0
.3

85
1

0.
23

40
-0

.8
81

96
2.

36
35

8
(0

.0
00

63
)

(0
.0

68
63

)
0.

63
22

6
M

PW
R

0.
01

59
3

0.
11

86
8

-0
.5

74
0

0.
27

59
-1

.2
87

10
5.

13
17

7
0.

00
99

7
0.

91
63

6
0.

33
95

1
FI

C
O

0.
00

92
2

0.
10

13
0

-0
.3

91
0

0.
28

50
-0

.5
10

26
2.

19
66

8
0.

00
36

4
0.

38
97

9
0.

53
86

8
U

M
PQ

-0
.0

03
49

0.
09

56
8

-0
.3

89
7

0.
26

44
-0

.5
14

07
1.

86
58

3
(0

.0
09

79
)

(1
.0

80
75

)
0.

16
46

9
W

G
L

0.
00

74
0

0.
05

24
6

-0
.1

21
8

0.
14

02
-0

.1
01

59
-0

.1
49

87
0.

00
05

8
0.

11
64

0
(0

.1
02

20
)

B
L

K
B

0.
00

82
5

0.
08

54
2

-0
.1

95
6

0.
27

07
0.

07
07

3
0.

59
17

5
0.

00
24

3
0.

30
92

0
0.

40
95

8
V

W
D

0.
00

42
1

0.
14

00
0

-0
.7

87
3

0.
57

96
-1

.3
40

46
10

.8
11

95
(0

.0
00

53
)

(0
.0

42
89

)
0.

97
25

0
B

R
S

-0
.0

05
05

0.
14

01
1

-0
.5

36
0

0.
44

43
-0

.4
08

69
2.

46
01

0
(0

.0
10

82
)

(0
.8

46
83

)
0.

43
88

9
R

O
G

0.
00

33
3

0.
12

05
6

-0
.4

00
0

0.
31

15
-0

.3
94

53
0.

79
11

8
(0

.0
02

76
)

(0
.2

45
99

)
0.

27
04

4

20



3.2 Methodology

Literature in applied statistics reviews different empirical methods used to estimate an assets pric-

ing model and its specification such as time series regressions, cross-sectional regressions, and the

Fama-Macbeth two-pass method. However, when the sizes of portfolios increase, test statistics

may be difficult to obtain. Since our data contains monthly returns of portfolios with large num-

bers of assets, bootstrap methods work nicely in testing the pricing errors of the CAPM. Scott and

Westfall (2004), in testing of abnormal returns of assets, bootstrapping the multivariate regression

model allows the model adjust the errors due to the presence of cross-sectional correlation and

time series dependence in data structure. In addition, even when the residual distribution is heavy-

tailed, bootstrapping in regression provides a high level of accuracy in making statistical inferences

and test statistics become less biased for larger sample sizes [17]. To capture the cross-sectional

correlation across assets in the portfolio and serial dependence over time of model residuals, we

implement several of bootstrapping methods in the attempt to re-sample the original data to test the

true alpha of the CAPM. The following sections describe different bootstrap methods used in this

study: (1) independent bootstrap with OLS estimation, (2) independent bootstrap with Cochrane-

Orcutt procedure, (3) circular block bootstrap with OLS, and (4) circular block bootstrap with

Cochrane-Orcutt procedure.

3.3 Independent Bootstrap

Financial literature shows the Fama Macbeth (1973) method survived most of the empirical tests

of asset pricing models including CAPM. However, their two-pass regression method fails to ac-

count for estimation errors among cross-sectional correlation in residuals. Bootstrap methods, on

the other hand, can adapt to the sample’s characteristics. In fact, standard errors and residuals from

the CAPM model can be derived using a new procedure of simulation and re-sampling called in-

dependent bootstrapping or re-sampling of residuals. The general idea is to generate bootstrapped

samples Yb
i by re-sampling from the residuals Ei. To simplify the mathematical notations, let Yi be
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the vector of excess returns (dependent variable) on the i asset and Xi be the excess market return

(independent variable). For i asset, the model (2.3) can be rewritten into a model of matrix form

given data in a period of T months:

Yi = αi +βiXi +Ei (3.19)

where, Yi = (Ri1−R f 1,Ri2−R f 2, · · · ,RiT −R f t)
′, Xi = (Rm1−R f 1,Rm2−R f 2, · · · ,RmT −R f T )

′,

and Ei = (εi1,εi2, · · · ,εiT )
′. The procedure for the independent bootstrap method contains the

following steps:

• Step 1: Fit the model for all N assets. Obtain all estimates of αi and βi,and residuals for all

N assets from the model (2.3). Let α̂i be the estimate of αi, β̂i be the estimate of βi, and

ε̂t = (ε̂1t , ε̂2t , · · · , ε̂Nt) where ε̂it =Yit− α̂i− β̂iXit is the residual at tth moment of the ith asset.

