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Abstract

A deep-learning neural network (DLNN) model was developed to predict thun-

derstorm occurrence within 400 km2 South Texas domains for up to 15 hr

(±2 hr accuracy) in advance. The input features were chosen primarily from

numerical weather prediction model output parameters/variables; cloud-to-

ground lightning served as the target. The deep-learning technique used was the

stacked denoising autoencoder (SDAE) in order to create a higher order repre-

sentation of the features. Logistic regression was then applied to the SDAE out-

put to train the predictive model. An iterative technique was used to determine

the optimal SDAE architecture. The performance of the optimized DLNN classi-

fiers exceeded that of the corresponding shallow neural network models, a clas-

sifier via a combination of principal component analysis and logistic regression,

and operational weather forecasters, based on the same data set.
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1 | INTRODUCTION

The objective of this research is to use the machine learning
(ML) technique known as deep learning (Goodfellow
et al., 2016) to predict thunderstorm occurrence (±2 hr and
400 km2 accuracy) up to 15 hr in advance. In particular, a
deep-learning neural network (DLNN) was used to post-
process a deterministic numerical weather prediction (NWP)
model output to train and optimize a binary classifier. The

model performed in a superior manner to a corresponding
shallow neural networkmodel developed to predict thunder-
storms over a South Texas domain (Figure 1) within the
United States (Collins and Tissot, 2015, 2016). The NWP
models historically have been used to predict the future state
of the atmosphere (Bjerknes, 1904; Kalnay, 2003) and are
essential with respect to predictions beyond 3 hr (Wilson
et al., 1998).

However, the NWPmodel structure itself limits the pre-
dictability of the future atmospheric state. The NWP model
configuration components, such as discretization, trunca-
tion and parameterization, introduce errors that grow dur-
ing model integration (Kalnay, 2003). Bifurcation, wherein
nearly identicalmodelled atmospheric thermodynamic pro-
files can result in divergent solutions (Elmore et al., 2002),
further limits predictability. The chaotic nature of the
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atmosphere, with extreme sensitive dependence on the ini-
tial conditions (Lorenz, 1963, 1969), also limits the predict-
ability of the future atmospheric state. Further, the fact that
thunderstorms develop at micro-α and meso-γ scales
(0.5–5 km; Orlanski, 1975) renders the prediction of such
more difficult since the intrinsic predictability of the atmo-
sphere is proportional to the spatial scale (Lorenz, 1969).

A well-known strategy used to account for the uncer-
tainty in deterministic NWP output due to model initial
conditions and configuration errors is to use an ensemble of
NWP runs (Leith, 1974) wherein each ensemble member is
a separate NWP run distinguished by a change to themodel
configuration and/or magnitude of the initial parameters of
the atmospheric variables. The idea is to model the sensitiv-
ity of the prediction due to the initial conditions and config-
uration errors. Thus, the forecaster can access the level of
prediction uncertainty by assuming a positive correlation
between uncertainty and the divergence (or spread) of the
ensemble members. With respect to thunderstorm forecast-
ing, prediction probabilities can be developed by post-
processing the ensemble. For example, the parameter Cali-
brated Probability of Thunderstorm is generated by post-
processing the ensemble of 21 NWP model runs from the
Short-Range Ensemble Forecast (SREF) system developed

by the US National Weather Service (Storm Prediction
Center, 2019). Kain et al. (2013) and Bouttier and March-
al (2020) demonstrated the utility of this state-of-the-art
ensemble approach to thunderstorm prediction.

A different strategy/paradigm is sought in order to
account for chaos in atmospheric prediction and errors in
NWP output. Rather than post-process a set of unique NWP
ensemble runs to predict the future atmospheric state
and/or atmospheric phenomena, the NWP output is post-
processed from single deterministic runs by training and
optimizing a model using the ML, a strategy similar to that
used by Collins and Tissot (2015), wherein an NWP model
output served as features to train and optimize shallow neu-
ral network models to predict thunderstorms. Unlike Col-
lins and Tissot (Collins and Tissot, 2015, 2016), the DLNN is
used as the ML technique instead of shallow neural net-
works. Pathak et al. (2018) demonstrated the utility of
predicting the future state of chaotic dynamic systems by
combining a dynamic model that describes the system with
theML. Further, given that an ensemble of the NWP runs is
obviously computationally expensive relative to single
deterministic runs, a prediction of thunderstorm occur-
rence by post-processing secondary output parameters from
a single deterministic NWP model integration with an

FIGURE 1 Domain grid defined by 286 boxes of area 20 × 20 km. The deep-learning neural network (DLNN) model used in the

present study is trained for all boxes and tested on boxes 73, 103 and 238 (grey filled boxes). Source: Adapted from Collins and Tissot (2015)
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accuracy/skill comparable with that of a model ensemble
system would clearly possess high utility. A motivation for
using deep learning to predict thunderstorms is the appar-
ent performance enhancement of deep-learning models rel-
ative to the shallow variety with respect to weather and air
quality predictions (Hossain et al., 2015; Hernández
et al., 2016; Li et al., 2016; Tao et al., 2016), These deep-
learning models are based on representation learning
(Goodfellow et al., 2016), whereby unsupervised learning
occurs across two or more hidden layers as a pre-training
step in order to generate an increasingly higher order repre-
sentation of the input features, with the final hidden layer
(with the highest order representation) serving as input into
a supervised learning algorithm.

Thanks to the increasing availability of large data sets
and affordable computational power, deep-learning algo-
rithms can now model complex nonlinear relationships in
the earth sciences (Hernández et al., 2016; Scher, 2018;
Gagne II et al., 2019; Lagerquist et al., 2019; Kamangir et al.,
2018; Pashaei et al., 2020; Reichstein et al., 2019). The intro-
duction of DLNNs in 2006 (Hinton et al., 2006) has led to
large changes in artificial intelligence (AI) and ML in many
areas of research. Deep-learning algorithms aim at learning
high-level feature representations to solve complex prob-
lems, while establishing relationships between problem pre-
dictors and predictands. The DLNN has shown the ability to
generate higher performance models as compared with the
traditional ML. The specific representation learning-based
algorithm used in the present study is the stacked denoising
autoencoder (SDAE), which involves an unsupervised
greedy layer-wise pre-training process followed by the train-
ing of a predictivemodel (Goodfellow et al., 2016).

