FSDCNN: A FEW SHOT DETECTION MECHANISM THAT PRESERVES ITS SUPERVISED
NATURE

A Thesis
by
MAYANK AGARWALA

B.Tech, Vellore Institute of Technology, 2019

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Texas A&M University-Corpus Christi
Corpus Christi, Texas

May 2021

©Mayank Agarwala
All Rights Reserved
May 2021

FSDCNN: A FEW SHOT DETECTION MECHANISM THAT PRESERVES ITS SUPERVISED
NATURE

A Thesis
by
MAYANK AGARWALA

This thesis meets the standards for scope and quality of
Texas A&M University-Corpus Christi and is hereby approved.

Scott A. King, PhD
Chair

Longzhuang Li, PhD Minhua Huang, PhD
Committee Member Committee Member

May 2021

ABSTRACT

Object detection has become better with the advent of deep convolution neu-
ral networks. However, the challenge of training a fully supervised system when there is a small
amount of training samples available still remains. Another issue with fully supervised systems is
seen upon encountering novel classes. It is difficult to retrain the model as it is a time-consuming
and tedious process. Inspired by a human’s ability to learn at a rapid rate, few-shot learning mod-
els have seen rapid development. In contrast to fully supervised systems, these learn from just a
few samples. We propose a few-shot detection model, FSDCNN, based on a two-stage detector,
that optimizes both the region proposal network and the object detector with the help of few-shot
learning. FSDCNN performs similar to other models when only 1 or 3 new samples are seen but
outperforms them when 5 or 10 samples of the new classes are seen and it preserves the fully-

supervised nature of the base two stage detector.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor and committee chair, Dr. Scott A. King,
for his invaluable guidance, continued support, and patience during my thesis. His experience and
wisdom as a researcher and a professor along with his ability to make time for my study have
encouraged me to complete this thesis. I would also like to thank the committee members, Dr.
Longzhuang Li and Dr. Minhua Huang, for their support as professors over the past two years.
Their classes have helped me sharpen my technical skills.

I am grateful to my friends and members of iCORE group for their advice, support, and encour-
agement. The meetings have been very informative and motivational, especially during the trying
times of the pandemic. They have also been helpful in providing constructive feedback throughout
the thesis.

Finally, I would like to thank my parents and the rest of my family who have been a pillar of
support, without whom I wouldn’t have been able to see this through. The same goes for my friends
back in India who despite being thousands of miles away, kept me sane during this pandemic.

Thank you.

DEDICATION

I would like to dedicate this thesis to my parents, my brother and the rest of my family on both
sides of my parents.

I would also like to honor all the teachers who have helped me in one way or the other over the
years. Though I cannot mention every name here, some need special mentions for their humongous
support. Priya Miss, the matron who looked after me during my time in boarding school, Isha
ma’am, who played the role of an elder sister during the last two years of my high school and Dr.
Khan, my mentor in my undergraduate years.

I dedicate this to my friends as well for their continued support and encouragement.

Vi

TABLE OF CONTENTS

CONTENTS PAGE
ABSTRACTI. . . . e v
ACKNOWLEDGEMENTS! e e e e v
DEDICATION| o e vi
TABLE OF CONTENTS| e vii
LIST OFFIGURES|o e ix
....................................... Xiv
................................ 1
2

3

3

4

2.1 Object Detection| 5
[2.2 Cross-domain Object Detection| 5
2.3 Few-ShotLearning| 6
[Matching Networks| 6
[Prototypical Networks|. 7

[Meta Learning|. 7

[Metric Learning| 8
CHAPTER III: SYSTEM DESIGN| 10
[3.1 Problem Setting| 10
3.2 Faster r-CNN| e 11

[3.3 Methodology| 12
..................................... 13

M . S 16

vii

CHAPTER XPERIMENTSI 17

CHAPTER V: RESULTS| oo o o 19
20
CHAPTER VI: SUMMARY AND CONCLUSIONS 56
59
60

viii

LIST OF FIGURES

FIGURES

PAGE

31

System Overview: The Dense CNN for support and query set 1s the same. The Meta-

learner module 1s for the entire feature map generation and region proposal network.

| The 1dea 1s to learn which regions should be considered for objects.|. 12
[3.2 The proposed architecture in [[1]]. It uses a class-attentive vector and perform a channel- |
| wse product with the Rol features. Meta-learner 1s used after the Rol stage.| 15
[5.3 The plot shows mAP values obtained by the different models for novel classes for the |
| different K-shot settings|. oL 20
[>.4 'The mAP increases with the increase in number of samples available for a novel class. |
| This shows that the supervised nature of the base model 1sn’t compromised.| 21
[5.5 The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs |
| mn I-shotsetting.|. L 21
5.6 The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand |
| runs 1n I-shotsetting.| L 22
[5.7 The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs |
| In I-shotsetting.|. e e 22
[5.8 The mAP achieved for novel classes train, person, table, car and chair over thousand |
| runs in I-shotsetting.| 23
[5.9 The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs in I-shot setting.| 23
[5.10 The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car |
| and chair over thousand runs 1n I-shotsetting.| 24
[5.11 The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs |
| mn 3-shotsetting.|. L 24

ix

5.12

The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand

| runs in 3-shotsetting. 25
[>.13 The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs |
| mn 3-shotsetting.|. L 25
[>.14 The mAP achieved for novel classes train, person, table, car and chair over thousand |
| runs 1n 3-shot setting.| 26
[5.15 The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs in 3-shotsetting.| 26
[5.16 The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car |
| and chair over thousand runs in 3-shot setting.| 27
[5.17 The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs |
| I S-shotsetting.|. e e e 27
[5.18 The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand |
| runs in >-shot setting.| 28
[5.19 The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs |
| InS-shotsetting.|. e e e e 28
[5.20 The mAP achieved for novel classes train, person, table, car and chair over thousand |
| runs 1n >-shotsetting.| 29
[5.21 The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs 1n 5-shot setting.| 29
[5.22 The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car |
| and chair over thousand runs in 5-shot setting.| 30
[5.23 The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs |
| mn 10-shotsetting.| 30
[5.24 The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand |
| runs in 10-shotsetting.| 31

[5.25 The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs

| mn 10-shotsetting.| 31
[3.26 The mAP achieved for novel classes train, person, table, car and chair over thousand |
| runs in 10-shot setting.| Lo 32
[5.27 The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs in 10-shot setting.| 32
[5.28 The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car |
| and chair over thousand runs in 10-shotsetting.| 34
[5.29 Comparison of mAP achieved by the models over different k-shot settings.[. 36
[5.30 Comparison of mAP achieved by Meta R-CNN and FSDCNN over different k-shot |
.. 36
[5.31 Comparison of mAP achieved by YOLO-Few-Shot and FSDCNN w/o over different |
| k-shotsettings.| 37
[5.32 Comparison of mAP achieved by FSDCNN w/o and FSDCNN over different k-shot |
| settings. This shows that the meta-learner in FSDCNN helps 1n achieving better per- |
[formancel e 38
[5.33 The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs |
| in I-shotsetting.|. 39
15.34 The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs |
| m l-shotsetting.|. 39
[5.35 The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs |
| m l-shotsetting.|. 40
[5.36 The mAP achieved for base classes train, person, table, car and chair over thousand |
| runs in I-shotsetting.| 40
[5.37 The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs 1n 1-shotsetting.| 41

xi

5.38

The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car

| and chair over thousand runs 1n I-shotsetting.| 41
[5.39 The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs |
| mn 3-shotsetting.|. L 42
[5.40 The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs |
| i 3-shotsetting.|. L 42
[5.41 The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs |
| In 3-shotsetting.|. 43
[5.42 The mAP achieved for base classes train, person, table, car and chair over thousand |
| runs in 3-shotsetting.] L 43
[5.43 The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs 1n 3-shot setting.| 44
[>.44 The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car |
| and chair over thousand runs in 3-shotsetting.| 44
[5.45 The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs |
| InS-shotsetting.|. e e e e 45
[5.46 The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs |
| i S-shotsetting.|. 45
[5.47 The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs |
| inS-shotsetting.|. 46
[5.48 The mAP achieved for base classes train, person, table, car and chair over thousand |
| runs in >-shot setting.| 46
[5.49 The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs in S5-shot setting.| 47
[5.50 The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car |
| and chair over thousand runs 1n 5-shot setting.| 47

Xii

[5.51 The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs |
| mn 10-shotsetting.| 48
[5.52 The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs |
| mn 10-shotsetting.| L L 48
[5.53 The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs |
| i 10-shot setting.| L L 49
[5.54 The mAP achieved for base classes train, person, table, car and chair over thousand |
| runs in 10-shotsetting.| 49
[5.55 The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, |
| boat and cat over thousand runs 1n 10-shot setting.f. 50
[5.56 The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car |
| and chair over thousand runs in 10-shot setting.| 50
[5.57 Violin plot showing the distribution of mAP values for 1-shot setting over 1000 runs.| . 52
[5.58 Violin plot showing the distribution of mAP values for 3-shot setting over 1000 runs.| . 53
[5.59 Violin plot showing the distribution of mAP values for 5-shot setting over 1000 runs.| . 54
[5.60 Violin plot showing the distribution of mAP values for 10-shot setting over 1000 runs.|. 55

Xiii

LIST OF TABLES
TABLES PAGE

[>.1 Performance comparison of the different models 1n the experimented 4 Novel/Base |

| split settings for 1-shot, 3-shot, 5-shot and 10-shot. Our model performs really well in |

| 10-shot. Furthermore, the deviation of mAP for different settings 1s less. |. 33

[5.2 Performance comparison of the different models in classifying each of the 20 unseen |

| classes over a thousand runs for 1-shot, 3-shot, 5-shot and 10-shot. (Color guide: red |

| 1s for the best performance, green 1s for second best and blue 1s for third best.)| 35

[5.3 Performance comparison of the different models in classifying each of the 20 base |

| classes over a thousand runs for 1-shot, 3-shot, 5-shot and 10-shot. (Color guide: red |

| 1s for the best performance, green is for second best and blue 1s for third best.) | 51

Xiv

CHAPTER I: INTRODUCTION

With advances in the field of deep learning, especially convolution networks [2, [3, 4], the perfor-
mance of object detectors and image classifiers have seen quite a boost in recent years. However,
the time-consuming nature of these state-of-the-art models mean that when there is a large-scale
dataset, the amount of time spent for training the models is very high. These systems are also data-
hungry, meaning inadequate number of training images will limit performance of the systems. In
addition to this, the objects in the data need to be annotated with precise bounding boxes, which
is a laborious task. If a user wishes to expand the categories of objects that can be recognized by
these systems those new objects need to be annotated in the existing dataset and quite likely new
images are needed which also need annotation. Finally, the resulting dataset will be used to train a
final model. It is crucial to have enough training samples for the new image class in order to avoid
overfitting on a small population of data. The generalization of these systems is usually very poor.