Then calculate the test statistic Ŝobs = ΣN
i=1α̂2

i

• Step 2: Set the number of bootstrap replicates to B. Generate B bootstrap samples of mo-

ments from 1,2, · · · ,T . Let the bth bootstrap sample of moments be (ib1, i
b
2, · · · , ibT )

• Step 3: Generate bth bootstrap sample data based on the CAPM with αi = 0 and βi = β̂i at

the time t

Yb
t =



Y b
1t

Y b
2t
...

Y b
Nt


=



β̂1

β̂1

...

β̂N


(Rmt−R f t)+Eb

t (3.20)

where Eb
t =(εib1

,εib2
, · · · ,εibN

)′ are the re-sampled residuals for the bth bootstrap.

• Step 4: Rewrite bootstrap sample at moment t = 1,2, · · · ,T to bootstrap sample for different

assets by Yb
i = (Y b

i1,Y
b
i2, · · · ,Y b

iT )
′

• Step 5: Regress the bootstrap Yb
i values on the original fixed value Xi to obtain the bootstrap

bootstrap test statistic S∗b for b = 1,2, · · · ,B

• Step 6: Repeat the Step 3 through 5 for B times
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• Step 7: Using the p-value formula in (3.21) to determine the p-value

• Step 8: If p-value is less than the significance level, reject the null hypothesis.

Bootstrap hypothesis tests can be proceeded by constructing an empirical sampling distribution

for the test statistic. The estimate of the p-value of a one-sided test for the null hypothesis is simply

given by:

p− value =
number of times[S∗b > Ŝobs]

B
(3.21)

where, p-value is the calculated probability under the null hypothesis testing, S∗b and Ŝobs are the

bootstrap test statistic and sample test statistic respectively and B is the number of replications.

Reject the null hypothesis H0 if p-value is less than α (significant level) and retain H0 otherwise.

3.4 Cochrane- Orcutt Independent Bootstrap

One of the popular procedures that deal with serial autocorrelation in data is the Cochrane-Orcutt

approach, which involves iterating in the calculation. The Cochrane-Orcutt method was introduced

by Cochrane and Orcutt (1949). Their procedure allows the linear model to be adjusted for serial

correlation in the error term [11]. We adopted the Cochrane-Orcutt (1949) procedure in estimating

the coefficient β̂i and incorporated their regression method into the block bootstrap procedure. Let

ρ̂ denote the estimated autocorrelation parameter of the model. The Cochrane-Orcutt two-step

procedure is summarized as follows:

• Step 1: Run OLS regression on the original data using equation (2.3) to obtain coefficients

and residuals ε i
t , where ε i

t are residuals at the moments tth of the ith asset

• Step 2: Run OLS regression on the residuals ε i
t to obtain ρ̂ using the equation below:

ε
i
t = ρiε

i
t−1 +δ

i
t (3.22)

where δ i
t are the error terms for (3.22) of the ith asset.
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• Step 3: Run regression on the new transformed variables Xc
it and Y c

it to obtain the estimate of

α̂c
i . Then calculate the Cochrane-Orcutt test statistic Ŝc

obs = ΣN
1 (α̂

c
i )

2

Y c
it = α

c
i +β

c
i Xc

it +ωit for i = 1,2, · · · ,N and t = 1,2, · · · ,T (3.23)

where, Xc
t = Xit− ρ̂Xi(t−1), Yit = Rit , and Y c

it =Yit− ρ̂Yi(t−1) The Cochrane-Orcutt procedure above

gives an estimate of β̂ c
i for all asset over the period of time T . Let Ec

i = (ω̂i1, ω̂i2, · · · , ω̂iT ) be

the Cochrane-Orcutt residuals at tth moment of the ith asset. The Cochrane-Orcutt independent

bootstrap procedure is described as follows:

