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ABSTRACT

The uncertainties in the version 5 Global Precipitation Measurement (GPM) Microwave Imager (GMI)

precipitation retrievals are evaluated via comparison with the radar–radiometer (so-called ‘‘Combined’’)

retrievals between 408S and 408N. Results show the precipitation estimates are close (;7% GMI over-

estimation) globally. However, some specific regions, such as central Africa, the Amazon, the Himalayan

region, and the tropical eastern Pacific, show a large overestimation (up to 50%) in GMI retrievals when

compared to Combined retrievals. The uncertainties are further evaluated based on precipitation system

properties, such as size and intensity of the system. GMI tends to underestimate precipitation volume when

the system is relatively warm (.250K) and small (,200 km2) due to the lack of ice scattering signatures.

However, for large systems (.2000 km2), GMI-derived precipitation is typically higher than Combined over

all surfaces. Based on the system properties, a simple bias correction methodology is proposed to implement

in the Goddard Profiling Algorithm (GPROF) to reduce GMI biases. GMI precipitation volume is adjusted

in each precipitation system based on the size and minimum 89GHz polarization-corrected temperature

(PCT) over land and ocean separately. The overall GMI bias is reduced to 3%, with significant improvement

over land. The GMI biases (up to 50%) over the previously mentioned regions are significantly or partially

removed, becoming less than 20%. This method also shows effectiveness in removing zonal and seasonal

biases from GMI estimates. These results suggest the importance of utilizing the information of whole pre-

cipitation systems instead of individual pixels in the precipitation retrieval.

1. Introduction

Precipitation is a major component of hydrological

cycle, as well as a main driver of the global atmospheric

circulation (Chahine 1992; Trenberth et al. 2003).

Correct measurement of global precipitation is thus

a crucial step toward modeling the current variability

and future climate change prediction (Chahine 1992;

Huffman et al. 1995; Allen and Ingram 2002; Nesbitt

et al. 2004; Randall et al. 2007). Precipitation mea-

surement from spaceborne passive microwave remote

sensing has become a powerful technique in the recent

decades (Njoku 1982; Wilheit 1986; Prigent 2010). The

changes in microwave radiances caused by hydrome-

teors via either emission/absorption (Wilheit et al. 1991)

or scattering processes (Spencer et al. 1989) can be

quantifiably related to clouds and precipitation. The

emission/absorption from liquid hydrometeors causes

brightness temperatures (Tb) to increase, whereas the

scattering by hydrometeors causes a decrease in the mi-

crowave signal (Spencer et al. 1989; Gopalan et al. 2010;

Kidd and Levizzani 2011; Costa et al. 2018). Over ocean,

the additional emission signal from the precipitation

can easily be distinguished from the radiatively cold

background (;150K) because the radiometric signal

over water bodies is low and homogeneous (emissivity

;0.4–0.5; Kummerow et al. 2011, 2001). However, over

land, the surface emissivity is high (emissivity ;0.8–0.9)

and heterogeneous, which leads to a warm background

(;280K) and difficulty in observing the emission signal

from the precipitation particles (Carr et al. 2015). There-

fore, over land, the depression in the brightness temper-

atures at higher-frequency microwave channels caused by

ice scattering is used instead to retrieve precipitation

(Wang et al. 2009; Ferraro et al. 1998, 2013). Although the

scattering-based technique is more indirect, it is a useful

technique for understanding the amount of precipitation

suspended in the atmosphere. The hydrometeor size,

phase, number density, and depth of the layer are themain

variables that affect the microwave brightness tempera-

ture, for all wavelengths.
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A Tb–rain rate relationship algorithm was first in-

troduced by Wilheit et al. (1976) using a fairly simple

regression model. Spencer (1984) developed a mul-

tiple regression model to estimate rain rate from

microwave brightness temperatures from various

frequency (37, 21, 18, 10.7GHz) channels over crop

fields. 37GHz was found to have more rain rate in-

formation than the other channels. The polarization-

corrected temperatures (PCT) at higher-frequency

(i.e., 85.5 GHz) channels were found to be useful in

eliminating the contrast between land and water, and

the rain rate can be derived from PCT depression

over land (Spencer et al. 1989). Further studies by

Fulton and Heymsfield (1991) and Mugnai and Smith

(1988) have shown that the brightness temperatures

are dependent on both the liquid/ice water content

and the vertical structure of the clouds. Based on the

Special Sensor Microwave Imager (SSM/I) observa-

tions, Grody (1991) purposed the scattering index

method, which uses scattering signatures to obtain

rain rate, snow equivalent water content, and other

parameters. The scattering index method was further

expanded by Ferraro et al. (1994) by developing a

more expansive set of screens that could be used to

separate rainfall signal from various surface back-

grounds, which was later used in the Tropical Rainfall

Measuring Mission (TRMM) era over land. The sensi-

tivity of the microwave brightness temperature to cloud

properties makes it possible to retrieve the cloud vertical

structure. Kummerow et al. (1996) purposed a satellite-

based global microwave rainfall retrieval algorithm that

utilized a multichannel physical approach for retriev-

ing vertical structure and rainfall. The algorithm uses

statistical inversion techniques based on the theoreti-

cal relationship between brightness temperature and

rain rates, and is now known as the Goddard profiling

(GPROF) algorithm. The GPROF algorithm has un-

dergone significant and numerous improvements over

time and has been implemented on data from various

satellite-based passive microwave sensors, such as the

SSM/I, TRMMMicrowave Imager (TMI), and the most

recent GPM Microwave Imager (GMI), among others.

