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Abstract: This paper investigates the spatial dimension of socioeconomic and demographic factors
behind COVID-19 vaccine hesitancy. With a focus on a county with considerable sociodemographic
diversity in the state of Texas, USA, we apply regression models to census-tract-level data of the
unvaccinated population. In addition to disparities in accessing the vaccination service, particularly
for residents in rural areas, empirical results confirm under-vaccination among lower socioeconomic
neighborhoods and communities with signs of distrust in government. The spatial model regressions
further underscore the impact that vaccine hesitancy among residents in one community spread
to its nearby communities. This observed spatial spillover effect is attributable to the geographic
interactions of similar socioeconomic groups.
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1. Introduction

The newly developed COVID-19 vaccines have been widely viewed in the United
States as effective at preventing the coronavirus disease, hospitalization, and even deaths.
Following the U.S. Food and Drug Administration’s (FDA) full approval of the Pfizer-
BioNTech vaccine (Pfizer, New York, NY, USA) in August 2021, the number of vaccinations
surged across the nation [1].

Still, despite the widely publicized benefits and availability of the COVID-19 vacci-
nation, no more than 60 percent of the U.S. population was fully vaccinated by the end of
2021 [2]. Public health experts and policymakers alike have struggled to identify strategies
to continue to reduce COVID-19 vaccine hesitancy, defined as the delay in acceptance or
refusal of the service [3].

To enhance the progress of COVID-19 vaccination, the critical first step is to understand
the underlying drivers behind unvaccinated individuals, particularly their hesitancy or
skepticism about the service. Much of the fast-growing body of research on this topic
emphasizes disparities in different sociodemographic groups’ attitudes or fears towards
the available vaccines (e.g., [4–9]). It remains a challenge to effectively implement vaccine
campaign strategies to target those population segments with under-vaccination rates.

This paper fills this knowledge gap by offering a geographic or spatial context to the
socioeconomic and demographic factors behind vaccination hesitancy. Socio-demographics
tend to cluster in various neighborhoods of our study area. The spatial patterns that
we identify will potentially help public health officials and city planners improve the
vaccination rates of underserved neighborhoods and beyond.

2. Literature Review

Most studies on the sources of unwillingness to vaccinate draw inferences from cross-
sectional survey data. The consensus points to a higher hesitancy among the less-educated,
females, racial/ethnic minorities, people living in rural areas, and those with lower income
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or economic security [6–13]. In the United States, the economically disadvantaged popula-
tion is predominantly Hispanic or Black. These racial/ethnic minority groups are also more
likely to work in high-contact occupations, such as hotel housekeeping and restaurant food
service, which are particularly vulnerable to the infection risk of a virus contagion [14].

However, most studies that focus on vaccine hesitancy during the COVID-19 pan-
demic lack a geospatial perspective, which has played a crucial role in understanding
how the pandemic has unfolded over space and time. Because the spread of infectious
diseases akin to the coronavirus is inherently a spatial process primarily through close
human contact, geospatial-oriented data are indispensable for public health officials and
scientists to monitor, model, and control the spread of COVID-19 [15]. Similarly, Sarkar
and Morshed [16] show that as a result of “spatial connectivity” within a broad region, a
vaccine rollout strategy, especially in the face of limited vaccine supply, should correspond
to identified spatial patterns across different socioeconomic communities.

The transmission risk of COVID-19 tends to be higher in indoor spaces and close
quarters, such as prisons and nursing homes [17], and densely populated neighborhoods,
such as city centers [14]. Wong and Li [14] also found spillovers in virus outbreaks across
U.S. counties. Unlike the risk of infection, however, there is little research to understand
spatial patterns of vaccination rates in response to COVID-19 outbreaks.

Instead, the existing literature highlights the influence of subjective perceptions and
psychological factors on vaccine acceptance. People are more willing to get vaccinated if
they have more infection- or health-related fears, or if they trust health officials’ dissemi-
nation of COVID-19-related information rather than relying on the information on social
media [4,5,10]. Reich [18] found that parents with high levels of social privilege are more
likely to refuse vaccines for their children. They also tend to be geographically clustered or
socially connected to provide information and emotional support for each other within a
social group.

In the United States, citizens’ political views, or ideological allegiance in general,
also seem to have a strong influence on their willingness to receive COVID-19 vaccines.
During the early months of the nationwide vaccination program, Republican voters, and
some minority groups, notably Hispanics and Blacks, lagged in receiving shots [19,20].
While the racial gaps narrowed through the rest of 2021, the gap between Republicans and
Democrats remained wide. A recent survey indicated that nearly 40% of Republicans were
unvaccinated in October, compared with about 10% among Democrats [12].

Political affiliation in the U.S. is seemingly tied to demographics. For instance, during
the 2020 presidential election, White men and people living in rural communities tended to
favor the Republican party or Donald Trump; voters for the Democratic party or Joe Biden
were likely Black women and urban dwellers [21]. Political polarization in vaccination rates
appears to be uniquely a U.S. phenomenon, reflecting citizens’ perceptions of government
measures and information [3].