The paper is organized as follows. Section 2 describes
the DLNN model development. Section 3 details the
model's implementation, including the presentation of
the results. The conclusions are given in Section 4.

2 | METHODOLOGY

This section describes the DLNN model domain, the cho-
sen features (and associated rationale), the target, a
detailed explanation of the SDAE method and a descrip-
tion of the reference methods used to compare it with the
DLNN model developed in the present study.

2.1 | Model domain

The DLNNmodel domain is represented as a grid of 13 × 22
equidistant points, with a grid spacing of 20 km, resulting in
286 box regions of area 400 km2 (Figure 1). The domain
includes the southern portion of the US state of Texas and a

section of the Gulf of Mexico. The latitude–longitude pair of
the northeast, southeast, southwest and northwest corners
of the domain are 29.17955� N–96.05539� W, 26.86122� N–
96.15182� W, 26.91000� N–100.58000� W and 29.25613� N–
100.58000� W, respectively. This is the same domain as used
by Collins and Tissot (2015).

The DLNNmodels were trained over the entire 286 box
domain, while the results were analysed for three of the
boxes (see the highlighted boxes in Figure 1). The three
boxes were selected to account for the diversity of
thunderstorm-formation mechanisms and the climatic fre-
quency of thunderstorm occurrence in order to assess the
robustness of the DLNN models developed. Boxes 103 and
238 were representative of conditions within the West Gulf
Coastal Plain, with Box 103 selected to assess more specifi-
cally model performance along the shoreline of the Gulf of
Mexico, and Box 238 to exemplify the portion of the study
area with the highest lightning frequency. Box 73 was indic-
ative of the conditions within the Rio Grande Plains, a drier
portion of the study area with a low lightning frequency.

2.1.1 | Features

The features chosen originated from the North American
Mesoscale Forecast System (NAM) (NWS/EMC, 2019)
developed by the National Weather Service, National Cen-
ters for Environmental Prediction, Environmental Model-
ing Center (NWS/NCEP/EMC). The NAM is a placeholder
for the operational mesoscale model run on the North
American domain. The training and testing sets were
derived from the 2004–2012 period of the NAM, which
includes the hydrostatic Eta (Rogers et al., 1996) (March
1, 2004–June 19, 2006), Weather Research and Forecasting
Non-hydrostatic Mesoscale Model (WRF-NMM) (Janjic
et al., 2001) (June 29, 2006–September 30, 2011), and
National Oceanic and Atmospheric Administration
(NOAA) EnvironmentalModeling SystemNon-Hydrostatic
Multiscale Model on the Arakawa B-Grid (NEMS-NMMB)
(October 1, 2011–December 31, 2012) model output.

All 35 of the specific NAM-based features chosen for
the study originated from all NAM features chosen by
Collins and Tissot (2015) and were based on meteorologi-
cal expertise combined with an extensive literature sea-
rch regarding the myriad of atmospheric moisture,
instability and lift factors critical to thunderstorm devel-
opment. Collins and Tissot (2016) used the same NAM-
based features. Several studies add credence to the choice
of features used in the present study. The variable selec-
tion scheme used by Simon et al. (2018) and the variable
importance method used by Mecikalski et al. (2015) col-
lectively identified convective available potential energy
(CAPE), convective inhibition (CIN), convective
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TABLE 1 Deep-learning neural network (DLNN) model predictors (features)

Abbreviation Description (units) Justification as a thunderstorm predictor

PWAT (1) Total predictable water (mm) Atmospheric moisture proxy

MR850 (1) Mixing ratio at 850 hPa (g�kg−1) Lower level moisture necessary for convective cell to reach a
horizontal scale of ≥ 4 km in order to overcome dissipative
effects (Khairoutdinov and Randall, 2006)

RH850 (1) Relative humidity at 850 hPa (%) When combined with CAPE, it is a predictor of subsequent
thunderstorm location independent of synoptic pattern
(Ducrocq et al., 1998)

CAPE (1) Surface-based convective available
potential energy (J�kg−1)

Instability proxy; the quantity (2CAPE)0.5 is the theoretical limit
of the thunderstorm updraft velocity (Trier, 2003)

CIN (1) Convective inhibition (J�kg−1) Surface-based convective updraft magnitude must exceed
(CIN)0.5 for parcels to reach a level of free convection
(Trier, 2003)

LI (1) Lifted index (K) Atmospheric instability proxy; utility in thunderstorm prediction
(Haklander and Van Delden, 2003)

ULEVEL,VLEVEL (1) U,V wind components at surface,
850 hPa [LEVEL = surface, 850 hPa]
(m�s−1)

Strong wind can modulate or preclude surface heterogeneity-
induced mesoscale circulations (Dalu et al., 1996; Wang
et al., 1996)

VVLEVEL (1) Vertical velocity at 925, 700 and
500 hPa [LEVEL = 925, 700 and
500 hPa] (Pas−1)

Account for mesoscale and synoptic-scale thunderstorm
triggering mechanisms (sea breezes, fronts, upper level
disturbances) that are resolved by the NAM

DROPOFFPROXY (1) Potential temperature drop-off proxy
(K)

Atmospheric instability proxy; highly sensitive to CI
(Crook, 1996)

LCL (1) Lifted condensation level (m) Proxy for cloud base height; positive correlation between cloud
base height and CAPE to convective updraft conversion
efficiency (Williams et al., 2005)

TLCL (1) Temperature at the LCL (K) TLCL ≥ −10�C is essential for the presence of supercooled water
in convective cloud essential for lightning via a graupel-ice
crystal collisional mechanism (Saunders, 1993)

CP (1) Convective precipitation (kg�m−2) Byproduct of the Betts–Miller–Janjic convective
parameterization scheme (Janjic, 1994), when triggered; proxy
for when the NAM anticipates existence of subgrid-scale
convection

VSHEARS8 (1) Vertical wind shear: 10 m to 800 hPa
layer (103 s−1)

Combination of horizontal vorticity (associated with ambient
0–2 km vertical shear) and density current (e.g. gust front)-
generated horizontal vorticity (associated with a 0–2 km
vertical shear of the opposite sign than that of ambient shear)
can trigger new convection (Rotunno et al., 1988)

VSHEAR86 (1) Vertical wind shear: 800–600 hPa layer
(103 s−1)

Convective updraft must exceed the vertical shear immediately
above the boundary layer for successful thunderstorm
development (Colquhoun, 1987; Crook, 1996)

