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ABSTRACT

In this thesis, two phase models in a magnetostatics context using the Maxwell-Maxwell (MM)

model and the Maxwell-London (ML) model are investigated. The vector equations are trans-

formed in terms of scalar potentials leading to mixed boundary value problems for Laplace-Laplace

and Laplace Helmholtz equations in the respective cases. Exact analytic solutions for the exterior

and interior potentials Φe(r,θ ,φ) and Φi(r,θ ,φ), where r,θ ,φ are the spherical coordinates, are

obtained as infinite series and in closed forms for the MM model. The general solutions are found

as a theorem. Several illustrative examples for specific externally imposed magnetic fields includ-

ing a magnetic monopole and dipole are discussed based on our analytic solutions. It is shown that

the magnetic permeability parameter k = µe

µe+µ i , where µe and µ i are magnetic permeabilities in

the exterior and interior phases, has a significant impact on the magnetic induction fields and the

forces acting on the sphere. A new relation for the multipole coefficients of the external phase is

derived as well. Exact solutions for the ML model involving a superconducting sphere are derived

in terms of the magnetic flux density functions Ψe(r,θ) and Ψi(r,θ) in the respective phases. The

general solutions are established as a theorem for this model as well. The non-dimensional pene-

tration depth parameter λ is found to dictate the induction fields in ML model. Our results are of

interest in various topics in mathematical physics where two phase models are used1.

1Parts of this work were presented in the following conferences.
1. American Physical Society - Division of Fluid Dynamics (APS-DFD), Nov. 20-22, Portland, Oregon
2. Texas Differential Equations Conference, April 09, 2017, Texas State University, San Marcos
3. Coastal Bend Mathematics and Statistics Symposium (CBMSS), March 26, 2016, Texas A&M University, Corpus
Christi
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CHAPTER I: INTRODUCTION

Problems involving two phase media occur in a variety of situations in science and technology. A

dielectric sphere embedded in a different dielectric background [10, 21], a magnetic sphere in an

external magnetic field [7, 12, 13], and a polymeric fiber suspended in an aqueous solution [8] are

a few examples of two phase models. Better understanding of such models requires theoretical

studies involving the calculation of electric, magnetic and velocity fields for the two phases. These

calculations can be successfully done via finding suitable scalar functions commonly known as

potential functions or potentials. Thus, the determination of potentials in a two phase media is a

classic and important problem and has been of interest to mathematicians, physicists, and engi-

neers. For instance, measurements of electrical conductivity [27] and the dielectric constant [18]

in electrostatics, or the estimation of magnetic permeability in magnetostatics [18] are based on

the knowledge of potentials in the two phases. Similar studies modeling the flow through porous

media [8] and thermal conduction and diffusion processes [15] further highlight the significance of

two-phase problems. Recent studies in the calculation of Clausius-Mossotti factors [9] and finding

the ion structure near a core-shell dielectric nanoparticle [16] indicate a strong interest in the sub-

ject. Generally, two-phase models lead to mathematical problems involving second order partial

differential equations with mixed type boundary conditions.

The two phase problems have roots in basic electrostatics [18, 10] and have been investigated

based on various circumstances. They also occur in numerous other fields including magnetostat-

ics, thermodynamics and fluid dynamics. The thermal conductivity, dielectric constant, magnetic

permeability, and diffusion properties of two-phase objects can often be formulated in ways pre-

cisely analogous to those used in the treatment of the problems in electrostatics. There is therefore

an overlap in the literature for all these phenomena, in which theory and experimental results from

one can be readily applied to another. The analogy between hydrodynamics and superconductivity,

for example, is explained and exploited by Palaniappan [22] and Trombley and Palaniappan [26].
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The significance of the computation of potential functions leading to the calculation of forces and

moments is clearly demonstrated in these studies. Our main focus of this thesis is to determine

the potentials in a two-phase medium in the context of magnetostatics, although the results can be

translated to other fields by analogy.

The mathematical treatment of two phase models can be challenging and may require sophis-

ticated mathematical tools. As mentioned in the preceding paragraph, in this thesis we investigate

boundary-value problems in two-phase media that are of interest in the context of magnetostatics.

A typical model of a two-phase problem is illustrated in Figure 1.1. An isolated magnetic sphere

of radius a and permeability µ i is placed in an external magnetic field generated in a medium of

permeability µe . The fields are assumed to be independent of time in the two phases. We consider

the following two types of problems in the magnetostatic environment, namely,

• A magnetized sphere in an external arbitrary magnetic field which is the Maxwell-Maxwell

(MM) model

• A superconducting sphere suspended in an external axisymmetric magnetic field which is

the Maxwell-London (ML) model

The first problem requires the solution of the Laplace equations (harmonic potentials), and the

second model demands the solution of the Laplace equation (harmonic potential) for the exterior

phase and the solution of the Helmholtz equation (Helmholtz potential) for the interior phase. The

governing partial differential equations in vector forms are based on Maxwell’s and London’s for-

mulations [18, 14] that are typically used in magnetostatics. We transform the vector boundary

value problems into a scalar problem of finding a potential function by the use of a suitable trans-

formation. The scalar functions which are called potentials are key to study the respective two-

phase problems. The magnetic induction exterior to the spherical boundary satisfies Maxwell’s

equation in both problems. But in the interior domain we assume Maxwell’s equation (Laplace’s

equation) for the MM model: magnetized sphere problem while London’s equation (Helmholtz’s

2



equation) for the superconducting sphere problem. For some special external fields exact solu-

tions are available for the two models. For example, the analytic solution for a magnetized sphere

placed in a uniform magnetic field is given in standard text books [18, 10]. Matute [17] analyzed

the Maxwell-London model in the case of a superconducting sphere in a constant magnetic field.

Here we attempt to explore general solutions for Maxwell-Maxwell and Maxwell-London models

for a sphere placed in an arbitrary magnetic field. We derive closed form results for potentials in

the two phases satisfying the relevant boundary conditions and use them to determine the forces

acting on the sphere in some situations.

Spherical objects are the simplest of all the quadric surfaces in three dimensions possessing

various symmetries. It is known that the Laplace equation is separable in the spherical coordinate

system, which makes several problems tractable. The use of spherical harmonics [3, 31, 5, 4, 6] for

understanding electromagnetic systems has a long and fruitful history. The spherical coordinate

system allows one to characterize a system in terms of a multiple or spherical harmonic expansion.

This approach is well understood, and has dominated the literature for years. Moreover, for purely

spherical geometries, this is the most appropriate method. Furthermore, the standard boundary

conditions such as Dirichlet, Neumann and mixed type can be handled in a convenient way with

the spherical coordinate system. For these reasons we have chosen the boundary of one phase to

be a sphere and then provide a fairly detailed analysis.

Maxwell’s and London’s equations are in vector form for the magnetic fields that are relatively

hard to solve. For the MM model, the magnetic field is both solenoidal (divergence-free) and irrota-

tional (curl-free) and therefore a potential function formulation is directly possible as demonstrated

in the literature (for instance, see [18, 10]). But in the ML model, the magnetic field is solenoidal

but not irrotational. As shown in the fluid dynamics context [8], if the field is axi-symmetric with

respect to the z-axis then it is possible to represent the magnetic field as the curl of a potential

function. This potential function is known as the Stokes stream function in fluid dynamics. Sur-

prisingly, it does not seem to be widely recognized in magnetostatic and electromagnetic problems

3



that can be characterized by similar scalar functions. Various studies of axisymmetric problems in

magnetostatics have used other relatively complex methods [34, 28, 23] to derive results even in

simple cases. Here we show that the equations for magnetic problems involving superconducting

spheres using the ML model can be formulated and solved in terms of a magnetic flux function

analogous to the stream-function. The flux function shows magnetic lines of force in the field just

as the stream function portrays the streamlines in the fluid dynamical case.

The thesis is organized as follows. In chapter II, we provide a short description of the two phase

models and their mathematical formulations. The vector equations for the magnetic fields for the

Maxwell-Maxwell model are given in section 2.1. The potential functions setting along with the

mixed boundary conditions on the spherical boundary for MM model are discussed. Some special

cases of internal and external conditions of our MM model are also listed. The vector equations

for the Maxwell-London model are given in section 2.2. The boundary value problem for the ML

model for a superconducting sphere in an external field is stated in terms of the magnetic flux

density function. The solution of the Laplace equation in spherical coordinates is described in

section 2.3. The solution of the axisymmetric Helmholtz equation in spherical coordinates is given

in section 2.4.

Chapter III contains a number of analytic results for the MM model. The calculation of the

scalar potentials in the exterior and interior phases for the this model is explained in section 3.1.

The general solutions in the two phases are given in infinite series form first. Then the sum of

the series is found and the general results are expressed in closed forms containing integrals. Our

general results are stated and proved in the form of a theorem for the MM model. Exact solutions

for constant and linear magnetic inductions in the presence of a magnetized sphere are discussed

in sections 3.2 and 3.3. The potential plots for these fields and their variations are shown in these

sections. Analytic solutions for the magnetic pole and the corresponding image system are derived

in section 3.4. The calculation of the force acting on a sphere due to a magnetic pole is given in

4



Figure 1.1
Typical magnetic field lines in a two phase medium

section 3.5 together with graphical illustrations. The corresponding results for a magnetic dipole

oriented along radial and transverse directions are given in the section 3.6. An interesting new re-

lation for the multipole coefficients in the exterior phase of the MM model is derived in the section

3.7.