• Step 1: Fit the model using Cochrane-Orcutt estimation method for all N assets. Obtain

all estimates of αi and βi,and residuals for all N assets from the model (2.3). Let α̂c
i be

the estimate of αc
i , β̂ c

i be the estimate of β c
i , and ω̂t = (ω̂1t , ω̂2t , · · · , ω̂Nt) where ω̂it =Y c

it −

α̂c
i − β̂ c

i Xc
it is the residual at tth moment of the ith asset. Then calculate the test statistic

Sobs = ΣN
i=1α̂2

i

• Step 2: Set the number of bootstrap replicates to B. Generate B bootstrap samples of mo-

ments from 1,2, · · · ,T . Let the bth bootstrap sample of moments be (ic
b

1 , ic
b

2 , · · · , icb

T )

• Step 3: Generate bth bootstrap sample data based on the CAPM with αc
i = 0 and β c

i = β̂ c
i at

the time t

Ybc
t =



Y cb

1t

Y cb

2t
...

Y cb

Nt


=



β̂ c
1

β̂ c
1
...

β̂ c
N


(Rmt−R f t)+Ecb

t (3.24)

where Ecb

t =(ω
icb
1
,ω

icb
2
, · · · ,ω

icb
T
)′ are the re-sampled residuals for the bth bootstrap.

• Step 4: Rewrite bootstrap sample at moment t = 1,2, · · · ,T to bootstrap sample for different

assets by Ycb

i = (Y cb

i1 ,Y cb

i2 , · · · ,Y cb

iT )′
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• Step 5: Regress the bootstrap Ycb

i values on the original fixed value Xi to obtain the bootstrap

bootstrap test statistic S∗b = ∑
N
1 (α̂

c
i )

2 for b = 1,2, · · · ,B

• Step 6: Repeat the Step 3 through 5 for B times

• Step 7: Using the p-value formula in (3.21) to determine the p-value

• Step 8: If the p-value is less than the significance level, reject the null hypothesis H0

3.5 Circular Block Bootstrap

In this section, another bootstrap approach is applied as the the residuals may be correlated over

time. This dependence is known as serial correlation meaning that residuals in one period εt

are correlated with residuals in previous periods εt−1. Early in the bootstrap literature, Efron

(1979) introduces a re-sampling method for independent data but fails to replicate the properties

of dependent sequences. The solution for this problem is to use the block bootstrap method. Block

re-sampling was introduced by Carlstein (1986). Liu and Singh (1992) apply the general results

of block jackknife and bootstrap approaches to develop another bootstrap method that deals with

weak dependence and general types of data sets that are not identical independently distributed.The

performance of independent bootstrap may not be accurate when serial correlation is found in the

data. In this case, the block bootstrap may improve the accuracy as it does relax the independent

and identically distributed assumption for residuals of the data. By relying on the moving block

bootstrap, it is expected to be robust to serial dependence and cross sectional correlation types of

data even through the residuals are heavy-tailed [17].

The block bootstrap method, like independent bootstrap, attempts to capture the temporal de-

pendence of the data. The general idea is to sample bootstrap blocks with length L and paste

them together to form the bootstrap sample [6]. The bootstrap procedure can preserve the original

properties of the data within a block. Selecting a block length is important in the block bootstrap

procedure. Lahiri, Furukawa, and Lee (2007) review and compare the two data-based methods for

selecting an optimal block size for the block bootstrap method [21]. The two approaches to the
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selection of the optimal block size are plug-in method and empirical criteria-based method. Data

sample size also needs to be taken into account when determining the block length. Hall, Horowitz,

and Jing (1995) suggest the possible optimal block lengths for the block bootstrap method being

equal to T 1/3, T 1/4, and T 1/5 for the block bootstrap method[15].

The philosophy for the moving block bootstrap is quite simple. As the block length L goes

large, the block’s distribution should converge to the joint distribution of elements within a block.

The blocks are assumed to be approximately independent for each asset. Similarly, the bootstrap

draws are approximately close to the distribution of the entire data being re-sampling. In the

presence of serial dependence in the residuals, the block bootstrap is used to draw samples of

residuals in blocks. The residuals time series are divided into G blocks such that each block has L

elements (block length), that is, T = GL. Intuitively, the value of G can be interpreted as the Lth

lag that the block length captures dependence of the data.