ULEVEL,VLEVEL (2) U,V wind at the surface, 900, 800,
700, 600 and 500 hPa levels
[LEVEL = surface, 900, 800, 700, 600
and 500] (m�s−1)

Thunderstorm profile modification owing to veering of the wind
(warming) or backing of the wind (cooling); backing (veering)
of the wind in the lowest 300 hPa can suppress (enhance)
convective development (Findell and Eltahir, 2003)

HILOW (2) Humidity index (�C) Both a constraint on afternoon convection and an atmospheric
control on the interaction between soil moisture and
convection (Findell and Eltahir, 2003)

CTPPROXY (2) Proxy for convective triggering potential
(dimensionless)

Both a constraint on afternoon convection and an atmospheric
control on the interaction between soil moisture and
convection (Findell and Eltahir, 2003)
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precipitation, vertical velocity (at both the 500 and
700 mb pressure levels), and lifted condensation level
(LCL) height as relevant thunderstorm predictors, all of
which are included as features in the present study.
Table 1 depicts all the variables used as input features to
the SDAE, as well as a brief discussion of the rationale
for their selection. The study combines the 35 NAM-
based features with Julian day, latitude and longitude
(for a total of 38 features). Owing to the additional three
features, the DLNN models were trained to predict thun-
derstorms as a function of location and season.

2.1.2 | Target

Cloud-to-ground (CG) lightning was used as the proxy for
thunderstorm occurrence and obtained from the terrestrial-
based National Lightning Data Network (NLDN)
(Orville, 2008). A target vector was created that contained
the number of CG lightning strikes per date/hr/box for the
study duration (2004–2012). The target was defined as:

td,h =
0,L=0

1,L 6¼ 0

�

where d and h represent the date and hour (UTC),
respectively; and L is the quantity of CG lightning strikes
per hr within a given 400 km2 box region.

2.2 | Stacked denoising
autoencoder (SDAE)

While most ML models work with raw input features, their
performance is influenced by the number of features. Some-
times the performance is degraded by increasing the

number of features. This problem is known as the curse of
dimensionality (Charte et al., 2018). One solution to this
problem is to engineer manually a set of features based on
expertise. This technique can be time-consuming and error
prone. Automated feature selection methods continue to be
developed to reduce the dimension of input space, selecting
the best subset of features (Dash and Liu, 1997). However,
presently these techniques typically consider the impor-
tance of each feature independently before selecting or
eliminating them. Feature extraction or construction (Liu
and Motoda, 1998) is a good alternative to reduce the
dimension of input feature space. Several feature extraction
techniques all have the goal of finding a better representa-
tion of input features by extracting combinations of the
original features. Methods include linear combinations,
known as linear dimensionality-reduction techniques such
as principal component analysis (PCA) (Jolliffe, 2011) or
linear discriminant analysis (Fisher, 1938), and nonlinear
combinations or nonlinear dimensionality reduction tech-
niques such as kernel PCA and autoencoders (AEs).

2.2.1 | Autoencoder (AE)

AnAEnetwork is a specific type of feed-forward neural net-
work with a symmetric structure that attempts to recon-
struct the output to resemble the input as closely as
possible. The basic structure of the AE is illustrated in
Figure 2, including the encoder function (function f )
responsible for mapping the input (x) onto the encoding
y and producing the reconstructed features r using the
decoder function g (Vincent et al., 2010; Baldi, 2012). Both
x and r must have the same dimension. Internally, the AE
hidden layer is known as the bottleneck. The dimension of
the encoding layer y is selected based on the desired proper-
ties of the AE. It can be less than the input dimension
known as an undercomplete AE, or higher than the input

TABLE 1 (Continued)

Abbreviation Description (units) Justification as a thunderstorm predictor

VSHEARS7 (2) Vertical wind shear: Surface to 700 hPa
layer (103 s−1)

Strong vertical shear in the lowest 300 hPa can suppress
convective development (Findell and Eltahir, 2003)

VSHEAR75 (2) Vertical wind shear: 700–500 hPa layer
(103 s−1)

Convective updraft must exceed vertical shear immediately
above the boundary layer for successful thunderstorm
development (Colquhoun, 1987; Crook, 1996)

JD (3) Julian day (day) Periodic function providing information to the DLNN regarding
thunderstorm occurrence as a function of season

Location (3) Latitude and longitude Providing information to the DLNN regarding thunderstorm
occurrence as a function of location

Note: Numbers in parentheses to the right of each feature denote the following: 1: North American Mesoscale Forecast System (NAM) pre-
dictor variable, as described in Section 2.1.1; 2: NAM initialization variable; and 3: variable other than the NAM variable.
Source: Adapted from Collins and Tissot (2015).
CI or CIN, Convective Inhibition.
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dimension known as an overcomplete AE. The simplest AE
consists of just one hidden layer, and is defined by two
weight matrices and two bias vectors (Charte et al., 2018):

y= f xð Þ= S1 W 1x+ b1ð Þ ð1Þ

r= g xð Þ= S2 W 2x+ b2ð Þ ð2Þ

whereW1 andW2 areweightmatrices; b is a bias; x is the input
data; and S1 and S2 denote the activation functions. These acti-
vation functions are nonlinear to model the potential non-
linearity of the relationships between input and encoded
features. Several linear and nonlinear activation functions are
in use forMLmodels (Karlik andOlgac, 2011). Rectified linear
units (ReLU) is one popular activation function, but it tends to
degrade AE's performance since it always outputs zero for
negative encoded data (Karlik and Olgac, 2011). Themost fre-
quently used nonlinear activation functions are sigmoid func-
tions, including the logistic function.

Traditionally, AEs have been used as
dimensionality-reduction methods or feature-extraction
techniques (Vincent et al., 2010; Baldi, 2012). An
undercomplete AE can be used to reduce the dimen-
sion of the input features by constraining the dimen-
sion of the bottleneck (layer y in Figure 2) to have a
smaller dimension than input features (layer x in
Figure 2). Undercomplete representations force the
AEs to learn the most latent features of the input data
while minimizing a loss function:

Γ w,b;Sð Þ=
X
x∈S

L x,g f xð Þð Þð Þ ð3Þ

where L is a loss function to minimize the difference
between the original input (x) from the set of input S and its
reconstruction g(f(x)) with (w) the weights and (b) the biases
of the neural network AE. The loss function is typically
based on the mean squared error (Wang and Bovik, 2009)
(LMSE, Equation 4) or cross-entropy (CE) (Bengio
et al., 2007) (LCE; Equation 5). Back-propagation is using to

update weights and biases to minimize the reconstruction
error (Hinton and Salakhutdinov, 2006):

LMSE r,xð Þ= r−xk k22 ð4Þ

LCE r,xð Þ= −
Xd
k=1

xklog rkð Þ+ 1−xkð Þlog 1−rkð Þ ð5Þ

where r is the reconstructed output; x is the input; d is a
set of samples; and k is the number of iterations.