Analytic solutions for the Maxwell-London model are derived in infinite series forms in Chapter

IV. The solutions in the exterior and interior flux density functions contain Bessel functions of frac-

tional order. A theorem for the general solutions for an arbitrary axisymmetric external magnetic

field in the presence of a superconductor is stated and proved. The exact solutions for constant and

linear magnetic induction field in the presence of a superconducting sphere are described in the

sections 4.1 and 4.2. The field plots for a superconducting sphere in a constant and linear fields are

also included in those sections. Finally, our main findings are summarized in Chapter V.

Some Definitions:

Inverse point: Let P(x,y,z) be a point outside the sphere of radius a and let r be the distance

between the center of the sphere at (0,0,0) and P. Then r′ = a2

r is defined to be the distance from

5



Figure 1.2
The spherical polar coordinate system

the center to the image point inside the sphere such that rr′ = a2 and is known as the inverse point.

Image system: Let Φ0(x,y,z) be a given potential function for the solution of the Laplace equation

in the absence of boundaries. Due to the linearity of Laplace equation, if a boundary is introduced,

then the potential of the modified solution satisfying the given boundary conditions can be written

as

Φ = Φ0 +Φ1

Here Φ1 is said to be the image system.

Spherical polar coordinate system: We use the spherical coordinates as shown in Figure 2.3. Ac-

cording to this notation the conversion from cartesian coordinates (x,y,z) to the spherical coordi-

nates (r,θ ,φ) is

x = r sinθ cosφ , y = r sinθ sinφ , z = r cosθ

6



Legendre polynomials: The associated Legendre polynomials are given by [7, 10]

Pm
l (x) = (−1)m(1− x2)

m
2

dm

dxm [Pl(x)]

Pl(x) =
m

2ll!
dl

dxl [(x
2−1)l]

P0
0 (x) = 1

P0
1 (x) = x

P1
1 (x) =−1(1− x2)

1
2

P0
2 (x) =

1
2
(3x2−1)

P1
2 (x) =−3x(1− x2)

1
2

P2
2 (x) = 3(1− x2)

Modified spherical Bessel function of the first kind: The modified spherical Bessel functions of the

first kind with argument z are defined as [1, 7]

fn(z)≡ fn(z) =
√

π

2z
In+ 1

2
(z)

where In(z) is the modified Bessel function of the first kind [1]. Some special values are

f0(z) =
sinh(z)

z

f1(z) =
zcosh(z)− sinh(z)

z2

f2(z) =
(z2 +3)sinh(z)−3zcosh(z)

z2

and so on.

Axisymmetric field: An axisymmetric field is the one in which the field is independent of the

azimuthal angle φ in spherical coordinate (r,θ ,φ). In this case the components of the field Br and

Bθ do not depend on the φ coordinate and Bφ = 0. In our investigation we take z-axis to be the

axis of symmetry.

7



CHAPTER II: Mathematical setting

Various approaches for studying magnetic, electrical, thermal and elastic properties of two-phase

media have been introduced since Maxwell’s seminal work on spherical particle suspensions more

than a century ago [18]. In particular, the twin-phase models in basic electro- and magneto-statics

are essentially based on Maxwell’s vector differential equations for the electric and magnetic fields,

respectively. In the Maxwell-Maxwell two-phase model, the magnetic fields in the exterior and in-

terior phases are assumed to be continuous across the boundary in question. Although the MM

model has been used to find solutions of various external fields, a systematic approach is lacking.

If the magnetic fields are allowed to cross the boundary surfaces, then the London theory [14]

is found to be better than Maxwell equations in the interior phase. The boundary surface in the

latter case is the so called superconducting surface and the corresponding mathematical problem

for ML model has been discussed only for a special case, namely a constant field (see for instance,

[17, 20, 24]). In this thesis, we will deal with both MM and ML models with a view to provide

a unique approach leading to analytical solutions for arbitrary magnetic fields imposed externally.

We remark that the MM model contains a variety of special cases including the perfectly supercon-

ducting geometry discussed recently by Trombley and Palaniappan [26]. Below we document the

mathematical formulation for the MM and ML two-phase models involving spherical boundaries.

2.1 Magnetized sphere in an external magnetic field: the MM model

Let us consider a magnetic/magnetized sphere of permeability µ i placed in a magnetic field acting

in a medium of permeability µe (see Figure 2.2). The magnetic induction inside the sphere of ra-

dius a is denoted by Bi while the induction outside is represented by Be, respectively. The vector

field equations in the two phases, in simplified forms, are given by [18]

8



outside : ∇
2Be = 0, ∇ · Be = 0 (2.1)

inside : ∇
2Bi = 0, ∇ ·Bi = 0 (2.2)

where the Laplace operator in cartesian coordinates is ∇2 ≡ ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂x2 in three dimensions.

By making the change from cartesian (x,y,z) to spherical coordinates (r,θ ,φ) and converting all

the derivatives one can obtain the Laplace operator in spherical coordinates. The first part of these

equations follows from the Maxwell theory while the second equations are the incompressibility

condition (solenoidal property) of the magnetic induction fields. The determination of the exterior

and interior fields Be and Bi subject to boundary conditions requires solving the vector harmonic

equations given in part 1 of (2.1)− (2.2). The resulting analysis is complicated and so one seeks

a scalar formulation of the problem. We note that the magnetic induction is also irrotational [18],

that is,

∇×Be = ∇×Bi = 0

This implies that there exists scalar functions Φe and Φi called the potential functions such that

Be =−∇Φ
e (2.3)

Bi =−∇Φ
i (2.4)

in the two phases, respectively. The negative sign in front of the gradient operator is due to the

physical reason that the potential drops from a higher level to a lower level. Now the application

of incompressibility condition of the magnetic induction (part 2 of (2.1) and (2.2)) to (2.3) and

(2.4) yields

∇
2
Φ

e = 0 (2.5)

∇
2
Φ

i = 0 (2.6)

9



in the two phases. Therefore, the vector equations (2.1) and (2.2) for the MM model reduce to solv-

ing the scalar Laplace equations (2.5) and (2.6) for the potential functions subject to the boundary

conditions. For a magnetized sphere embedded in another medium the appropriate boundary con-

ditions are according to [10]

Φ
e = Φ

i on r = a (2.7)

µ
e ∂Φe

∂ r
= µ

i ∂Φi

∂ r
on r = a (2.8)

Note that (2.7) is a Dirichlet type condition and (2.8) represents a Neumann type condition on

the surface of the spherical boundary [19]. Thus, the two phase mathematical Maxwell-Maxwell

model (MM model) for a magnetized sphere placed in an external magnetic field reduces to solving

the mixed boundary-value problem (BVP) for the Laplace equations given by (2.5) - (2.8). The

solutions of the mathematical boundary value problem will yield the corresponding potentials for

the two phases. The magnetic induction in the respective phases are then determined using (2.3)

and (2.4), after a straightforward differentiation. We return to the calculations of the potentials

Φe and Φi via analytic solutions of the BVP along with a discussion of a number of examples in

chapter 3 . We will use the following non-dimensional permeability parameter defined by

k =
µe

µe +µ i (2.9)

in our analysis.

Although our discussion of the two-phase problem stated in this subsection is in the context of

magnetostatics we remark that it can be readily translated to other related topics in mathematical

physics including

• A sphere of magnetic permeability µ in a vacuum [7]:

µe = 1, µ i = µ , k = 1
µ+1

• Dielectric sphere in another dielectric medium [21]:

µe = ε1, µ i = ε2

10



• Hydrodynamic and perfectly superconducting case [29, 26]: k = 1

• Heat conduction problem for a sphere [32, 33]: µe = k1,µ
i = k2, where k1 and k2 are the

thermal conductivities in the respective phases

• Darcy flow past a porous sphere [8]

• µ i < 0 represents unphysical situation

2.2 Superconducting sphere in an external magnetic field: the ML model

As our second model, we consider a superconducting sphere of radius a placed in an external

magnetic field. This problem corresponds to Maxwell-London model (ML model). The governing

vector equations in this case are the Maxwell-London equations [14] given by

outside : ∇
2Be = 0, ∇ · Be = 0 (2.10)

inside : ∇
2Bi =

1
λ 2 Bi

∇ ·Bi = 0 (2.11)

where λ is the phenomenological London parameter measuring the penetration depth of the mag-

netic field in the superconductor. It should be pointed out that in the limit λ → ∞ the London

equations reduce to the Maxwell equations. According to the London theory [14], the exterior

magnetic field is allowed to enter inside and vice-versa. Note that the magnetic inductions satisfy

the vector Laplace and Helmholtz equations in the exterior and interior phases, respectively. In

contrast to the MM model, the magnetic induction in the interior phase is not irrotational and so

a relation as in (2.4) is not possible for the London equations. However, the incompressibility

conditions in the two phases imply that we can define

Be = ∇×
(

Ψ
eêφ

)
(2.12)

Bi = ∇×
(

Ψ
i êφ

)
(2.13)
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where Ψe(r,θ) and Ψi(r,θ) are known as the axisymmetric magnetic flux density functions and êφ

is the unit vector in φ direction. In hydrodynamical context the function Ψ is known as the Stokes

stream function [8]. In the axisymmetric case the fields in the planes parallel to the z-axis (the axis

of symmetry) are the same (see [8] for instance). Therefore, the Ψe and Ψi are independent of the

angle φ . By the use of these scalar functions defined in (2.12) and (2.13) in (2.10) and (2.11) we

obtain the following partial differential equations in the two phases.