It is worth noting that the applications of systems that learn from a few samples for image
classification and object detection in general are many. Few-shot learning is defined as the art
of training a model from a few samples in contrast to the large number of samples used by fully
supervised learning. As applications for real-time object detection increases, especially in real-
world applications, the ability of few-shot detection mechanisms to recognize novel categories
with just a few examples or a few updates has great utility.

Our goal is to create a model that can perform reasonably well on novel classes with just a
few examples without the need to retrain. The aim is also to preserve the fully-supervised nature
of the base model, that is, the model should perform better with the increase in the number of
training samples. Besides this, Few-Shot object detection has also been explored in the field of
Hyperspectral Image classification [5, 16]. Few-Shot learning is also applicable in the field of

sound recognition [7], however, it lies beyond the scope of research of this article.

1.1 Problem Statement

The inspiration for few-shot object classification has been drawn from human’s ability to learn
novel object categories with only a few examples. The existing few-shot detection models, de-
spite performing well on novel classes with few examples, are nowhere as good in comparison to
fully supervised state-of-the-art models when sufficient examples are available to train the model.
However, in real-world scenarios, it is a given that new objects or circumstances will need to be
tackled. In such scenarios, we believe it would not be ideal to retrain a fully supervised model that
can recognize the new object class. There are two reasons for this. One reason is that there might
not be sufficient samples available to train a deep neural network. The second is that even if there
were enough samples available, it would be very time consuming to retrain the model.

The main problem statement of this project is to come up with a model that can perform rea-
sonably well on novel classes with just a few examples without the need to retrain. The goal is to
preserve the fully-supervised nature of the base model, which is, the performance of the model is
enhanced with the increase in the number of training samples. Ideally, the performance of a fully
supervised model would have a better performance when there are 5 samples for a class of objects
in contrast to when there are 3 samples. The idea is to address the problem of few-shot learning
from the perspective of meta learning in order to preserve the performance on base classes. We use
meta learning approach for Few-Shot detection which deploys a two-stage detection mechanism
as object detector.

It is also worth noting that the applications of Few-Shot learning for image classification and
object detection in general are many. In the age, where autonomous vehicles are a reality, real-time
object detection is a necessity. This is where the capability of Few-Shot detection mechanisms to
recognize novel categories with few examples or a few updates, will come in handy.

It is quite evident that there has been quite a lot of work in the field of Few-Shot detection that

have laid the baseline for future work. This area of research has a promising potential.

1.2 Contributions

The main contribution is a system (FSDCNN) that makes use of the Few-Shot paradigm on both
stages of a two-stage detector. Few shot learning is carried out by using two different mechanisms,
matching and meta-learning. The two stages in a two-stage detector are the region proposal stage,
which identifies the region with features to use for classification and the classification stage. This
in addition to meta learning for the optimization of the model, enhances the performance of the
model on novel classes and preserves the performance of the model on base classes. The system

also preserves the supervised learning nature of the base model.

1.3 Outline

Chapter II provides a review of the existing methods to solve the problem of classifying images
with few samples and the methods used in this research. It is followed by Chapter III that outlines
the proposed method and the system overview. The conducted experiments are discussed in Chap-
ter IV, and the evaluations and results are discussed in Chapter V. We close with conclusions and

future work in Chapter VI.

CHAPTER II: REVIEW OF THE LITERATURE

One approach to classify objects is to use the guidance of a weakly supervised learning mechanism.
Though this reduces the dependence of performance on the annotated data, the number of samples
required to train the data are similar. Saenko et al. [8]] suggest a method to transfer knowledge from
one domain to another. The issue with such an approach is that often in these cases, the dataset bias
hampers the generalization of these models. Saito et al. [9]] propose a mechanism based on weak
global domain alignment which enhances the performance of the baseline Faster R-CNN [10] by
using a domain classifier.

On the other hand, the human visual system is capable of easily learning novel object cate-
gories, or concepts in general, with one or few examples, and later recognize them by relying on
these encounters. The assumption behind this is that the human system is able to exploit its past
experiences about the world. This inspired the concept of few-shot learning [[11}12] and zero-shot
learning. Few-shot learning is comprised of techniques where models are able to recognize new
categories based on updates of a few steps or even at once with few examples [[11}12]. While some
[13} 14, [15] address the few-shot learning mechanism from the perspective of meta-learning, the
others address it from the perspective of metric learning . Few-shot learning has also been explored
in other domains such as Hyperspectral Image classification [5,16] and sound recognition [[7].

One could argue that there was an issue with Few-Shot detection mechanism as the researchers,
in the beginning, had neglected the need of remembering the base categories. In other words, when
the model kept on updating itself to be able to recognize the novel categories, it had a tendency
to forget the base categories. However, Gidaris and Komodakis [16] developed an approach that
was able to counter this. In fact, their model beat the state-of-the-art mechanisms by a significant
margin.

Fu et al. [[14] created a novel approach that addressed few-shot learning from the perspective

of meta-learning. Their system had two components to it which helped them in attaining a good
performance and forming a baseline for further research into the field of meta-learning based few-
shot detection. The results were promising but it still remains a field with minimal exploration,
which is why many researchers are keen to explore this further. However, they did not make use
of a two-stage detector as we do here. We extend the work of Fu et al. to use a two-stage detector
and use meta-learning on both the stages of it.

Mishar et al. [17] developed a mechanism for zero-shot learning and generalized it to rec-
ognize actions on the basis of few-shot learning. Their results show performance equivalent to
that of state-of-the-art with action recognition performing on par with fully supervised learning

mechanisms.

2.1 Object Detection

With improvements in deep neural networks [2], the performance of object detection mechanisms
has been quite remarkable. They can be classified into two categories: one-stage and two-stage or
multi-stage detectors. However, all of them require very large datasets to be trained, which is bur-
densome for annotation and time-consuming. This proves that they cannot be directly applicable

to unseen domains.

2.2 Cross-domain Object Detection

Most of the recent works on domain adaptation with the help of CNNs mainly address the simple
task of classification. Only few of them consider object detection. For example, [18]] proposed a
framework weaken the domain shift problem of deformable part-based model. Domain adaptation
for R-CNN based on subspace alignment was proposed in [[19]]. A two-stage iterative domain trans-
fer and pseudo-labeling approach was proposed in [20] which helps to tackle cross-domain weakly
supervised object detection. The authors of [21] came up with three modules for unsupervised

domain adaptation of the object detector.

2.3 Few-Shot Learning

Few-shot learning was introduced to learn a new class of objects with very few examples [11].
Initially, most of the few-shot learning classifiers were able to outperform the state-of-the-art fully
supervised models for novel classes. However, they fell short when it came to classifying the
base classes. The later works explore the feasibility of devising a mechanism that would not only
perform well on new classes, but also maintain their performance levels for base classes. Lu et
al. [22] introduce a prototypical network for few-shot learning tasks with the introduction of a
domain alignment module. This module takes into account the domain shifts between existing
categories. Compared to the existing simple Prototypical Networks, the proposed system is able to
abate the distribution differences among the data of training and test classes, further optimizing the
embedding space of prototype features for each category and then boosting few-shot recognition.
A method that exploits information across label semantics and image domains is proposed by Chu
and Wang [23]. This ensures that regions of interest are carefully attended which will help in better
classification. The proposed module is able to focus on the most relevant regions in an image, while
the attended image samples allow data augmentation and alleviate possible overfitting during Few-
Shot Learning training. Rahman et al. [24]] propose a generalized few-shot learning approach
based on Class Adaptive Principal Directions. This approach allows multiple embedding of image

features into semantic space.

Matching Networks

Matching Networks [25]] were the first that were trained and tested on K-shot M-way tasks. The
idea of this is simple — training and testing on similar tasks improves the performance for the target
task in a start to finish style. Prior methodologies, for example, siamese networks [26]], utilize a
pairwise verification loss to perform metric learning and afterward in a different stage utilize the

metric space to perform nearest neighbors classification. This isn’t ideal as the initial function

is actually trained to optimize performance on a different task altogether. However, Matching
Networks form an end-to-end nearest neighbor classifier that is differentiable, by the combination

of both embedding and classification.

Prototypical Networks

Snell et al. [27] introduce prototypical networks. A compelling inductive bias is applied in the form
of class prototypes, aimed at achieving a very impressive Few-shot performance, outperforming
Matching Networks [25]. By assuming that there exists an embedding in which samples from
each and every class cluster around a single prototypical representation that is simply the mean
of the individual samples Prototypical Networks streamline n-shot classification in the case of
n > 1 to just taking the label of the closest class prototype. This removes the need for full context

embeddings used in Matching Networks [25].

Meta Learning

Meta-learning is the basis for the majority of few-shot learning mechanisms. The literature has
seen meta-learning being used for roughly four categories of tasks. The first category uses meta-
learning to accelerate the fine-tuning process by learning how to initialize the parameters [28,
29]. Another category is to use meta-learning to store training samples or to encode adaptation
algorithms [30,131]]. A third category uses meta-learning to generate new samples for novel classes
[32]] and the fourth category comprise of works that focus on learning the parameters for image
classification using meta-learning 33, 16].

Gidaris and Komodakis [16] suggest a dynamic few-shot mechanism that performs well on
the base classes as well as novel classes. This is achieved by extending the object detector, in
this case, a cosine-similarity based convolution neural network, with an attention based few-shot
classification weight generator. They also propose to redesign the classifier of a convolution neural

network model as the cosine similarity function between feature representations and classification

7

weight vectors. They use parametric classifier in both stages of their system. Their model learns
in episodes in stage 2, just like the work suggested by Lifchitz et al. [34]. Instead of remembering
the training data for base classes, it stores the weight parameters of the base classes.