If a linear activation function and the MSE loss func-
tion are selected, an undercomplete AE will extract vari-
ables in the same way variables are mapped by the PCA
(Jolliffe, 2011). If, for an undercomplete AE, nonlinear
activation functions are selected for the encoder and
decoder, the model can nonlinearly extract the most
salient features of the data set. Such AE models are also
referenced to as auto-associative neural networks
(Kramer, 1991). These methods can have overfitting
issues and may require different validation methods than
the common use of testing sets. For in-depth discussions
about the challenges and methods for the validation of
nonlinear PCA, see Hsieh (2007) and Scholz (2012). The
following sections expand on the concept of auto-
associative neural networks to the use of deep learning,
including the use of methods to avoid overfitting such as
weight decay and addition of noise to the model inputs.

2.2.2 | Regularized AEs

Like many other ML models, AEs are prone to overfitting
of the training data set, resulting in poor out-of-sample
performance (Srivastava et al., 2014). To avoid the over-
fitting issue, in addition to limiting the model's capacity
by choosing an undercomplete structure, some regulari-
zation terms can be added to the loss function to encour-
age the model to learn other properties of the input data.
Regularization can be achieved by adding a penalization

FIGURE 2 Basic structure of an

autoencoder (AE), which includes an

input x that is mapped onto the

encoding y via an encoder,

represented as a function f. The

encoding is in turn mapped to the

reconstruction r by means of a

decoder, represented as function g
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weight decay or introducing sparsity in the representation
resulting in a sparse AE (Charte et al., 2018). For a sparse
AE, a set percentage of the units in the hidden layer will
be disabled owing to the low values for activation of the
encoding layer (Lee et al., 2008; Xu et al., 2015). Weight
decay enhances the generalization of training by amplify-
ing smaller weights that produce good reconstruction
(Hinton and Salakhutdinov, 2006). In Equation 6, the
weight decay term λ is added to the loss function to quan-
tify the magnitude of the decay and to limit the weights'
growth. The resulting loss function is expressed as:

Γ w,b;Sð Þ=
X
x∈S

L x,g f xð Þð Þð Þ+ λ
X
i

w2
i ð6Þ

where wi are all the weights in W; and S is set of input
features. Another strategy to force the AEs to learn the best
latent features is denoising AEs (DAEs) (Vincent
et al., 2010). A DAE learns to generate robust features from
the input by reconstruction from potentially noisy instances.
The structure for DAEs is the same as for AEs as well as the
parameters, but for DAEs stochastic corruption is added to
the input data during the training of the model. Based on
the concept behind the denoising technique, the obtained
representations and latent features are more robust and
informative and in turn more useful for reconstruction.

2.2.3 | Stacked autoencoder (SAE)

As with any neural network, there is the flexibility to con-
struct the AE with several hidden layers or nodes. An SAE is
an AE with more than one hidden layer. An SAE takes
advantage of all the benefits of any deep network with higher
expressive power and computes features based on the greedy
layer-wise trainingmethod (Hinton and Salakhutdinov, 2006;
Bengio et al., 2007). In this training method, the first layer of
neurons, which ingests the raw input, is trained to obtain
weight and biases that allow for a good reconstruction of the
input layer. The output of the first layer is then used by the
second layer to obtain its own set of weights and biases with
the target to reproduce the output of the first layer. The pro-
cess is repeated for potential additional layers using the out-
put of each layer as input for the next and computing sets of
weights and biases to reproduce the output that previous layer
(Bengio et al., 2007). Based on this strategy, the parameters of
each layer are trained individually. Unlike supervised learn-
ing that tends to train models directly by gradient descent
starting from randomly initialized parameters, the greedy
layer-wise-basedmodel is using unsupervised learning to pre-
train each layer and leads to progressively higher level repre-
sentations based on the lower level representation output of
the previous layer (Bengio et al., 2007).

Hinton and Salakhutdinov (2006) pointed out that:

Gradient descent can be used for fine-tuning the
weights in such AE networks, but this works
well only if the initial weights are close to a good
solution. They describe an effectiveway of initial-
izing the weights that allows deep AE networks
to learn low-dimensional codes (greedy-layer
wise approach) that workmuch better than prin-
cipal components analysis as a tool to reduce the
dimensionality of data.

Regarding randomly initializing the weights, optimizing
the weights in nonlinear AEs is difficult because with large
initial weights, the AE cannot find local minima, and with
small initial weights, there is potential for the gradient
vanishing problem. The greedy-layer-wise technique or pre-
training approach was the solution to solve the training of
the AE proposed by Hinton and Salakhutdinov (2006).
There is a global fine-tuning stage to replace stochastic by
deterministic, real-valued probabilities by using the bac-
kpropagation through the whole AE to update the weights
for optimal reconstruction. Each layer in an AE extracts
higher order correlation between features in the two layers.
For a wide variety of data, the AE can reveal a low-
dimensional nonlinear structure of the original data.

2.3 | Comparative methods

Three methods were applied to the same data set used to
develop the present study's deep-learning model for the
purpose of performance comparisons: (1) shallow neural
network; (2) a PCA-based dimension reduction followed
by logistic regression; and (3) operational predictions
from the National Weather Service. The data set was
identical to that used by Collins and Tissot (2016), except
for the addition of latitude and longitude as features.