The surface precipitation derived from the satellite-

based microwave brightness temperatures are often

inaccurate estimates with large biases (e.g., Masunaga

et al. 2002; Nesbitt et al. 2004). The validation of such

estimates is necessary on a global scale. The TRMM

(Kummerow et al. 1998) satellite, launched in late

1997, provided a platform from which to estimate

surface precipitation based on measurements from

both passive (TMI) and active (Precipitation Radar;

PR) sensors. Although a radar is an active sensor and

its retrieval mechanism and algorithm are different

from a radiometer’s, it is a useful tool for validating

surface precipitation and quantifying the errors and

biases in radiometer precipitation estimation. Nesbitt

et al. (2004) examined the performance of the TMI

and evaluated the overall biases relative to the PR

as a function of the storm type. This study revealed

that the TMI overestimates the rain rate relative to

the PR in mesoscale convective systems, and tends

to underestimate in precipitation features without

ice-scattering signatures, as indicated by 85 GHZ

PCT .250K. Liu and Zipser (2014, hereafter

LZ2014) compared TMI surface rain estimates with

those of the PR using a pixel-to-pixel comparison at

nadir and a precipitation system level comparison.

The study showed relatively close correlation be-

tween the overall geographical distributions of TMI

and PR, but reported large discrepancies over sev-

eral specific regions such as central Africa, the Amazon,

the tropical eastern Pacific, and the northern

Indian Ocean. TMI observations have been shown

to miss a large portion of the total precipitation

formed over land via the warm rain process because

of the difficulty in distinguishing the microwave ra-

diative properties associated with this kind of rainfall

from the complicated emissivity background over

land. These studies found the rain volume to be un-

derestimated by the TMI in most of the small systems

(size ,200 km2) and overestimated in large meso-

scale convective system (size .2000 km2), over both

land and ocean. Both studies suggested that the

rainfall errors and biases are associated with storm

size. The rain biases in the passive microwave algo-

rithm can therefore be reduced using the properties

of the precipitation system, instead of treating pixels

independently (LZ2014).

After the successful era of TRMM, the Global

Precipitation Measurement (GPM) Core Observatory

satellite was launched in February of 2014, and has

a higher orbital inclination (658). The instruments on

board GPM are similar to those on board TRMM, but

with additional channels on both the active sensor

[Dual-Frequency Precipitation Radar (DPR)] and the

passive sensor (GMI), providing light rain as well as

falling snow estimates (Hou et al. 2014; Skofronick-

Jackson et al. 2017). The independent measurement

of precipitation using two different sensors provides

a platform capable of quantifying errors and biases

on a global as well as regional scale. This study uses

precipitation estimates from the GPM Combined

Radar–Radiometer (hereafter, ‘‘Combined’’) product

(Grecu et al. 2016) as a ‘‘ground truth’’ measurement

for comparison purposes. Following the methodology

developed by LZ2014, this study seeks to quantify
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GMI precipitation biases with respect to the Com-

bined product and introduce a bias correction meth-

odology to improve GMI precipitation estimates. This

study utilizes 4 years (April 2014–March 2018) of the

current version (version 5) of GPROF (Kummerow

et al. 2015) and Combined precipitation estimates

over the tropics and subtropics (408S–408N) to address

the following scientific questions:

d What are the differences in surface precipitation

estimates between the GMI and Combined products?
d How are GMI and Combined precipitation retrievals

different on a pixel to pixel level and for precipitation

features of different sizes and intensities?
d How can precipitation system properties be utilized to

reduce the GMI biases?

To answer the above questions, the first part of the study

compares the estimated surface precipitation between

GMI and Combined at a pixel-to-pixel as well as a

precipitation system level. The second part of the study

demonstrates the use of precipitation system properties

to improve the GMI precipitation retrieval. This paper

is organized as follows: section 2 presents the data and

methods, section 3 presents a comparison of the two

precipitation products, section 4 introduces a bias cor-

rection methodology, and the results of the bias cor-

rection, which is followed by the summary/conclusion

in section 5.

2. Data and methods

The GPM Core Observatory satellite is a low-orbit

(407km), highly inclined (658), and non-Sun-synchronous
satellite that was launched in February 2014. The

onboard instruments include the DPR, which oper-

ates at Ku (13.6GHz) and Ka (35.5GHz) band fre-

quencies, and the GMI, a multifrequency passive

microwave imager. The GMI frequency ranges from

10.65 to 183.31GHz, including both horizontal and

vertical polarization at 18.7, 36.64, 89, and 166GHz,

and only vertical polarization at 21.3 and 183 6 3 and

183 6 7GHz (Hou et al. 2014; Skofronick-Jackson

et al. 2017).

This study uses 4 years (April 2014–March 2018)

of GMI and Combined precipitation products. The

GMI precipitation retrievals are obtained from the

2A.GMI.GPROF algorithm, which uses brightness

temperatures to estimate the surface precipitation.

The GPM Combined product employs the 2B.DPR-

GMI algorithm. We have used the 2B DPR-GMI

and 2A.GMI.GPROF products to define groups of

contiguous precipitating pixels as precipitation fea-

tures (PFs), which are known as Dual-Frequency

Precipitation Radar–Radar GMI Precipitation Fea-

tures (DPR-RGPFs). Since the goal of this study is to

summarize the uncertainties in the GMI precipitation

retrievals, especially over relatively warm surface

conditions where the majority of precipitation falls as

liquid, the study domain covers only the tropics and

subtropics between 408S and 408N over both land and

ocean. A brief description of the GMI and Combined

precipitation retrieval algorithms is given in the fol-

lowing subsections.

a. GPM GMI products

The GMI is a conically scanning, multifrequency

microwave imager on board the GPM Core Observa-

tory. Its cross-track swath width ranges from 931 km

(625 km) for the 10.65 through 89GHz channels, to

826 km (622 km) for the 166 and 183.31GHz chan-

nels. The spatial resolution on the Earth’s surface also

ranges from 25km at 10GHz to 6 km at 183GHz

(Draper et al. 2015). GMI measures microwave radi-

ances in terms of brightness temperatures at thirteen

channels. The microwave radiances at low-frequency

channels (37GHz or less) are more sensitive to the

emission from liquid droplets, whereas at high frequen-

cies (37GHz or higher), radiances are primarily influ-

enced by the scattering from ice hydrometeors. The GMI

surface precipitation rate is retrieved from the brightness

temperatures by the GPROF algorithm using a Bayesian

approach.