D2
Ψ

e = 0 (2.14)

D2
Ψ

i− 1
λ 2 Ψ

i = 0 (2.15)

where the axisymmetric Laplace operator D2 in spherical coordinates is given by [8]

D2 ≡ ∂ 2

∂ r2 −
cotθ

r2
∂

∂θ
+

1
r2

∂ 2

∂θ 2 .

Here again, the Maxwell-London model vector equations (2.10) and (2.11) reduce to solving the

scalar axisymmetric Laplace and Helmholtz equations for the exterior and interior potentials. Now

for a superconducting sphere suspended in a given external magnetic field, the appropriate bound-

ary conditions are the continuity of the induction components across the surface r = a of the

sphere [17]. This in turn leads to the boundary conditions in terms of the axisymmetric scalar

potentials

Ψ
e = Ψ

i on r = a (2.16)

∂Ψe

∂ r
=

∂Ψi

∂ r
on r = a (2.17)

As in the MM model, the above two conditions represent Dirichlet and Neumann type conditions

at the surface of a superconductor for the ML model. Therefore, the two-phase problem, for

a superconducting sphere embedded in an external magnetic field reduces to solving the mixed

boundary value problem for the axisymmetric Laplace and Helmholtz equations, given in (2.14) -

(2.17).

The solution of the mathematical boundary value problem will yield the corresponding potential

functions for the two phases. The magnetic induction in the exterior and interior phases are then

12
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Representation of MM and ML models

determined from (2.12) and (2.13). We will return to the calculation of exact solutions for the

potentials Ψe and Ψi and investigate various examples in chapter IV.

In the following sections we provide general solutions for the Laplace equation (2.5) or (2.6)

and the axisymmetric Helmholtz equation (2.15) in spherical coordinates, The derivation of these

solutions can be found elsewhere [8, 7], but here we record the final solutions along with the key

steps only.

2.3 Solution of the Laplace equation in spherical coordinates

The Laplace equation for a function Φ written in spherical coordinates is

∂ 2Φ

∂ r2 +
2
r

∂Φ

∂ r
+

1
r2

∂ 2Φ

∂θ 2 +
cotθ

r2
∂Φ

∂θ
+

csc2 θ

r2
∂ 2Φ

∂φ 2 = 0 (2.18)

Using the separation of variables method for solving partial differential equations [19], we assume

Φ(r,θ ,φ) = F(r)G(θ)H(φ) (2.19)

Substituting (2.19) into (2.18) yields

F ′′GH +
2
r

F ′GH +
1
r2 FG′′H +

1
r2 cotθFG′H +

1
r2 csc2

θFGH ′′ = 0 (2.20)

13



Thus we have
F ′′

F
+

2
r

F ′

F
=− 1

r2
G′′

G
− 1

r2 cotθ
G′

G
=− 1

r2 csc2
θ

H ′′

H
= η

2 (2.21)

where η2 is a separation constant. The separation technique leads to the following equations for F,

G and H:

r2F ′′+2rF ′−η
2F = 0 (2.22)

sin2
θG′′+ cosθ sinθG′+η

2G = 0 (2.23)

H ′′+η
2H = 0 (2.24)

The last equation gives, according to the basic solutions of the form [19]

H(φ) = Anm cosmφ +Bnm sinmφ (2.25)

It can be shown that [19]

η
2 = n(n+1) = m2 (2.26)

and so suitable solutions of (2.22) and (2.23) are of the form

F(r) = rn or F(r) = r−(n+1) (2.27)

G(θ) = Pm
n (cosθ) (2.28)

where Pm
n (cosθ) is a Legendre polynomial of the second kind [7, 19]. Combining (2.25) - (2.28)

we get

Φ(r,θ ,φ) =
∞

∑
n=0

[Anrn +Bnr−(n+1)]Pm
n (cosθ)[Anm cosmφ +Bnm sinmφ ] (2.29)

We remark that the constants Anm and Bnm may also be absorbed in An and Bn.

2.4 Solution of the axisymmetric Helmholtz equation

The Helmholtz equation for a function Ψ with axial symmetry is

(D2− 1
λ 2 )Ψ = 0 (2.30)
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Using the spherical polar coordinates form of the operator D2, the above equation becomes

∂ 2Ψ

∂ r2 −
cotθ

r2
∂Ψ

∂θ
+

1
r2

∂ 2Ψ

∂θ 2 −
1

λ 2 Ψ = 0 (2.31)

where Ψ = Ψ(r,θ). By the use of separation of variables method for solving partial differential

equations [19] we take the solution of the form

Ψ(r,θ) = R(r)Θ(θ) (2.32)

where R(r) is a function of r and Θ(θ) is a function of θ only. Substituting (2.32) into (2.31) and

after multiplying by r2

R(r)Θ(θ) we get

r2R′′

R
− 1

λ 2 r2 =−Θ′′

Θ
+ cotθ

Θ′

Θ
= η

2 (2.33)

here η2 is a separation constant. As shown in [19] the separation constant is given by η2 = n(n+1).

Thus the equation for R and Θ become

r2R′′−
[

r2

λ 2 +n(n+1)
]

R = 0 (2.34)

Θ
′′− cotθΘ

′+n(n+1)Θ = 0 (2.35)

We first solve (2.35) by the substitution method. Taking ζ = cosθ in (2.35) one obtains

d
dζ

(1−ζ
2)

dΘ(ζ )

dζ
+n(n+1)Θ(ζ ) = 0 (2.36)

The preceding equation is the well-known associated Legendre differential equation [7, 19]. The

solution of this equation is the associated Legendre function P1
n (ζ ) of order n and index m = 1.

Thus the solution of (2.35) can be written as

Θ(ζ ) = P1
n (ζ ) that is Θ(cosθ) = P1

n (cosθ) (2.37)

Next, we note that (2.34) is the modified Bessel equation (after making a suitable change of vari-

able). Its solution is written as [19]

R(r) = r
[
CnIn+ 1

2
(λ r)+DnKn+ 1

2
(λ r)

]
(2.38)
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where In+ 1
2

and Kn+ 1
2

are modified Bessel functions of fractional order. Combining (2.37) and

(2.38) we obtain

Ψ(r,θ) = r
∞

∑
n=0

[
CnIn+ 1

2
(λ r)+DnKn+ 1

2
(λ r)

]
P1

n (cosθ) (2.39)

Equation (2.39) is the general solution of the axisymmetric Helmholtz equation [8]. In a similar

way the solution of the axisymmetric Laplace equation can be derived, see for instance the expo-

sition in [8]. In the ML model problem (see Chapter IV) we only need to use In+ 1
2

since it is finite

at the origin and not Kn+ 1
2

which is finite at infinity [1].
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CHAPTER III: Analytic Solutions for the Maxwell-Maxwell model (MM model)

3.1 Potentials for the Maxwell-Maxwell model

In this chapter we calculate the effect of placing a magnetic sphere of permeability µ i into a mag-

netic field acting in a medium of permeability µe. This problem is the so called Maxwell-Maxwell

model and the corresponding mathematical boundary value problem is stated in section 2.1. As

discussed there, the underlying mathematical problem reduces to solving the Laplace equation in

the exterior and interior region subject to the mixed boundary condition at the spherical boundary

r = a. (see (2.5)− (2.8) in 2.1). Below we derive exact analytic solutions for the potential func-

tions Φe and Φi in spherical coordinates that yield magnetic induction fields in the two regions.

The corresponding gradients will describe the resulting magnetic fields in the presence of a mag-

netized sphere.

There are numerous methods for solving mixed boundary value problem for the Laplace equation.

The standard method of using spherical harmonics has been used for spherical boundaries. This

technique involves an infinite series expansion in terms of harmonic functions and determine the

coefficients based on the boundary conditions. The method of images [29], the Mellin transform

method [30] and numerical techniques are some of the other approaches utilized in the literature.

These techniques require a lot of guess work and approximation. Therefore, we use the spherical

harmonic function method along with the convergence results for infinite series to determine Φe

and Φi. We show below various steps in the construction of the solution to our problem in the two

phases using spherical harmonic expansion method.

Let Φ0(r,θ ,φ) be a given potential in the absence of any boundaries where (r,θ ,φ) are spherical

coordinates. Since Φ0(r,θ ,φ) must satisfy the Laplace equation, it is a harmonic function. As ex-

plained in [10], a harmonic function in spherical coordinates can be expanded in an infinite series

form as

Φ0(r,θ ,φ) =
∞

∑
n=0

AnrnSn(θ ,φ) (3.40)
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where An is a constant coefficient and

Sn(θ ,φ) =
n

∑
m=0

Pm
n (cosθ)[cosmφ + sinmφ ] (3.41)

The term rnSn(θ ,φ) is called a spherical harmonic function of degree n. Below we find the exact

solutions of the BVP (2.5) - (2.8) for the MM model.