2.3.1 | Shallow neural network

Collins and Tissot (2016) developed a shallow artificial neural
network model to predict thunderstorm occurrence within
three 400 km2 box regions, 9, 12 and 15 hr (±2 hr) in advance,
by post-processing primarily the NWP model output. This
study was an adjustment of Collins and Tissot (2015) to
increase the available training and testing data by two orders
of magnitude. [Correction added on 20 May 2020, after first
online publication: The first part of the preceding sentence
has been updated for clarity.] The feedforwardmultilevel per-
ceptron (MLP) topology with one hidden layer was chosen; a
neural network with one hidden layer can approximate any
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continuous function if there is a sufficient number of hidden
layer neurons (Hornik et al., 1989; Hagan et al., 1997). One
output neuron was chosen. The transfer functions were log-
sigmoid and linear in the hidden and output layers, respec-
tively. The training algorithm used was the second-order
scaled conjugate gradient method (Møller, 1993). Binary clas-
sifiers were generated by thresholding the MLP continuous
output. An iterative method was used to determine the opti-
mum number of hidden layer neurons. For each number of
hidden layer neurons (Y) tested from the set Y = [1–10,
12, 15, 17, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125,
150, 200], 50 iterations of the following were performed: the
training set was used to create a receiver operating character-
istic (ROC) curve (Bradley, 1997) and the chosen threshold
corresponded to that point on the ROC curve where the
Peirce skill score (PSS) was maximized, as suggested by Man-
zato (2007). The threshold was then used to generate binary
classifiers which were then evaluated on the testing data set.
After 50 iterations, the mean PSS was calculated. The topol-
ogy corresponding to the maximum mean PSS was consid-
ered optimal. This procedure was performed for each
prediction period (9, 12 and 15 hr) and box region (73, 103
and 238). Three sets of shallow networks were developed.
One version was based on the use of all features. The
remaining sets were based on features that survived the
filtering-based and nonlinear correlation-based feature selec-
tion (CFS) (Hall and Smith, 1999) and the minimum redun-
dancy maximum relevance (mRMR) (Ding and Peng, 2005)
feature selection methods. The most skilful binary classifiers
from Collins and Tissot (2016) for each prediction period per
boxwere comparedwith theDLNN in the present study.

2.3.2 | Principal component
analysis (PCA)

PCA is one of the best-known linear transformation tech-
niques and is broadly used in the environmental sciences
and other fields (Jolliffe, 2011). It is mainly used to reduce
the dimension of feature spacewhile preserving asmuch var-
iability as possible (Wold et al., 1987). It transforms the origi-
nal variables (d-dimensional space) into a smaller
dimensional subspace (k) by finding the direction of maxi-
mum variance in high-dimensional data (non-correlated var-
iables). The new set of variables based on their variability is
ordered so that the first few retained variables capture the
most variability in the original variables (Jolliffe et al., 2016).

2.3.3 | Operational forecasts

The National Digital Forecast Database (NDFD) (Glahn
and Ruth, 2003) contains an archive of high-resolution

(5 km) grid of weather forecasts generated by operational
forecasters within the US National Weather Service.
Computer software was used to extract probabilistic
thunderstorm forecasts and to convert to binary forecasts
(a forecast of thunderstorms regardless of probability was
classified as a thunderstorm forecast) which could be
compared with the DLNN model.

3 | EXPERIMENT AND RESULTS

3.1 | DLNN model set-up

The DLNN models were developed to predict thunder-
storm occurrence within three 400 km2 box domains
(73, 103 and 238 in Figure 1) for three prediction hours
(9, 12 and 15 ± 2 hr). The data for the periods 2004–2006
and 2009–2013 were used to train the model. The data for
2007–2008 were used for testing. For each prediction
hour (9, 12 and 15 hr), the DLNN models were trained
over all 286 of the 400 km2 continuous domains. This
approach increases the number of thunderstorm cases
(td,h = 1; see Section 2.1.2) and total instances sufficient
to justify the use of deep learning. For the 9 hr prediction,
there were 663,519 instances in the training sample,
22,139 (about 3.34%) of which were positive target data
(td,h = 1). The corresponding values for 12 hr prediction
were 646,073 instances with 16,904 (about 2.62%) positive
target. For 15 hr, there were 659,802 instances in the
training sample, 12,682 (about 1.92%), of which were pos-
itive target data (td,h = 1).

The development of the DLNN model began with the
determination of the SDAE architecture. As discussed in
Section 2.1.1, the number of predictor variables (X) (the
input layer) for the SDAE model was 38. The SDAEs with
different under- and overcomplete architectures were
tested. The output of the SDAE was fed into a logistic clas-
sifier consisting of two neurons and resulted in a binary
classification, zero for non-lightning and one for lightning.
The SDAE was trained based on stochastic gradient
descent (SGD) and experiments were repeated 50 times to
assess the variability of the process. The trained model was
finally evaluated based on the independent test data set.
This experiment varied the number of neurons in the hid-
den layers from one to 100 to determine the optimum
number, while also varying the number of hidden layers
from two to three. Table 2 depicts the range of SDAE
dimension and hyperparameters, including the number of
layers, number of neurons for each layer, optimization
technique, and so on. After iterating over the range of hid-
den layers (two to three) and number of hidden layer neu-
rons (one to 100), it was determined that the optimum
architecture was undercomplete with two hidden layers
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(30 neurons in the first hidden layer and three neurons in
the bottleneck layer) (Figure 3).

To determine the optimum number of neurons, a 95%
confidence interval based on the PSS metric and the stan-
dard error estimated based on the 50 iterations were used
(Collins and Tissot, 2016). Figure 4a depicts the results for
the bottleneck layer, which is the most important as it deter-
mines the number of latent features and is used as input data
for the supervised classifier. The optimumnumber of hidden
layer neurons was selected on the maximum PSS, while also
avoiding an overlap in the standard errors with a solution
for a smaller number of hidden neurons. A bottleneck layer
with three neurons provided the maximum PSS with no
overlap in standard error with solutions with one or two hid-
den neurons. Based on the same strategy, 30 neurons were
selected for the first layer. Conceptually, for the purpose of
binary classification or prediction, fine-tuning using bac-
kpropagation can be applied by tuning the parameters for
all layers, and it is common to discard the “decoding” layers
of an SAE and link the last hidden layer (bottleneck) to the
classifier (Vincent et al., 2010; Sainath et al., 2012; Gehring
et al., 2013). The gradients from the classifier classification
or prediction error are then back-propagated into the
encoding layers (Vincent et al., 2010). As a classifier for fine-
tuning the whole network, logistic regression (logistic func-
tion) was applied on top of the network. To avoid overfitting
in the model, 15% noise was added only for the first layer to
force the SDAEmodel to understand the latent features bet-
ter. Also, a regularization term (weight decay) was added to
decrease further the likelihood of overfitting based on For-
mula 6. By trial and error, λ was set to 0.001. Using CE
resulted in better performance while using a sigmoid activa-
tion function, hence the final loss function for the model
could be expressed as:

Γ w,b;Sð Þ= −
Xd
k=1

xklog rkð Þ+ 1−xkð Þlog 1−rkð Þ+ λ
X
i

w2
i

ð7Þ

The ROC curve (Bradley, 1997) is a technique for
visualizing the skill of binary classifiers. To determine
the model that optimizes performance, an ROC curve
was created by adjusting the decision threshold at an iter-
ation of SDAE output range and calculating the probabil-
ity of detection (POD) and false-alarm rate (F) at each
iteration. Based on the best performance for the PSS met-
ric, the threshold is chosen. Figure 4b depicts the ROC
curve associated with the development of the SDAE
model for the 12 hr thunderstorm prediction in box 238.

