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Abstract: The deep convolutional neural network (DCNN) has recently been applied to the highly
challenging and ill-posed problem of single image super-resolution (SISR), which aims to predict
high-resolution (HR) images from their corresponding low-resolution (LR) images. In many remote
sensing (RS) applications, spatial resolution of the aerial or satellite imagery has a great impact on
the accuracy and reliability of information extracted from the images. In this study, the potential
of a DCNN-based SISR model, called enhanced super-resolution generative adversarial network
(ESRGAN), to predict the spatial information degraded or lost in a hyper-spatial resolution unmanned
aircraft system (UAS) RGB image set is investigated. ESRGAN model is trained over a limited number
of original HR (50 out of 450 total images) and virtually-generated LR UAS images by downsampling
the original HR images using a bicubic kernel with a factor ×4. Quantitative and qualitative
assessments of super-resolved images using standard image quality measures (IQMs) confirm that the
DCNN-based SISR approach can be successfully applied on LR UAS imagery for spatial resolution
enhancement. The performance of DCNN-based SISR approach for the UAS image set closely
approximates performances reported on standard SISR image sets with mean peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) index values of around 28 dB and 0.85 dB, respectively.
Furthermore, by exploiting the rigorous Structure-from-Motion (SfM) photogrammetry procedure,
an accurate task-based IQM for evaluating the quality of the super-resolved images is carried out.
Results verify that the interior and exterior imaging geometry, which are extremely important for
extracting highly accurate spatial information from UAS imagery in photogrammetric applications,
can be accurately retrieved from a super-resolved image set. The number of corresponding keypoints
and dense points generated from the SfM photogrammetry process are about 6 and 17 times more
than those extracted from the corresponding LR image set, respectively.

Keywords: unmanned aircraft system (UAS); deep learning; super-resolution (SR); convolutional
neural network (CNN); generative adversarial network (GAN); structure-from-motion;
photogrammetry; remote sensing

1. Introduction

In most remote sensing (RS) applications, high-resolution (HR) images are usually more
demanding in a wide range of image analysis tasks leading to more precise and accurate RS-derived
products [1–3]. HR imagery is usually more desirable in all applications, including RS imagery,
because improved pictorial information makes visual interpretation easier for a human and helps to
purify representation for automatic machine perception [4]. In RS applications, the resolution of a
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digital imaging system can be classified in four different ways: spatial resolution, spectral resolution,
radiometric resolution, and temporal resolution. In the context of accurate feature mapping and
positioning in RS, spatial resolution is of the greatest challenge.

Spatial resolution of a digital imaging system is primarily defined by the pixel density in the
image space, which is measured in pixels per unit area. Spatial resolution in the object space represents
the level of spatial detail that can be discerned in an image; the higher the resolution, the more image
details. Limited spatial resolution in a certain image is primarily a function of the imaging sensor or
acquisition device [4]. The spatial resolution of imagery, usually referred to as ground sample distance
(GSD) in RS applications, is determined by the sensor size or the dimension of the electro-optical
sensor when based on the charge-coupled device (CCD) or complementary metal-oxide-semiconductor
(CMOS) technologies, the number of sensor elements, the focal length of the imaging device, and its
distance from the imaging target. Regardless of the other factors contributing to the spatial resolution
of imagery, such as focal length and the distance from sensor to the target, GSD of an image and the
quality of its high-frequency contents deteriorate mainly due to some manufacturing limitations and
imperfections of an imaging sensor.

One straightforward way to improve the spatial resolution or GSD of imagery is to build a more
compact sensor in which the sensor’s pixel density is increased by reducing the sensor element size.
However, this reduction in sensor element size may dramatically reduce the amount of light incident on
each sensor element, causing the so called shot noise [5]. Furthermore, capture of high frequency image
detail is also limited or degraded by the sensor optics, such as lens blur, lens aberration, and aperture
diffraction, or any external sources of image degradation including image motion due to moving
objects [4]. Constructing high-quality imaging sensors with perfect optical components, capturing
very high spatial resolution images with high-quality image content, is restrictively expensive and
not practical in most real scenarios. This is especially true when referring to the rapid rise in the use
of small unmanned aircraft systems (UASs) for RS and photogrammetry applications [4]. Such small
UASs are typically equipped with low-cost, consumer-grade digital RGB cameras. Besides the cost,
the resolution of these typical UAS cameras is also limited by the camera speed and hardware storage.
Physical constraints of the sensing platform or environment, such as with satellite imagery, can put
additional constraints on the use of very high-resolution sensors. Furthermore, in some imaging
systems, HR image content may not be always achievable due to inherent restrictions within the
system itself including built-in downsampling procedures to handle bandwidth limitations, different
types of noise related to the sensor electronics and atmosphere, compression techniques, etc. [6].