Theorem: Let Φ0(r,θ ,φ) be an arbitrary potential field in the absence of any boundary. If a

magnetized sphere of radius r = a centered at the origin (0,0,0) is introduced in the field of Φ0

then the modified potentials for the MM model for the exterior and interior phases satisfying the

mixed BVP (2.5) - (2.8) are given by

Φ
e(r,θ ,φ) = Φ0(r,θ ,φ)+

∞

∑
n=0

[
− (1−2k)+

k(1−2k)
n+ k

]
a2n+1

rn+1 AnSn(θ ,φ) (3.42)

Φ
i(r,θ ,φ) =

∞

∑
n=0

[
2k+

k(1−2k)
n+ k

]
rnAnSn(θ ,φ) (3.43)

in series form. The closed form solutions are given by

Φ
e(r,θ ,φ) = Φ0(r,θ ,φ)− (1−2k)

a
r

Φ0(
a2

r
,θ ,φ)

+ k(1−2k)rk−1a−2k+1
∫ a2

r

0
Rk−1

Φ0(R,θ ,φ) dR. (3.44)

Φ
i(r,θ ,φ) = 2kΦ0(r,θ ,φ)+

k(1−2k)
rk

∫ r

0
Rk−1

Φ0(R,θ ,φ) dR. (3.45)

Proof: Let Φ0(r,θ ,φ) be a given potential in the absence of any boundary. Since Φ0 is a harmonic

function, it can expressed in a series as given in (3.40) - (3.41). When the magnetized sphere r = a

is introduced into the field of Φ0 then the exterior potential can be taken as (see solutions of the

Laplace equation in section 2.3)

Φ
e(r,θ ,φ) =

∞

∑
n=0

[
Anrn +

Bn

rn+1

]
Sn(θ ,φ) (3.46)

In the interior phase the potential function satisfies the Laplace equation and so a suitable choice

for Φi is

Φ
i(r,θ ,φ) =

∞

∑
n=0

CnrnSn(θ ,φ) (3.47)
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The constant coefficients Bn and Cn in (3.46)-(3.47) will be determined using the boundary condi-

tions (2.7)-(2.8) for the Maxwell-Maxwell model given in section 2.1. Using (2.7) and (2.8) for

Φe and Φi, one obtains

Bn =

[
nµe−nµ i

(n+1)µe +nµ i

]
a2n+1An (3.48)

and

Cn =

[
(2n+1)µe

(n+1)µe +nµ i

]
An. (3.49)

Now the term in the square bracket in (3.48) can be written as

nµe−nµ i

(n+1)µe +nµ i =
n(µe−µ i)

n(µe +µ i)+µe . (3.50)

Define
µe

µe +µ i = k. (3.51)

Then
µe−µ i

µe +µ i = 2k−1. (3.52)

Now the right side of of (3.50) becomes

n(µe−µ i)

n(µe +µ i)+µe =
n(2k−1)

n+ k
(3.53)

= (2k−1)− k(2k−1)
n+ k

(3.54)

So Bn in (3.48) takes the form

Bn =

[
− (1−2k)+

k(1−2k)
n+ k

]
a2n+1An. (3.55)

As above the term inside the square bracket in (3.49) is written as

(2n+1)µe

(n+1)µe +nµ i =
(2n+1)µe

n(µe +µ i)+µe . (3.56)

Using the definition of k given in (3.51) and (3.52), (3.56) can be put in the form

(2n+1)µe

(n+1)µe +nµ i =
k(2n−1)

n+ k
(3.57)

= 2k+
k(1−2k)

n+ k
. (3.58)
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The final form for Cn then becomes

Cn =

[
2k+

k(1−2k)
n+ k

]
An. (3.59)

Substitution of the coefficients Bn and Cn into (3.46) and (3.47) then yields the infinite series

solutions given in (3.42) and (3.43) for the MM model. It is possible to derive closed form solutions

by summing up all the terms in the infinite series which will then lead to the closed form solutions

given in (3.44) and (3.45). The proof is as follows. The second term on the right side of (3.42) can

be represented (using (3.40)) as

−
∞

∑
n=0

(1−2k)
a2n+1

rn+1 AnSn(θ ,φ) =−(1−2k)
a
r

Φ0(
a2

r
,θ ,φ) (3.60)

In order to express the last term in (3.42), we observe that

Rk−1
Φ0(R,θ ,φ) = Rk−1

∞

∑
n=0

AnRnSn(θ ,φ) (3.61)

Integrating the above expression from 0 to a2

r , we get∫ a2/r

0
Rk−1

Φ0(R,θ ,φ)dR =
∞

∑
n=0

[
1

n+ k
Rn+kAnSn(θ ,φ)]|

a2
r

0 (3.62)

Substituting the limits, one gets∫ a2/r

0
Rk−1

Φ0(R,θ ,φ)dR =
∞

∑
n=0

[
1

n+ k
(
a2

r
)n+kAnSn(θ ,φ)] (3.63)

The above equation can be re-written as∫ a2/r

0
Rk−1

Φ0(R,θ ,φ)dR =
a2k

rk

∞

∑
n=0

[
1

n+ k
a2n

rn AnSn(θ ,φ)] (3.64)

which can be recast into the form

rk

a2k

∫ a2/r

0
Rk−1

Φ0(R,θ ,φ)dR =
∞

∑
n=0

[
1

n+ k
a2n

rn AnSn(θ ,φ)] (3.65)

Substitution of (3.60) and (3.65) into (3.42) yields the closed form solution for Φe given in (3.44).

Thus the infinite series solution for Φe is represented in a closed form using the summation of the

series. Note that the exact solution for Φe(r,θ ,φ) contains a definite integral that depends on the
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value of the permeability parameter k. The mixed boundary condition applied on the surface of

the spherical boundary is the cause for such a dependence. In a similar fashion the potential in the

interior phase can be written in a closed form. Re-writing (3.43) in the form

Φ
i(r,θ ,φ) =

∞

∑
n=0

2krnAnSn(θ ,φ)+
∞

∑
n=0

k(1−2k)
n+ k

rnAnSn(θ ,φ) (3.66)

= 2k
∞

∑
n=0

rnAnSn(θ ,φ)+ k(1−2k)
∞

∑
n=0

1
n+ k

rnAnSn(θ ,φ) (3.67)

Using the approach given for the exterior phase potential (see above), the expression (3.67) can

be written in closed form leading to the closed form solution given in (3.45). This completes the

proof of the the Theorem 4.1 for the MM model.

Therefore, the Maxwell-Maxwell model admits exact solutions for the exterior and interior

phases involving a magnetized sphere. As mentioned in section 2.1, the exact solutions given in

(3.44) and (3.45) contain several special cases. In the following subsection we record the results

for the special case k = 1.

3.1.1 Ideal superconducting sphere in an external field (k = 1)

Since k = µe

µe+µ i , µ i = 0 gives k = 1. For this choice of k, the physical problem represents that of

an ideal superconducting sphere placed in a given external magnetic field Φ0 [22, 26]. In this case,

Φi is irrelevant and Φe becomes

Φ
e(r,θ ,φ) = Φ0(r,θ ,φ)+

a
r

Φ0(
a2

r
,θ ,φ)− 1

a

∫ a2
r

0
Φ0(R,θ ,φ) dR (3.68)

For k = 1, the expression (3.68) is the same an given in [26]. Interestingly, the physical problem

is the same as that of a flow of an incompressible inviscid fluid around a fixed sphere [22]. Math-

ematically, the problem reduces to a Neumann boundary value problem for the Laplace equation

involving a spherical boundary. The other special cases can be explored in a similar fashion.

Expressions for some magnetic induction fields in the absence of a sphere are given in Table

3.1. In the following sections we use (3.44)-(3.45) to discuss several illustrative examples in order

to justify our unique approach for the MM model. In particular, we derive analytic solutions for
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Fields Φ0(r,θ ,φ) B0x B0y B0z
Constant Hr cosθ 0 0 H

Linear field H11
3 r2S2(θ ,φ)

4
3H11x −2

3 H11y −2
3 H11z

Magnetic pole m
R1

−mx
R1

−my
R1

−m(z−c)
R1

Magnetic Dipole M1r sinθ cosφ

R3
1

M1(
1

R3
1
− 3x2

R5
1
) −3M1xy

R5
1

−3M1x(2−c)
R5

1
(along x - direction)

Table 3.1
Expressions for Φ0, and its components B0x , B0y , and B0z in cartesian coordinates generated by
some magnetostatic fields. Here H, H11, m, M1 are constants and R2

1 = x2 + y2 +(z− c)2, and
S2(θ ,φ) =−1

2(3cos2 θ −1)+ 3
2 sin2

θ cos2φ .

various externally imposed potentials in the presence of a permeable sphere. We also make an

attempt to interpret the image systems from our analytic solution.

3.2 Constant Magnetic Induction

Let us consider a constant magnetic field of strength H applied in the z-direction. The magnetic

induction vector B for this field is B0 = H êz , where êz is the unit vector in z-direction. The

corresponding expression for the magnetostatic potential function in the absence of any boundaries

is given by

Φ0(r,θ ,φ) = Hr cosθ (3.69)

If the magnetized sphere of radius r = a is introduced into this constant magnetic induction

field, the modified potentials in the exterior and interior phases using (3.44)-(3.45) become

Φ
e(r,θ ,φ) = H cosθ

[
r− (1−2k)

a
r

a2

r
+ k(1−2k)

rk−1

a2k−1

∫ a2
r

0
RkdR

]
= H cosθ

[
r− a3

r2 + k(1−2k)
rk−1

a2k−1
a2k+2

(k+1)rk+1

]
= H

[
r cosθ −

(
1−2k
k+1

)
a3

r2 cosθ

]
(3.70)

22



(a)
−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(b)
−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(c)
−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(d)
−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(e)
−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(f)
−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.4
Potential plots for a sphere of radius 1 in a constant magnetic field using the MM model for
various of k: (a) k = 0; (b) k = 0.25; (c) k = 0.5; (d) k = 0.75; (e) k = 1; (f) k = 1.5 (unphysical).
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Similarly

Φ
i(r,θ ,φ) = H

[
3kr cosθ

k+1

]
(3.71)

The image system in the exterior phase for constant magnetic induction consists of a dipole of

strength −(1−2k)
k+1 a3 located at the center of the sphere. Note that the strength of the image dipole

depends or the parameter k and the radius a of the sphere. For k < 1
2 , the sign of the dipole is

negative, and for k > 1
2 the sign is positive. For k = 1

2 , the image dipole vanishes. In this case the

magnetic permeabilities of the exterior and interior phases coincide.