3.1.1 | Feature reduction comparison
and model performance assessment

Figure 5 compares the importance of the first 10 PCA
variables sorted by their ranking. The first 10 variables
explain approximately 90% of the variability, but the first
three PCA components already provide > 70% of the vari-
ability of the original data. Inputs consisting of both the
first three and the first 10 PCA components were tested
to predict lightning using a logistic regression classifier.
The results were very close to each other, indicating that
using only a simpler input with three PCA components
gives a good representation of the performance of this
method. Using three PCA components also allows one to
compare more directly with the SDAE methods which
also uses three latent features.

As applied here, the SDAE is learning low-dimensional
representations of the data through dimensionality reduc-
tion controlled by the number of hidden neurons in the bot-
tleneck layer. The information from the bottleneck is then
used as an input into the classifier, resulting in improved
performance by focusing the model on the most relevant
information in the input features (Hinton and
Salakhutdinov, 2006). The SDAE can detect repetitive and
redundant structures and consolidate them into lower
dimensionality latent features, resulting in more distin-
guishable and informative features. To understand better
how dimension reduction may lead to better performance,
the SDAE output for three latent features is compared with
the results of dimension reduction using the linear PCA
technique. The comparisons are presented in Figure 6. The
point cloud illustrated in Figure 6a–d shows the result
for the PCA model; Figure 6e–h presents the result
for the SDAE. Lightning cases are displayed in yellow;

TABLE 2 Range of stacked denoising autoencoder (SDAE)

dimension and hyperparameters tested

Model Hyperparameter Values

SDAE Hidden layers 2–3

Neurons 1–100

Loss function Mean squared error (MSE) –
cross-entropy (CE)

Activation function Sigmoid-Tanh

Optimization Stochastic gradient descent
(SGD)

Noise mask 15%; 0; 0

Regularization
parameter λ

0.1–0.001

Learning rate 0.0001

Training epochs 500
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non-lightning cases are displayed in blue. For the 3D analy-
sis of the SDAE point cloud (Figure 6e), the lightning cases
are located along the outermost layer of the feature space
forming a wedge around the non-lightning cases. Similarly,
for the related 2D analysis, the lightning cases are mapped
in the corner and edges (Figure 6f–h). Such segmentation is
more distinguishable than that illustrated for PCA in
Figure 6b–d (Wang et al., 2016). For both the 3D and 2D
cases of the PCA dimension reduction, the lightning cases

are restricted to a portion of the feature space, but they are
surrounded and mixed in with non-lightning cases.
Another advantage of the SDAE dimension reduction
method is the better use of the feature space as the PCA
point cloud does not fill the same cube as thoroughly
(Figure 6c versus g). The comparisons between the 2D and
3D SDAE dimension reduction also illustrate the need for
at least three latent features as the lightning cases are well
clustered in a wedge-like shape area.

FIGURE 3 Stacked denoising

autoencoder (SDAE) architecture

applied for thunderstorm prediction

FIGURE 4 (a) Determination of the optimum number of hidden layer neurons for box 238 for a 12 hr prediction stacked denoising

autoencoder (SDAE) model. The box plot shows the median and interquartile ranges estimated based on the 50 iterations. The graph is for

the bottleneck layer. The number of hidden layer neurons (three) is selected based on the maximum Peirce skill score (PSS), while ensuring

that there is not overlap with solutions including less hidden neurons. (b) Receiver operating characteristic (ROC) curve generated over the

training set to select the logistic classifier threshold based on a maximizing PSS (0.73)
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3.2 | DLNN model evaluation

To evaluate the performance of the DLNN model, the
model was applied to the independent data set
(2007–2008). Based on the confusion matrix for binary
classes, eight different metrics were calculated. The formu-
lation of the confusion matrix and performance metrics

are shown in Tables 3 and 4, respectively. The metrics
include the PSS, critical success index (CSI), Heidke skill
score (HSS), odds ratio skill score (ORSS), and so on. See
Hogan et al. (2010) and Wilks (2011) for more detailed
information about the utility of these metrics. Tables 5–7
depict the performance results of the DLNN, shallow neu-
ral network and PCA-based classifiers, and the

FIGURE 5 Feature importance

of principal component analysis

(PCA) model for the training data set

FIGURE 6 Comparison of latent features generated by the stacked denoising autoencoder (SDAE) and principal component analysis

(PCA) models. For all cases, blue dots represent non-lightning cases, and yellow dots represent lightning cases in feature space: (a) displays

cases in the first three principal components; and (e) cases in the three features identified by the SDAE. (b–d) Cases projected onto a two-

dimensional PCA space onto the first two components (b), onto the first and third components (c), and onto the second and third

components (d), respectively. Similarly, (f–h) project into the SDAE feature space
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corresponding performance of the operational forecasters
for boxes 73, 103 and 238.

With respect to the 9 hr prediction (Table 5), there was
a significant improvement in the value of the selected per-
formance metrics for the DLNN models over the CT2016
model (Collins and Tissot, 2016). For box 73, the CSI met-
ric increased from 0.19 (CT2016) to 0.55 (DLNN), and
there was a large improvement of the DLNN models over
the CT2016 models for the HSS (0.25–0.54), the CSS
(0.19–0.58), and for the ORSS, POD and PSS. The F and
FAR metrics were substantially improved; F decreased
from 0.22 (CT2016) to 0.10 (DLNN) and FAR decreased
from 0.81 to 0.44. For box 103, there was an improvement
of the DLNN models over the CT2016 models for the met-
rics CSI (0.13–0.53), PSS (0.62–0.75), HSS (0.15–0.52) and
CSS (0.12–0.51). Also, F and FAR decreased from 0.31
(CT2016) to 0.08 (DLNN) and from 0.87 to 0.43, respec-
tively. For box 238, the superior performance of the DLNN
over CT2016 was similar to the performance improve-
ments at the other locations. In general, the DLNN models
outperformed the PCA-based models and the operational
weather forecasters.