Qi et al. [35] suggest a method where the weights of the final layers of a convolution network
are set directly by the novel class examples. They name this process as imprinting weights. Though
it uses a parametric classifier in both its stages just like Gidaris and Komodakis, the difference is
that it remembers the entire training data for the base class examples.

Ye et al. [[15] propose an approach called Meta-relations which is based on relation networks
and Model Agnostic Meta Learning training methods. This model is trained end-to-end. This
approach can quickly learn a novel class from limited samples, after the initial training with the
help of Model Agnostic Meta Learning. It can also classify new classes of images by calculating
the scores between query images and few examples of each new class.

The concepts of transfer learning and meta-learning are used in combination to come up with
an approach called Meta-Transfer Learning (MTL) in [[13]]. The authors achieve transfer learning
by learning how to scale and shift functions of the weights of deep neural networks for each task.
The authors also propose a new strategy called Hard Task Meta batch scheme as their learning

strategy. The proposed system yields good performance and fast convergence.

Metric Learning

Metric Learning is a task that learns the distance function over objects. It is a common approach
used in few-shot learning. Some work [36} 137,138, 39] has proposed improvements of standard en-
tropy and cross-entropy loss functions to address few-shot problem from the perspective of metric
learning. Siamese networks, which is a traditional method, is also considered along with different
models that acquire knowledge by comparing two objects. Quite a number of proposed methods
in the literature deploy a parametric classifier [16, 34, |35]] rather than metric learning in general.

Lifchitz et al. [34] propose a variant of a parametric classifier for few-shot detection in their stage

1 where, instead of the usual pooling or flattening, their approach deploys a dense classifier. This
dense classifier, instead of considering the most discriminative features in an image, takes every
tiny detail into account. In stage 2, they learn in episodes and have come up with a mechanism
called implants. This freezes the base parameters of the model when the model is encountering
novel classes. This avoids the performance drop of models when it comes to base models. Their
proposed method outperformed most of the state-of-the-art mechanisms by a huge margin. Kar-
linsky et. al. [40] develop a new approach called RepMet, which uses a Representative-based
Metric Learning for object detection. Their proposed method is able to learn network parameters,
the embedding space and the multi-modal distribution of training categories in the space, in one
training process.

An approach of imprinting weights is proposed in [35]. The authors propose a method of
setting weights of the final layer of convolution neural networks for the classification of novel
classes. The inspiration for this approach was drawn from the human capability of identifying new
categories from limited examples. After training a base classifier, the embedding vectors of new

low-shot examples are used to imprint weights for new classes in the extended classifier.

CHAPTER III: SYSTEM DESIGN

This section is divided into three sections. The first section highlights the problem setting for few-
shot detection. An overview of Faster r-CNN is discussed in the following section. We outline
and explain our proposed model in the third section which includes a deeper understanding of

meta-training and meta-testing.
3.1 Problem Setting

Assume there are two sets of images to be classified. The first set of images consists of classes
of images that have a large number of samples, denoted by L. The second set of images consists
of classes of images that have a small number of samples, denoted by S. L has a set of categories
denoted by L. and S has a set of categories denoted by S.. None of the categories are present in
both. Our goal is to train a model using the annotated images in L corresponding to L. and S,
which will be able to detect the images in S that are not labelled.

The aim of the proposed system is to come up with a generalized detection framework with
adaptability to detect different categories with limited annotated training samples. The standard
method of meta learning has been followed. Learning has been split into two stages: meta-training
followed by meta-testing, and optimization of model over various few-shot tasks which are sim-
ulated from the data for meta-training. To be specific, we sample few-shot tasks from the large
sample L during meta-training. A support set of images and a query set are present in each and
every few-shot task. For a given task T;, K images each of M ways (or classes) are chosen in
random from L. in order to make a support set T:.“’S. With Q images per class chosen at random
from L, we make the query set TiL’q.

The support set is used for optimization whereas predictions are made on the query set. Calcu-

lated loss on the query set is used to update the model. Few-shot tasks sampled from the smaller

10

set S are used for the meta-testing phase. The obtained results averaged across multiple few-shot

tasks is then used to evaluate the performance of the few-shot model.

3.2 Faster -CNN

The state-of-the-art detection model, Faster r-CNN, proposed by Ren et al. [10] has been used
as our base model. Faster r-CNN is made up of two components: the region proposal network
(RPN) and Fast r-CNN. The RPN is used for proposal generation whereas the Fast r-CNN is used
for region classification. RPN generates the proposals which are then classified into categories by
the region classifiers in Fast r-CNN. To be specific, a feature vector is extracted by the RPN from
each region. This is done by scanning the whole image with the use of sliding windows. A binary
classifier to classify the objects vs. background and a bounding box regressor to filter the easy
negatives follows the RPN. Rol Pooling Layers are used to extract a feature vector of fixed length
for each proposal. This feature vector is fed into a sequence of densely connected layers that have
two output branches. One of those branches represents the softmax probability over M + 1 classes,
that is, M classes and one background. The other output branch is responsible for encoding four
real-values that refine the bounding box position. The network can be optimized by minimizing

loss which is calculated using the loss function:

L(p,x,bx,y) = Lcls(pax) +l[x > 1]Lloc(bxay) (3.1)

where x denotes the class and y denotes bounding box label. p denotes the predicted probabil-
ity distribution over C classes. b* denotes bounding box prediction of a class x. The trade-off
parameter is denoted by A. L is used to denote softmax loss whereas L, denotes SmoothL1

loss.

11

Support Set

Dense
CNN

Rol

Pooling

Class Matching to choose

relevant query images

Dense CNN
— (shared)

Query set

Figure 3.1

Prototypes

Prototype clas matching and feature map generation

Meta-learner module

|

|

| —
jr *

|_JRol Pooling

System Overview: The Dense CNN for support and query set is the same. The Meta-learner
module is for the entire feature map generation and region proposal network. The idea is to learn
which regions should be considered for objects.

We combine Faster R-CNN, a two-stage detector with meta-learning to perform few-shot image
classification. The main idea behind using a two-stage detector is that the performance of these
models is better than the one-stage detectors. Faster R-CNN is about ten times faster than Fast

R-CNN. Faster R-CNN uses region proposal network (RPN) which reduces the computational

requirements.

We use meta-learning to not only learn the detection branch of the Faster R-CNN but also the

RPN branch in order to learn where to look in the images to extract features for classification.

3.3 Methodology

12

The learning will take place in two stages and the tasks are performed in episodes. The dataset is
divided into two parts, the meta-train set and the meta-test set. In every episode, there is training
and testing, which is on the meta-train set. The training during every episode updates the Faster
R-CNN. The images used in this phase are called Support Images, or images that belong to a base
class. The testing phase of every episode is used to update the meta-learning loss. The images in
this set are called Query Images, or images of a novel class. This episodic training and testing can
be considered as a meta-training phase. The model is then tested upon the meta-test set. See figure
[3.1]for an overview of the system.

The hyperparameters of the Faster R-CNN are updated after every episode or batch of images
with the help of meta-information that the meta-learner has learned due to back propagation of
meta-training loss. The meta-learner learns about RPN as well to choose regions for feature ex-
traction and image classification. The meta-information updates the region feature map generator,

which generates the prototypes or the categories of interest. It is further described in Section[3.3]
Meta-Training

For meta-training, several K shot-M class tasks are carried out from the dataset which is already
annotated. To fit in the memory size of the training environment, the meta-training stage is used to
train the model by implementing 1 shot-5 class tasks. In such tasks, only 5 query images are used,
that is 1 query image per classes. Therefore, one task has 10 images as 1 image per class each
in support set and query set. The implementation of meta-training is therefore not too difficult.
Figure [3.1| outlines the system overview.

For every task TiL, the region features of the support images Tl-L’S are generated by feeding them
into the Faster R-CNN. In the given image, for every category of the object of interest, based on
the respective region features, we generate a prototype P.

The generated prototypes are fed into a class matching network based on siamese networks.

These help in choosing strong images from the query set Tl.L’q on the basis of these generated

13

prototypes and fed into the same Faster R-CNN model. This results in obtaining an image feature

map.

Fo=f00¢(F) (3.2)

where © represents element-wise multiplication. ¢ is a fully connected layer that encodes P, and
f is a feature map.

A category-specific feature map is then generated for every category on the basis of the input
query image and the respective prototype.

For each and every category c, there is a new generated feature map F. that highlights the
objects of c. All the generated feature maps are then concatenated to form a single feature map F.
Feature map F is tasked with learning of general representation of M-classes and every sub-channel
has the information of the distinct classes of interest. A 1x1 convolution layer based on the feature
map F reduces the cost of computation. The Region Proposal Network is then used to produce
region proposals. Since there was some loss in information, we need to combine the generated
feature map F, which is an M-region classifier, with the original feature map using element-wise
summation, and then crop the region features on the basis of a new generated map. At the end,
an M+1 region classifier and the bounding box regressors are optimized using the information

obtained from the query set Tl-L’q:

L<TiL7q7 EL7S7 9) = LrpN + Leis + Lioc 3.3)

where 0 is the parameters of FSDCNN.
The generated loss at the end of this step needs to be minimized. The information from the
meta-learner is used to alter the hyperparameters of the model to maintain the supervised nature

of the model and to preserve the performance on base classes. The meta learner also updates the

14

Mela-learner
predictor head

Faster! Mask REN i cless, bbox
KH-LCHM: E I r .
[I
I
| sagmentad
| Mmgsk
|

/l con

Backbona | J

Fredictor-head Remodeling — Wibarring cliss
HTING Chiss
Network (PRN): —— atlaniive

VRCETS
-“'I
. = o .-""# :I 4 Chanmel-wise producl
- v - with Fol faalune
| —
ri H
Figure 3.2

The proposed architecture in [1]]. It uses a class-attentive vector and perform a channel-wse
product with the Rol features. Meta-learner is used after the Rol stage.

network used for class matching for selection of query images. Our approach is inspired by [1]]
with changes to how the images are chosen, how and where meta-learning is applied and a few
changes to the architecture of the system such as the use of a feature map generator in contrast
to a class-attentive vector. Yan et. al. [I]] have taken the class-attentive vectors and performed
a channel-wise product with the Rol features. We use the generated prototypes along with the
query image to generate a feature map before a 1x1 convolution after which the feature map passes
through the RPN. To counter the loss of information due to 1x1 convolution, the feature map of the
original query image is combined with the generated feature map using element-wise summation,
after which Rol pooling is applied. Furthermore, our meta-learner learns the entire process from
1x1 convolution of the generated feature map to classification of the image in contrast to the use

of meta-learner after the Rol stage in [[1].