The circular block bootstrap procedure to generate the bootstrap samples of the time indices

is described as follows. Set the block length L = T 1/3. Let B j = {i j, i j+1, · · · , i j+L−1} denotes

a jth block of length L of the time indices. Then, each block starts from the time index j for

1≤ j≤ T . The bootstrap procedure will draw G blocks of B j randomly with replacement from the

set of blocks {B1,B2, · · · ,BT−L+1}. Let (B∗1, · · · ,B∗G) represents a bootstrap sample of size T with

replacement from the set {B1,B2, · · · ,BT−L+1}. Then, within the bootstrap block, B∗k is defined as

(i( j−1)L+1, · · · , i jL) for k = 1, · · · ,G. The re-sampled blocks of vectorized observations (i1, · · · , iL)′,

(iL+1, · · · , i2L)
′, (i(G−1)L, · · · , ikL)

′. Let the bth circular block bootstrap sample of the time indices be

(ib
∗

1 , ib
∗

2 , · · · , ib∗T ) at the time t. Then the bootstrap Y b∗
i for i = 1,2, · · · ,N are generated by applying

the steps given below:

• Step 1: Fit the model for all N assets to obtain all estimates of αi and βi,and residuals for all

N assets from the model (2.3). Let α̂i be the estimate of αi, β̂i be the estimate of βi and let

ε̂t = (ε̂1t , ε̂2t , · · · , ε̂Nt) where ε̂ i
t =Y i

t − α̂i− β̂iXt is the residual at tth moment of the ith asset.

Calculate the test statistic Ŝobs = ∑
N
i=1 α̂2

i

• Step 2: Set the number of bootstrap replicates to B. Implement the circular block bootstrap
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procedure described above to generate B bootstrap samples of time indices (ib
∗

1 , ib
∗

2 , · · · , ib∗T )

• Step 3: Generate bth bootstrap sample data based on the CAPM with αi = 0 and βi = β̂i at

the time t

Yb∗
t =



Y b
1t

Y b
2t
...

Y b
Nt


=



β̂1

β̂1

...

β̂N


(Rmt−R f t)+Eb∗

t (3.25)

where Eb∗
t =(εib∗1

,εib∗2
, · · · ,εib∗N

)′ are the re-sampled residuals for the bth bootstrap

• Step 4: Rewrite bootstrap sample at moment t = 1,2, · · · ,T to bootstrap sample for different

assets by Y b∗
i = (Y b∗

i1 ,Y b∗
i2 , · · · ,Y b∗

iT )

• Step 5: Regress the bootstrap Yb∗
i values on the original fixed value Xi to obtain the bootstrap

bootstrap test statistic S∗b for b = 1,2, · · · ,B

• Step 6: Repeat the Step 3 through 5 for B times

• Step 7: Using the p-value formula in (3.21) to determine the p-value.

3.6 Cochrane-Orcutt Circular Block Bootstrap

The last method we adopt to test the CAPM is the combination of Cochrane-Orcutt (1949) and

the circular block bootstrap method. In this method, the estimators αi and βi are estimated using

the Cochrane-Orcutt method, which allows the model adjust serial autocorrelation in the data.

The autocorrelation test can be done by calculating the Durbin-Watson (DW) d statistic for lack

of independence of residuals. The DW statistic is range from 0 to 4. Values of DW around 2

indicate no serial correlation in the residuals. In our method, we adopt the Cochrane-Orcutt two-

step procedure to adjust the first order serial autocorrelation in residuals . The next stage is to

implement the circular block bootstrap residuals to estimate the new bootstrap estimator. The

Cochrane-Orcutt Circular Block Bootstrap procedure is simiarly to the circular block bootstrap
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described in the previous section except for the implement of Cochrane-Orcutt two-step process to

obtain the estimates of αc
i and β c

i .

All bootstrap tests for Σα̂
2

i are conducted at the significance levels of 5% and 10%, which is

related to the 95% and 90% confidence intervals of the one right-sided test. If the p-value is less

than or equal to the significance levels (5% or 10%), then the null hypothesis H0 is rejected.
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CHAPTER IV: RESULTS

This section summarizes the results of bootstrap tests for the CAPM. The pricing errors α is es-

timated using OLS and Cochrane-Orcutt estimation method. Figure 4.4 provides the plots of the

average log returns and estimated betas for both stock markets. Figure 4.5 shows the histograms

of distribution for αi for both OLS (left) and Cochrane-Orcutt estimation methods.