An alternative approach to hardware-based solutions for spatial resolution enhancement is to
accept the image degradation and apply signal processing techniques to attempt to recover fine image
details degraded or almost lost during image capture. These approaches are often referred to as
Super-Resolution (SR) image reconstruction techniques. SR techniques attempt to recover HR images
from LR images, and this task remains an important yet challenging topic in image processing that has
a wide range of applications in computer vision and image understanding tasks [7–10]. SR techniques
not only improve image perceptual quality, but also help to improve the final accuracy of many
computer vision tasks [11–13]. Application of SR techniques on highly detailed and complex RS data
introduces more challenges to the SR problem [14,15]. Most traditional image SR techniques use
highly sophisticated signal processing algorithms with a very high computational complexity [15,16].
Considering the size and the volume of required super-resolved images for some RS applications,
such as generating a precise digital surface model (DSM) using aerial or satellite photogrammetry,
traditional SR techniques are highly inefficient for such applications. Furthermore, some techniques
require multiple LR images from the same scene with high temporal resolution to resolve the SR
problem [17,18]. However, due to costs or limitations for acquiring the necessary imagery, complexity
of natural and built terrain, scarcity of multi-view sensors, and need for accurate image registration
algorithms, acquiring and processing such images for SR is a difficult task [15]. In addition, complicated
and versatile interaction of most RS sensors with atmosphere and objects, image displacements due
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to topographic anomalies, land cover characteristics, and participation of shaded areas due to the
Sun-sensor-object geometry in RS images make the SR problem a highly challenging task for almost all
developed techniques in this field [15].

Deep learning (DL), specifically deep convolutional neural network (DCNN), has recently been
applied to a wide range of image analysis tasks [19–22] including the highly challenging and ill-posed
problem of predicting HR images from LR images in an end-to-end manner. These methods have
already shown their superiority over almost all traditional techniques by achieving state-of-the-art
performance on various SR benchmarks [23–25]. Currently, DCNN-based single image super-resolution
(SISR) techniques have been employed to increase the geometrical and interpretation quality of
RS imagery [26–28]. However, few studies have focused on applying DCNN-based SISR on
UAS-based imagery, typically acquired at low altitudes with high resolution, where the accuracy
of the spatial information captured by the images is critical for the reliability of results drawn from
subsequent analyses [29,30]. Recently, super-resolution generative adversarial network (SRGAN) [23],
is considered as one of the most efficient DCNN-based SISR models for recovering very fine details in
predicted HR images from corresponding LR images [23]. Offering finer image content is always one of
the most important characteristics of HR images in different RS applications, which can lead to higher
accuracy and reliability in almost all spatial and non-spatial RS products. SRGAN has already proved
its superiority over many other DCNN-based SISR models for recovering very fine details in predicted
HR images, which are highly valuable for improving human image perception. However, the quality
of the recovered image details and their potential for enhancement of hyper-spatial resolution UAS
imagery for photogrammetric applications, such as dense 3D reconstruction of a scene, has not yet
been fully explored. With this motivation, this paper focuses on the application of DCNN to SISR for
UAS image enhancement. The contributions of the paper are as follows:

1. An overview of the SR problem and DCNN approaches for SISR is provided with emphasis
on generative adversarial network (GAN) architecture. GAN-based models are fully reviewed
including their specific loss functions. Additionally, different learning strategies and image
quality measures (IQMs) typically employed for SISR tasks are reviewed.

2. A high performance DCNN-based SISR model based on GAN architecture [31], known as
enhanced SRGAN (ESRGAN) [32], is adopted and trained on a set of LR UAS images virtually
generated by downsampling the original HR image set by factor ×4. Additive white Gaussian
noise is applied to the LR imagery to make the SISR task more challenging. Such noise can always
appear in any digital imaging and image transmission systems due to the electronics, imaging
sensor quality, and the interaction of the digital imaging system with the natural environment,
such as the level of illumination, temperature, etc [33]. Model performance in recovering the
degraded or lost image details and noise reduction in the predicted super-resolved images is then
carried out using standard IQMs. In this experiment, IQMs include peak signal-to-noise ratio
(PSNR), structure similarity (SSIM) index, and a qualitative analysis through visually inspecting
resulting SR images.

3. A task-based IQM using Structure-from-Motion (SfM) photogrammetry is carried out on the
predicted SR image set.

4. A comprehensive comparative analysis of SfM derived photogrammetric data products, resulting
from processing of the LR, HR, and SR UAS image sets, is carried out. Those products include:
the camera calibration and camera pose information, densified 3D point clouds, and digital
surface models (DSMs).