While the passive microwave signals over land and

ocean differ in sensitivity to precipitation, they are

treated the same in the GPROF algorithm. The pre-

cipitation estimation only varies by using the appropri-

ate database for the Bayesian retrieval that corresponds

to the correct (one of 14) surface type. In the TRMM

era, the algorithms did differ for land (by using a scat-

tering index type approach), but this is not the case

for the GPM. Over the oceans, surface emissivity is

low, uniform, and radiometrically cold, therefore the

GPROF precipitation retrieval algorithm over ocean

relies mostly on emissivity characteristics. The radiation

emitted by precipitation droplets is relatively warm

with respect to the ocean background radiation, and

thus can easily be separated. However, over land, sur-

face emissivity is high and varies significantly with sur-

face conditions such as temperature, soil moisture,

surface type, etc. (Ferraro et al. 2013), which makes it

difficult to differentiate the radiation emitted by the

precipitation drops from that emitted by the surface.

Therefore, microwave precipitation retrievals over the

land are primarily based on ice-scattering signatures.

Although the ice-scattering signatures are less well re-

lated to precipitation, the precipitation signal is more
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easily distinguished over a warm surface background

(Petković and Kummerow 2015). The scattering-based

method infers precipitation from the amount of ice

in the cloud, assuming that the ice would eventually fall

to the surface and that a large percentage of liquid

precipitation at the surface is formed from melted ice

particles. The GPROF algorithm utilizes a DPR re-

trieved cloud structure and surface precipitation rate as

a priori knowledge, and it uses the Combined algorithm

in building the profile database (Grecu et al. 2016). The

details ofGPROF algorithm are described inKummerow

et al. (2015).

b. GPM Combined products

The GPM Combined (radar–radiometer) algorithm

is designed to derive precipitation using both DPR and

GMI observations (Grecu et al. 2016). The GPM

Combined algorithm is based on a physical (forward)

model that estimates precipitation based on both DPR

reflectivities and GMI brightness temperatures within

the matched swath of DPR. The DPR, using Ku and Ka

band, gleans the hydrometeor size distribution infor-

mation as well as the associated attenuation in each

range gate. The Combined algorithm relies on the in-

formation from the Ku band for heavy precipitation,

where the Ka-band radar echoes are severely attenu-

ated. The path integrated attenuation is further ad-

justed by using the brightness temperature information

from GMI, because nonprecipitation cloud liquid wa-

ter and water vapor are not directly detected by the

DPR. The algorithm details are described in Grecu

et al. (2016). In this study, for comparison purposes,

the Combined product is considered as a benchmark

to evaluate the GPROF precipitation retrievals, be-

cause it has been used as ground truth precipitation

to build the a priori database for GPROF algorithm

(Kummerow et al. 2015). It shows a good agreement

with the Global Precipitation Climatology Project

(GPCP) in the tropics and midlatitudes (408S–408N)

(Grecu et al. 2016). Olson et al. (2016) validated

Combined surface precipitation rate (V04) with Multi-

Radar Multi-Sensor (MRMS) system (Zhang et al.

2016) gauge calibrated precipitation rate over the

continental United States and estimated a correlation

of 0.84. They also found that the surface precipitation

estimates between Combined and the GPCP have

similar distributions over the tropics and subtropics

with some biases over high latitudes. Furthermore, the

validation of Combined surface precipitation with

MRMS shows that the current version (V05) of Com-

bined product has a significant reduction in biases

(23.6%) when compared to its previous version (61%)

(Skofronick-Jackson et al. 2018; Petersen et al. 2019).

3. Comparison of GMI and Combined surface
precipitation

The geographical distribution of mean unconditional

precipitation estimated by Combined (Fig. 1a) and GMI

(Fig. 1b) show a similar climatology. Note that the

mean unconditional precipitation is estimated by di-

viding total precipitation volume (mmh21 km22) by the

total area of sample pixels (rain or no rain) in each

58 longitude3 28 latitude grid box. The estimated mean

zonal precipitation from theCombined (GMI) over 408S–
408N is 1036mmyr21 (1105mmyr21). The zonal mean

precipitation rate estimated by GMI overestimates that

of Combined, and the difference is even higher over land

than over ocean (see Table 1, Figs. 1c,d). The GMI

overestimates the Combined by 3.9% over ocean and

by 17.2% over land. The GMI derived precipitation rate

is up to 50% higher over central Africa, the Himalayan

and Tibetan regions, the tropical eastern Pacific, and

central South America than the Combined. Generally,

central African storms tend to have relatively large

ice particles aloft that lead to greater depressions in

brightness temperatures, resulting in an overestimation

of TMI precipitation (LZ2014), which might also lead

to multiple scattering problems with the DPR. Over the

Amazon region, GMI shows an overestimation of 50%,

which contradicts the previous result of TMI presented

by LZ2014. Though it is expected that the GMI would

have difficulties to detect warm rain over the Amazon,

there are many features having nonzero GMI pre-

cipitation but zero Combined precipitation. It is possible

that part of the overestimation comes from false de-

tection of GMI, because a large portion of features over

the Amazon region show nonzero GMI precipitation,

but zero Combined precipitation volume (figure not

shown). Another source of overestimation could be

from the overresponse of GPROF to the ice scattering

signal over the region. Over certain regions, such as the

Mediterranean, the GMI underestimates the Combined

by more than 20%. Lack of ice scattering due to large

amount of warm rainfall (Liu and Zipser 2009) and

congestus (Wall et al. 2013) lead to an underestimation

of precipitation by GMI over theMediterranean region.