15

Meta-Testing

For meta-testing, several few-shot detection tasks are chosen from the set S.. The images in the
support set Tl.S’S are annotated. Predictions are made on the query image set Tl-S’q for the evaluation
of the performance of the proposed system. As mentioned earlier, for each and every task Tl-S ,
we generate a prototype from the images available in the support set TiS’S. This is later used in
the generation of new category-specific feature maps of those images that are present in the query
set TiS’q. The model is fine-tuned in this stage with the use of labeled images in the support set.
This fine-tuning addresses the limitation one encounters when learning of non-parametric methods
when there are more labeled images that are provided. At the end, the output from the query set is

evaluated as a traditional detection problem.

Pesbe = FSDCNN(T 4 T 6) (3.4)

where p. represents the probability vector of classes and b, is a set of location of bounding boxes.

16

CHAPTER IV: EXPERIMENTS

We use PASCAL VOC dataset [41]] to train and test our model. PASCAL VOC is a collection of
datasets for object detection. The images in the dataset have been obtained from flickr. It provides
standardized image datasets for object class recognition. It has been widely used to benchmark
most of the existing works in the literature. The PASCAL VOC dataset has 20 classes. We setup
the experiment in such a manner that there are four different splits for the novel/base classes. Each
split has 15 base classes and 5 novel classes. As there are 20 classes in the dataset, we make four
different novel/base splits. Each of the classes appear in the novel split only once to avoid overlaps.

During meta-training, a total of one thousand distinct tasks are generated. Each class has 10
images in the query set in order to update the model weights for 10 epochs. We set the initial
learning rate to 0.001 and reduce it to 0.0001 after 600 tasks. The batch size is set to 5 during
query updates.

The parameters of FSDCNN are set up similar to the vanilla Faster R-CNN [10]. If there is a
proposal overlap of objects that is greater than 0.5, it is considered as positive. The ones below
0.3 are considered negative. The ones between 0.3 and 0.5 are not seen. We select the top 128
confident proposals for training and the top 300 proposals that have the largest confidence are
selected for evaluation. The proposed FSDCNN model is based on ResNet101 which is pretrained
on ImageNet.

Two versions of the model are trained and evaluated. One with the use of meta-learning that
implements the meta-learning at the last stage that updates the feature map generation between
tasks. The other model does not include the meta-learning optimization of the feature map gener-
ation. The main idea behind having two different models was to evaluate the performance of the
models, one with meta-training of the feature map generator and the use of few-shot paradigm on

the query set and the other model with just the few-shot paradigm. In the meta-training phase, the

17

base classes are used whereas in the meta-testing phase novel classes are used. We test the model
on 1-shot, 3-shot, 5-shot and 10-shot. We have performed ten runs on every split for each of the
K-shot settings.

A benchmark testbed was built on PASCAL VOC in order to evaluate the performance of
the few-shot object detection in meta-learning settings. For the chosen benchmark, the proposed
system is evaluated on numerous tasks that are set up with different K shot settings and splits. We
use mean Average Precision (mAP) to evaluate the performance of our proposed model. The mean
Average Precision (mAP) is defined as the mean of all average precision of the different novel

classes encountered by the model. mAP is given by:

Zqul AveP(q)
)

where Q is the number of queries in the set and AveP(q) is the average precision for a given

MAP = (4.5)

query q.

After the initial set of experiments, whose results are discussed in Section ??, we performed
some more analysis whose results are displayed in Section [5.1] To be surer of our results, we per-
form the experiments a thousand times with different permutation and combinations of Novel/Base
splits in contrast to the four distinct Novel/Base splits taken before. During each of these thousand
runs, we recorded the average precision values of each class when it was novel and base separately.
The mean of average precision of each class in the thousand runs in calculated to see the perfor-
mance of our model in each of the classes in comparison to other models. The performance on
base classes was recorded to check if there was any drop in performance level over them. This was

done to see if the model is able to remember the base classes.

18

CHAPTER V: RESULTS

We compare the performance of our model on novel classes against the performances of the model
Meta R-CNN [1]], Faster R-CNN [[10], Faster R-CNN-dual (it has been trained on both base and
novel classes), Meta-SSD [[14]] and YOLO-Few-Shot [42]. We are comparing against Meta R-CNN
[1] because it is a bit similar to ours as it is also based on Faster R-CNN. The performance against
Faster R-CNN [10] is compared as it is our base model. The performances of Meta-SSD [14]
and YOLO-Few-Shot [42] are compared as they are one-stage detectors that have addressed the
few-shot problem from a similar perspective as ours. The results are displayed in Figure[5.3]which
shows the mAP over novel classes for our comparison group. FSDCNN w/o denotes our model
without meta-learning whereas FSDCNN is our model with meta-learning. Meta-SSD performs
the best for 1-shot, but it improves very slowly as more examples of the novel classes are seen.
FSDCN and Meta R-CNN show the best performance of the comparison group across all test,
with Meta R-CNN having a slight edge in 1-shot and 3-shot, however, our model outperforms it in
5-shot and 10-shot.

Upon further analysis into the performance of each model over the four selected Novel/Base
split settings, it was seen that the performance of our model was more consistent. Table [5.1| shows
the tabulated results for each Novel/Base split setting for all the four K-shot settings. These are the
averages of 10 runs of the experiment.

Figure shows that the mAP increases with the increase in number of samples of novel
classes. As we know, a fully supervised learning system performs better with the increase in
number of training samples up to a certain point. This indicates that the proposed system doesn’t
compromise with the supervised nature of the base Faster R-CNN in order to perform better on

novel classes.

19

mAP
(=] (5]
[= []

[=]

=
(=]

1-shot S-dhot S5-shot 10-shot
K-shot setting

[=]

W Meta-550 B YOLO-Few-Shot Faster R-CNN
Faster R-CNMN-dual m Meta R-CNN FSDCMMN w/o (ours)

W FSDCMN [ours)

Figure 5.3
The plot shows mAP values obtained by the different models for novel classes for the different
K-shot settings

5.1 Discussion

After receiving the initial results, we performed one thousand runs over the PASCAL VOC dataset
with different permutations and combinations of Novel/Base splits. The results for the different
K-shot settings were recorded and plotted for each of the models. Instead of taking the mAP over
all the classes, we took mAP for each class when it was a novel class over the thousand runs.
Figures [5.5} [5.10]display the performances of the models on the 20 classes for 1-shot setting.
Meta-SSD performs consistently better in classifying bird, sofa, sheep, plant, tv, bike, train, table
and chair. However, our model is close to Meta-SSD’s performance for classes mbike, bike, train
and chair. It outperforms all the other models in classifying cars and persons. Our model’s perfor-
mance is close to that of Meta R-CNN for classes bird, cow, sofa, plant, tv, bike, aero, and horse.

It outperforms Meta R-CNN in sofa, horse, boat, cat, dog and train besides cars and persons. Table

20

100

ElY)

80

70

60

50

mAP (%)

40

30

20

10

1 2 3 4 5 10 15 20 25 30
K-shot setting

e FSDCNN (ours)

Figure 5.4
The mAP increases with the increase in number of samples available for a novel class. This
shows that the supervised nature of the base model isn’t compromised.

100

20

80

70

60

S
a 50
<
€
40
30
20
10
0 | .
bird bus cow mbike sofa
Novel Classes
W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual Meta-SSD ~ ®YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ mFSDCNN (ours)
Figure 5.5

The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs in 1-shot
setting.

21

100

90

80

70

60

50

MAP (%)

40
30
20
10

0 I]

aero bottle horse boat cat

Novel Classes

W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual Meta-SSD B YOLO-Few-Shot ~ mFSDCNN-w/o (ours) B FSDCNN (ours)

Figure 5.6
The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand runs in 1-shot
setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

sheep plant tv dog bike
Novel Classes

W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual Meta-SSD ®mYOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.7
The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs in 1-shot
setting.

22

20

80

70

60

50

MAP (%)

40

30

20

10

train person table car chair

Novel Classes

B Meta-R-CNN mFaster-R-CNN m Faster-R-CNN-dual Meta-SSD ®YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.8
The mAP achieved for novel classes train, person, table, car and chair over thousand runs in

1-shot setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

0 o— o=
bird bus cow mbike sofa aero bottle horse boat cat
Novel Classes

e=@==\eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.9
The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 1-shot setting.

23

90

80

70

60

50

MAP (%)

40

30

20

10

sheep plant tv dog bike train person table car chair

Novel Classes

«=@=eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.10
The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 1-shot setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa

Novel Classes

W Meta-R-CNN M Faster-R-CNN m Faster-R-CNN-dual Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) B FSDCNN (ours)

Figure 5.11
The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs in 3-shot
setting.

24

100

90

80

70

60

50

MAP (%)

40

30

20

10

aero bottle horse boat cat

Novel Classes

W Meta-R-CNN ® Faster-R-CNN m Faster-R-CNN-dual Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) ~ ®FSDCNN (ours)

Figure 5.12
The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand runs in 3-shot
setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

sheep plant tv dog bike

Novel Classes

m Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual Meta-SSD ®mYOLO-Few-Shot ~ m FSDCNN-w/o (ours) mFSDCNN (ours)

Figure 5.13
The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs in 3-shot
setting.

25

20

80

70

60

50

MAP (%)

40

30

20

10

train person table car chair

Novel Classes

W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual Meta-SSD M YOLO-Few-Shot ~ mFSDCNN-w/o (ours) B FSDCNN (ours)

Figure 5.14
The mAP achieved for novel classes train, person, table, car and chair over thousand runs in
3-shot setting.

100

90

80

70

60

50

mAP (%)

40

30 A
20

10

bird bus cow mbike sofa aero bottle horse boat cat

Novel Classes

=—@— Meta-R-CNN ==@=Faster-R-CNN ==@=Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.15
The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 3-shot setting.

26

100

90

80

70

60

50

mAP (%)

40
30
20

| ST

sheep plant tv dog bike train person table car chair

Novel Classes

«=@=leta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/o (ours) ==@==FSDCNN (ours)

Figure 5.16
The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 3-shot setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa

Novel Classes

W Meta-R-CNN ® Faster-R-CNN m Faster-R-CNN-dual Meta-SSD ®YOLO-Few-Shot ~ m FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.17
The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs in 5-shot
setting.