To summarize, the willingness to receive vaccination, particularly against COVID-19,
is likely subject to the confluence of social, economic, demographic, and some subjective
factors. From this perspective, intervention strategies to improve the success of vaccination
programs should take such determinants into account. This paper contributes to a better
understanding of the drivers of vaccine acceptance by exploring spatial variations in these
determinants. Neighborhood spillovers have been found to affect people’s exposure to
COVID-19 infection [14,22].

Beyond exploring a wide array of socioeconomic and demographic characteristics,
we consider the spatial dimension of vaccinations within a U.S. community. To do so, we
turn to a novel dataset of residents who have taken COVID-19 vaccines in one county with
diverse demographics. We find that under-vaccination is not evenly distributed across
the neighborhoods of this region. The finding of spatial clustering patterns in vaccine
hesitancy and the associated socioeconomic characteristics would help the public efforts to
successfully promote universal vaccination acceptance.
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3. Methods and Materials
3.1. Study Area

The geographic area of our study is Nueces County in Texas, a state that has experi-
enced remarkable waves of COVID-19 outbreaks since the beginning of 2020. Counties and
their equivalents are the primary administrative or political units in the U.S. According
to U.S. Census data, Nueces County’s population in 2020 was roughly 353,000. Ranked
at the 97th percentile among U.S. counties in population size, the area owes much of its
relatively large population to the city of Corpus Christi it encompasses. Corpus Christi
accounts for approximately 90% of Nueces County’s population but slightly less than 20%
of its land area.

In contrast to the rest of the nation, Hispanics make up 65% of Nueces County’s
population, making this ethnic group a majority instead of a minority nationwide. The
adult obesity rate is 33.2% and the diabetes rate is 13% [23]. By October 2021, about 60% of
its residents 12 years and older were fully vaccinated. The geographic and demographic
characteristics make this county an interesting case for studying the determinants of
under-vaccination.

The Corpus Christi–Nueces County Public Health District is the primary authority
that provides the COVID-19 vaccination service to the public within Nueces County. The
Pfizer-BioNTech and Moderna vaccines require two doses with the second dose about three
weeks after the first. The Johnson and Johnson vaccine was first available in March 2021,
and it required one dose instead of two.

In December 2020, the public health district began its COVID-19 vaccination service
to the public at the county’s Richard M. Borchard Regional Fairgrounds next to the city of
Corpus Christi. Online preregistration was required for the drive-thru vaccination service
at that site and seniors were given priority. The Moderna vaccine was the only option
before Pfizer became available in early February.

Throughout 2021, the public vaccination service expanded with additional locations
across the county, such as a major drive-thru facility at the American Bank Center in Corpus
Christi downtown. By October, the public health district had operated 18 sites, including
walk-thru sites such as the one in the area’s largest shopping mall, La Palmera. Including
other outlets, such as pharmacies, health clinics, and hospitals, the number of vaccination
sites across the county had grown to 104.

In late October, the public health district announced its availability of booster shots
for residents 18 years or older. For this reason, the window of our data collection spans
between January and October 2021. Given our focus on the spatial perspective of the
vaccinated population, the vaccination records from the public health district are grouped
into Nueces County’s census tracts.

One advantage of focusing on one instead of multiple counties is that all residents
in Nueces County should have received the same local public health information and
announcements. In addition to daily updates on local COVID-19 cases, hospitalized
patients, and deaths released by the public health district, all residents were subjected to
the same countywide policy measures that also covered the city of Corpus Christi, such as
business lockdown orders in early 2020 and the subsequent stepwise business reopening
announcements. This allows us to control the potential effects of otherwise different local
government policy actions and public information.

Most residents should also have the same opportunity to receive the COVID-19
vaccination service provided locally to the public. Nevertheless, the vaccination rates
of different population groups might differ due to their own inherent characteristics and
behaviors, including the influence of social networks [18] and access to the vaccine sites [24].

To our knowledge, this is the first study of vaccination hesitancy with official records
as opposed to survey data. Surveys are well known to suffer from potential selection
or response bias as there is no reliable way to ensure that respondents reveal their true
preferences. Even widely followed surveys by the U.S. Census and Delphi-Facebook have
been found to substantially overestimate COVID-19 vaccine uptakes in 2021 [25]. On
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the other hand, the official vaccination records lack individuals’ data beyond their basic
demographic information.

To circumvent the lack of some socioeconomic data of our interest, such as income
and educational attainment, we focus on census-tract-level vaccination data. By construc-
tion, a census tract typically contains 4000 people, so its land area varies depending on
population density. The U.S. Census Bureau considers a census tract the best description of
a “neighborhood.”