In regard to the UAS-SfM task-based evaluation for SR described above, the primary objectives of
the experiment are summarized as follows:

1. The performance of the adopted DCNN-based SISR model on retrieving both the interior and
exterior geometry of the UAS imagery is investigated. In SfM photogrammetry, the accuracy and
reliability of all derived parameters, within the robust bundle adjustment (BA) computations,



Remote Sens. 2020, 12, 1757 4 of 30

are closely related to the accuracy and reliability of extracted keypoint features from raw images.
Any image distortions and artefacts introduced by adding noise or upsampling images can
dramatically affect the reliability of derived parameters within BA computations.

2. The potential of the employed DCNN-based SISR model to downgrade the level of inherent and
additional noise introduced to the original HR images is investigated. In most image-based 3D
reconstruction algorithms, including SfM photogrammetry, lower level of noise in the underlying
image set results in estimating the imaging and scene geometry with higher accuracy. That is due
to the fact that the feature detection operators, using sophisticated image processing algorithms,
extract keypoints features with higher accuracy and lower uncertainty across multiple images in
an UAS image set. To do this, the naive pre-trained ESRGAN model, with upscaling factor ×1,
is taken as an image restoration network. The idea is to explore the effectiveness of the ESRGAN
model, trained on a large number of images within several standard image sets, to downgrade
the inherent noise and restore the original UAS HR images.

The remainder of this paper is organized as follows. Section 2 briefly describes image SR as
an image upscaling technique to recover the degraded or lost image details in LR images. Section 3
introduces some of the pioneering DCNN-based SISR architectures. GAN-based architecture and its
specific cost function for SISR task is later described in Section 3. Learning strategies in Section 4
introduce different cost functions that are usually used in DCNN-based SISR models. Different metrics
developed for evaluating the quality of resulting SR images are explained in Section 5. Section 6
explains the experiment including the employed DCNN-based SISR model. Section 7 reports the
qualitative and quantitative results showing the performance of ESRGAN model on virtually-generated
LR UAS images based on standard IQMs and a task-based IQM using SfM photogrammetry. Section 8
discusses the results in detail. Lastly, Section 9 provides a conclusion and future perspective.

2. Image Super-Resolution

Image SR refers to techniques which aim to restore a HR image from its LR counterpart(s).
Their main goal is to recover the high frequency details lost in LR images and remove the degradation
caused by the imaging device and/or environment [34,35]. SR is a topic of great interest in digital
image processing and many computer vision related applications including HDTV [36], medical
imaging [37,38], satellite imaging [39], face recognition [40], security and surveillance [41]. The basic
idea in most SR techniques is to extract the non-redundant image content in multiple LR images and
combine them to generate a HR image [5]. Single image interpolation is an easy approach within many
available SR techniques, which can be used to increase the image size [4]. However, several works
showed that it does not provide any additional information and would dramatically decimate details
of the image [4,24,42].

Generally, the SR problem assumes the LR image represents a downsampled, noisy, and blurred
(by an unknown low-pass filter) version of HR data. Due to the non-invertibility of the degradation
process, SR problem is inherently ill-posed [43]. In other words, it is an under-determined inverse
problem, of which the solution is not unique. In the typical SR framework, as depicted in Figure 1,
the LR image Ix is modeled as follows [44]:

Ix = D(Iy; δ) (1)

where Iy is the corresponding HR image, D represents a degradation function, and δ is a set
of parameters, e.g., the parameters of the unknown convolutional kernel, the scaling factor,
and some noise related factors, contributing to the degradation process. Under general conditions,
the degradation process fromD is unknown and only LR image, Ix, is provided. Thus, the SR operation,
the reverse path in Figure 1, is an extremely challenging task, which effectively results in a one-to-many
mapping from LR to HR image space [25].
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Figure 1. The overall framework for SISR.

Researchers are required to recover the corresponding HR image Îy from the LR image Ix, so that
Îy is identical to the ground truth HR image Iy, as follows [44]:

Îy = F (Ix; θ) (2)

where F is the super-resolution model and θ represents the parameters of F . Generally, degradation
models combine several operations as follows [44]:

D(Iy; δ) = (Iy ⊗ k) ↓s +nζ ,
{

k, s, ζ
}
⊂ δ (3)

where (Iy ⊗ k) represents the convolution between a blur kernel k and the HR image Iy, ↓s represents
a downsampling process with factor s, and nζ is some additive white Gaussian noise with standard
deviation ζ.