Even in deep clouds, ice scattering signals are not always

associated with precipitation (Costa et al. 2018). The

GMI and Combined precipitation statistics over vari-

ous global regions, such as 208S–208N and 208–408N/S

over land and ocean, are also presented in Table 1. This

leads us to believe that, even though the geographic

distribution is similar between the two retrieval

methods, GMI derived precipitation tends to over-

estimate that of Combined in several land and oceanic

regions. Thus, the differences are further investigated
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based on a pixel-to-pixel comparison at nadir and on

a precipitation feature level as conducted in LZ2014.

a. Pixel-to-pixel comparisons between Combined
and GMI

TheGMInear-surface precipitation pixels arematched

with the Combined (i.e., DPR swath) pixels using the

nearest neighbor method. The differences in occurrence

and contribution of near-surface precipitation rates be-

tween the matched swaths of GMI and Combined are

presented in Fig. 2. Note that the occurrence and con-

tributions of near-surface precipitation rate are esti-

mated in 1mmh21 bins from 40°S to 40°N over land and

ocean separately. Munchak and Skofronick-Jackson (2013)

FIG. 1. Geographical distribution of mean unconditional precipitation rates estimated by

GPM (a) Combined products, (b) GMI, and the (c) differences and (d) percentage differences

between combined and GMI. The distribution is generated on a 58 3 28 longitude and latitude

grid. The GMI data used are only those within the Combined (DPR) matched swath.
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used the Special Sensor Microwave Imager/Sounder

(SSMIS) as a proxy for various GPM-era sensors and

evaluated the minimum detectable precipitation rate.

They estimated that the GMI minimum detectable pre-

cipitation rate to be ;0.2mmh21, however our results

show that the GMI can detect precipitation rates down

to 0.1mmh21 (Fig. 2). Over ocean, for precipitation rates

below 2mmh21, GMI occurrence is higher than that of

Combined. This is expected because the GMI can detect

lighter (,0.1mmh21) precipitation whereas the DPR

detects only down to 0.1mmh21 because of limitations

in DPR detectability (Hamada and Takayabu 2016). The

GMI occurrence is found to have a maximum (;0.2%)

when the precipitation rate is below ;1mmh21. How-

ever, the result is reversed when the precipitation rate

is higher than 20mmh21. The GMI pixels underestimate

the Combined (Fig. 2a) for all precipitation rates higher

than 20mmh21. The occurrences of precipitation pixels

are well matched and nearly identical when the pre-

cipitation rate is moderate (2–20mmh21). Over land, the

occurrence pattern is similar to that over ocean, but the

GMI overestimates (underestimates) all the precipitation

below (above) 10mmh21 (Fig. 2b).

The contribution of precipitation from each 1mmh21

bin are also compared between matched swaths of GMI

and Combined over land and ocean. The contribution

of precipitation is the average annual rate (mmyr21)

during four years of observations in each 1mmh21 bin.

Over ocean, 6–7mmh21 from both GMI and Combin-

ed contributes the highest amount of precipitation

(;15mmyr21). The GMI measures higher contribu-

tion when the precipitation is light (,1mmh21), and

lower contribution when the precipitation is heavy

(.10mmh21) when compared to the Combined

(Fig. 2a). However, over land, significant differences

are observed. The GMI contribution is higher than that

of Combined for all precipitation rate bins below

10mmh21. The GMI (Combined) has the highest con-

tribution at ;15mmyr21 (10mmyr21) from the pre-

cipitation rate bins 5–6mmh21. For the heavier

precipitation (.10mmh21), the GMI has a lower con-

tribution when compared to the Combined (Fig. 2b).

This leads us to believe that even though the geo-

graphical distributions of GMI and Combined are al-

most identical, there are still large differences when the

data are presented at the pixel level. The pixel-to-pixel

comparison at nadir is straightforward and provides the

retrieval differences between two independent sensors

at the same time and location. Although we have com-

pared only the collocated pixels, there are still large

uncertainties present. The different footprint area of

the GMI and DPR leads to a strong nonuniform beam

TABLE 1. Mean unconditional annual precipitation rates estimated by Combined and GMI products over various global regions.

Coverage Surface type Combined (mmyr21) GMI (mmyr21) % diff GMIcorrected (mmyr21) % diff

408S–408N Land 1 ocean 1036 1105 6.66 1067 3.0

Ocean 1126 1170 3.9 1145 1.7

Land 796 933 17.2 855 7.4

208–408N/S Land 1 ocean 763 810 6.2 762 20.1

Ocean 871 904 3.8 863 20.9

Land 503 584 16.1 521 3.6

208S–208N Land 1 ocean 1309 1401 7.1 1370 4.7

Ocean 1365 1420 4.0 1412 3.4

Land 1142 1344 17.7 1247 9.2

FIG. 2. Precipitation occurrences (dashed line) and contributions (solid line) from GMI (blue) and Combined

(red) in each 1mmh21 precipitation rate bin (a) over ocean and (b) over land. Note that the occurrences and

contributions are estimated by using matched swath orbital data from Combined and GMI.
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filling effect, which impacts the precipitation retrievals.