The potential plots for a magnetized sphere placed in a constant external magnetic field are

shown in Figure 3.4 for various value of the permeability parameter k. The contours are drawn

in a plane parallel to the xy-plane. When k = 0, the situation refers to that of a Dirichlet problem

for a sphere in electrostatics [10, 7]. The field lines coming from positive infinity go around

the sphere and reach negative infinity (see Figure. 3.4(a)). For k > 0, the field lines in both

phases exist as seen from Figure 3.4(b)− ( f ). Two patterns are seen for different ranges of k. For

k < 0.5, the potential field in the external phase goes around the sphere as in the case of k = 0,

(Figure 3.4(b)− (c)). However, when k > 0.5, the field lines in the exterior region bend towards

the magnetized sphere and then move away after hitting the spherical surface as shown in Figure

3.4(d)− ( f ). The interior field lines get denser for k ≥ 0.5. We remark that when k > 1, the

problem may represent an unphysical situation since µ i is negative in this case.

3.3 Linear Magnetic Induction

Next we consider a linear magnetic induction field in three-dimensional space. The magnetic field

vector B0 =< B0x,B0y,B0z > for this field has cartesian components given by

B0x =
4
3

H11x, B0y =
−2
3

H11y, B0z =
−2
3

H11z (3.72)

Using B0 =−∇Φ0, the magnetic scalar potential is

Φ0(x,y,z) =
H11

3
(2x2− y2− z2) (3.73)
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In spherical polar coordinates Φ0 becomes

Φ0(r,θ ,φ) =
H11

3
r2
[

2sin2
θ cos2

φ − sin2
θ sin2

φ − cos2
θ

]
which can be written as

Φ0(r,θ ,φ) =
H11

3
r2
[
− 1

2
(3cos2

θ −1)+
3
2

sin2
θ cos2φ

]
We introduce the magnetized sphere into this field given in (3.73). The modified potentials are

found using (3.44) and (3.45) as

Φ
e(r,θ ,φ) =

H11

3

[
1− 2(1−2k)

k+2
a5

r5

]
r2S2(θ ,φ) (3.74)

Φ
i(r,θ ,φ) =

H11

3

[
5k

k+2

]
r2S2(θ ,φ) (3.75)

where

S2(θ ,φ) =−P2(cosθ)+
1
2

P2
2 (cosθ)cos2φ . (3.76)

Here the Legendre polynomials are given by

P2(cosθ) =
1
2
(3cos2

θ −1) (3.77)

P2
2 (cosθ) = 3sin2

θ (3.78)

In the present case the image system in the exterior phase consists of a magnetic quadrupole of

strength −2(1−2k)
k+2 a3 located at the center of the sphere. The direction of the quadrupole changes

from k > 1
2 to k < 1

2 and vanishes when k = 1
2 .

The level curves for the potential functions in the exterior and interior phases are plotted in

Figure 3.5, for various k. Generally, the field lines are symmetrical in the xy-plane. When k = 0,

that is, µ i→ ∞, the field lines represent those in the context of electrostatics as shown in Figure

3.5(a). As k increases from zero, the field lines start appearing in both phases as can be seen in

Figure 3.5(b)-(f). The field contours are also symmetrical in the interior phase when k > 0.5. The
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Figure 3.5
Potential plots for a sphere of radius 1 in a linear magnetic field using Maxwell-Maxwell model
for various values of k: (a) k = 0; (b) k = 0.25; (c) k = 0.5; (d) k = 0.75; (e) k = 1; (f) k = 1.5
(unphysical).
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potential field lines inside the sphere get increasingly closer. It appears that the field lines cross at

the center of the magnetized sphere. This scenario seems to exist for all k > 0.

We remark that there are five other combinations of x,y,z that lead to linear magnetic induction

fields. Their linear combination can be written as

Φ0(r,θ ,φ) =
H22

3
(−x2 +2y2− z2)

+
H33

3
(−x2− y2 +2z2)

+ (H12 +H21)xy+(H13 +H31)xz

+ (H23 +H32)yz. (3.79)

In the above equation Hi j are constants. Note that each term in the above expression is a

solution of the Laplace equation. The analytic solutions for these other linear fields can be obtained

in a similar way as explained in the preceding paragraphs. The image system in each case will have

a dipole at the sphere center whose strength depends on the radius a and the permeability parameter

k.

3.4 Magnetic Pole at (0,0,c)

Let us now consider a magnetic pole (Magnetic Source) of strength m located at (0,0,c), c > a. The

unperturbed potential Φ0(x,y,z) can be obtained by solving

∇
2
Φ0 = mδ (x,y,z− c) (3.80)

where δ (x,y,z− c) is the Dirac-Delta function. The solution of the Poisson equation [10, 7] is

Φ0(r,θ ,φ) =
m
µe

1
R1

(3.81)

where R2
1 = r2−2cr cosθ +c2 (see Table 3.1). If we introduce the magnetized sphere of radius

r = a into this unperturbed field with a magnetic source, the modified potentials in the two phases

can be constructed using (3.44) and (3.45). Using that
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a
r

Φ0

(
a2

r
,θ ,φ

)
=

m
µe

a
r

1√
a4

r2 −2ca2

r cosθ + c2
(3.82)

=
m
µe

a
r

r

c
√

r2−2a2

c r cosθ + a4

c2

(3.83)

=
m
µe

a
cR2

(3.84)

where R2
2 = r2−2a2

c r cosθ + a4

c2 . We also use that (for the purpose of representing the integrand)

a
r

Φ0(R,θ ,φ) =
m
µe

a
r

1√
R2−2cRcosθ + c2

. (3.85)

Thus the potentials of the perturbed field in the two phases become

Φ
e =

m
µe

[
1

R1
− (1−2k)

a
cR2

+

(
a
r

)
k(1−2k)

(
r

a2

)k ∫ a2/r

0

Rk−1
√

R2−2cRcosθ + c2
dR
]

(3.86)

Φ
i =

m
µe

[
2k
R1

+ k(1−2k)
∫ r

0

Rk−1
√

R2−2cRcosθ + c2
dR
]

(3.87)

The last term in (3.86) can be re-written in the following form

k(1−2k)
a
r

(
r

a2

)k ∫ a2/r

0

Rk−1
√

R2−2cRcosθ + c2
dR (3.88)

= k(1−2k)a1−2kck−1
∫ a2/r

0

Rk−1
√

R2−2cRcosθ + c2
dR (3.89)

= k(1−2k)
a1−2k

c1−k

∫ a2/r

0

1√
R2−2cRcosθ + c2

R−(k−1) dR (3.90)

Now we can write (3.86) in the form

28



Φ
e(r,θ ,φ) =

m
µ1

[
1

R1
− (1−2k)

a
cR2

+ k(1−2k)
a1−2k

c1−k

∫ a2/r

0

1√
R2−2cRcosθ + c2

R−(1−k) dR
]

(3.91)

The image system in the exterior phase can be interpreted as follows. It consists of

• a pole of strength −(1−2k)a
c m at the inverse point (0,0, a2

c )

• a line distribution of poles from the center of the phase (0,0,0) to the inverse point (0,0, a2

c ).

The strength of the distribution is given by k(1−2k) a(1−2k)

(cR)1−k m. The image system agrees with that

found by Carl Neumann (see [10]).

3.5 Forces exerted on a sphere for the Maxwell-Maxwell model

It is of interest to calculate the forces acting on a magnetized sphere placed in the field of a magnetic

pole or a dipole. In the content of superconductivity such forces are termed levitation forces [22].

The levitation forces exerted on the superconducting sphere due to poles and dipoles have been

calculated by many researchers [28, 22, 4]. The levitation force due to a circular current loop

is also found in [4]. Recently, Trombley an Palaniappan [26] calculated the force acting on the

superconducting sphere in the field of a straight line current. They found that the force can be

expressed in an integral form involving a logarithmic function. They stated that the integral can

be evaluated in terms of special functions. In the following, we sketch the calculation of the force

acting on the sphere due to a magnetic pole and in the next section (section 3.6) we determine the

force acting on a sphere in the presence of a point dipole.
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3.5.1 Force due to a magnetic pole

As in [22], the force acting on the sphere of radius a due to a magnetic pole of strength m located

at (x,y,z) = (0,0,c) where c > a is given by

F =−m[∇(Φe−Φ0)]|r=c (3.92)

Here Φe is the exterior potential and Φ0 is the potential due to a pole in the absence of a sphere.

The expressions for Φe and Φ0 are already given in section 3.4 (see equation (3.81) and (3.91).