SR techniques typically assume that high-frequency image contents are redundant and can
be reconstructed from low-frequency contents making the SR technique an inference problem [43].
Some SR techniques assume that for reconstructing a HR image of a certain scene, multiple LR
instances of the same scene with different perspectives are available. These techniques are categorized
as multi-image SR (MISR) approaches [16]. Such methods attempt to invert the downsampling
process by exploiting the explicit redundancy and constraining the ill-posed problem with additional
information. However, MISR methods are usually computationally expensive because they require
complex image registration and fusion in LR image space, where the accuracy of those processes
directly affects the quality of the resulting super-resolved images [43]. An alternative approach is
single image super-resolution (SISR) [45]. These techniques attempt to exploit the implicit redundancy
available in the LR images, in the form of local spatial correlation in an image or additional temporal
correlations in a video, and recover lost or deteriorated high-frequency content from a single LR
instance. In SISR techniques, prior information is usually required to constrain the solution space [46].

3. Deep Learning for SISR

Learning-based methods, also known as example-based methods [4,47–49], aim at estimating an
effective mapping from LR to HR image pairs due to their fast computation and superior performance
relative to many other traditional techniques [25]. These methods usually exploit machine learning
(ML) algorithms to learn the statistical relationships between the HR and corresponding LR images
from a substantial number of training samples [25]. Traditional methods for SISR suffer from a few
drawbacks [25,43]: (1) unclear and potentially very complex definition of the mapping between the LR
and HR image spaces; (2) established sub-optimal high-dimensional mapping; (3) most traditional
methods rely upon handcrafted features with expert domain knowledge. Recently, deep learning-based
SISR methods have achieved remarkable improvements over all traditional and ML approaches [23–25].
These methods take advantage of the huge capacity of DL models to be able to provide an extremely
nonlinear mapping in a very high-dimensional space from the input space to the solution space,
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and efficiently explore that space to find the best solution. These methods usually take a DCNN
architecture for low to high-level feature encoding and nonlinear feature mapping.

3.1. DCNN Architectures for SISR

A variety of super-resolution models based on DCNN architectures have been proposed so
far. Most of those models focus on supervised super-resolution, requiring both LR images and
corresponding HR images, usually as ground truth (GT). These approaches are mostly composed of a
set of major components and processing strategies including the model’s main framework, upsampling
method, network architecture, and learning strategy.

Super-resolution convolutional neural network (SRCNN) by Dong et al. [24,50] in Figure 2 is a
pioneering work in DCNN-based SISR approach. Despite its striking success, SRCNN model suffers
from the following issues [25]. (1) Inputs to SRCNN are LR images upsampled to coarse HR images at a
desired size using traditional methods (e.g., bicubic interpolation). Introducing interpolated images as
inputs to the network have three main drawbacks: (a) severe over-smoothing and noise amplification
effects introduced to interpolated inputs can result in further inaccurate estimations of the image
content; (b) employing interpolated versions of images, instead of the original LR image, as input
is very time-consuming and increases computational complexity almost quadratically [51]; and (c)
assuming an unknown kernel in the downsampling process makes adopting a specific interpolated
input, as an estimation of the output, unjustified. (2) As mentioned previously, most SR techniques
undertake the assumption that the high-frequency content is redundant and can be accurately predicted
from the low-frequency data [52]. Thus, exploring more contextual information within large regions
of LR images to capture sufficient information for retrieving high-frequency details in predicted HR
images seems inevitable. Theoretical work in DL show more contextual information can be achieved by
designing very deep architectures with larger receptive fields, which can result in expanding the final
solution space [19,53–56]. In some situations, effectively attaining more hierarchical representations
can be achieved by increasing the DL network depth [53]. In recent years, many different CNN-based
architectures have been developed, which exploit a very deep and sophisticated architecture, including
residual and/or dense feature mapping [19,56], to solve complex problems more efficiently [25,44].

Figure 2. Sketch of the SRCNN architecture.

3.2. GAN for SISR

Introduction of recent innovative and deeper CNN-based architectures for SISR has already
led to breakthroughs in accuracy and speed. Photo-realistic SISR GAN (SRGAN) [23], illustrated in
Figure 3, was introduced for recovering the finer texture details when resolving at large upscaling
factors. Those recovered fine details in SR images not only make predicted HR images more appealing
to a human, but also have a great impact on the accuracy and reliability of imaging geometry and
scene details when they are retrieved by the SfM phtotogrammetry process.
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Figure 3. Architecture of Generator and Discriminator Network for SISR task with corresponding
kernel size (k), number of feature maps (n), and stride (s) indicated for each convolutional layer.