3.2. Vaccination Determinants

The objective of our empirical work is to evaluate the sources of under-vaccination
during the COVID-19 pandemic. In light of the existing literature that emphasizes the role of
socioeconomic and demographic factors [6–8,10–13], we consider the various components
that make up the U.S. Centers for Disease Control and Prevention’s [26] Social Vulnerability
Index (SVI). The SVI is aimed at helping public health officials and policymakers better
prepare for disease outbreaks and other disasters.

For each census tract, the CDC reports the census data for 15 social vulnerability
metrics, such as poverty and lack of vehicle access. We apply their most updated dataset,
which derives from the 2014–2018 Census estimates. Although these data are not for
2021, their cross-sectional patterns across different census tracts should not have changed
meaningfully. The census-tract-level data in our study area are incomplete for four of the
15 SVI factors, all of which are measures of housing types, such as mobile homes. For
this reason, we exclude these four housing factors. The other 11 metrics are grouped into
the following four themes: socioeconomic status (the poverty rate, the unemployment
rate, per capita income, and the population that has not finished high school), household
composition and disability (population share age 65 and older, population share age 17 and
younger, people with disabilities, single parents, and people who speak limited English),
minority status (share of race/ethnic minorities), and transportation (households with
no vehicle).

We consider those social vulnerability characteristics as primary sociodemographic de-
terminants in our regression models presented below. Motivated by other studies (e.g., [8]),
the models also control for the distinction between an urban and rural environment, which
is measured by the population density (persons per square mile) of the census tracts.

In light of recent studies (e.g., [2]) that emphasize the role of partisanship in vaccina-
tions across the U.S., we also consider the influence of people’s political views. To this end,
we obtained data for the share of residents voting for Biden versus Trump during the 2020
presidential election. The data are drawn from the New York Times [27], which reported
the numbers of votes for Biden and Trump at the local level. The data are the percentage of
lead, or margin, for Biden. A negative value represents a lead for Trump.

3.3. Model Regression Methods

In our empirical work, we first apply the census tract data to ordinary least squares
(OLS) regressions. Given the spatial dimension of our data, we further explore spatial
patterns in vaccinations. Motivated by strong evidence of spatial clustering in the vac-
cination data as shown in Section 4 below, we consider the spatial autoregressive (SAR)
approach [28]. The most general specification is the spatial Durbin model with K explana-
tory variables and N census tracts, as follows:

y = ρWy + Xβ + WXθ + ε (1)

where y is the N-vector of the unvaccinated population share; ρ is the spatial autocorrelation
coefficient; Wy is a spatially lagged dependent variable where W is an N × N spatial weight
matrix; X is an N × K matrix of explanatory variables so that WX is the corresponding
matrix of spatially lagged explanatory variables; β and θ are K-vectors of coefficients; ε
is an N-vector of residuals. The spatial Durbin model nests the following two different
models: (a) OLS if ρ = 0 and θ = 0; (b) SAR if θ = 0.
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The spatial weight matrix W captures the connections between different census tracts.
A popular way of parameterizing W is in the form of a first-order contiguity matrix, in
which the spatial weights wij are non-zero when census tracts i and j share a border, and
zero otherwise. The spatial weight matrix allows us to estimate for each of the following
explanatory variable two types of effects: (a) the “local” or direct effects, which measure the
impact of the explanatory variable of census tract i on the unvaccinated population share
in census tract i; (b) the “spillover” or indirect effects captured by the spatial lags, which
measure the impact of that variable of the neighboring census tracts on the unvaccinated
population share in census tract i.

4. Empirical Results
4.1. Vaccination Data

For our empirical analysis, we first compiled data of vaccination records by the
78 census tracts within Nueces County. Excluding the five tracts with very few residents
and no vaccination records, our analysis draws on 73 census tracts that contain data. The
dependent variable is the share of the unvaccinated population in each census tract, in
the sense that those residents had not received at least one shot of any of the COVID-19
vaccines, by October 2021. Our dataset is limited to those aged 12 and older, as the vaccines
were not authorized for children younger than 12 years until later that year. We obtained
data on the eligible population in each census tract from the 2020 Census.

Figure 1 shows the number of fully vaccinated residents in Nueces County from
January through October 2021. Those who had received two shots of the Pfizer and
Moderna vaccines and one shot of Johnson and Johnson were considered fully vaccinated.
The number of vaccine doses administered in Nueces County peaked in March.
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Figure 1. Fully vaccinated population in Nueces County, age 12 and older.

After falling over the following four consecutive months, vaccinations surged again
in the wake of the FDA’s approval of the Pfizer vaccine. By October, about 60% of the
population age 12 and older were fully vaccinated and 9% had received only one dose of
the Pfizer or Moderna vaccine.