Table 6 summarizes performance comparisons for
12 hr predictions. For box 103, there were approximate
89%, 88% and 91% improvements of the DLNN models
over the CT2016 models for CSI, HSS and CSS metrics,
respectively. Also, for the DLNN model, the number of
false predictions and the false prediction alarm rate
decreased significantly. For box 238, there were approxi-
mately 87%, 84% and 89% improvements of the DLNN
models over the CT2016 models for the CSI, HSS and CSS
metrics, respectively, and the F metric decreased from 0.28
(CT2016) to 0.07 (DLNN), and the FAR decreased from
0.93 to 0.37. DLNN improvements over the PCA-based
models and operational forecasters continue.

Table 7 summarizes the 15 hr prediction performance.
The performance improvement of the DLNN over the
CT2016 models continues; the F metric for boxes 73, 103
and 238 decreased by 68%, 66% and 65%, respectively.
Also, the FAR decreased by 56%, 60% and 62% for boxes
73, 103 and 238, respectively. For the CSI, HSS and CSS
there were 87%, 81% and 87% improvement for box
73, respectively. The improvement of the CSI, HSS and
CSS continues for boxes 103 and 238. Continued improve-
ment of the DLNN models over that of the PCA-based
variety and the operational forecasters was noted.

As mentioned above, and depicted in Tables 5–7, the
DLNN classifiers provided greater performance than the
PCA-based and CT2016 shallow neural network models
(with respect to all skill-based performance metrics). These
results demonstrate that latent features generated by the
SDAE are more informative and distinguishable than
those provided by the PCA linear dimensionality reduction
technique and the nonlinear CFS and mRMR feature
selection methods used by CT2016 (and mentioned in Sec-
tion 2.3.1). These results show that the SDAE (by using
nonlinear activation functions and greedy-layer-wise
learning) can model the complexity and nonlinearity of
original predictors in order to achieve better performance.

Finally, the performance of the DL model was com-
pared with a recent state-of-the-art ensemble prediction
system. Bouttier and Marchal (2020) assessed the perfor-
mance of four ensemble systems (four different sets of
ensembles) derived from three separate NWP models,
and three ensemble blends (combinations of two ensem-
ble systems), when predicting thunderstorm occurrence
(convective initiation) in Western Europe. They defined
an ensemble thunderstorm prediction as the probability
that a thunderstorm activity diagnostic variable exceeded
a specific threshold. The thresholds chosen were the
values that maximized the area under the ROC curve
(AUC). They defined a thunderstorm observation (the
target) as a lightning strike (CG or intracloud) or a maxi-
mum radar reflectivity > 35 dBZ. The AUC for the
ensembles and ensemble blends for predictions of

TABLE 3 Confusion matrix for calculating scalar

performance metrics

Forecast Yes No Total

Yes a (hit) b (false alarm) a + b

No c (miss) d (correct
rejection)

c + d

Total a + c b + d a + b + c
+ d = n

TABLE 4 Evaluation metrics

Performance metric Symbol Equation

Probability of
detection [0, 1]

POD a/(a + c)

False-alarm rate [0, 1] F b/(b + d)

False-alarm ratio [0, 1] FAR b/(a + b)

Critical success
index [0, 1]

CSI a/(a + b + c)

Peirce skill
score [−1, 1]

PSS (ad – bc)/(b + d)(a + c)

Heidke skill
score [−1, 1]

HSS 2(ad – bc)/[(a + c)(c + d)
+ (a + b)(b + d)]

Odds ratio skill
score [−1, 1]

ORSS (ad – bc)/(ad + bc)

Clayton skill
score[−1, 1]

CSS (ad – bc)/(a + b)(c + d)
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≤ 15 hr ranged generally from 0.75 to 0.85. For the pre-
sent study's DL model, the AUCs averaged over the three
diagnostic locations were 0.86 for all three lead times of
9, 12 and 15 hr. The Bouttier and Marchal ensemble per-
formance results cannot be directly compared with the
DL model given the differences in spatial resolution and
locations as well as the averaging period used to calculate

the mean AUCs, 92 days for Bouttier and Marchal as
compared with two years (2007–2008) for the present
model. The performance, via the AUC metric, of the DL
model was similar to that of the ensemble approach of
Bouttier and Marchal. Further, the present approach can
be implemented operationally with only one determinis-
tic NWP model run, while the ensemble-based models in