The basic SRGAN model is built upon the residual blocks [19] and trained under the perceptual
loss in a GAN framework, which makes it capable of predicting photo-realistic images for×4 upscaling
factor [23]. The SRGAN model has shown significant improvement on overall visual quality of SR
images over all previously introduced PSNR-oriented methods [23,32].

GAN [31] introduced by Goodfellow et al. tries to solve the adversarial min-max problem [23]:

min
θG

max
θD

EIHR∼ptrain(IHR)

[
log DθD (IHR)

]
+

EILR∼pG(ILR)

[
log(1− DθD

(
GθG (ILR)

)] (4)

where it allows the network to train a generative model G with the purpose of fooling a discriminator
D that is simultaneously trained to discriminate the SR images from the original HR images.

The formulated perceptual loss consists of a weighted sum of a content loss (LSR
X ) and an

adversarial loss component (LSR
Gen) as follows [23]:

LSR = LSR
X︸︷︷︸

content loss

+ 10−3LSR
Gen︸ ︷︷ ︸

adversarial loss︸ ︷︷ ︸
perceptual loss

(5)

Content loss motivated by perceptual similarity chooses the solution based on the perceptual
similarity from the high dimensional solution space [23]. Instead of relying on pixel-wise losses,
Ledig et al. define VGG loss based on ReLU activation layers and 19 layers VGG network [53],
where VGG loss is computed as the Euclidean distance between the feature representations of a
reconstructed image GθG (ILR) and the ground truth image IHR as follows [23]:

LSR
VGG/i,j =

1
Wi,j Hi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(
φi,j(IHR)x,y − φi,j(GθG (ILR))x,y

)2 (6)

where φi,j represents the feature map obtained by the j-th convolution (after activation) before the i-th
maxpooling layer within the VGG-19 network. Wi,j and Hi,j describe the dimensions of the respective
feature maps within the VGG network.
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Adversarial loss, which is the generative component of SRGAN to the perceptual loss, encourages
the network to favor solutions residing on the natural image manifold [23]. The generative loss (LSR

Gen)
is evaluated, in a probabilistic framework, based on the performance of the discriminator DθD (.) over
a training sample set as [23]:

LSR
Gen =

N

∑
n=1
− log DθD (GθG (ILR)) (7)

where, DθD (GθG (ILR)) represents the probability that the generated image GθG (ILR) is a natural HR
image. As a consequence of exploiting adversarial loss, the discriminator network is trained to push
SISR solutions to the natural image manifold.

4. Learning Strategies

Learning the end-to-end mapping function F to map a LR image ILR to the corresponding
reconstructed SR image ISR = ÎHR, which is an approximation of the real HR image IHR, requires
the estimation of network parameters θ. This is attained via minimizing the loss between the
super-resolved images ISR = F

(
ILR; θ

)
and the corresponding HR images IHR. In this section,

different loss functions that are widely used in SISR techniques are introduced. For the sake of brevity,
the subscript y is dropped from the ground truth (target) HR image Iy and the reconstructed HR image
Îy in the rest of this section.

4.1. Pixel Loss

Pixel loss evaluates the pixel-wise difference between two images, mainly in the form of L1

distance, i.e., mean absolute error (MAE), or L2 distance, i.e., mean square error (MSE). In so doing,
it attempts to capture and solve the inherent uncertainty in retrieving lost high-frequency components
by minimizing related loss functions as follows [44]:

Lpixel−L1

(
IHR, ISR) = 1

hwc ∑
i,j,k

∣∣IHR
i,j,k − ISR

i,j,k
∣∣ (8)

Lpixel−L2

(
IHR, ISR) = 1

hwc ∑
i,j,k

(
IHR
i,j,k − ISR

i,j,k
)2 (9)

where h, w and c are the height, width and number of channels of the reconstructed images, respectively.
Charbonnier loss [57,58], is a variant of L1 loss, given by [44]:

Lpixel−Cha
(

IHR, ISR) = 1
hwc ∑

i,j,k

√(
IHR
i,j,k − ISR

i,j,k
)2

+ ε2 (10)

where ε is a small constant (e.g., 1e− 3) for numerical stability.
The pixel loss constraint results in a super-resolved image ISR, which is close to the ground

truth HR image IHR in the pixel values. In comparison with L2 loss, the L1 loss shows higher
performance and better convergence [44,59]. Using pixel loss as the loss function favors a high peak
signal-to-noise ratio (PSNR). According to its definition, PSNR is heavily correlated with pixel-wise
deviation, where minimizing pixel loss directly maximizes PSNR [23]. Moreover, it is partially related
to the image perceptual quality. Thus, pixel loss has become the most widely used loss function in
SR field.