27

100

90

80

70

60

50

mAP (%)

40

30

20

10

aero bottle horse boat cat

Novel Classes

W Meta-R-CNN M Faster-R-CNN ® Faster-R-CNN-dual Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) W FSDCNN (ours)

Figure 5.18
The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand runs in 5-shot
setting.

90

80

70

60

50

mMAP (%)

40

30

20

10

sheep plant tv dog bike
Novel Classes

W Meta-R-CNN ® Faster-R-CNN ® Faster-R-CNN-dual Meta-SSD W YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.19
The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs in 5-shot
setting.

28

100

90

80

70

60

50

mAP (%)

40

30

20

10

train person table car chair

Novel Classes

W Meta-R-CNN MW Faster-R-CNN m Faster-R-CNN-dual Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) ~ ®FSDCNN (ours)

Figure 5.20
The mAP achieved for novel classes train, person, table, car and chair over thousand runs in
5-shot setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa aero bottle horse boat cat

Novel Classes

e=@=\leta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.21
The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 5-shot setting.

29

90

80

70

60

50

mAP (%)

40

30

- \

" _\//.\k
0

sheep plant tv dog bike train person table car chair

Novel Classes

«=@==eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.22
The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 5-shot setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa

Novel Classes

W Meta-R-CNN ® Faster-R-CNN m Faster-R-CNN-dual Meta-SSD ®YOLO-Few-Shot ~ m FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.23
The mAP achieved for novel classes bird, bus, cow, mbike and sofa over thousand runs in 10-shot
setting.

30

100

90

80

70

60

50

mAP (%)

40

30

20

10

aero bottle horse boat cat

Novel Classes

W Meta-R-CNN M Faster-R-CNN ® Faster-R-CNN-dual Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) W FSDCNN (ours)

Figure 5.24
The mAP achieved for novel classes aero, bottle, horse, boat and cat over thousand runs in
10-shot setting.

90

80

70

60

50

mAP

40

30

20

10

sheep plant tv dog bike
Novel Classes

W Meta-R-CNN ® Faster-R-CNN ® Faster-R-CNN-dual Meta-SSD W YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.25
The mAP achieved for novel classes sheep, plant, tv, dog and bike over thousand runs in 10-shot
setting.

31

100

90

80

70

60

50

mAP (%)

40

30

20

10

train person table car chair

Novel Classes

W Meta-R-CNN MW Faster-R-CNN m Faster-R-CNN-dual Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) ~ ®FSDCNN (ours)

Figure 5.26
The mAP achieved for novel classes train, person, table, car and chair over thousand runs in
10-shot setting.

100
90
80

70

“ < .S /

mAP (%)
g
\
\

30
20
10 N
0
bird bus cow mbike sofa aero bottle horse boat cat
Novel Classes
e=@=\leta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.27
The mAP achieved for novel classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 10-shot setting.

32

K-Shot | Method | Split 1 | Split 2 [Split 3 | Split4 || Mean |

1-shot | Meta R-CNN [l1] 19.9 14.3 15.1 11.1 15.1
1-shot | Faster R-CNN [10]] 14.2 12.4 13.7 14.1 13.6
1-shot | Faster R-CNN-dual 2.4 3.1 2.6 3.5 2.9
1-shot | Meta-SSD [14]] 23.1 234 21.6 20.7 22.2

I-shot | YOLO-Few-Shot [42] | 17.3 16.4 15.2 15.5 16.1
I-shot | FSDCNN w/o (ours) 12.4 11.8 10.9 10.5 11.4

1-shot | FSDCNN (ours) 14.6 15.1 14.4 15.1 14.8
3-shot | Meta R-CNN [1]] 34.6 27.4 30.3 28.9 30.3
3-shot | Faster R-CNN [10] 20.1 19.8 21.2 18.1 19.8
3-shot | Faster R-CNN-dual 7.2 6.4 6.9 6.3 6.7
3-shot | Meta-SSD [14] 23.6 22.7 24.2 23.1 23.4

3-shot | YOLO-Few-Shot [42] | 26.1 25.6 25.1 26.8 25.9
3-shot | FSDCNN w/o (ours) 28.1 27.9 26.8 27.6 27.6

3-shot | FSDCNN (ours) 31.2 30.5 28.7 28.4 29.7
5-shot | Meta R-CNN [1] 41.2 43.6 36.4 41.5 40.7
5-shot | Faster R-CNN [10] 26.1 24.9 28.2 24 .4 25.9
5-shot | Faster R-CNN-dual 7.9 8.3 7.6 8.6 8.1

5-shot | Meta-SSD [14] 25.1 28.3 26.1 18.9 24.6

5-shot | YOLO-Few-Shot [42] | 40.2 36.3 31.2 32.7 35.1
5-shot | FSDCNN w/o (ours) 35.2 33.9 38.4 31.3 34.7

5-shot | FSDCNN (ours) 43.6 39.7 40.2 41.3 41.2
10-shot | Meta R-CNN [[1]] 52.5 47.7 49.2 48.6 49.5
10-shot | Faster R-CNN [10] 31.9 27.3 29.6 32.8 30.4
10-shot | Faster R-CNN-dual 15.2 12.4 13.5 16.1 14.3
10-shot | Meta-SSD [14] 27.1 24.2 26.7 29.2 26.8

10-shot | YOLO-Few-Shot [42] | 44.3 42.1 39.9 48.1 43.6
10-shot | FSDCNN w/o (ours) 49.2 42.0 46.5 43.8 454
10-shot | FSDCNN (ours) 54.2 49.3 50.1 47.6 50.3

Table 5.1

Performance comparison of the different models in the experimented 4 Novel/Base split settings
for 1-shot, 3-shot, 5-shot and 10-shot. Our model performs really well in 10-shot. Furthermore,
the deviation of mAP for different settings is less.

[5.2]displays the mAP achieved by the models for all the classes over thousand runs. It is also seen
that the performance is not the same across all the classes.

Figures [5.11}[5.16|display the performances of the models on the 20 classes for 3-shot setting.

33

100

920

80

70

60

50

mAP (%)

40

30

20

10

sheep plant tv dog bike train person table car chair

Novel Classes

e=@=\leta-R-CNN ==@==Faster-R-CNN Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.28
The mAP achieved for novel classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 10-shot setting.

Meta R-CNN along with our model FSDCNN give the top two performance levels in 9 out of
the 20 classes (bus, cow, mbike, horse, boat plant, tv, person and table). Among the 9, FSDCNN
outperforms Meta R-CNN for two classes. Out of the remaining 11 classes, FSDCNN performs
the best in classifying bird and chair. Overall, in 3-shot setting, FSDCNN is a close second to Meta
R-CNN over the twenty classes.

Figures [5.17}[5.22]display the performances of the models on the 20 classes for 5-shot setting.
FSDCNN outperforms the other models in 10 out of the 20 classes. In the remaining ten, FSDCNN
has the second best performance in five. When the mean of all the mAP over all the classes was
taken, it was seen that FSDCNN outperforms all the other models , closely followed by Meta
R-CNN.

Figures [5.23} [5.28] display the performances of the models on the 20 classes for 10-shot set-
ting. FSDCNN outperforms the other models in 9 out of the 20 classes. In the remaining eleven,
FSDCNN has the second best performance in eight. When the mean of all the mAP over all the

classes was taken, it was seen that FSDCNN narrowly outperforms Meta R-CNN.

34

\K—shol \Method \bird bus cow mbike sofa aero bottle horse boat cat sheep plant tv dog bike train person table car chair\

I-shot | Meta R-CNN [1] 61 328 15 354 02 08 3.1 06 311 11 326 268 11.6 216
1-shot | Faster R-CNN [10] 43 129 08 215 09 24 04 276 128 53 27 297 361 224 71 19 164 27
I-shot | Faster R-CNN-dual | 97 0 15 05 18 16 03 36 02 219 11 02 01 87 41 26 05 01 05 02
1-shot | Meta-SSD [i4] 216 27 306 209 29.1 339 124 276 64 115 264 387 300 12 85 6.5
I-shot | YOLO-Few-Shot [42] 106 315 1338 18 9.1 44 12 1.8 381 341 59 14 176 4.1
I-shot | FSDCNN-w/o (ours) | 6.1 16 124 241 01 175 04 14 04 211 67 42 21 294 263 211 23 193 52
I-shot | FSDCNN (ours) 65 193 154 286 07 213 05 38 08 323 79 59 31 346 286 162 33 267 42
3-shot | Meta R-CNN [1] 446 508 107 252 0.1 532 388 214 244 486 216 183 438 196
3-shot | Faster R-CNN [I0] | 143 31.6 219 367 88 265 19 244 94 326 168 153 87 387 381 294 79 59 194 4.1
3-shot | Faster R-CNN-dual | 137 04 64 08 02 167 02 157 02 372 172 22 11 97 44 36 15 08 15 15
3-shot | Meta-SSD [I4] 246 28 311 318 292 59 379 126 398 84 165 274 389 321 124 91 239 78
3-shot | YOLO-Few-Shot [42] | 26.1 19.1 407 204 27.1 294 68 112 398 237 192 149 481 414 211 175 17.9
3-shot | FSDCNN-w/o (ours) | 31.6 364 44.6 381 9. 264 1.6 462 141 349 242 18.1 195 386 419 302 194 164 359

3-shot | FSDCNN (ours) 38.6 426 109 2.1 166 366 259 403 432 336 363 243
5-shot | Meta R-CNN [1] 3538 285 03 458 415 36.1 48.9 46.1 349 327 58.7 316

S-shot | Faster R-CNN [10] 26.1 394 367 481 167 295 34 467 142 421 317 214 11.6 414 42 326 86 65 219 55
5-shot | Faster R-CNN-dual 174 79 9.6 14 06 32 45 248 16 397 164 18 12 94 32 23 1.4 09 12 11