The different scanning pattern could also lead to

the mismatch between the GMI and the Combined

pixels. The problems associated with different scan-

ning geometries and footprint sizes between two

types of sensors are well documented in LZ2014.

b. Comparison based on precipitation feature
properties

The pixel-to-pixel comparison uncertainties can be

overcome when the retrievals of total precipitation

volume are compared at the precipitation system level

by defining DPR-RGPFs. Four years (April 2014–

March 2018) of level-2 Combined orbital data from

the GPM are used to define the DPR-RGPFs. Each

DPR-RGPF is defined by grouping all the contiguous

pixels of nonzero precipitation (.0.1mmh21) where

either Combined or GMI detects at least four such

pixels. Approximately 3 million features are identi-

fied as DPR-RGPFs during 4 years of GPM observa-

tion over 40°S–40°N. Figure 3a shows an example of

DPR-RGPF and collocated GMI surface precipitation

(Fig. 3b), where the mesoscale convective system

(MCS) over Sri Lanka is well captured by both sensors.

The Combined product shows a maximum surface

precipitation rate;50mmh21, which is higher than the

collocated GMI surface precipitation (;20mmh21).

The GMI swath width is wider than the DPR, so only

the matched swath (i.e., DPR) is considered in this

study (Fig. 3b). The properties of the features such

as geographic location, volumetric precipitation, and

area from both Combined and collocated GMI, and

minimum 89GHz PCT (hereafter ‘‘min89PCT’’) from

theGMI are summarized. The volumetric precipitation

is the sum of the instantaneous precipitation rate times

precipitation area, which does not include information

on the vertical dimension of the raining area (Liu et al.

2008; Liu 2016). The GMI and Combined precipita-

tion volumes are compared within each DPR-RGPF.

By comparing the total precipitation volumes from

GMI and Combined in DPR-RGPF, the beam filling

and collocation effects no longer significantly impact

results (LZ2014), and different precipitation system

types and properties can be used to further explore

GMI’s retrieval biases with respect to Combined. Since

the passive microwave signals over land and ocean

differ in sensitivity to the precipitation, the compari-

son is also conducted separately over land and ocean.

To investigate the differences between GMI and

Combined, volumetric precipitation from GMI and

Combined are intercompared in DPR-RGPFs of dif-

ferent sizes and intensities, indicated by area of the

features and min89PCT. The ratio between Combined

and GMI for systems of different sizes and PCTs are

presented in two-dimensional histograms shown in

Fig. 4. The geographical distributions of this fraction

for DPR-RGPFs of small and large sizes, and warm

and cold min89PCT are presented in Figs. 5 and 6, re-

spectively, for features with greater GMI precipitation

and features with greater Combined precipitation.

Over ocean, for smaller DPR-RGPFs sizes (area

,200 km2), most of the DPR-RGPFs have much higher

Combined precipitation volume than the GMI when

both detect the precipitation (Fig. 4a). More than 80%

of the small-sized systems have higher Combined pre-

cipitation than GMI precipitation over the oceanic

FIG. 3. (a) An example of DPR-RGPF over Ratnapur, Sri Lanka, at 1325 UTC 4 Apr 2014. The color fill

represents precipitation rate (mmh21) estimated by the Combined algorithm. The DPR-RGPF is defined by

grouping the contiguous area of precipitation pixels (black contours) within the DPR swath (black crosses). (b) As

in (a), but color fill shows GMI precipitation rate.
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regions. One possible reason for this is that, while de-

fining precipitation features, only pixels with pre-

cipitation rates greater than 0.1mmh21 have been

used, so the precipitation rates lower than 0.1mmh21

from the GMI might be excluded when using this

method. Small DPR-RGPFs with higher GMI pre-

cipitation volume are found only over stratocumulus

regions where the DPR misses the light precipitation

due to the sensitivity issue. However, for large DPR-

RGPFs (area .200 km2), GMI tends to overestimate

the Combined (Fig. 4a). A large proportion (.60%) of

large systems with higher GMI precipitation fractions

are especially found over the northern and southern

Pacific Ocean, southern Atlantic Ocean, and Indian

Ocean (Fig. 5d).

Over land, small DPR-RGPFs show higher Combined

precipitation volume than the GMI (Fig. 4b). There are

large proportions (.40%) of small systems in the con-

tinental regions such as central Africa, Himalayan

regions, Argentina, and Pakistan, where GMI over-

estimates the Combined precipitation (Fig. 5b). The

GMI and Combined volumetric precipitation ratios

are more consistent for large systems than for small

DPR-RGPFs. However, the majority of the land re-

gions have at least 50% of the large DPR-RGPFs

where GMI dominates the Combined precipitation.

This is the reason why GMI estimated annual mean

precipitation rate (933mmyr21) over land is higher

(17.2%) than Combined (796mmyr21) (Table 1).

The precipitation volume differences are further

analyzed based on the min89PCT. Two-dimensional

histograms of min89PCT and the ratio of Combined

to GMI volumetric precipitation of DPR-RGPFs are

plotted for systems over ocean (Fig. 4c) and over land

(Fig. 4d). Note that the GMI precipitation retrieval

algorithm over ocean primarily relies on emissivity

characteristics whereas the land algorithm mostly re-

lies on ice scattering signatures.

FIG. 4. Two-dimensional histogram of area and ratio of Combined to GMI volumetric precipitation of DPR-

RGPFs (a) over ocean and (b) over land. (c),(d) As in (a),(b), but displaying the two-dimensional histogram

of min 89GHz PCT and ratio of Combined to GMI volumetric precipitation of DPR-RGPFs for land and ocean,

respectively. Dashed lines are the ratios of 0.5 and 2.
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Over ocean, for colder (min89PCT , 220K) DPR-

RGPFs, GMI and Combined show very similar volu-

metric precipitation (Fig. 4c). Min89PCT below 220K

is an indication of strong ice scattering signatures and

significant optical depths of ice aloft that may be due to

the presence of larger graupel or hail in tropical oceanic

systems (Cecil et al. 2002; Toracinta et al. 2002). The

reason for this consistency is that both GMI and Com-

bined are highly sensitive to solid precipitation. How-

ever, there are some oceanic regions where the cold

features have higher proportions (.60%) of Combined

precipitation volume than the GMI. They are mainly

FIG. 5. Geographical distribution of the fractions of small (area , 200 km2) DPR-RGPFs

with Combined volumetric precipitation is (a) larger and (b) smaller than GMI volumetric

precipitation. (c),(d) As in (a),(b), but for larger (.10 000 km2) DPR-RGPF area. The distri-

butions are shown on a 58 3 28 longitude and latitude grid.
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observed the Angola basin, the Atlantic Ocean, the

Argentine basin, and the Southern Ocean (Fig. 6a).