Minimizing the pixel loss encourages finding plausible solutions, based on pixel-wise average,
in the high dimensional solution space. In return, such solutions can be overly-smooth with poor
perceptual quality [23,60,61]. Thus, in order to capture the reconstruction error and image quality
more efficiently, a variety of other loss functions, such as content loss [61] and adversarial loss [23],
were introduced to the SR field.



Remote Sens. 2020, 12, 1757 9 of 30

4.2. Perceptual/Content Loss

To evaluate image quality based on perceptual similarity, perceptual-driven approaches have also
been proposed [62,63]. More convincing results from the image perceptual point of view, for both
SR and artistic style-transfer tasks, are offered in this category [23,63,64]. By minimizing the error in
the feature space instead of the pixel space, perceptual loss or content loss, attempts to improve the
image visual quality. Denoting feature maps computed within the l-th layer of the network as φ(l)(.),
the content loss is evaluated using the Euclidean distance between corresponding feature maps from
the original and super-resolved images as follows [44]:

Lcontent
(

IHR, ISR; φ, l
)
=

1
hlwlcl

∑
i,j,k

√(
φ
(l)
i,j,k
(

IHR
)
− φ

(l)
i,j,k
(

ISR
))2

(11)

where hl , wl and cl represent the height, width and number of channels of the extracted feature maps
in layer l, respectively.

Content loss encourages transferring the learned knowledge of hierarchical image features from a
pre-trained classification network, usually VGG or ResNet, to the SR task [12,23,32,65].

4.3. Adversarial Loss

Adversarial learning [31] is adopted for SR task in a straightforward way, in which SR model
is considered as a generator, and a discriminator network is added to the model to discriminate the
generated image ISR from the real image IHR. Adversarial loss for SRGAN [23] is as follows [44]:

Lgan_G
(

ILR; DθG

)
= − log DθD

(
GθG (ILR)

)
, (12)

Lgan_D
(

IHR, ISR; DθD

)
= − log DθD

(
IHR)− log DθD

(
ISR) (13)

where Lgan_G and Lgan_D denote the adversarial loss of the generator GθG , which is the SR model,
and the discriminator DθD , which is a deep CNN model for binary classification, respectively. θG and
θD are the parameters of the generator and discriminator, and ISR = GθG (ILR) is the generated image
approximating the corresponding ground truth HR image.

In practice, some researchers employ a combination of multiple loss functions in their
DCNN-based SISR architectures for more efficient learning and to better constrain different aspects of
SR image reconstruction [12,23,57,66,67]. However, how to efficiently combine multiple loss functions
with effective weights emphasizing their contribution in the learning process, remains an active area
of SR research.

5. Image Quality Metrics

Image quality metrics, usually referred to as image quality measures (IQMs), are measures
focusing on significant visual attributes of images where they attempt to quantify the perceptual
assessments of an image when it is evaluated in a certain image quality assessment (IQA) approach [60].
IQA approaches are categorized into subjective methods, which focus on quantifying human
perception, and objective methods, which are based on some computational models [60]. The subjective
methods can be more accurate but they are usually inconvenient, time-consuming, and expensive
to implement [60]. As a result, objective methods are currently considered the mainstream among
IQMs. Since the objective methods cannot efficiently capture the human visual perception, the metrics
evaluated under these methods may show some inconsistency with those from subjective methods [60].

Objective IQA methods are divided into three types [60] including: (1) full-reference methods
requiring corresponding images with perfect or high quality image content; (2) reduced-reference
methods, which apply IQMs on the extracted features from both images and their corresponding high
quality counterparts; (3) no-reference methods, which try to evaluate image quality in a blind way
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without any reference images. In supervised SISR, high quality HR images are usually available for
evaluating different IQMs. This section introduces some of the most commonly used IQMs, covering
both subjective IQA methods and objective IQA methods.