From (3.81) and (3.91) we see that Φe−Φ0 can be written in a convenient form as

Φ
e−Φ0 =

m
µe (1−2k)

a
c

[
−
(

r− a2

c

)−1

+ k
∫ 1

0

(
r− γa2

c

)−1

γ
−(1−k) dγ

]
(3.93)

where γ here is the dummy (integration) variable. Substitution of (3.93) into (3.92) yields the

force given by

F =
m2

µe (1−2k)
a
c

[(
c− a2

c

)−2

− k
∫ 1

0

(
c− γa2

c

)−1

γ
−(1−k) dγ

]
êz (3.94)

We observe that the force due to a magnetic pole depends on

• the radius of the sphere a

• the location of the initial pole c

• the magnetic permeability parameter k

Further, the force contains an integral that can be expressed in terms of hypergeometric func-

tions [10, 7]. We note that when k = 1, the integral can be evaluated easily and the force in this

case becomes

F =
m2

µe
a3

c(c2−a2)2 êz (3.95)

The above expression for the force agrees with that found in [11] for the case of a superconducting

sphere. We see that in the limit of c>> a, that is when the pole is located far away from the sphere,

the force becomes approximately

F =
m2

µe
a3

c5 êz (3.96)
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Figure 3.6
Force on sphere due to a magnetic pole at (x,y,z) = (0,0,c), c > a. (a) Force versus location ratio
c
a for fixed k; (b) Force versus k for fixed x = c

a

In the general case, since k = µe

µe+µ i and 1−2k = µ i−µe

µe+µ i we see from (3.94) that the force is

• positive for k > 1
2 or µe > µ i

• negative for k < 1
2 or µe < µ i

respectively. In other words, the force is attractive for k < 1
2 and repulsive for k > 1

2 . The force

component is plotted versus k for various monopole locations in Figure 3.6(b). It shows a linear

variation for each location ratio c
a .

3.6 Magnetic dipole at (0,0,c)

We now consider the effect of a sphere on the field of a magnetic dipole. A magnetic dipole is a

pair of poles/sources as they shrink to a point while keeping the magnetic moment constant. Two

cases are to be considered : (i) A magnetic dipole of strength M3 in the direction of the z-axis

(radial or axisymmetric) and (ii) A magnetic dipole of strength M1 or M2 in the direction of x or

y-axis (transverse or asymmetric). We treat these two cases separately in the following

(i) Radial dipole:
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Figure 3.7
Radial dipole

Let the dipole of strength M3 along the z-direction located at (0,0,c), for c > a. The potential

function Φ0(r,θ ,φ) in the absence of the sphere is

Φ0(r,θ ,φ) = M3
r cosθ−c

R3
1

where as before R2
1 = r2−2cr cosθ + c2.

If we introduce the magnetized sphere of radius a centered at (0,0,0) into this dipole field, then

the modified potential functions, for the two phases become, calculated using (3.44) and (3.45)

Φ
e(r,θ ,φ) = M3

r cosθ − c
R3

1
+M3(1−2k)

[
−a

c2R2
− a3

c3

(r cosθ − a2

c )

R3
2

]
+ M3k(1−2k)ck−1a1−2k

∫ a2/r

0
Rk−1 (Rcosθ − c)

R3
1

dR (3.97)

Φ
i(r,θ ,φ) = M3

[
2k

(r cosθ − c)
R3

1
+ k(1−2k)

∫ r

0
Rk−1 (Rcosθ − c)

R3
1

dR
]

(3.98)

where R2
2 = r2−2a2

c r cosθ + a4

c2 . The first term on the right side of (3.97) is the initial dipole and

the remaining terms represent the image system in the magnetized sphere for this radial dipole.

The image system for the exterior phase can be interpreted as follows.
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Figure 3.8
Transverse dipole

• The second term on the right side of (3.97) is a source/sink of strength −M3
a
c2 (1−2k) at the

inverse point (0,0, a2

c )

• The third term on the right side of (3.97) represents a magnetic dipole −M3
a3

c3 (1−2k)

• The last term can be interpreted as the line distribution of magnetic sources and dipoles of

strength −M3k(1−2k)a1−2kck−1. The dipoles are oriented along the radial direction.

When k = 1 the above image system reduces to the given in [22]. When k = 0 we recover the

electrostatic image of a dipole in a sphere [10].

(ii) Transverse dipole:

Let the transverse dipole of strength M1 (or M2) along x (or y) direction be located at (0,0,c),

where c > a. The original potential function Φ0(r,θ ,φ) without the sphere is

Φ0(r,θ ,φ) = M1
r sinθ cosφ

R3
1

(3.99)

33



The expression for the transverse dipole along the y-direction can be written in a similar fash-

ion. If we now introduce the magnetized sphere in to this transverse dipole field, the modified

potentials in the two phases become

Φ
e(r,θ ,φ) = M1

r sinθ cosφ

R3
1

+M1(1−2k)
[

a3

c3
r sinθ cosφ

R3
1

]
+ M1k(1−2k)ck−1a1−2k

∫ a2/r

0
Rk−1 (Rsinθ cosφ)

R3
1

dR (3.100)

and

Φ
i(r,θ ,φ) = M1

[
2k

(r sinθ cosφ)

R3
1

+ k(1−2k)
∫ r

0
Rk−1 (Rr sinθ cosφ)

R3
1

dR
]

(3.101)

The first term on the right side of (3.100) is the initial transverse dipole and the remaining terms

represent the image system in the magnetized sphere. The image system for a transverse dipole in

the exterior phase can be interpreted in the following manner

• The second term is the transverse dipole of strength M1
a3

c3 (1− 2k) in the same direction of

the initial magnetic dipole, but located at (0,0, a2

c )

• The last term can be interpreted as a combination of line distribution of dipoles and magnetic

sources. The total strength of the line dipole distribution is found to be M1k(1−2k)a1−2kck−1

• If we let k = 1, we obtain the image system a dipole in the hydrodynamical case [29]. When

k = 0, the electrostatic image of a transverse dipole situated in front of a sphere is recovered

In summary

• The image system for a transverse dipole along the y-direction located outside a magnetized

sphere can be found in the same manner.

• By superposition of all the three cases (that is the solutions for a dipole in x, y, and z direc-

tions) one can obtain the exterior and interior potentials for a general dipole positioned in

front of a magnetized sphere.
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• It can be seen that the image system for a general dipole consists of a dipole at the inverse

point, a line distribution of sources from the origin to the inverse point and a line distribution

of dipoles from the origin to the inverse point.

The exact solutions in the forms presented above for a radial and transverse dipole do not seem to

be available in the literature. The analytic solutions for Φe and Φito any other given potential field

Φ0(r,θ ,φ) can be constructed using (3.44) and (3.45).

3.6.1 Force due to a magnetic dipole

The analytic solution for the exterior and interior potentials due to a dipole located at (x,y,z) =

(0,0,c) are derived in this section. Now we derive the expressions for the force due to a dipole

acting on a permeable sphere. As said earlier there are two cases namely (i) a radial dipole, and (ii)

a transverse dipole. Below we record the relevant expressions calculated using(3.97) and (3.100).

The force due to a dipole is determined from [11, 29]

F = [(M ·∇)∇(Φe−Φ0)]|r=c (3.102)

where M represents the magnitude and direction of the dipole and |r=c indicates the quantities to

be evaluated at r = c, the location of the dipole. For a radial dipole at (0,0,c), the expression for

the force, calculated using (3.102), is

F =
12(1−2k)

µe M2
3

a3

c7

[
−
∫ 1

0
(1− γ

a2

c2 )
−4

γ
k dγ

+ 2
∫ 1

0
(1− γ

a2

c2 )
−5

γ
k dγ

]
êz (3.103)

As seen from (3.103), the force acts along the z-direction and depends on the radius of the sphere,

location the initial dipole c, and the magnetic permeability parameter k. The two integrals in

(3.103) can be evaluated in terms of hypergeometric functions. But for numerical purposes the

integrals are convenient and so we will retain them in their present form. For k = 1, the expression

for the force, after evaluating the integrals, becomes

F = 6M2
3

a3c
(c2−a2)4 êz (3.104)
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Figure 3.9
Force on sphere due to a radial magnetic dipole at (0,0,c) , c > a. (a) Force versus location ratio
c
a for fixed k; (b) Force versus k for fixed x = c

a

This result is the same as that derived in [22] for the force due to a radial dipole acting on a

superconducting sphere. The normalized force versus the permeability parameter k shows a linear

behavior as seen in Figure 3.9(b). The force due to a transverse dipole can be calculated in a

similar fashion. Substitution of (3.100) in (3.102) yields

F =
3(1−2k)

µe
M2

1
a3

c7

[
−3

∫ 1

0

(
1− γ

a2

c2

)−4

γ
k dγ

+ 4
∫ 1

0

(
1− γ

a2

c2

)−5

γ
k dγ

]
êz (3.105)

The force for transverse dipole acts in the z-direction. As before, the parameters a, c, and k dictate

the force. The integrals may be evaluated in terms of hypergeometric functions. For k = 1, the

integrals, can be evaluated in terms of elementary functions and the force becomes

F = 3M2
1

a3c
(c2−a2)4

[
3
2
+2

a2

c2 −
1
2

a4

c4

]
êz (3.106)

The above result is the same as that obtained in [22] for the force due to a transverse dipole acting

on a superconducting sphere. The normalized force for a tangential dipole versus the permeability

parameter k shows a linear behavior for various dipole locations as seen in Figure 3.10(b).
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Figure 3.10
Force on sphere due to a transverse magnetic dipole at (0,0,c) , c > a. (a) Force versus location
ratio c

a for fixed k; (b) Force versus k for fixed x = c
a

3.7 A new relation for multipole coefficients of the exterior field

The constants Bn given in (3.55) (see section 3.1) can be interpreted as the multipole coefficients

for the exterior magnetic field. They play a crucial role in the determination of magnetic permeabil-

ity factors in a variety of situations [25, 16]. Physically, these coefficients characterize the strength

of the poles of different orders (monopole, dipole, quadrupole etc.). In the content of dielectrics,

the Bn are known as the Clausius-Massotti factors [9] and their knowledge is crucial for studying

properties of dielectric media as explained in [16]. In working with multi-particle dynamics, the

calculation of multipole coefficients is a difficult task both analytically and numerically. Any rela-

tion or observation regarding the coefficients can be very useful in validating the results observed

via analytical and/or numerical computations. Here, we present a new relation on the multipole

coefficients Bn . To this end we first define

BnD =−Ana2n+1 (3.107)

where BnD are the multipole coefficients for the Dirichlet problem for a sphere [19]. Next we take

BnN =
n

n+1
Ana2n+1 (3.108)
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Here BnN are the multipole coefficients for the Neumann boundary value problem for a sphere [19].