TABLE 5 Performance results of

the deep-learning neural network

(DLN) (stacked denoising autoencoder,

SDAE) and principal component

analysis (PCA)-based classifiers

developed in the present study, the

shallow neural network of Collins and

Tissot (2016) (CT2016), and the

corresponding performance of the

operational forecasters (National Digital

Forecast Database, NDFD) for 9 hr

prediction

POD F FAR CSI PSS HSS ORSS CSS

Box 73

SDAE 0.91 0.10 0.44 0.55 0.75 0.54 0.96 0.58

CT2016 0.94 0.22 0.81 0.19 0.71 0.25 0.96 0.19

NDFD 0.91 0.26 0.83 0.16 0.65 0.21 0.93 0.16

PCA 0.89 0.36 0.94 0.05 0.50 0.06 0.86 0.05

Box 103

SDAE 0.93 0.08 0.43 0.53 0.75 0.52 0.96 0.51

CT2016 0.93 0.31 0.87 0.13 0.62 0.15 0.93 0.12

NDFD 1.00 0.31 0.85 0.15 0.69 0.19 1.00 0.15

PCA 0.85 0.40 0.96 0.03 0.45 0.04 0.79 0.03

Box 238

SDAE 0.89 0.09 0.39 0.55 0.73 0.57 0.96 0.53

CT2016 0.94 0.30 0.80 0.20 0.63 0.24 0.94 0.19

NDFD 0.94 0.35 0.81 0.19 0.59 0.21 0.93 0.18

PCA 0.83 0.37 0.94 0.05 0.45 0.06 0.78 0.05

TABLE 6 Performance results of

the deep-learning neural network

(DLNN) (stacked denoising

autoencoder, SDAE) and principal

component analysis (PCA)-based

classifiers developed in the present

study, the shallow neural network of

Collins and Tissot (2016) (CT2016), and

the corresponding performance of the

operational forecasters (National Digital

Forecast Database, NDFD) for 12 hr

prediction

POD F FAR CSI PSS HSS ORSS CSS

Box 73

SDAE 0.82 0.07 0.36 0.55 0.74 0.66 0.96 0.60

CT2016 0.86 0.29 0.90 0.10 0.57 0.12 0.88 0.09

NDFD 0.91 0.23 0.86 0.14 0.68 0.19 0.94 0.14

PCA 0.89 0.42 0.94 0.05 0.48 0.05 0.84 0.05

Box 103

SDAE 0.80 0.06 0.34 0.49 0.76 0.62 0.97 0.60

CT2016 0.80 0.23 0.95 0.05 0.58 0.07 0.87 0.05

NDFD 0.80 0.24 0.94 0.06 0.56 0.08 0.86 0.06

PCA 0.85 0.36 0.96 0.03 0.48 0.04 0.82 0.04

Box 238

SDAE 0.81 0.07 0.37 0.55 0.74 0.59 0.96 0.59

CT2016 0.81 0.28 0.93 0.07 0.53 0.09 0.83 0.06

NDFD 0.67 0.28 0.92 0.07 0.39 0.08 0.67 0.06

PCA 0.83 0.33 0.93 0.06 0.49 0.07 0.81 0.05
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Bouttier and Marchal require three to 50 ensemble mem-
bers (separate NWP model runs). In addition, the NWP
model used in the present study has a grid spacing of
12 km, whereas the NWP models used to create three of
the ensembles ranged from 1.3 to 10 km. Thus, the compu-
tational expense of the present approach is much smaller
than that of the ensemble model variety. The similar per-
formance results between the SDAE approach and the
Bouttier and Marchal ensemble methods, combined with
the substantial relative computational cost savings of the
present approach, demonstrates tremendous utility.

4 | CONCLUSIONS

Deep-learning neural network (DLNN) models were
developed to predict thunderstorms ≤ 15 hr in advance
within 400 km2 regions in a South Texas domain in the
United States. The models were constructed via features
originating from numerical weather prediction (NWP)
model output variables/parameters that influence and pre-
clude convective development and from location (lati-
tude/longitude) and Julian day variables in order to train
the models to predict thunderstorms as a function of loca-
tion and season. Cloud-to-ground (CG) lightning served as
the thunderstorm proxy and as the target. The particular
deep-learning technique used was the stacked denoising
autoencoder (SDAE), a type of representation learning,
whereby unsupervised learning occurs across a multitude
of hidden layers in order to create a higher order

representation of the original features as a pre-training
step. The highest order representation of the output served
as features used to train predictive models via logistic
regression. The DLNNmodel's performance exceeded sub-
stantially that of corresponding shallow neural network
models developed by Collins and Tissot (2016). Collins
and Tissot developed shallow feed-forward multilayer per-
ceptron (MLP) models using a second-order learning algo-
rithm and an iterative process to determine the number of
hidden layer neurons that optimize performance.

It can be speculated that the superior performance of
the DLNN classifiers over the shallow neural network clas-
sifiers is due to the ability of the SDAE to identify the
nonlinear combination of the initial features that optimizes
the performance of the subsequent predictive model. The
DLNN (SDAE/logistic regression) predictive models were
also compared with predictive models developed using
principal component analysis (PCA) as the pre-training step
(PCA/logistic regression). The SDAE-based models per-
formed superiorly to that of the PCA-based models. The
low optimal dimensionality of the resulting latent features
(three) associated with the SDAE allowed for visual com-
parison between the results of the SDAE nonlinear dimen-
sion reduction and latent variables generated by the linear
PCA. This comparison illustrates the better clustering of the
two categories (lightning and non-lightning) by the
nonlinear method and provides an explanation for the
superior performance of the SDAE over the PCA.

With respect to the skill-based performance metrics
Heidke skill score (HSS) and Peirce skill score (PSS), the

TABLE 7 Performance results of

the deep-learning neural network

(DLNN) (stacked denoising

autoencoder, SDAE) and principal

component analysis (PCA)-based

classifiers developed in the present

study, the shallow neural network of

Collins and Tissot (2016) (CT2016), and

the corresponding performance of the

operational forecasters (National Digital

Forecast Database, NDFD) for 15 hr

prediction

POD F FAR CSI PSS HSS ORSS CSS

Box 73

SDAE 0.86 0.07 0.40 0.57 0.73 0.54 0.95 0.56

CT2016 0.92 0.25S 0.93 0.07 0.68 0.10 0.95 0.07

NDFD 0.86 0.24 0.93 0.07 0.61 0.01 0.89 0.07

PCA 0.82 0.34 0.94 0.05 0.47 0.07 0.79 0.05

Box 103

SDAE 0.91 0.07 0.38 0.56 0.78 0.58 0.97 0.58

CT2016 0.83 0.21 0.96 0.04 0.62 0.05 0.90 0.03

NDFD 1.00 0.19 0.96 0.04 0.81 0.07 1.00 0.04

PCA 0.75 0.25 0.95 0.04 0.49 0.06 0.79 0.04

Box 238

SDAE 0.84 0.08 0.36 0.59 0.72 0.57 0.95 0.60

CT2016 0.64 0.23 0.95 0.05 0.41 0.06 0.71 0.03

NDFD 0.92 0.23 0.92 0.08 0.69 0.11 0.95 0.07

PCA 0.70 0.20 0.91 0.08 0.50 0.11 0.80 0.07
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performance of the DLNN models in the study generally
exceeded substantially the corresponding performance of
operational forecasters (the National Digital Forecast Data-
base (NDFD) in Collins and Tissot, 2015, tabs 11–13, and
reproduced in Tables 5–7 in the present study). This supe-
rior thunderstorm predictive performance of the DLNN
models developed in the present study demonstrates the
predictive power of representation learning (the SDAE
combined with logistic regression) and suggests future
improvement in operational thunderstorm forecasting
(a small sample size notwithstanding). Such forecast
improvements would benefit society greatly given the
adverse socioeconomic impacts of thunderstorms to specific
industries such as aviation (Wolfson and Clark, 2006; Ding
and Rakas, 2015) and to human life generally (Holle, 2008;
Holle and Lopez, 2003; NWS, 2015).
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