5.1. Peak Signal-to-Noise Ratio (PSNR)

PSNR measure refers to the ratio between a signal’s maximum power and the power of the signal’s
noise, which affects the quality of the signal’s representation. Due to the very wide dynamic range (i.e.,
ratio of highest and lowest values) of most signals, the PSNR is usually expressed in the logarithmic
decibel scale. PSNR is used to measure the reconstruction quality of lossy transformations including
image compression and inpainting. For image SR task, PSNR is defined using the maximum possible
pixel value in the underlying image, and the mean squared error (MSE) between two corresponding
images. Given the high quality image I and the corresponding reconstructed (super-resolved) image Î,
both of which include N pixels, the MSE and the PSNR measures are defined as follows [25]:

MSE =
1
N

N

∑
i=1

(
Ii − Îi

)2 (14)

PSNR = 10 log10
( L2

MSE
)

(15)

L denotes the maximum possible pixel value in the image. For 8-bit image representations,
for example, L equals to 255 and the typical values for the PSNR may vary from 20 to 40 dB, where the
higher the PSNR value, the better the quality of the reconstructed image as it tries to minimize MSE
between the images with respect to the maximum pixel value of the input image. When L is fixed,
PSNR is only related to the pixel-wise distances between two images represented by MSE. The ability of
MSE, and consequently PSNR, to capture perceptually relevant differences, such as high texture detail,
is very limited meaning that PSNR does not care about human visual perception and photo-realistic
characteristics of the image. This often leads to poor performance of PSNR when used to assess
the quality of super-resolved images in natural scenes. However, due to the lack of an efficient and
comprehensive IQM that considers image quality from all perspectives, PSNR remains the most widely
used metric for evaluating image quality in SR tasks.

5.2. Structural Similarity (SSIM) Index

Similar to the human visual system, which is highly adapted for extracting structural information
from the viewing scene, SSIM index provides a perceptual metric that quantifies image quality
degradation based on perceived image quality [68]. Made up of three relatively independent terms,
luminance, contrast, and structure, SSIM index estimates the visual impact of those factors when they
are modified in the reconstructed image. Those modifications may comprise shifts in image luminance,
alterations in image contrast, and any other remaining deviations collectively identified as structural
changes [60].

For an original high quality image I and its reconstructed counterpart Î, the SSIM index is defined
as follows [69]:

SSIM
(

I, Î
)
=
[
Cl(I, Î)

]α[Cc(I, Î)
]β[Cs(I, Î)

]γ (16)

where α > 0, β > 0, and γ > 0 control the relative significance of each of the three terms of the index.
In some implementations, α = β = γ = 1 [60]. The luminance, Cl , contrast, Cc, and structural, Cs,
components of the SSIM index are defined as follows [69]:

Cl
(

I, Î
)
=

2µIµ Î + C1

µ2
I + µ2

Î
+ C1

(17)



Remote Sens. 2020, 12, 1757 11 of 30

Cc
(

I, Î
)
=

2σIσÎ + C2

σ2
I + σ2

Î
+ C2

(18)

Cs
(

I, Î
)
=

σI Î + C3

σIσÎ + C3
(19)

where µI , σI and µ Î , σÎ represent the means and standard deviations of the original high quality
image and the corresponding reconstructed image, respectively, and σI Î is the covariance of the
two images. The constants C1, C2, and C3 in Equations (17)–(19) help to avoid instability when
the denominators are close to zero. The formulation given in Equation (16) guarantees symmetry,
where SSIM(I, Î) = SSIM( Î, I). Moreover, the index ensures a bounded SSIM(I, Î) ≤ 1. Furthermore,
there is a unique maximum, where SSIM(I, Î) = 1 if and only if I = Î. For an 8-bit grayscale image
containing L = 28 = 256 gray-levels, C1 = (k1.L)2, C2 = (k2.L)2, and C3 = C2/2, where k1 � 1 and
k2 � 1 are very small constants for avoiding instability. According to the above formulas, SSIM can be
represented as follows [69]:

SSIM
(

I, Î
)
=

(
2µIµ Î + C1

)(
σI Î + C2

)(
µ2

I + µ2
Î
+ C1

)(
σ2

I + σ2
Î
+ C1

) (20)

In addition, to deal with uneven distribution of image statistical features or distortions, it is
more reliable to perform image quality assessment locally rather than globally. Thus, mean structural
similarity (mSSIM) [60] is proposed for locally assessing SSIM. This technique splits the images into
multiple windows in which the SSIM of each window is evaluated, and finally averages it over all
windows across the image. Because it evaluates the image reconstruction quality from the perspective
of the human visual system, SSIM index better meets the requirements of perceptual assessment.
The efficiency of SSIM-based IQM outperforms those based on MSE and the related PSNR over natural
images including a wide variety of image distortions [69]. Those properties make SSIM index a widely
used IQM among others in most SR tasks [70,71]. However, in some cases, SSIM index may lead to
similar results in evaluation of image performance with PSNR metric [60].