5-shot Meta-SSD [14] 245 27.1 31 314 226 30.1 38.1 125 38.6 296 8.5 162 28.1 385 326 12.7 8.6 243 78
5-shot | YOLO-Few-Shot [42] | 31.5 21.1 39.8 40 41.6 33.1 9.4 254 142 573 389 28.1 26 54.3 32 28.9
5-shot FSDCNN-w/o (ours) 457 493 474 162 2.8 52.1 163 443 386 297 28.1 47 494 39 26.1 253 396 255
5-shot FSDCNN (ours) 482 51.2 589 57.1 28.1 42.6 3 593 17.1 38.9 527 579 494 49.7 29
10-shot | Meta R-CNN [1] 559 527 546 3 70 179 72.6 43.7 694 57.6 67.9 39
10-shot | Faster R-CNN [10] 30.7 462 389 513 19.7 30.2 3.7 489 459 33 24.1 128 456 44 39.1 11.2 149 28.2 13.7
10-shot | Faster R-CNN-dual 146 203 192 243 1 17.6 216 23 43 12.6 4.4 3.8 126 13.7 12.1 10.3 10.5 173 15.1
10-shot | Meta-SSD [14] 279 31.6 35 327 254 316 8.7 412 162 439 37 123 181 326 409 349 16.2 9.7 281 11.6
10-shot | YOLO-Few-Shot [42] | 37 62.7 432 606 472 432 139 581 20.1 574 424 337 284 537 556 503 38.9 38.7 34.2
10-shot | FSDCNN-w/o (ours) | 49.7 534 52.1 39.7 48.6 3.9 626 175 654 452 386 432 589 61.8 524 382 369 51.1 342
10-shot | FSDCNN (ours) 59.8 69.7 51.3 574 4.1 17.8 48.6 49.1 62.7 44.6 42.1 543
Table 5.2

Performance comparison of the different models in classifying each of the 20 unseen classes over
a thousand runs for 1-shot, 3-shot, 5-shot and 10-shot. (Color guide: red is for the best
performance, green is for second best and blue is for third best.)

As the performances increased in varied rates for all the models with increase in number of
samples, we decided to plot and compare the performances achieved by all the models for different
K-shot settings, similar to how we had plotted for FSDCNN in Figure [5.4]

We can see in Figure [5.29)that though Meta-SSD has the best performance for 1-shot setting, it
doesn’t improve much with increase in number of samples. In contrast, Faster R-CNN-dual shows
the best improvement after 15 samples. It can also be seen that FSDCNN and Meta R-CNN have
somewhat similar trajectory. The same can be said for FSDCNN w/o and YOLO-Few-Shot. In
order to have a better comprehension of their performances, we plotted them as bars.

As seen in Figure FSDCNN consistently outperforms Meta R-CNN when the number
of samples are four or more. This could be due to the way meta-learning has been applied to our
model in contrast to Meta R-CNN. Though the difference in the performance levels is very narrow

for 4-shot, 5-shot, 10-shot, 15-shot, 20-shot and 25-shot, it has a greater difference in 30-shot.

35

100

90

80

70

60

mAP (%)
&
g

K-shot setting

= == Meta-R-CNN == - «Faster-R-CNN Faster-R-CNN-dual Meta-SSD

YOLO-Few-Shot sseees FSDCNN-w/0 (ours) seeess FSDCNN (ours)

Figure 5.29
Comparison of mAP achieved by the models over different k-shot settings.

100

90
80
70

60

40
30
2i
1 I I I
1 2 3 4 5 10 15 20 25 30

B Meta-R-CNN 15.49 21.03 31.05 35.41 40.04 50.1 57.54 61.27 66.43 70.29
MW FSDCNN (ours) 14.74 19.68 29.8 36.12 41.63 50.9 58.67 63.9 68.12 75.64

mAP (%)
«
8

1<}

o

o

K-shot setting

W Meta-R-CNN ~ ®FSDCNN (ours)

Figure 5.30
Comparison of mAP achieved by Meta R-CNN and FSDCNN over different k-shot settings.

36

100

90
80
70

60

50
40
3
2
1 2 3 4 5 10 15 20 25 30

m YOLO-Few-Shot 16.24 17.5 25.96 29.75 35.46 44.04 49.67 55.11 59.14 64.39
m FSDCNN-w/o (ours) 11.42 17.21 27.43 31.09 34.84 45.6 50.18 55.01 59.96 65.18

mAP (%)

3 S

5]

o

K-shot setting

W YOLO-Few-Shot ~ m FSDCNN-w/o (ours)

Figure 5.31
Comparison of mAP achieved by YOLO-Few-Shot and FSDCNN w/o over different k-shot
settings.

As seen in Figure [5.31] FSDCNN w/o is consistently close to YOLO-Few-Shot when the
number of samples are two or more. FSDCNN w/o doesn’t have a meta-learner in contrast to
FSDCNN. We plotted the performance levels of FSDCNN and FSDCNN w/o side by side in order
to further emphasize the significance of meta-learner. It can be seen in Figure [5.32] FSDCNN
consistently performs better than FSDCNN w/o in every K-shot setting. The architecture of both
the models is similar but for the use of meta-learner in FSDCNN. This shows that the application
of meta-learner in FSDCNN has helped in achieving a significant performance boost.

The performances of the models over the base classes were recorded and plotted to see if there
was a significant drop in performance levels. Table [5.3] shows the mAP values for each base class
obtained every model over a thousand runs in different K-shot settings. In Figures [5.33]through
[5.56, we can see that Faster R-CNN-dual consistently outperforms the other models. Faster R-
CNN-dual is the state-of-the-art supervised model Faster R-CNN which is trained on both novel

and base classes. Our model, FSDCNN, is second only to Faster R-CNN-dual over the thousand

37

100

90
80
70

60

50
40
30
20
Tl
0 1 2 3 4 5 10 15 20 25 30

B FSDCNN-w/o (ours) 11.42 17.21 27.43 31.09 34.84 45.6 50.18 55.01 59.96 65.18
W FSDCNN (ours) 14.74 19.68 29.8 36.12 41.63 50.9 58.67 63.9 68.12 75.64

mAP (%)

K-shot setting

B FSDCNN-w/o (ours) mFSDCNN (ours)

Figure 5.32
Comparison of mAP achieved by FSDCNN w/o and FSDCNN over different k-shot settings. This
shows that the meta-learner in FSDCNN helps in achieving better performance.

runs in classifying detecting the base classes. However, when we take the performance of novel
classes into comparison, the drop in performance level in base classes can be considered as a small
compromise. It is able to remember the base classes whereas the same cannot be said about Meta-
SSD. The performance levels of Meta-SSD on novel and base classes are very similar. It could
be due to either of two reasons. One is that Single Shot Detector, which is the base model for
Meta-SSD, isn’t quite good in object classification and detection. The other reason would be the
model’s inability to remember the base classes, which is more likely as the few-shot models have
been known to show a tendency to forget the base classes.

We had also recorded the mAP over the novel/base split detection tasks in each of the thousand
runs for every model. The recorded mAP values were then plotted in a violin plot to see how spread
or concentrated they were. Figure [5.57]displays the distribution of mAP values for 1-shot setting
over 1000 runs for every model. It can be seen from the figure that the mAP values achieved by

Meta R-CNN were spread between a range of 11-20 whereas the mAP values for FSDCNN were

38

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa

Base Classes

W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual ~ m Meta-SSD m YOLO-Few-Shot ~ m FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.33
The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs in 1-shot
setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

aero bottle horse boat cat

Base Classes

M Meta-R-CNN M Faster-R-CNN M Faster-R-CNN-dual ~ ® Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.34
The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs in 1-shot
setting.

39

100

90

80

70

60

50

mAP (%)

40

30

20

10

sheep plant tv dog bike
Base Classes

B Meta-R-CNN ®Faster-R-CNN m Faster-R-CNN-dual = Meta-SSD B YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ BFSDCNN (ours)

Figure 5.35
The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs in 1-shot
setting.

100

20

80

70

60

50

MAP (%)

40

30

20

10

train person table car chair

Base Classes

W Meta-R-CNN mFaster-R-CNN mFaster-R-CNN-dual W Meta-SSD W YOLO-Few-Shot ~ W FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.36
The mAP achieved for base classes train, person, table, car and chair over thousand runs in 1-shot
setting.

40

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa aero bottle horse boat cat

Base Classes

e=@==\eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.37
The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 1-shot setting.

100

S0

70

60

50

MAP (%)

40

30

20

10

sheep plant tv dog bike train person table car chair

Base Classes

«=@=eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.38
The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 1-shot setting.

41

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa

Base Classes

W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual ~ m Meta-SSD m YOLO-Few-Shot ~ m FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.39
The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs in 3-shot
setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

aero bottle horse boat cat

Base Classes

M Meta-R-CNN M Faster-R-CNN M Faster-R-CNN-dual ~ ® Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.40
The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs in 3-shot
setting.

42

100

90

80

70

60

50

mAP (%)

40

30

20

10

sheep plant tv dog bike
Base Classes

B Meta-R-CNN ®Faster-R-CNN m Faster-R-CNN-dual = Meta-SSD B YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ BFSDCNN (ours)

Figure 5.41
The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs in 3-shot
setting.

100

20

80

70

60

50

MAP (%)

40

30

20

10

train person table car chair

Base Classes

W Meta-R-CNN mFaster-R-CNN mFaster-R-CNN-dual W Meta-SSD W YOLO-Few-Shot ~ W FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.42
The mAP achieved for base classes train, person, table, car and chair over thousand runs in 3-shot
setting.

43

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa aero bottle horse boat cat

Base Classes

e=@==\eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.43
The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 3-shot setting.

100

S0

80

70

60

50

MAP (%)

40

30

20

10

sheep plant tv dog bike train person table car chair

Base Classes

«=@=eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.44
The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 3-shot setting.

44

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa

Base Classes

W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual ~ m Meta-SSD m YOLO-Few-Shot ~ m FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.45
The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs in 5-shot
setting.

100

90

80

70

60

50

mAP (%)

40

30

20

10

aero bottle horse boat cat

Base Classes

M Meta-R-CNN M Faster-R-CNN M Faster-R-CNN-dual ~ ® Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.46
The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs in 5-shot
setting.

45

100

90

80

70

60

50

mAP (%)

40

30

20

10

sheep plant tv dog bike
Base Classes

B Meta-R-CNN ®Faster-R-CNN m Faster-R-CNN-dual = Meta-SSD B YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ BFSDCNN (ours)

Figure 5.47
The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs in 5-shot
setting.