We conduct different bootstrap tests for both stock markets. For each bootstrap test, the his-

togram of distribution for the bootstrap test statistics S∗b is plotted to visualize the shape of bootstrap

distribution. Figures 4.6 and Figures 4.7 show the histograms of distribution of the bootstrap test

statistics Ŝ∗obs for both independent bootstrap and circular block bootstrap methods.

The numerical results are summarized in the tables at the significance level of 5% and 10%

for both US and VN stock markets during the testing periods. The test statistics Ŝobs = ∑
N
i=1 α̂2

i

obtained from the OLS and Cochrane-Orcutt estimation method are shown in the second column.

Table 4.3 and 4.4 summarize the results of the bootstrap tests conducted for the US and VN stock

markets. The test statistics Ŝobs obtained from the OLS and Cochrane-Orcutt estimation method

are shown in the second column. The next columns show critical values and p-values for each

bootstrap test at 95% and 90% CI , which is related to 5% and 10% significance levels of the

right-sided test.

Table 4.3
Summary results of model-based bootstrap methods for the 30 selected U.S. stocks during the
observed period (2007-2016).

MODEL-BASED
BOOTSTRAP METHODS

US STOCK MARKET

Bootstrap Test Significance Level

test
statistic

p-value
α = 5% α = 10%

critical value critical value

Independent Bootstrap 0.00158 0.732 0.0047 0.004
Cochrane-Orcutt
Independent Bootstrap 0.00159 0.720 0.004 0.0049

Circular Blocks Bootstrap 0.00158 0.584 0.0046 0.0036
Cochrane-Orcutt CBB 0.00198 0.602 0.0037 0.0043
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Figure 4.4
The plots of average returns and estimated betas for selected stocks for U.S. and VN stock
markets during the observed periods

Table 4.4
Summary results of model-based bootstrap methods for the 20 selected VN stocks during the
observed period (2008-2017)

MODEL-BASED
BOOTSTRAP METHODS

VN STOCK MARKET

Bootstrap Test Significance Level

test
statistic

p-value
α = 5% α = 10%

critical value critical value

Independent Bootstrap 0.010 0.000** 0.006 0.0054
Cochrane-Orcutt
Independent Bootstrap 0.011 0.000** 0.0064 0.0055

Circular Blocks Bootstrap 0.010 0.004* 0.0063 0.0053
Cochrane-Orcutt CBB 0.011 0.008* 0.0060 0.0053
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Figure 4.5
The figure shows the histograms of distribution of the sample α̂i obtained from using the OLS
(left) and Cochrane-Orcutt (right) method of estimation for US and VN stock market during the
testing periods.
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Figure 4.6
Histogram of distribution of the bootstrap test statistics S∗b for independent bootstrap,
Cochrane-Orcutt independent bootstrap, moving block bootstrap, and Cochrane-Orcutt moving
blocks bootstrap for the US stocks (B = 500) times.
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Figure 4.7
Histogram of distribution of the bootstrap test statistics S∗b for independent bootstrap,
Cochrane-Orcutt independent bootstrap, moving block bootstrap, and Cochrane-Orcutt moving
blocks bootstrap for the 20 selected VN stocks (B = 500) times.
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CHAPTER V: DISCUSSION

Figure 4.4 provides the plots of the monthly average returns and estimated betas for both the US

and VN stock markets. The betas are estimated using OLS estimation method. According to

the CAPM, there exists a positive linear relationship between stock returns and stock betas. For

individual assets, the expected returns are found positively correlated with the market returns but

statistically insignificant. Nevertheless, the joint tests are more efficient rather than looking at the

betas individually.

The results are statistically significant for the VN stock market (5% significance level). That

is, all pricing errors αi are jointly different from zero at significance level of 5% over the testing

period of November 2007 through October 2017 inclusively. The test statistics Ŝobs = ∑
N
i=1 α̂2

i are

equal to 0.016 and 0.01 for the OLS and Cochrane-Orcutt regression method respectively (Table

4.3).

The null hypothesis is not rejected for the US stock market. However,the results are positive

but not statistically significant over the testing period January 2007 through December 2016. Table

4.3 summarizes the results of model-based bootstrap test for the 30 selected stocks. The bootstrap

test statistics Ŝobs are relatively small over the test period for both estimation methods. The average

p-value obtained from the independent bootstrap is 0.726. When the serial dependence in the data

are taken into account, the average p-value obtained from the block bootstrap procedure is 0.593.