Similar to the demographics, the vaccination rate varied remarkably across different
neighborhoods within Nueces County. Figure 2 shows a map of the distribution by census
tracts of the share of the unvaccinated population age 12 and older in October. The census
tracts with the highest shares of unvaccinated people (over 40%) are mostly near the city of
Corpus Christi’s downtown, followed by rural communities on the northwest side of the
county. The census tracts with less than 20% of their unvaccinated population are primarily
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on the south side of Corpus Christi. Overall, the map reveals a pattern of clustering among
census tracts in the sense that one census tract’s progress of vaccination is similar to its
neighboring census tracts.
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Despite the observed spatial patterns across census tracts, the challenge of getting
eligible individuals vaccinated seemed to prevail over time. To understand this, we compare
the vaccination rates in October with those in April. Across the county, 28% more residents
became fully vaccinated between May and October. Figure 3 displays a scatter plot of the
full vaccination rates for census tracts between April and October. Clearly, the vaccination
rate increased in tandem across most census tracts. This means little catchup over time
from census tracts with relatively fewer vaccinations.
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Census tract 59.00 was the only exception. The share of the unvaccinated population
in this rural community near the city of Robstown reduced from 65% in April to slightly
below 10% in October. Besides this outlier, evidence of strong persistence in the geographic
patterns of vaccinations over time motivates our investigation of their determinants. Since
our model controls for residents’ access to the vaccination sites through vehicle ownership
and a proxy for the rural environment, our regression results shed light on vaccine hesitancy
for the unvaccinated people.

4.2. Descriptive Statistics of Vaccination Determinants

Table 1 presents the descriptive statistics of the variables in our regression models.
The dependent variable is the share of the population age 12 and older that remains
unvaccinated. As the first row of the table shows, the average across the 73 census tracts
is roughly 34%. The range of the unvaccinated population’s shares between 4.74% and
67.39% is remarkable.

Table 1. Summary statistics for variables by census tract.

Variable Mean Median Std. Dev. Maximum Tract Minimum Tract

Unvaccinated Pop. (%) 33.66 35.50 10.43 67.39 5.00 4.74 54.17
Poverty (%) 16.22 14.40 9.72 46.60 56.02 3.20 54.09

Unemployment (%) 5.88 4.70 4.96 28.50 56.02 0.30 6.00
Per Capita Income ($) 27,029 24,702 10,715 60,802 62.00 11,384 56.02
No High School (%) 19.34 15.10 13.65 54.70 9.00 1.30 62.00

Age 65 and older (%) 13.86 13.20 4.40 29.30 64.00 3.40 54.13
Age 17 and younger (%) 25.33 26.00 5.34 37.50 17.01 2.50 64.00

Disabilities (%) 14.07 13.30 5.10 34.90 64.00 5.40 54.17
Single parents (%) 11.00 11.30 5.72 25.30 33.05 0.00 64.00

Minorities (%) 72.91 72.60 16.86 98.50 9.00 13.50 62.00
Limited English (%) 2.83 2.20 2.33 13.30 16.02 0.10 31.02

No vehicle (%) 8.17 5.30 8.29 41.50 64.00 41.50 14.00
Biden voters (%) 11.57 12.00 26.25 56.00 5.00 −55.00 58.02

Pop. density
(persons/mi2) 3,870 4,357 2,518 9,123 33.05 17 60.00

The rest of Table 1 displays the descriptive statistics for the explanatory variables.
Except for the measures of per capita income, political preferences (Biden voters), and
population density, all variables are expressed as percentages of the census tract population.
Accordingly, the typical census tract had about 14% of residents living in poverty, 15%
without finishing high school, and 2% with limited English proficiency. About 13% of its
residents were seniors aged 65 and older, about the same percentage with disabilities, about
double the percentage of 17 years or younger, and 11% were single parents. The minority
population across Nueces County was predominately Hispanic. Including Blacks, Asians,
and American Indians, who together accounted for less than 8% of the local population,
the racial/ethnic minority made up 73% of the local population.

The socioeconomic disparities are striking across the census tracts in Nueces County.
For instance, the per capita income level ranged from $11,384 to more than five times that
at $60,802. Likewise, more than half of the population had not finished high school in one
census tract in the Westside district next to downtown Corpus Christi, while nearly none
in another district on North Padre Island at the other end of the city. The wide range of
voter shares for Biden (Democrats) versus Trump (Republicans) also reflected the extent of
political polarization across different neighborhoods.

The spatial distribution of unvaccinated residents across Nueces County appears
to be associated with the spatial patterns of different socioeconomic and demographic
groups. Overall, residents were less likely to have received vaccinations if they lived in an
economically disadvantaged neighborhood with lower income and educational attainment.
For instance, the census tract 5.00 with the highest share of the unvaccinated population,
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at 67%, was at the upper end of downtown Corpus Christi. This is widely referred to as a
“historically Black” community, with 93% of its population being ethnic minorities.

On the other extreme, almost 95% of the residents in the census tract 54.17 were
vaccinated. This newly developed neighborhood on the south side of Corpus Christi had a
poverty rate of less than 4%. The area also had the most educated residents, and less than
2% of them had not finished high school.