100

20

80

70

60

50

MAP (%)

40

30

20

10

train person table car chair

Base Classes

W Meta-R-CNN mFaster-R-CNN mFaster-R-CNN-dual W Meta-SSD W YOLO-Few-Shot ~ W FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.48
The mAP achieved for base classes train, person, table, car and chair over thousand runs in 5-shot
setting.

46

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa aero bottle horse boat cat

Base Classes

e=@==\eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.49
The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 5-shot setting.

100

S0

80

70

60

50

MAP (%)

40

30

20

10

sheep plant tv dog bike train person table car chair

Base Classes

«=@=eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.50
The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 5-shot setting.

47

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa

Base Classes

W Meta-R-CNN m Faster-R-CNN m Faster-R-CNN-dual ~ m Meta-SSD m YOLO-Few-Shot ~ m FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.51
The mAP achieved for base classes bird, bus, cow, mbike and sofa over thousand runs in 10-shot
setting.

100

90

80

70

60

50

mAP (%)

40
30
20

10 I

aero bottle horse boat cat

Base Classes

M Meta-R-CNN M Faster-R-CNN M Faster-R-CNN-dual ~ ® Meta-SSD M YOLO-Few-Shot ~ M FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.52
The mAP achieved for base classes aero, bottle, horse, boat and cat over thousand runs in 10-shot
setting.

48

100

90

80

70

60

50

mAP (%)

40

30

20

10

sheep plant tv dog bike
Base Classes

B Meta-R-CNN ®Faster-R-CNN m Faster-R-CNN-dual = Meta-SSD B YOLO-Few-Shot ~ mFSDCNN-w/o (ours) ~ BFSDCNN (ours)

Figure 5.53
The mAP achieved for base classes sheep, plant, tv, dog and bike over thousand runs in 10-shot
setting.

100

20

80

70

60

50

MAP (%)

40

30

20

10

train person table car chair

Base Classes

W Meta-R-CNN mFaster-R-CNN mFaster-R-CNN-dual W Meta-SSD W YOLO-Few-Shot ~ W FSDCNN-w/o (ours) ~ mFSDCNN (ours)

Figure 5.54
The mAP achieved for base classes train, person, table, car and chair over thousand runs in
10-shot setting.

49

100

90

80

70

60

50

mAP (%)

40

30

20

10

bird bus cow mbike sofa aero bottle horse boat cat

Base Classes

e=@==\eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@=YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.55
The mAP achieved for base classes bird, bus, cow, mbike, sofa, aero, bottle, horse, boat and cat
over thousand runs in 10-shot setting.

100

S0

80

70

60

50

MAP (%)

40

30

20

10

sheep plant tv dog bike train person table car chair

Base Classes

«=@=eta-R-CNN ==@==Faster-R-CNN ==@==Faster-R-CNN-dual Meta-SSD ==@==YOLO-Few-Shot ==@==FSDCNN-w/0 (ours) ==@==FSDCNN (ours)

Figure 5.56
The mAP achieved for base classes sheep, plant, tv, dog, bike, train, person, table, car and chair
over thousand runs in 10-shot setting.

50

\ K-shot \ Method \ bird bus cow mbike sofa aero bottle horse boat cat sheep plant tv dog bike train person table car chair \
I-shot | Meta R-CNN [1] 672 662 65.1 642 48.6 66.2 72.1 559 775 512 347 669 70.2 582 748 442
1-shot | Faster R-CNN [10] 59.1 71 614 496 653 485 53.9 329 67.1 71.1 60.8 735 756 57.6 729 42.1
1-shot | Faster R-CNN-dual 712 719 746 705 746 612 784 65.1 852 72 432 746 824 784 792 78.1 67.1 849 538
1-shot | Meta-SSD [14] 243 274 30.8 314 236 29.1 254 375 342 399 278 216 20 274 375 312 182 19 238 10.2
1-shot | YOLO-Few-Shot [42] | 62.4 67.2 70.1 594 421 751 573 716 57 643 715 743 679 424
1-shot | FSDCNN-w/o (ours) | 66.3 64 68.1 66.2 424 674 472 748 582 724 538 326 68.6 742 682 71 719 53.6 725 453
1-shot | FSDCNN (ours) 643 69.1 57.1 703 457 772 545 339 743 684 714 723 553 736
3-shot | Meta R-CNN [1] 674 70.1 679 50.6 67.6 50 749 598 814 347 678 70.5 577 757 449
3-shot | Faster R-CNN [10] 61.2 69.1 628 542 674 77.8 543 61 323 686 72 62 737 758 581 74 422
3-shot | Faster R-CNN-dual 734 726 75.4 71 759 613 79.1 659 86.1 728 437 747 833 80 808 788 684 855 54.1
3-shot | Meta-SSD [14] 246 28 31.1 31.8 239 292 253 379 341 398 279 218 20.1 274 389 321 186 19.1 239 105
3-shot | YOLO-Few-Shot [42] | 64.8 714 60.2 41.6 777 567 787 57.1 72 68.5 42.6
3-shot | FSDCNN-w/o (ours) | 67.2 64.1 683 663 54.1 68.1 473 752 583 726 54 328 687 749 693 71.1 719 542 736 46
3-shot | FSDCNN (ours) 68.1 64.6 69.2 577 712 469 776 552 334 702 752 69.9 728 741 564 742
S-shot | Meta R-CNN [1] 69.2 683 524 68.1 75.6 824 593 357 68 77 712 749 582 76.1 455
5-shot | Faster R-CNN [10] 614 69.6 722 629 545 675 49.1 781 54.6 325 689 724 621 745 766 583 756 43.1
5-shot | Faster R-CNN-dual 73.6 729 713 756 71.1 759 618 81 659 86.3 73 439 75.1 835 80.1 8l1.1 793 69.6 86.1 549
S-shot | Meta-SSD [14] 256 279 31.1 318 268 292 273 365 341 386 279 182 213 279 412 3211 223 199 239 164
5-shot | YOLO-Few-Shot [42] | 64.3 714 59.6 58.1 41.6 768 56.1 716 563 709 72,6 71 747 68.1 76.8 429
5-shot | FSDCNN-w/o (ours) | 67.8 643 682 67.2 553 683 48 755 584 731 542 3311 688 751 70 726 724 551 741 462
5-shot | FSDCNN (ours) 68.9 652 71.1 71.5 493 57 779 56.8 35.6 76.1 59.3
10-shot | Meta R-CNN [1] 71.2 736 68.6 539 68.1 542 814 598 829 657 372 80.1 739 758 80.1 48.8
10-shot | Faster R-CNN [10] 61.5 70.1 63.7 556 684 548 77.8 59.2 80.8 66.1 347 662 689 712 755 56 741 428
10-shot | Faster R-CNN-dual 748 73.6 72.1 767 723 781 64.1 80 659 87.1 746 448 741 841 80 827 T84 697 86 569
10-shot | Meta-SSD [14] 26.1 282 315 321 264 296 10.1 368 349 392 281 224 249 274 432 326 226 204 248 20.1
10-shot | YOLO-Few-Shot [42] | 63.2 67.1 71.6 579 583 653 395 788 547 81.1 59.2 69.2 72.8 735 762 686 625 757 353
10-shot | FSDCNN-w/o (ours) | 68.1 654 69.7 683 542 682 512 765 572 783 512 342 692 782 713 74.1 742 58.6 782 468
10-shot | FSDCNN (ours) 713 72 36.9 69.3 74.8 77 61.3

Table 5.3

Performance comparison of the different models in classifying each of the 20 base classes over a
thousand runs for 1-shot, 3-shot, 5-shot and 10-shot. (Color guide: red is for the best
performance, green is for second best and blue is for third best.)

closely concentrated near 15. It also shows that the mAP values are very close to the median value

in case of FSDCNN.

Similarly, Figures [5.58] [5.59]and [5.60|show the distribution of mAP values for 3-shot, 5-shot

and 10-shot settings respectively. It can be seen in the figures that mAP values for FSDCNN are

very close to the median in each of the settings. When compared to that of Meta R-CNN, the

mAP values of FSDCNN are more spread out from the median in 10-shot setting and less spread

out in 1-shot, 3-shot and 5-shot settings. This shows the consistency in performance achieved by

FSDCNN.

51

Meta-R-CNN

Faster-R-CNN

Faster-R-CNN-dual '
o ’
YOLO-Few-Shot .
FSDCHN-wio .
FSDCNN .

mAP 1-shot

Model

Figure 5.57
Violin plot showing the distribution of mAP values for 1-shot setting over 1000 runs.

52

Meta-R-CNN

Faster-R-CNN

Faster-R-CNN-dual

E Meta-SSD

E
YOLO-Few-Shot
FSDCHN-wio
FSDCNN

5 10 15 o 2 EY »
mAP 3-shot
Figure 5.58

Violin plot showing the distribution of mAP values for 3-shot setting over 1000 runs.

53

Meta-R-CNN

Faster-R-CNN

Faster-R-CNN-dual

Meta-SSD

Model

YOLO-Few-Shot

FSDCHN-wio

FSDCNN

mAP 5-shot

Figure 5.59
Violin plot showing the distribution of mAP values for 5-shot setting over 1000 runs.

54

Meta-R-CNN

Faster-R-CNN .
Faster-R-CHN-dual .
o .

YOLO-Few-Shot

Model

FSDCHN-wio

FSDCNN

mAP 10-shot

Figure 5.60
Violin plot showing the distribution of mAP values for 10-shot setting over 1000 runs.

55

CHAPTER VI: SUMMARY AND CONCLUSIONS

Object detectors, since their first implementation, have come a very long way. There have been
wide and deep explorations into them but progress on designing detectors that learn from a low-
training regime has been slow. In this thesis, we addressed the problem of few-shot detection
with the help of meta-learning. We reviewed the existing solutions to the few-shot problem. In
our review, we came across solutions such as Meta-SSD [14] and Meta R-CNN [1]], who have
addressed the problem of few-shot learning from the perspective of meta-learning.

We proposed FSDCNN that combines R-CNN and class matching networks. We update the
feature map generator using meta-learning along with the few-shot system for the region classifier
stage. The meta-learner also learned the region proposal network. We also preserved the super-
vised nature of the model without compromising the performance of the model on novel classes.