Both bootstrap tests failed to reject the null hypothesis H0 over the test period.

We conduct different bootstrap methods to compare the results. The results are slightly dif-

ferent but agree with each other in the hypothesis testing. Our data are collected at a monthly

frequency, so it may not be a big difference between the different independent bootstrap and block

bootstrap. For future research in which the data are high frequency like daily and contain a large

number of assets, bootstrap method may work better and yield an advantage over traditional meth-

ods.
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CHAPTER VI: SUMMARY AND CONCLUSIONS

This study examines the CAPM model in the US and VN stock market. According to the CAPM,

all αi should equal zero to hold the CAPM. Under the assumption of no serial dependence in the

data, we implement the independent bootstrap to capture the cross-sectional correlation between

assets. Furthermore, we introduce the block bootstrap with blocks over time to capture the temporal

dependence in the data. Our empirical study for the US and VN stock markets results in interesting

findings. We find the pricing errors of the CAPM for the US stock market are not jointly different

from zero at the significance level of 5%. On the other hand, the empirical findings on the VN

stock market do not support the CAPM. The pricing errors are statistically different from zero at

the significance level of 5%, which suggests the need for an improved pricing model. The Fama-

French (1992) three-factor model is a possible model specification for the VN stock market.

The bootstrap method is simple and quick to implement. For this reason, the bootstrap is

preferred to the traditional methods and can be used in place of asymptotic approximation methods

in financial economics for a number of reasons (1) provides better approximation and higher level

of refinement (2) avoid the complicated formula in calculation such as variance formula (3) correct

biased estimators to less biased estimators by subtracting the bootstrap bias estimate from the

original parameter estimator and (4) that when the asymptotic distribution of the estimator is not

theoretically available or difficult to compute, the bootstrap methods sometimes may be used as an

alternative for statistical inferences.

The use of the bootstrap test does not involve a lot of computational effort in computing the

estimated p-values along with the confidence intervals. It works nicely for complicated statistical

problems such as test statistics of nonparametric analysis. Specifically, for high temporal depen-

dence data such as daily stock prices, we suggest the use of the bootstrap test for assessing a test

statistic and constructing confidence intervals along with corresponding estimated p-value.
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APPENDIX A: R CODE

#Loading data

capm.data = read.csv("capm.csv", header=1)

#delete the missing data

capm.data.new = capm.data[!is.na(capm.data$R_SP500), 1:32]

Num.of.Assests = length(capm.data.new[1,])

T = length(capm.data.new[,1])

excess.return = capm.data.new - capm.data.new$r_f

market.return = capm.data.new$R_SP500 - capm.data.new$r_f

Alpha.all = rep(0, Num.of.Assests)

Beta.all = rep(0, Num.of.Assests)

fitted.values.matrix = matrix(0, nrow= T, ncol=Num.of.Assests)

residual.matrix = matrix(0, nrow= T, ncol=Num.of.Assests)

#Find betas for all assests using OLS

for(a in 3:Num.of.Assests) #the first two are risk free and market return

{

fit = lm( excess.return[,a] ~ market.return)

reg.coef = coef(fit)

Alpha.all[a] = reg.coef[1]

Beta.all[a]= reg.coef[2]

# simulating bootstrap data when alpha =0

fitted.values.matrix[,a] = fit$fitted.values - Alpha.all[a]

residual.matrix[,a] = fit$residuals

}

#Calculation of test statistic, sum square of all alpha

TestStatistic= sum(Alpha.all^2)

set.seed(1000243151)

Boot.Num = 500

Test.Stat.Boot.Vec = rep(0, Boot.Num)

Alpha.all.boot = rep(0, Num.of.Assests)

#Method 1: Independent Bootstrap

for(iboot in 1:Boot.Num)

{

index.boot =sample(1:T, T, replace=1)

Boot.data = fitted.values.matrix + residual.matrix[index.boot,]

for(a in 3:Num.of.Assests)

{

fit = lm( Boot.data[,a] ~ market.return)

reg.coef = coef(fit)
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Alpha.all.boot[a] = reg.coef[1]

}

Test.Stat.Boot.Vec[iboot]= sum(Alpha.all.boot^2)

}

hist(Test.Stat.Boot.Vec,main="Indepedent Boostrap",xlab="")

#critical value at significance level of 0.05

cvalue = quantile(Test.Stat.Boot.Vec, 0.95)