In our regression analysis, all variables are expressed in logarithmic terms to mitigate
potential nonlinearity in the data. The measure of political preferences allows for negative
entries in the case of a lead for Trump as opposed to Biden. Following a popular approach
to dealing with negative values in a variable x, the log transformation applies to x + 1—
minimum(x). The minimum value is −55, so the transformed data are the logarithm of
the original values plus 56. Most of the explanatory variables that draw from the CDC’s
SVI seem well-suited for our study, but it is obvious that some of those social vulnerability
factors are highly correlated. For instance, census tract 56.02 had both the highest poverty
and unemployment rates, while census tract 62.0 had both the lowest minority population
and residents without finishing high school.

To understand the extent of correlation between the explanatory variables, Table 2
presents their pairwise Pearson correlation coefficients. The absolute size of a correlation
coefficient larger than 0.5 suggests a strong relationship between two variables, and a
negative value indicates an opposite relationship. According to the table, the per capita
income of a census tract is highly correlated with all other socioeconomic variables, such
as minority status, limited English proficiency, less than a high school education, and no
vehicle ownership.

Table 2. Correlation coefficients between explanatory variables.

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

(1) Poverty 1.00
(2) Unemployment 0.47 1.00
(3) Per Capita Income −0.69 −0.48 1.00
(4) No High School 0.68 0.39 −0.77 1.00
(5) Age 65 and older 0.18 0.02 0.16 0.15 1.00
(6) Age 17 and younger 0.10 0.18 −0.34 0.13 −0.59 1.00
(7) Disabilities 0.60 0.24 −0.42 0.61 0.56 −0.29 1.00
(8) Single parents 0.60 0.28 −0.52 0.32 −0.30 0.50 0.10 1.00
(9) Minorities 0.59 0.46 −0.86 0.77 −0.12 0.31 0.33 0.40 1.00
(10) Limited English 0.47 0.23 −0.47 0.63 0.13 0.17 0.39 0.29 0.62 1.00
(11) No vehicle 0.66 0.08 −0.43 0.55 0.29 −0.21 0.64 0.27 0.32 0.30 1.00
(12) Biden voters 0.42 0.32 −0.56 0.67 −0.04 0.19 0.27 0.23 0.56 0.54 0.28 1.00
(13) Population density 0.27 −0.02 −0.20 0.12 −0.02 −0.13 −0.05 0.06 0.32 0.23 0.14 0.29 1.00

As expected, a higher income level is associated with measures of lower socioeconomic
status. Similar to income, poverty is strongly associated with schooling, disabilities, and
vehicle ownership. Finally, census tracts with relatively more residents voting for Biden as
the U.S. president are neighborhoods with more minorities and non-English speakers. A
strong correlation between the explanatory variables in a model can potentially increase
the variance of the regression coefficients. We deal with the observed multicollinearity in
the regression analysis in the next subsection.

4.3. Ordinary Least Squares Regressions

Table 3 displays the OLS results of three alternative model specifications. The de-
pendent variable is the logarithmic value of the percentage of the population age 12 and
older that remained unvaccinated by October. Column (1) lists the coefficient estimates
of the baseline model with 13 explanatory variables. The 95% confidence intervals (c.i.)
are listed in brackets next to the corresponding coefficient estimates. Except for the Biden
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voters and population density variables, those variables are components of the CDC’s
SVI, representing socioeconomic and minority status, household composition, and ac-
cess to transportation. The estimation results suggest that under-vaccination was more
of a challenge for census tracts with a lower socioeconomic status, as represented by a
higher poverty rate, lower per capita income, lower educational attainment, and lower
vehicle ownership. The unemployment rate, however, does not offer the same qualitatively
meaningful explanatory power as the other socioeconomic variables.

Table 3. OLS results.

Variable
(1) (2) (3)

Coeff. 95% c.i. VIF Coeff. 95% c.i. Coeff. 95% c.i.

Constant −1.21 (−7.58, 5.16) 5.31 (3.73, 6.89) * 5.21 (3.65, 6.77) *
Poverty 0.18 (0.02, 0.34) ** 4.49 0.09 (−0.05, 0.23)

Unemployment 0.01 (−0.16, 0.18) 1.58 −0.03 (−0.09, 0.03) −0.02 (−0.07, 0.03)
Per Capita

Income 0.53 (0.04, 1.02) ** 7.19

No High School 0.48 (0.23, 0.73) * 6.45 0.38 (0.17, 0.59) * 0.41 (0.21, 0.61) *
Age 65 and older −0.29 (−0.56, −0.02) ** 2.25 −0.19 (−0.47, 0.09) −0.18 (−0.47, 0.11)

Age 17 and
younger −0.06 (−0.34, 0.22) 1.83 −0.15 (−0.42, 0.12) −0.19 (−0.47, 0.09)