Other oceanic regions such as the central and northern

Pacific, and Indian Ocean show higher proportions

(.60%) of GMI precipitation than Combined precipita-

tion (Fig. 6b). However, for warm (min89PCT . 250K)

DPR-RGPFs, most of the features show much higher

Combined precipitation volume than GMI precipitation

volume (Fig. 6c). It is possible that the overestimation

in the Combined product is related to radar issues

such as sidelobe contamination, which contribute a small

amountof light precipitation in the Combined algorithm.

FIG. 6. Geographical distribution of the fractions of cold (PCT , 220K) DPR-RGPFs with

Combined volumetric precipitation is (a) larger and (b) smaller than GMI volumetric pre-

cipitation. (c),(d) As in (a),(b), but for warm (PCT . 250K) DPR-RGPFs. The distributions

are shown in 58 3 28 longitude and latitude boxes.
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The features that are associated with min89PCT .
250K are mostly the warm rain in the tropical ocean

(Liu and Zipser 2009). A large portion (.70%) of

warm DPR-RGPFs that have higher Combined pre-

cipitation than GMI precipitation are observed in

throughout the tropical (208S–208N) oceans, except

for some stratocumulus regions (Fig. 6c). The un-

derestimation from the GMI over these regions is

more likely due to the shallow systems, which do not

have enough liquid droplets to produce a strong

emission signal. Large amounts of warm rain (Liu

and Zipser 2009) and congestus (Wall et al. 2013) in

the tropical ocean show insufficient or no ice scat-

tering signatures, which also leads to un-

derestimation of precipitation by the GMI when

compared to the Combined. There are some oceanic

regions, such as the mid and southwestern Pacific

Ocean, mid-Atlantic Ocean, and Indian Ocean,

where a large portion (.30%) of warm DPR-RGPFs

that have higher GMI precipitation volume than the

Combined are observed (Fig. 6d).

Over land, similar distributions, but relatively fewer

features are observed when compared to their oceanic

counterparts. The cold DPR-RGPFs show a nearly

symmetrical distribution of the ratio of GMI to Com-

bined volumetric precipitation (Fig. 4d). The geo-

graphical distribution shows a large portion (70%)

of DPR-RGPFs over some regions of Africa, such

as the western Sahara, North Africa, Somalia, and

Namibia, and other regions such as Pakistan and Chile

have higher amounts of Combined precipitation than

GMI precipitation. On the other hand, other conti-

nental regions such as Argentina, Tibet, Saudi Arabia,

and Iraq show higher amounts of GMI precipitation

(Fig. 6b). For warm DPR-RGPFs (min89PCT. 250K),

Combined precipitation fraction is higher than that of

GMI (Fig. 4d) and is distributed relatively evenly over

the land (Fig. 6c).

Considering the Combined retrieval is the ‘‘truth’’

estimation, the abovementioned results show that

large biases are still present in the GMI precipitation

retrievals. Over various regions, the precipitation

biases are found to be associated with size of the

storm and its intensity, as described by the area and

min89PCT. The different types of precipitation sys-

tems have different microphysical properties that

need to be considered to correct the biases. Utilizing

the information from the above findings, a bias cor-

rection methodology is purposed to overcome the

uncertainties presented in the GMI precipitation re-

trievals. The system properties such as size, intensity,

and volumetric are used to find the bias factors. The

following section presents the description of the bias

correction methodology and then assessments of bias

corrected GMI precipitation.

4. Bias correction methodology

To correct the biases in the GMI precipitation re-

trieval, we have used the information that was learned

from the TRMM observations. The TRMM observa-

tions show that TMI misses the majority of rain associ-

ated with small systems (,200 km2), due to the lack of

ice scattering at 85GHz in warm rainfall. The rain vol-

ume from TMI is higher than from the PR for large

systems (.10 000 km2), due to beam filling effects and

weak precipitation beyond the sensitivity of the PR

(LZ2014). LZ2014 also highlighted that the bias pre-

sented in TMI and PR rain volume is related to pre-

cipitation systems, rather than the pixels independently.

Following up on LZ2014, but using the GPM observa-

tions, this work is intended to use precipitation systems

properties such as size and ice scattering information

from min89PCT to correct the bias present in the GMI

retrievals.

In each bin of system size and min89PCT, the pre-

cipitation volume from Combined and GMI is com-

pared in each DPR-RGPF to calculate bias factor.

Here, bias factor is defined as the fraction of Combined

accumulated precipitation over GMI accumulated

precipitation as a function of min89PCT and PF size

(Fig. 7). Since, the passive microwave signals have dif-

ferent background over land and ocean, we calculate

bias factor over land and ocean separately. Figure 7a

shows that the bias factor fraction is as high as 10 for

small and warm precipitation systems over the oceans.

That indicates that the GMI estimates a very low frac-

tion of total precipitation volume in warm and small

systems when compared to the Combined. The majority

of the rain associated with warm rain is missed by GMI

because of the lack of ice scattering signatures at

89GHz, and since the small systems might not be re-

solved by the large GMI footprint. However, for large

systems, the GMI estimated precipitation volume is

higher than the Combined by a factor of 2. Over land,

similar biases are found; except for very deep and cold

(min89PCT , 150K) systems, GMI overestimates the

Combined. The large stratiform region associated with

thick anvil clouds would be detected by GMI, but not by

the DPR. The DPR either misses the small ice particles,

which are beyond its sensitivity, or only detects hydro-

meteors at higher altitudes with no echoes in the near

surface bins. This kind of system is more significant

over land.