#bootstrap p-value

pvalue = sum(Test.Stat.Boot.Vec>TestStatistic)/Boot.Num

######################################################

#Method 2: Cochrane-Orcutt Independent Bootstrap

#Using Cochrane-Orcutt in estimating coefficients

library(orcutt)

#Find Betas for all assests , The first two are risk free and market

for(a in 3:Num.of.Assests)

{

fit.ols = lm( excess.return[,a] ~ market.return)

fit = cochrane.orcutt(fit.ols)

reg.coef = coef(fit)

Alpha.all[a] = reg.coef[1]

Beta.all[a]= reg.coef[2]

# simulating bootstrap data when alpha =0

fitted.values.matrix[,a] = fit$fitted.values - Alpha.all[a]

residual.matrix[,a] = fit$residuals

}

set.seed(1000243151)

Boot.Num = 500

Test.Stat.Boot.Vec = rep(0, Boot.Num)

Alpha.all.boot = rep(0, Num.of.Assests)

for(iboot in 1:Boot.Num)

{

index.boot =sample(1:T, T, replace=1)

Boot.data = fitted.values.matrix + residual.matrix[index.boot,]

for(a in 3:Num.of.Assests)

{

fit.boot = lm( Boot.data[,a] ~ market.return)

fit= cochrane.orcutt(fit.boot)

reg.coef = coef(fit)

Alpha.all.boot[a] = reg.coef[1]

}
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Test.Stat.Boot.Vec[iboot]= sum(Alpha.all.boot^2)

}

TestStatistic= sum(Alpha.all^2)

hist(Test.Stat.Boot.Vec,main="Cochrane-Orcutt Independent Bootstrap")

pvalue = sum(Test.Stat.Boot.Vec>TestStatistic)/Boot.Num

cvalue = quantile(Test.Stat.Boot.Vec, 0.95) #critical value at significance level of 0.05

######################################################

#Block bootstrap

b.size = 5

Num.of.blocks = ceiling(T/b.size)

#Block Boostrap - Circular

for(iboot in 1:Boot.Num)

{

index.boot =sample(1:T, Num.of.blocks, replace=1)

boot.index = c()

for(index.block in 1:Num.of.blocks)

{

boot.index = c(boot.index, index.boot[index.block]+(1:b.size)-1)

}

boot.index = boot.index[1:T]

for( index.o in 1:T)

{

if(boot.index[index.o]>T)

boot.index[index.o]=boot.index[index.o] - T

}

boot.index

Boot.data = fitted.values.matrix + residual.matrix[boot.index,]

for(a in 3:Num.of.Assests)

{

fit = lm( Boot.data[,a] ~ market.return)

reg.coef = coef(fit)

Alpha.all.boot[a] = reg.coef[1]

}

Test.Stat.Boot.Vec[iboot]= sum(Alpha.all.boot^2)

}

#critical value at significance level of 0.05

cvalue = quantile(Test.Stat.Boot.Vec, 0.95)

#Bootstrap p-value

pvalue = sum(Test.Stat.Boot.Vec>TestStatistic)/Boot.Num
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######################################################

#Block bootstrap with cochrane.orcutt

b.size = 5

Num.of.blocks = ceiling(T/b.size)

#Block Boostrap - Circular

for(iboot in 1:Boot.Num)

{

index.boot =sample(1:T, Num.of.blocks, replace=1)

boot.index = c()

for(index.block in 1:Num.of.blocks)

{

boot.index = c(boot.index, index.boot[index.block]+(1:b.size)-1)

}

boot.index = boot.index[1:T]

for( index.o in 1:T)

{

if(boot.index[index.o]>T)

boot.index[index.o]=boot.index[index.o] - T

}

boot.index

Boot.data = fitted.values.matrix + residual.matrix[boot.index,]

for(a in 3:Num.of.Assests)

{

fit.boot = lm( Boot.data[,a] ~ market.return)

fit = cochrane.orcutt(fit.boot)

reg.coef = coef(fit)

Alpha.all.boot[a] = reg.coef[1]

}

Test.Stat.Boot.Vec[iboot]= sum(Alpha.all.boot^2)

}

#Bootstrap p-value

pvalue = sum(Test.Stat.Boot.Vec>TestStatistic)/Boot.Num

#critical value at significance level of 0.05

cvalue = quantile(Test.Stat.Boot.Vec, 0.95)

end
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