In the preliminary experiments, our model was able to beat the performance of the state-of-
the art models for 3 out of 4 splits for 10-shot and 2 out of 4 for 5-shot, and has the best mAP
across all splits. For 3-shot our performance is very similar to that of Meta R-CNN. Our 1-shot
is comparable to all models except Meta-SSD which has good performance on 1-shot, but does
not see much increase with more samples of the novel classes. We recorded the performance of
our model with different K-shot settings where K=1,2,3,4,5,10,15,20,25,30. We observed that the
mAP of our model increased when the number of samples were increased. To compare our model’s
performance against the other models on each class, we plotted and tabulated the performance for
each class. Our model outperformed the state-of-the-art models for 10 classes in 5-shot setting and
9 classes in 10-shot setting. For 3-shot our model was consistently in the top two performers along
with Meta R-CNN.

The performances of the models on base classes were also plotted and tabulated. Our model

was second to Faster R-CNN-dual in detecting and classifying base classes in 1-shot, 5-shot and

56

10-shot setting. In 3-shot setting, our model was fourth after Faster R-CNN-dual, Meta R-CNN
and YOLO-Few-Shot. Meta R-CNN and YOLO-Few-Shot had similar mAP scores and FSDCNN
was close behind. Faster R-CNN-dual is a variant of the state-of-the-art model Faster R-CNN
trained on both base and novel classes. This shows a slight dip in performance levels on base
classes by FSDCNN. However, given the strong performance on novel classes, the slight drop in
performance level on base classes can be considered a small compromise.

We had also recorded the performances over a thousand runs and plotted a violin chart to
visualize the distribution. The distribution of the mAP scores of our model, in comparison to Meta
R-CNN, which is the state-of-the-art few-shot detection mechanism, was closer to the median for
1-shot, 3-shot and 5-shot. It shows the consistency in our performance levels. However, for 10-shot
setting, our distribution was a bit far-spread that Meta R-CNN.

Our preliminary results are quite promising, but there is room for improvement. For instance,
we are actively looking at techniques to increase our performance for novel classes after just a
single example. We are also looking to improve our model over base classes and increase the
consistency of mAP scores for 10-shot setting. It does take time to train and test all of these
models and we have ongoing experiments that we would like to complete as well. We would also
like to improve our model to avoid even the slight drop in performance level on base classes.

Additionally, we would like to use explainable Al techniques to visualize and understand our
models better. Neural networks are basically a black box. Using explainable Al techniques, we
would like to understand the inner workings of our model. For example, we would like to see
if the network is using similar features to predict novel classes as the base classes. During our
experiments, we had seen that all the models had a very poor average precision for bottles when
bottle was a novel class compared to the high levels when it was a base class. Sofas, boats and
plants had similar stories. The performance was poor as a novel class. As every novel class will be a
base class in another split, a comparison can be drawn. This will give us insight into understanding

what changes can be made to improve our model’s performance on such classes.

57

Another thing we would like to visualize is the features selected for novel classes for different
K-shot settings. We observed that the performance of our model increases with the increase in
number of samples. The visualization of features over the multiple k-shot settings will probably
help us making alterations to our model so that it chooses better features even when the number of
samples is low.

We would also like to compare the features selected by our model for classification in one-
shot setting against that of Meta-SSD. We observed that even though our model had comparable
performances to other models in 1-shot, Meta-SSD outperformed our model. Visualizing the fea-
tures will help us understand where our model is being outperformed and help us close down the
gap to Meta-SSD. These insights may help us to extend the model to improve performance. We
would like to visualize the features selected for base classes by our model and Faster-R-CNN-dual.
Even though the drop in performance level is small, we would like to see if we can prevent that to

preserve the model’s performance over base classes.

58

NOTES

59

REFERENCES

[1] X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin, “Meta r-cnn: Towards general solver
for instance-level low-shot learning,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), October 2019.

[2] A. Krizhevsky, 1. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional
neural networks,” Neural Information Processing Systems, vol. 25, 01 2012.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, jun 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, jun 2016.

[5] Y. Qu, R. K. Baghbaderani, and H. Qi, “Few-shot hyperspectral image classification through
multitask transfer learning,” in 2019 10th Workshop on Hyperspectral Imaging and Signal
Processing: Evolution in Remote Sensing (WHISPERS), IEEE, sep 2019.

[6] B. Liu, X. Yu, A. Yu, P. Zhang, G. Wan, and R. Wang, “Deep few-shot learning for hyperspec-
tral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57,
pp- 2290-2304, apr 2019.

[7] S.-Y. Chou, K.-H. Cheng, J.-S. R. Jang, and Y.-H. Yang, “Learning to match transient sound
events using attentional similarity for few-shot sound recognition,” in ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, may 2019.

[8] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new do-
mains,” in Proceedings of the 11th European Conference on Computer Vision: Part IV,
ECCV’10, (Berlin, Heidelberg), p. 213-226, Springer-Verlag, 2010.

[9] K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Strong-weak distribution alignment for adap-
tive object detection,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, jun 2019.

60

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-CNN: Towards real-time object detection
with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 39, pp. 1137-1149, jun 2017.

[11] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 594-611, apr 2006.

[12] M. Fink, “Object classification from a single example utilizing class relevance metrics,” Ad-
vances in neural information processing systems, vol. 17, pp. 449-456, 2005.

[13] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for few-shot learning,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,
jun 2019.

[14] K. Fu, T. Zhang, Y. Zhang, M. Yan, Z. Chang, Z. Zhang, and X. Sun, “Meta-SSD: Towards
fast adaptation for few-shot object detection with meta-learning,” IEEE Access, vol. 7,
pp. 77597-77606, 2019.

[15] A. Ye, R. Wang, X. Luo, and R. Lan, “Meta-relation networks for few shot learning,” in
2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI),
IEEE, jun 2019.

[16] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning without forgetting,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, jun 2018.

[17] A.Mishra, V. K. Verma, M. S. K. Reddy, A. S., P. Rai, and A. Mittal, “A generative approach
to zero-shot and few-shot action recognition,” in 2018 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), IEEE, mar 2018.

[18] J. Xu, S. Ramos, D. Vazquez, and A. M. Lopez, “Domain adaptation of deformable part-
based models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
pp- 2367-2380, dec 2014.

[19] A. Raj, V. P. Namboodiri, and T. Tuytelaars, “Subspace alignment based domain adaptation
for rcnn detector,” 2015.

[20] N. Inoue, R. Furuta, T. Yamasaki, and K. Aizawa, “Cross-domain weakly-supervised object
detection through progressive domain adaptation,” in 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, IEEE, jun 2018.

61

[21] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. V. Gool, “Domain adaptive faster -CNN for object
detection in the wild,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, jun 2018.

[22] J. Lu, Z. Cao, K. Wu, G. Zhang, and C. Zhang, “Boosting few-shot image recognition via
domain alignment prototypical networks,” in 2018 IEEE 30th International Conference on
Tools with Artificial Intelligence (ICTAI), IEEE, nov 2018.

[23] W.-H. Chu and Y.-C. F. Wang, “Learning semantics-guided visual attention for few-shot image
classification,” in 2018 25th IEEE International Conference on Image Processing (ICIP),
IEEE, oct 2018.

[24] S. Rahman, S. Khan, and F. Porikli, “A unified approach for conventional zero-shot, general-
ized zero-shot, and few-shot learning,” IEEE Transactions on Image Processing, vol. 27,
pp- 5652-5667, nov 2018.

[25] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching networks
for one shot learning,” in Proceedings of the 30th International Conference on Neural In-
formation Processing Systems, NIPS’16, (Red Hook, NY, USA), p. 3637-3645, Curran
Associates Inc., 2016.

[26] G. R. Koch, “Siamese neural networks for one-shot image recognition,” 2015.

[27] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in Pro-
ceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, (Red Hook, NY, USA), p. 4080—-4090, Curran Associates Inc., 2017.

[28] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep
networks,” in Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’ 17, p. 1126-1135, JMLR.org, 2017.

[29] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural attentive meta-learner,”
in International Conference on Learning Representations, 2018.

[30] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, OpenReview.net, 2017.

[31] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with
memory-augmented neural networks,” in Proceedings of the 33rd International Conference

62

on International Conference on Machine Learning - Volume 48, ICML’16, p. 1842-1850,
JMLR.org, 2016.

[32] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot learning from imaginary
data,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
jun 2018.

[33] S. Qiao, C. Liu, W. Shen, and A. Yuille, “Few-shot image recognition by predicting param-
eters from activations,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, jun 2018.

[34] Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc, “Dense classification and implanting for few-
shot learning,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, jun 2019.

[35] H. Qi, M. Brown, and D. G. Lowe, “Low-shot learning with imprinted weights,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, jun 2018.

[36] Y. Zheng, D. K. Pal, and M. Savvides, “Ring loss: Convex feature normalization for face
recognition,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
IEEE, jun 2018.

[37] W. Wan, Y. Zhong, T. Li, and J. Chen, “Rethinking feature distribution for loss functions
in image classification,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1IEEE, jun 2018.

[38] B. Hariharan and R. Girshick, “Low-shot visual recognition by shrinking and hallucinating
features,” in 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, oct
2017.

[39] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convolutional neural net-
works,” in Proceedings of the 33rd International Conference on International Conference
on Machine Learning - Volume 48, ICML’ 16, p. 507-516, JMLR.org, 2016.

[40] L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris, R. Giryes, and A. M. Bron-
stein, “RepMet: Representative-based metric learning for classification and few-shot object
detection,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, jun 2019.

63

[41] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal vi-
sual object classes (VOC) challenge,” International Journal of Computer Vision, vol. 88,
pp- 303338, sep 2009.

[42] B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell, “Few-shot object detection via fea-
ture reweighting,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

64

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I: INTRODUCTION
	Problem Statement
	Contributions
	Outline

	CHAPTER II: REVIEW OF THE LITERATURE
	Object Detection
	Cross-domain Object Detection
	Few-Shot Learning
	Matching Networks
	Prototypical Networks
	Meta Learning
	Metric Learning

	CHAPTER III: SYSTEM DESIGN
	Problem Setting
	Faster r-CNN
	Methodology
	Meta-Training
	Meta-Testing

	CHAPTER IV: EXPERIMENTS
	CHAPTER V: RESULTS
	Discussion

	CHAPTER VI: SUMMARY AND CONCLUSIONS
	NOTES
	REFERENCES