Disabilities −0.20 (−0.47, 0.07) 3.13 −0.23 (−0.53, 0.07) −0.19 (−0.48, 0.1)
Single parents 0.01 (−0.09, 0.11) 2.21 0.03 (−0.07, 0.13) 0.07 (−0.04, 0.18)

Minorities −0.30 (−0.71, 0.11) 4.50 −0.43 (−0.76, −0.1) * −0.40 (−0.73, −0.07) **
Limited English −0.09 (−0.24, 0.06) 2.06 −0.10 (−0.26, 0.06) −0.10 (−0.25, 0.05)

No vehicle 0.13 (0.08, 0.18) * 1.86 0.12 (0.06, 0.18) * 0.12 (0.06, 0.18) *
Biden voters −0.10 (−0.19, −0.01) ** 1.98 −0.10 (−0.19, −0.01) ** −0.11 (−0.20, −0.02) **
Population

density 0.07 (0.02, 0.12) * 2.00 0.07 (0.01, 0.13) ** 0.08 (0.02, 0.14) **

Adjusted R2 0.60 0.57 0.57
Log likelihood 0.14 −3.23 −3.76
Standard error 0.27 0.28 0.28

Note: * p < 0.01; ** p < 0.05.

Contrary to the findings in other studies (e.g., [3,6,8]), the unvaccinated population
share tended to be lower in census tracts with relatively more seniors. This seemingly
odd finding might be attributable to the local efforts aiming to help inoculate homebound
residents in Corpus Christi. The city has developed the Save Our Seniors (SOS) Homebound
Program, in which firefighters provide in-home vaccinations for senior citizens beginning
in February [29]. The program has served as a model for a statewide SOS initiative to
identify and vaccinate homebound seniors in different neighborhoods across Texas [30].

The estimate for the political preference variable (Biden voters) supports the conven-
tional wisdom that the vaccination rate was higher in neighborhoods with relatively more
Democratic voters [2,20]. Also, the estimate of population density confirms higher vaccine
hesitancy among people living in rural communities.

The estimation results of the baseline model should nevertheless be interpreted with
caution. One primary shortcoming arises from the selection of explanatory variables. Even
though most socioeconomic variables reflect different aspects of social vulnerability, some
of them are highly correlated, as discussed in Section 3 above. For instance, per capita
income and poverty are inherently associated with educational attainment as measured by
high school graduation, English proficiency, and disabilities. Multicollinearity among these
variables can potentially lead to bias in the variances of the coefficient estimates. In addition
to the correlation matrix displayed in Table 2, the variance inflation factors (VIF) listed next
to the coefficient estimates shed light on the potential effects due to multicollinearity. The
poverty, income, and educational attainment variables have a VIF close to or higher than
five, suggesting their strong correlations with other explanatory variables in the model.

To explore the potential multicollinearity problem, we also present regression results
with alternative model specifications without those variables with relatively high VIFs.
Column (2) shows the coefficient estimates without per capita income. In this case, the share
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of minorities becomes statistically significant. The negative sign indicates that minority-
dominant neighborhoods tended to witness higher vaccination rates. This result contradicts
previous findings in the literature (e.g., [6,8]) that emphasize vaccine hesitancy among
racial minorities and other economically disadvantaged populations. This surprising result
can be attributed to the fact that Hispanics were more likely to be Democrat as opposed to
Republican voters, especially in Nueces County.

Column (3) shows the corresponding results without poverty and income. Most coeffi-
cient estimates of the remaining variables are nevertheless similar to those in column (2).
The overall goodness of fit, as measured by R2 adjusted for the number of explanatory
variables, also does not change. This perhaps reflects the strong relationship of the two ex-
cluded variables with educational attainment. Intuitively, residents’ educational attainment
affects their income levels and their likelihood of falling into poverty.

4.4. Spatial Regression Results

A popular test for spatial dependence is Moran’s I statistic, which is 0.30 for the
dependent variable. The test’s null hypothesis of spatial randomness (absence of spatial
dependence) can be rejected at the 1% significance level. The positive Moran’s I statistic
suggests clustering of similar data values across different census tracts. The Moran’s I
statistics for the residuals of all the OLS model regressions in Table 3 are also statistically
significant, suggesting the presence of spatial autocorrelation. For instance, the Moran’s
I statistic for the residuals of the model in column (3) is 0.18, which is significant at the
1% level.

Supported by the above statistical evidence of spatial autocorrelation, Table 4 shows
the model regression results of the alternative SAR and Durbin specifications. The set of
explanatory variables corresponds to those listed in column (3) of Table 3. The first column
lists the regression results of SAR, which augments the OLS model with a spatially lagged
dependent term (Wy). The estimate for spatial autocorrelation (ρ) is 0.32, suggesting that
nearly one-third of one census tract’s vaccine hesitancy was related to that in its neighboring
census tracts. The coefficient estimates of most variables do not alter appreciably from
their OLS counterparts, even when spatial autocorrelation is taken into account. One
notable exception is the variable for seniors (age 65 and older), which becomes statistically
significant at the 10% level.