To examine howmuch the retrievals may be improved

by using the additional information of the precipitation
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system size and intensity, the bias corrected GMI is

calculated by using the following equation:

Bias corrected GMI5GMI volumetric precipitation

3 bias factors: (1)

GMI volumetric precipitation is multiplied by the

bias factors in each bin of min89PCT and system size

over land and ocean separately. The assessment of

bias corrected GMI is presented in the following

section.

Assessment of bias corrected GMI precipitation

It has been demonstrated in the earlier sections that the

GMI volumetric precipitation underestimates the Com-

bined for small (area, 200km2) andwarm (min89PCT.
250K) DPR-RGPFs, whereas for large systems (area .
2000km2), the GMI overestimates the Combined. For

cold (,220K) systems, both retrieval methods show

consistent results (Fig. 4). The biases in the GMI re-

trievals are overcome using a bias correction meth-

odology and an improved two-dimensional histogram

similar to Fig. 4 is presented in Fig. 8. Over land and

ocean, the ratio of GMI to Combined volumetric pre-

cipitation is almost symmetrical for both small and large

systems (Figs. 8a,b). This shows a significant improve-

ment of GMI precipitation amount for both small and

large systems. However, for large systems, there are still

a few DPR-RGPFs where the GMI slightly overestima-

tes the Combined.

Similarly, over ocean, the corrected GMI–Combined

ratios are almost symmetrical for both cold and

warm systems indicating the huge improvement in

precipitation estimation for warm systems (Fig. 8c).

This is crucial because more than 70% of warm DPR-

RGPFs are over the tropical ocean where the GMI

retrieval underestimates the Combined. This would

significantly improve biases in oceanic GMI retrievals.

Over land, although there are a fewwarmDPR-RGPFs

that show higher GMI precipitation volume than that

of Combined, the GMI is relatively consistent with the

Combined for both warm and cold systems.

The mean unconditional precipitation rate retrieved

by the GMI shows large discrepancies when compared

with the Combined precipitation rates over some land

and oceanic regions. The GMI overestimates the Com-

bined over central South America, central Africa, east-

ern China, and the central Pacific by up to 450mmyr21

or 50% (Figs. 1c,d). The bias corrected GMI mean un-

conditional precipitation rate over the aforementioned

regions are close to the Combined precipitation rates

(Figs. 9a,b). The biases are significantly reduced, for

example, over central America (;10% or 90mmyr21),

central Africa (;10% or 150mmyr21), eastern China

(,5% or 90mmyr21), and the central Pacific (,5% or

90mmyr21). Note that this method does not improve

the precipitation over Australia and some stratocumu-

lus regions because GPM sensors are shut down over

Australia and the DPR does not capture very light

precipitation over the stratocumulus regions. Also, over

the Mediterranean Sea, even though the annual pre-

cipitation rate is very low (300mmyr21), the GMI biases

(;25%) are not improved. The estimated mean un-

conditional precipitation rate from the corrected GMI

is more consistent with that of the Combined. For ex-

ample, over 408S–408N land and ocean, the corrected

FIG. 7. Ratios between accumulated precipitation of Combined and GMI as compared to minimum 89GHz PCT

and PF size (a) over ocean and (b) over land.
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GMI estimated annual precipitation rate is about

1067mmyr21, which is closer to the Combined estima-

tion (;1036mmyr21) than the uncorrected GMI

(;1105mmyr21) (Table 1). The annual mean improve-

ment is more substantial over land than over ocean. For

example, the corrected GMI estimates mean annual

precipitation to be about 855mmyr21 over land from

408S to 408N, which is more consistent with Combined

(796mmyr21) when compared to the uncorrected GMI

(;933mmyr21). This brings down GMI biases from

17% to 7% when compared to the Combined. Over

midlatitudes (208–408N/S), the corrected GMI pre-

cipitation rate (762mmyr21) is in good agreement with

the Combined (763mmyr21), especially when com-

pared to the uncorrected GMI (810mmyr21).

The mean zonal precipitation rates over land shows

significant improvement when compared to their

oceanic counterparts, where the zonal mean from

the GMI, Combined, and corrected GMI are almost

identical (Fig. 10). Tropical land shows a large dif-

ference in zonal mean between Combined and GMI.

However, the zonal mean from bias corrected GMI

over tropical land is close to the Combined, and becomes

almost identical over midlatitude land (Fig. 10b). The

estimated mean unconditional annual precipitation

rate over tropical land from the corrected GMI is

;1247mmyr21, which is more consistent with the

Combined (1142mmyr21), when compared to the un-

corrected GMI (1344mmyr21) (Table 1, Fig. 10).