Now the multipole coefficients Bn for our Maxwell-Maxwell model given in equation (3.55) are

Bn = [(2k−1)− k(2k−1)
n+ k

]Ana2n+1 (3.109)

The factor in square brackets in the above equation can be written as (using algebra)

(2k−1)− k(2k−1)
n+ k

=−
[
(1− k)− k(1− k)

n+ k

]
+

[
k+

k(1− k)
n+ k

]
n

n+1
(3.110)

With this decomposition (3.109) takes the form

Bn = [(1− k)− k(1− k)
n+ k

](−Ana2n+1)+ [k+
k(1− k)

n+ k
]

n
n+1

Ana2n+1 (3.111)

We now define the following

Λnk = k+
k(1− k)

n+ k
, 1−Λnk = (1− k)− k(1− k)

n+ k
(3.112)

Then the multipole coefficients Bn become

Bn = (1−Λnk)BnD +ΛnkBnN (3.113)

where BnD and BnN are the Dirichlet and Neumann coefficients given in (3.107) and (3.108). Note

that the lower bound for Λnk is zero and since

Λnk =
k(n+1)

n+ k
(3.114)

we see that the denominator is n+ k greater than the numerator kn+ k for 0 ≤ k ≤ 1. Therefore,

0 ≤ Λnk ≤ 1 unless µ i is negative. Thus, the multipole relation (3.113) implies that the multipole

coefficients Bn for a mixed boundary value problem are a convex combination of the Dirichlet and

the Neumann coefficients. The constant Λnk depends on the order of the pole n and the parameter

k. We remark that the relation (3.113) is new and has not been reported in the literature. As

said before, in the determination of potentials with multi-particles, equation (3.113) can be used

to check the validity of the results obtained using numerical methods. The constants Λnk for the

fields considered in preceding sections 3.2 and 3.3 are given below.
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For a constant field: Λ1k = k+ k(1−k)
1+k

For a linear field: Λ2k = k+ k(1−k)
2+k

For a magnetic pole and dipole the spherical harmonic expansion is of order n and so Λnk in these

cases is similar to (3.112).

In the context of dielectrics, the coefficients Bn given in (3.55) have yet another interpretation. To

see this we write (3.55)

Bn =
−n(µ i−µe)

nµ i +(n+1)µe a2n+1An (3.115)

If we take µ i = ε1, and µe = ε2 and define

kn =
n(ε1− ε2)

nε1 +(n+1)ε2
(3.116)

Then the factor kn is the generalization of Clausius-Massotti factor. For n = 1,2 the factors k1 and

k2 are known [9, 10]. This indicates the general validity of Maxwell-Maxwell model, discussed in

this chapter. For n = 1, the Clausius-Massotti factor is

k1 =
ε1− ε2

ε1 +2ε2
(3.117)

which is the same as given in [10]. For n = 2 we get

k2 =
2(ε1− ε2)

2ε1 +3ε2
(3.118)

and so on. By the analogy the generalized Clausius-Massotti factor kn also possesses a convex

combination form as does the multipole coefficients Bn.
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CHAPTER IV: Analytic Solutions for the Maxwell-London model

In this chapter we consider another popular model in the context of superconductivity in magne-

tostatics using the Maxwell-London theory. The governing equations for the axisymmetric fields

together with the boundary conditions are provided in Section 2.2 (see equations (2.14) - (2.17)).

As noted there, the physical situation is that a superconducting sphere is placed in an external

axisymmetric magnetic field with a penetration depth of the field defined as λ . Mathematically,

the problem reduces to a mixed boundary value problem for the exterior and interior potentials. It

should be noted that the exterior potential satisfies the Laplace equation while the interior potential

satisfies the Helmholtz equation. We use an infinite series expansion method for the two phases

and give the results in the form of a theorem. To this end, we define Ψ0 to be a given axisymmetric

potential in the absence of any boundaries. Hence Ψ0 does not depend on the azimuthal angle φ .

Since ∇2Ψ0 = 0, we can represent Ψ0 in the form suggested by [7, 8]

Ψ0(r,θ) =
n

∑
n=1

Anrn+1P1
n (cosθ) (4.119)

where P1
n (cosθ) is the associated Legendre function of the second kind. We call the magnetic

flux density function Ψ as an axisymmetric potential in the sequel. Below we state and prove the

theorem representing the solutions of the BVP (2.14) - (2.17) for a superconducting sphere placed

in an external axisymmetric magnetic field.

Theorem 4.1: Let Ψ0(r,θ) be an arbitrary axisymmetric potential field in the absence of any

boundaries. If a superconducting sphere r = a is introduced in the field of an external field Ψ0,

then the modified axisymmetric potentials in the exterior and interior phases for the ML model

satisfying the mixed BVP (2.14) - (2.17) are given by

Ψ
e(r,θ) =

n

∑
n=1

[
Anrn+1 +[

(2n+1) fn(λa)
λa fn−1(λa)

−1]An
a2n+1

rn

]
P1

n (cosθ) (4.120)

Ψ
i(r,θ) =

∞

∑
n=0

(2n+1)Anan

(λa) fn−1(λa)
fn(λ r)P1

n (cosθ) (4.121)
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Fields Ψ0(r,θ) B0x B0y B0z

Constant H
2 r2 sin2

θ 0 0 H
Linear field H11(r3 sin2

θ cosθ) H11x H11y −2H11z
Magnetic pole m(1+ r cosθ−c

R1
) −mx

R1

−my
R1

−m(z−c)
R1

Table 4.2
Expressions for the potential function Ψ0, and the field components in cartesian coordinates B0x ,
B0y , and B0z generated by some magnetostatic fields. Here H, H11, and m are constants and
R2

1 = x2 + y2 +(z− c)2.

Proof: Let Ψ0(r,θ) be a given axisymmetric potential (magnetic flux density function) in the

absence of any boundary. Then Ψ0 can be expanded in an infinite series as given in (4.119). When

the spherical superconductor is introduced into the field of Ψ0 the exterior potential, according to

the general solutions of axisymmetric Laplace equations given in section 2.4 is

Ψ
e(r,θ) =

n

∑
n=1

[
Anrn+1 +

Bn

rn

]
P1

n (cosθ) (4.122)

In the interior phase, the axisymmetric potential satisfies the axisymmetric Helmholtz equation

(2.15) and so a suitable choice for Ψi(r,θ) is

Ψ
i(r,θ) =

∞

∑
n=0

Cn fn(λ r)P1
n (cosθ) (4.123)

where fn(λ r) =
√

π

2λ r In+ 1
2
(λ r) is the spherical Bessel function of the first kind [1, 7] and In(λ r)

is the modified Bessel function of the first kind. The constant An is associated with the given

axisymmetric potential field and we determine Bn and Cn using the boundary conditions.

Using the boundary conditions Ψe = Ψi on r = a, we get

∞

∑
n=0

[
Cn fn(λ r)− Bn

an

]
P1

n (cosθ) =
∞

∑
n=0

Anan+1P1
n (cosθ). (4.124)

Application of the boundary condition ∂Ψe

∂ r = ∂Ψi

∂ r on r = a yields

∞

∑
n=0

[
λCn f ′n(λa)+n

Bn

an+1

]
P1

n (cosθ) =
∞

∑
n=0

(n+1)AnanP1
n (cosθ) (4.125)
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Solving (4.124)-(4.125) we obtain

Cn =
(2n+1)Anan

λa fn−1(λa)
(4.126)

In the derivation of Cn we have used the following identities that are found in [7]:

f ′n(z) = fn−1(z)−
n−1

z
fn(z) (4.127)

f ′n(λa) = fn−1(λa)− n−1
λa

fn(λa) (4.128)

Next we use equation (4.126) to find Bn in terms of An

∞

∑
n=0

[
Cn fn(λa)− Bn

an+1 −Anan
]

P1
n (cosθ) = 0 (4.129)

Hence

Bn

an+1 = Cn fn(λa)−Anan (4.130)

Bn = (Cn fn(λa)−Anan)an+1 for all n≥ 1 (4.131)

Bn =

([
(2n+1)Anan

λa fn−1(λa)

]
fn(λa)−Anan

)
an+1 (4.132)

Bn =

[
(2n+1) fn(λa)

λa fn−1(λa)
−1
]

Ana2n+1. (4.133)

Thus we have determined all the unknown constants in (4.122) and (4.123). Substitution of

the constants yield the axisymmetric potentials in the exterior and interior phases in the presence

of superconducting sphere. This completes the proof of the exact solutions given in ((4.120) and

(4.121).