Table 4. Spatial regression results.

Variable SAR Durbin

Explanatory Variable Spatial Lag

Coeff. 95% c.i. Coeff. 95% c.i. Coeff. 95% c.i.

Constant 4.07 (1.95, 6.19) * −0.38 (−4.38, 3.62)
Unemployment 0.01 (−0.19, 0.21) −0.01 (−0.06, 0.04) 0.03 (−0.14, 0.2)
No High School 0.35 (0.14, 0.56) * 0.43 (0.22, 0.64) * 0.49 (0.05, 0.93) **

Age 65 and older −0.22 (−0.48, 0.04) *** −0.17 (−0.47, 0.13) 0.22 (−0.39, 0.83)
Age 17 and younger −0.11 (−0.36, 0.14) 0.01 (−0.99, 1.01) −0.08 (−0.67, 0.51)

Disabilities −0.16 (−0.47, 0.15) −0.06 (−0.39, 0.27) 0.08 (−0.72, 0.88)
Single parents 0.04 (−0.08, 0.16) 0.04 (−0.04, 0.12) −0.06 (−0.37, 0.25)

Minorities −0.37 (−0.7, −0.04) ** −0.51 (−0.89, −0.13) * 0.63 (−0.02, 1.28) ***
Limited English −0.09 (−0.22, 0.04) −0.08 (−0.23, 0.07) 0.01 (−0.99, 1.01)

No vehicle 0.12 (0.06, 0.18) * 0.11 (0.06, 0.16) * −0.02 (−0.15, 0.11)
Biden voters −0.13 (−0.22, −0.04) * −0.20 (−0.3, −0.1) * 0.34 (0.08, 0.6) *

Population density 0.07 (0.01, 0.13) ** 0.06 (−0.01, 0.13) *** −0.07 (−0.18, 0.04)
Wy 0.32 (0.05, 0.59) ** 0.85 (0.24, 1.46) *

Adjusted R2 0.65 0.66
Log likelihood −2.04 6.68
Standard error 0.25 0.24

Note: * p < 0.01; ** p < 0.05; *** p < 0.1.

As for the OLS model, the SAR model suggests that the vaccination rate was lower
among residents without a vehicle or those living in a less-populated, rural community.
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Controlling for these two factors that likely affected people’s access to the COVID-19
vaccination sites, less-educated people and voters for the Republican party were more
likely to refuse the COVID-19 vaccines.

Compared with OLS, the SAR model provides a better fit to the data, as supported
by all the summary statistics (R2, log likelihood, and standard error). In addition, the
Lagrange multiplier statistic for testing the spatial autoregressive term is 3.99, which is
significant at the 5% level. Alternatively, a likelihood ratio (LR) test based on comparing
the log likelihood values of the OLS and SAR models is 3.44, which is also significant at the
10% level.

Compared with SAR, the Durbin model specification also includes the spatial lags of
the explanatory variables. The right panel of Table 4 shows the coefficient estimates for the
explanatory variables and their spatial lag terms in two separate columns. The LR test for
comparing the overall goodness of fit of the Durbin model against SAR is 17.44, which is
also statistically significant at the 10% level. This supports the role of the spatial spillovers
in socioeconomic factors for explaining vaccination hesitancy.

Alternatively, we can evaluate the validity of the spatial Durbin model versus the
respective OLS and SAR model specifications through tests on the coefficient estimates.
The chi-squared statistic for testing the null hypothesis of ρ = 0 and θ = 0 is 34.12, which is
statistically significant at the 1% level. This supports the collective explanatory power of all
spatial lag terms in the Durbin model. The corresponding test for the Durbin specification
against SAR draws from testing the null hypothesis of θ = 0 (the coefficient of the spatial
lags of the 11 explanatory variables). The chi-squared statistic at 23.79 is also statistically
significant at the 1% level. Taken together, these test results confirm the validity of the
spatial Durbin model over the OLS and SAR specifications as special cases. In other words,
spatial autocorrelation prevails in both vaccine hesitancy and its determinants.

The coefficient estimates of the spatial Durbin model reveal several noteworthy find-
ings. First, the inclusion of the spatially lagged explanatory variables more than doubles
the estimate of the autoregressive coefficient (ρ) from 0.32 to 0.85, perhaps due to strong
relationships between the spatial lags of dependent and explanatory variables. Second,
the point estimates for the coefficients of the explanatory variables tend to be higher when
spatial lags are added to the model, while their qualitative results remain largely the same.
Finally, most spatial lags that are statistically meaningful are also positive in their point
estimates. The positive spatial spillover effects implied by those estimates suggest that the
socioeconomic status of a neighborhood is directly tied to its nearby neighborhoods.