The joint seasonal and zonal variation of precipita-

tion differences shows that the GMI overestimates

the Combined, especially during the Northern Hemi-

spheric summer and Southern Hemispheric winter

(Fig. 11a). Over the Northern Hemispheric midlati-

tudes during all seasons except winter, GMI over-

estimates the Combined by 25%. Over the tropics,

GMI overestimates the precipitation by ;20% during

the spring season. In a large area over the Southern

FIG. 8. Two-dimensional histogram of area and ratio of Combined and bias corrected GMI volumetric pre-

cipitation ofDPR-RGPFs (a) over ocean and (b) over land. (c),(d)As in (a),(b), but the two-dimensional histogram

of min 89GHz PCT and ratio of Combined and bias corrected GMI volumetric precipitation of DPR-RGPFs,

respectively. Dashed lines are the ratios of 0.5 and 2.
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Hemisphere (108–258S) during April to October, GMI

overestimates the Combined by about 25%. During the

Northern Hemispheric winter and Southern Hemi-

spheric summer, GMI is relatively consistent with

the Combined (Fig. 11a). Some of the seasonal and

zonal discrepancies between the GMI and Combined

retrievals are overcome with the bias correction ap-

proach. The joint seasonal and zonal variations of

percentage differences between the bias corrected

GMI and the Combined is presented in Fig. 11b. Large

biases (;20%) over 108–258S during April to October

have been reduced to ;5%. Many of the biases in

tropical regions are now within 10%, which is almost

half of the previous biases. Significant improvements

of GMI biases over Northern Hemispheric mid-

latitudes are also observed. The GMI biases (25%)

over those regions are reduced to 10% or less, except

for a small area (258–308N) during summer. However,

some of the winter season biases over certain latitudes

such as 308–408N, and 258–408S are not improved.

Those are probably the Australian and Mediterranean

biases that have been discussed earlier.

5. Summary

This study analyzes the performance of surface pre-

cipitation estimates from the GMI with respect to the

near surface precipitation estimated by the GPM

Combined product over 408S–408N. In general, GMI

and Combined precipitation estimates show consistent

geographical distributions on a global scale. However,

the mean zonal precipitation rate over 408S–408N from

GMI is 17% (4%) more than the Combined over land

(ocean). The GMI estimated precipitation is closer to

the Combined over ocean than it is over land. Over land,

especially central Africa, the Himalayan region, and

central South America, GMI estimates 30% more pre-

cipitation than the Combined. Over the Mediterranean,

GMI estimates about 20% less precipitation than the

Combined.

FIG. 9. Geographical distribution of (a) differences and (b) percentage differences between mean unconditional

precipitation rates estimated by Combined and GMI. The distribution is generated on a 58 3 28 longitudes and
latitudes grid. The GMI products are used only matched swath with combined (DPR).
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The uncertainties in GMI are further analyzed

based on a pixel-to-pixel comparison and the pre-

cipitation system properties such as system size and

min89PCT. The GMI shows higher occurrences for

lighter (,1mmh21) and lower occurrences for heavy

precipitation (.10mmh21) over both land and ocean.

The GMI tends to underestimate precipitation volume

for small systems (,200km2) and tends to overestimate

for large (.2000km2) systems. GMI probably detects

large areas of weak precipitation that are missed by

DPR because the minimum detectable signal limits

the precipitation rates that can be measured. GMI also

has serious issues detecting warm rainfall over the ocean

because there are insufficient or no ice scattering sig-

natures in these types of systems.

This study shows that the GMI precipitation un-

certainties are associated with ice scattering signatures

and storm size. Rather than treating pixels indep-

endently, GMI biases can be reduced by considering

precipitation systems. A simple bias correction approach

is developed based on the area and min89PCT of pre-

cipitation system. The GMI precipitation is modified by

considering the bias factors, which is the ratio of Com-

bined and GMI precipitation volume in each bin of area

and min89PCT over land and ocean separately. The bias

corrected GMI shows that the GMI precipitation biases

can be improved by 20%–30% over central Africa, the

Himalayan region, and central SouthAmerica. Themean

zonal bias corrected precipitation over 408S–408N land

shows only 7% bias when compared with the Combined

precipitation, which is a significant improvement from the

previous estimate (17%). The zonal and seasonal varia-

tion of the bias correctedGMI shows that this simple bias

correction approach is more promising over land, and

improves precipitation estimates in all seasons in tropics.

However, there are some regions, such as the Mediter-

ranean and stratocumulus regions, that this method does

not show such promising improvements. Over these re-

gions, using precipitation system information to reduce

biases is still a challenge.

While this study summarizes uncertainties related to

the GPMGMI precipitation retrieval and then develops

FIG. 11. (a) Joint zonal and seasonal variation of percentage differences betweenCombined andGMI precipitation.

(b) As in (a), but between Combined and bias corrected GMI precipitation.

FIG. 10. Mean zonal precipitation rates as a function of latitude

(a) over ocean and (b) over land, estimated by Combined (red curve),

GMI (black curve), and bias corrected GMI (blue dashed curve).
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a methodology to correct the bias associated with it,

a few caveats and future work should be highlighted.

First, the focus of this study is over relatively warm

surface of the globe where, the majority of precipitation

falls as liquid, and thus the study domain is restricted to

408S–408N. The precipitation systems beyond the study

domain are different than the tropics and subtropics,

and it is not appropriate to implement the same meth-

odology to the higher latitudes. Figure 11 also implies

the underestimation of the wintertime precipitation

at latitudes greater than 308. It is important to further

examine the relationship between retrieval biases and

surface temperatures. Snow retrieval using passive mi-

crowave sensors is still a challenge at mid- to high lati-

tudes, so a different approach may be required to deal

with higher-latitude precipitation systems, which war-

rants a future work. Second, the bias correction appro-

ach implements minimum 89GHz PCT as one of the

major parameters because of its comparable field of

view with the DPR. The lower-frequency channels such

as 10 or 19GHz may contribute more to the retrieval

results especially over ocean, where the most important

signature is emission. How to utilize these channels in

the precipitation features is worthy of considering in

the future. Last, the bias correction approach introduced

here is primarily intended to tune the GMI precipita-

tion retrievals over the tropics and subtropics. To im-

plement this approach to the other passive microwave

radiometer constellation members still need to adjust to

the different resolutions, frequencies, and sensitivities

and further work needs to be done. Besides some ca-

veats, this study demonstrates the potential of improving

the precipitation retrievals by using the precipitation

features information, which also indicates the worthi-

ness of including precipitation features information in

the GPROF database andmay be treated as an ancillary

parameter to further stratify the database.
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