Notice that the exact solutions for the Maxwell-London model are in infinite series form. Due

to the occurrence of the Bessel function it is not possible to express the solution in closed form.

Nevertheless, these infinite series solutions can be used for any axisymmetric magnetic induction

field problem involving a superconducting sphere. Below we will use (4.120)-(4.121) to construct

analytic solutions for same specific induced fields. In particular, we will derive potentials due to

constant and linear magnetic induction in the presence of a superconducting sphere. Expressions

for some axisymmetric magnetic fields in terms of Ψ0 are provided in Table 4.2.
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4.1 Constant Magnetic Induction

Let us consider a constant magnetic induction along the z-direction given by B0 = H êz. The

corresponding axisymmetric potential in spherical coordinates is Ψ0(r,θ) = H
2 r2 sin2

θ . This field

corresponds to the solution with n = 1 and A1 =
H
2 in (4.119). If we introduce the superconducting

sphere into this field, the axisymmetric potentials for the exterior and interior phases, using the

theorem 4.1 with n = 1, become

Ψ
e(r,θ) =

H
2

r2 sin2
θ +

[
3 f1(λa)

λa f0(λa)
−1
]

H
a3

r
sin2

θ (4.134)

Ψ
i(r,θ) =

(
3a

2λa f0(λa)

)
f1(λ r)H sin2

θ . (4.135)

The contour plots for a constant external magnetic potential plotted using (4.134) and (4.135) are

shown in Figure 4.11 for various values of the penetration depth parameter λ1 =
1
λ

. When λ1 is

small, that is for large λ , the field lines penetrate the spherical conductor as if it nearly was not

there as seen from Figure 4.11(a)-(b). As we increase λ1, the interior lines start to disappear as

shown in Figure 4-11(c)-(d). As λ1, gets larger, that is, when the penetration depth λ is small, the

field lines begin to stop penetrating the spherical boundary (See Figure 4.11(e)). For very large λ1,

that is when λ → 0, the potential field goes around the sphere as seen in Figure 4.11(f). This is the

situation for an ideal superconductor in an external magnetic field. The scenario described here

agrees with those predicted analytically by Matute [17]. The image system in the exterior phase

consists of a dipole of strength [
3 f1(λa)

λa f0(λa)
−1
]

Ha3

located at the center of the sphere. The strength of the image dipole depends on the radius a and the

penetration depth λ . Likewise, the potentials in the exterior and interior phases can be constructed

for constant magnetic induction along any direction.
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Figure 4.11
Potential plots for a sphere in a constant magnetic field using the Maxwell-London model for
various penetration depth λ1: (a) λ1 = 0.1; (b) λ1 = 0.5; (c) λ1 = 5; (d) λ1 = 10; (e) λ1 = 25; (f)
λ1 = 50.
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4.2 Linear Magnetic Induction

Now we consider a field of axisymmetric linear magnetic induction for which Ψ0(r,θ) is

Ψ0(r,θ ,φ) =
H11

3
r3 sin2

θ cosθ (4.136)

This corresponds to the case when n = 2 and A2 = H11
3 in the solution (4.119). If the magne-

tized sphere is introduced into this linear magnetic induction field the modified potentials can be

constructed using the theorem 4.1 with n = 2. In the exterior phase we obtain

Ψ
e(r,θ) =

H11

3

[
r3 +

(
5 f2(λa)

λa f1(λa)
−1
)

a5

r2

]
sin2

θ cosθ (4.137)

and in the interior phases the potential becomes

Ψ
i(r,θ) =

H11

3
5a2

λa f1(λa)
f2(λ r)sin2

θ cosθ (4.138)

where f2(λ r) and f1(λ r) are the spherical Bessel functions of the first kind (see after (4.123)) and

P0
2 , P2

2 are associated Legendre polynomials.

We note that the image system in the exterior phase has a magnetic quadrupole located at the center

of the sphere. The strength of the quadruple is given by
[

5 f2)λa)
λa f1(λa) − 1

]
a3 and it depends on the

penetration depth λ and the radius a.

The magnetic potential field for a linear induction is shown in Figure 4.12 for different values

of λ1 in xy-plane. In general, the pattern is symmetrical in the xy-plane. For small values of λ1, the

field lines are more inside the spherical conductor as seen in Figure 4.12(a)-(b). As λ1 increases,

the lines inside the sphere start getting close to the boundary as shown in Figure 4.12(c)-(d). For

higher λ1, the potential contours begin to stop penetrating the superconductors (see Figure 4.12(e)-

(f)).

Indeed, when the penetration depth parameter λ is small, (or λ1 is large), the field lines go around

the sphere, indicating the superconductor limit as seen in Figure 4.12(f). In all cases, the field

lines come from infinity are pushed back to infinity after interacting with the spherical boundary.
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Figure 4.12
Potential plots for a sphere in a linear magnetic field using Maxwell-London model for various
penetration depth (a) λ1 = 0.1; (b) λ1 = 0.5; (c) λ1 = 5; (d) λ1 = 10; (e) λ1 = 25; (f) λ1 = 50.
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Significant changes occur for various values of the penetration depth λ . As λ varies from 0 to 1,

the field lines move away from the center of the spherical superconductor. There are four sets of

field contours occurring one in each quadrant. When λ increases from 0, the quadrupole pushes the

contours away from the center towards the boundary of the superconductor. When λ is very large,

the term with Bessel functions in (4.137) and (4.138) become vanishingly small and the potential

function in the exterior phase reduces to that of the ideal superconducting sphere placed in a linear

magnetic field in the Meissner state. This limiting case can also be observed in the contour plots

given in figure 4.12( f ).
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CHAPTER V: SUMMARY AND CONCLUSIONS

A systematic approach for Maxwell-Maxwell and the Maxwell-London models is presented in this

thesis. The potential functions in a two phase media with a spherical boundary in magnetostatics

context are determined for MM and ML models and the general results are presented as theo-

rems. The potential functions Φe and Φi in the exterior and interior phases, respectively, satisfy

Laplace equations for the MM model. The axisymmetric potentials for the ML model satisfy the

axisymmetric Laplace and Helmholtz equations in the respective phases. Both models lead mixed

boundary value problems with Dirichlet and Neumann boundary conditions at the spherical surface

r = a.

For the MM model five illustrative examples are discussed based on our general solutions.

Namely, a magnetized sphere in (i) a constant magnetic field, (ii) linear magnetic induction field,

(iii) a monopole field, (iv) a radial dipole field, and (v) a transverse dipole field. The image systems

in each case is discussed in detail. The contour plots for the constant and linear fields show that the

permeability parameter k has a significant effect on the magnetic fields. The plots show unphysical

situation when k > 1 for which the interior magnetic permeability µ i is negative. The force acting

on the magnetized sphere is found for the monopole and dipole fields. It is shown that the force

is positive for k > 1
2 and negative for k < 1

2 . These results may be of interest in the design of

levitating systems [28]. An interesting new relation for the multipole coefficients is derived. This

relation demonstrates that the multipole coefficients for the MM model are a convex combination

of Dirichlet and Neumann multipole coefficients for a sphere. The Clausius-Massotti factor in

dielectrics is also connected to our multipole coefficients.

The axisymmetric flux density functions are determined in the exterior and interior phases

for the ML model. The general solutions for Ψe and Ψi are given in infinite series forms and

a theorem for ML model is stated and proved for a superconducting sphere placed in an external

field. Exact solutions for constant and linear fields are derived from our new general solutions. The
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contour plots show that the penetration depth parameter λ has a significant impact on the magnetic

fields. For larger values of λ our results indicate the limiting case of an ideal superconductor in

Meissner state [10, 7]. Our solutions for the ML model do not cover the case when the fields are

not axisymmetric. Extension of our results to asymmetric fields appears to be an open problem.
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NOMENCLATURE

r,θ ,φ spherical coordinates

Φe(r,θ ,φ) exterior potential function

Φi(r,θ ,φ) interior potential function

r > a exterior phase

r < a interior phase

µe magnetic permeability in the exterior phase

µ i magnetic permeability in the interior phase

k = µe

µe+µ i magnetic permeability parameter

ε1 dielectric constant in the exterior phase

ε2 dielectric constant in the interior phase

k1 thermal conductivity in the exterior phase

k2 thermal conductivity in the interior phase

λ penetration depth

Be Magnetic induction field in the exterior phase

Bi Magnetic induction field in the interior phase

Φ0(r,θ ,φ) Given potential in the absence of any boundaries

An, Bn, Cn constant coefficients for the series solution for the

MM model

rnSn(θ ,φ) spherical harmonic of degree n

(0,0,0) center of the sphere

(0,0,c) location of the initial pole or dipole examples in carte-

sian coordinates, c > a
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a radius of the sphere

m strength of a monopole

M1, M2, M3 strengths of dipole

kn generalized Clausius-Massotti factor

γ integration variable

êz unit vector in z-direction

êr, êθ , êφ unit vectors in r, θ , φ directions

Pm
n (cosθ) Legendre polynomials of the second kind

fn(λ r) =
√

π

2λ r In+ 1
2
(λ r) spherical Bessel function of the first kind

In(λ r) modified Bessel function of the first kind (finite at the

origin)

Kn(λ r) modified Bessel function of the first kind (finite at in-

finity)

54