5. Discussion

In addition to transportation barriers, particularly for residents living in rural commu-
nities, our regression results confirm the role of socioeconomic factors that reflect economic
insecurity, particularly educational attainment, that also affects income earnings. These
findings complement the existing literature that focuses on social inequity in COVID-19
vaccinations [6–9,11]. On the other hand, our empirical results contradict earlier studies
that reported challenges facing racial/ethnic minorities in the U.S. [19,20]. Within the
South Texas community from which we drew data, neighborhoods with a larger Hispanic
population share tended to show higher vaccine acceptance than neighborhoods with a
larger non-Hispanic White population share. The root cause behind this counterintuitive
finding is difficult to pinpoint, but this might point to the extent of trust or distrust in the
local government across different demographic groups within the same community.

Moreover, controlling for a myriad of sociodemographic factors, vaccine hesitancy
also tends to be lower among the census tracts with relatively more voters for Biden in the
2020 presidential election. In line with recent observations [2], this finding highlights the
impact of political polarization on public distrust in government information and actions.
Hispanics also tend to favor the Democratic party, and minority-dominated neighborhoods
witness higher vaccination rates.
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Beyond the finding of socioeconomic factors that align with the earlier literature on the
drivers of vaccine hesitancy during the COVID-19 pandemic, our empirical results highlight
neighborhood disparities in vaccinations. The census tracts with more residents without
a vehicle and rural communities tend to have lower vaccination rates. The spatial model
regressions further suggest that vaccine hesitancy among residents in one neighborhood
is directly related to vaccine hesitancy in its nearby neighborhoods. In line with the
finding of spatial clustering in vaccine acceptance [9], the observed spatial spillover effect
is attributable to the geographic interactions between similar socioeconomic groups.

COVID-19 has disproportionately affected ethnic minorities and other economically
disadvantaged groups [14,31]. Yet we have presented evidence that people in lower
socioeconomic neighborhoods have also stayed behind in receiving COVID-19 vaccinations,
and those neighborhoods tend to cluster together. While what has driven the partisan
gaps in vaccinations is unclear, our evidence lends itself to signs of disparate beliefs about
vaccines, perceptions of public information, or distrust in government [3]. This sets the
stage for Republican and Democratic politicians alike to improve vaccination outcomes
by fostering a more inclusive community. Indeed, Pink et al. [32] found that unvaccinated
Republicans were more willing to get vaccinated if they saw an endorsement from a
prominent political figure, in this case, either Donald Trump or Joe Biden.

A consensus has emerged that getting the vast majority of people vaccinated is neces-
sary to overcome the COVID-19 pandemic. Our empirical results together highlight some
critical challenges facing U.S. policymakers and local public health officials in their efforts
to vaccinate residents. While the geographical scope of this study allows us to evaluate
the disparities across different neighborhoods, it remains unclear whether the findings
from that south Texas county accurately represent other U.S. communities. From this
perspective, one avenue for future research is to extend the focal area to other communities
with different sociodemographic makeups. Another fruitful research focus is identifying
the factors behind the observed political polarization in the unvaccinated population.

6. Conclusions

This paper aims to investigate the spatial dimension of socioeconomic and demo-
graphic factors behind COVID-19 vaccine hesitancy, as measured by the unvaccinated
population. To this end, we investigated a novel dataset of vaccination records in Nueces
County, which is a community in the state of Texas with an outsized minority population
and diverse socioeconomic groups. The empirical results draw primarily on the set of social
vulnerability factors reported by the CDC.

The vaccination rate was not evenly distributed across our study area. Neighborhoods
with more Republicans and less-educated residents were more likely to refuse the COVID-
19 vaccination. Vaccination also presented a challenge to those living in rural areas or
without a vehicle. Overall, the wide-range of localized responses to the public COVID-19
vaccination service points to the drawback of offering a summary of the U.S., or even
county-level, vaccination rates, because a regional average obscures disparate conditions
across local neighborhoods.

Our study draws on official vaccination records as opposed to self-reported survey
responses that the vast majority of the related literature relies on. Our findings, therefore,
should be free from the survey sampling bias that has been found to plague even the
largest surveys ever conducted for COVID-19 vaccination, such as those conducted by the
Delphi-Facebook and Census Household Pulse [25]. Our regression analyses have further
confirmed various sources of vaccination barriers and hesitancy, including educational
attainment and political affiliation, which led those surveys to overestimate vaccine uptakes
in the U.S. due to the under-representation of less vaccinated demographic groups.

Instead of one-size-fits-all policies, strategies to promote vaccination acceptance and
to respond to future contagion outbreaks might benefit from prioritizing individual so-
cioeconomic clusters. A good case in point is the city of Corpus Christi’s place-based SOS
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initiative, which is associated with higher vaccination rates among otherwise under-served
neighborhoods with disproportionately more elderly and other homebound residents.
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