5.3. Task-Based Evaluation

Evaluating image reconstruction performance via other image analysis tasks is also an effective
IQM [11–13,72]. Specifically, this technique feeds the original high quality image and the corresponding
reconstructed image into a trained model for a specific vision task, and evaluates the reconstruction
quality by comparing the relative impact of reconstructed images on the prediction performance with
respect to that from high quality original HR images. The vision tasks used for this evaluation technique
include face recognition [73,74], face alignment and parsing [65,75], and object recognition [12,76].
However, certain vision tasks may focus on some specific image attributes that are more favorable to the
task, and may not be aware or care about the visual perceptual quality of the image. For example, most
object recognition models mainly focus on the high-level semantics while ignoring the image contrast
and noise. But on the other hand, in some domain-specific applications, such as super-resolving
surveillance video for face recognition, task-based IQM may reflect the performance of the SR models.

6. Methods and Materials

6.1. Methodology

In this SISR experiment, enhanced SRGAN (ESRGAN) [32] model is employed which improves
the original SRGAN model in three aspects. First, ESRGAN improves the network by designing a
Residual-in-Residual Dense Block (RRDB), illustrated in Figure 4, which offers higher capacity and
easier training. Second, the Relativistic average GAN (RaGAN) [77], which learns to distinguish a
more realistic image from a corresponding less realistic image, replaces the original discriminator in
SRGAN, which simply judges whether an image is real or fake. According to [77], this improvement
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allows the ESRGAN generator to recover more realistic texture details. Third, ESRGAN adjusts the
perceptual loss in the original SRGAN model by using VGG features before activation, rather than
features after activation. This empirically leads to sharper edges and more visually pleasing results.
Some properties of ESRGAN model is discussed below in more details.

Network Architecture: ESRGAN employs the basic architecture of SRResNet [23] for feature
learning in the LR feature space. ESRGAN introduces two modifications to the generator architecture of
SRGAN to improve the quality of the super-resolved images, G: (1) it removes all batch normalization
(BN) layers; (2) it replaces the original basic residual block (RB) in SRGAN with a more compact
RRDB architecture. According to Figure 4, by optimally combining multi-level residual blocks,
the RRDB design improves the perceptual quality of super-resolved images [32]. When the statistics of
image batches for training and testing are significantly high, BN layers tend to introduce unpleasant
artefacts limiting the generalization ability [32]. Removing BN layers, especially under the GAN
framework which is more prone to artefact generation, leads to consistent higher performance,
lower computational complexity, and better generalization in the network [32,59]. In addition to
the architectural improvement, to facilitate training a very deep network, ESRGAN exploits residual
scaling technique [55,59] to prevent instability in training by scaling down the residuals using a scaling
factor between 0 and 1 before adding them to the main path. Moreover, ESRGAN employs a smarter
initialization technique, which has empirically been shown to provide easier training when the initial
parameter variance becomes smaller [32].

Figure 4. Basic architecture of SRResNet with different possible residual blocks.

Relativistic Discriminator: The original SRGAN model uses the standard discriminator expressed
as D(I) = σ(C(I)), where σ is the sigmoid function and C(I) is the discriminator output.
This definition estimates the probability that the input image I is the original HR (real) image or
the super-resolved (fake) image. In contrast, a relativistic discriminator predicts the probability
that the original HR image IHR is relatively more realistic than the super-resolved image ILR as
shown in Figure 5. The Relativistic average Discriminator (RaD) [77] is formulated as: DRa(xr, x f ) =

σ
(
C(xr)−Ex f [C(x f )]

)
, where DRa is RaD function and xr and x f are the real (original HR) and fake

(super-resolved) images, respectively. Ex f [.] represents average over all generated or fake images in
each individual mini-batch. The discriminator loss, LRa

D , is defined as follows [32]

LRa
D = −EIHR

[
log
(

DRa(IHR, ISR)
)]
−EISR

[
log
(
1− DRa(ISR, IHR)

)]
(21)
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The adversarial loss for generator, LRa
G , is in a symmetrical form as [32]:

LRa
G = −EIHR

[
log
(
1− DRa(IHR, ISR)

)]
−EISR

[
log
(

DRa(ISR, IHR)
)]

(22)

where ILR and ISR = G(ILR) stand for the input LR image and the predicted super-resolved image,
respectively. In contrast to the adversarial loss for the generator in the original SRGAN model, LRa

Gen
in Equation (7), in which only gradients from the generated images take part in adversarial training,
the adversarial loss for the generator in ESRGAN, LRa

G in Equation (22), contains both ISR and IHR.
This property causes the gradients from both real images and generated images to participate in
adversarial training [32].

Figure 5. The standard and relativistic discriminators employed in the standard and relativistic GAN
architectures, respectively [32].

Perceptual Loss: ESRGAN suggests a more effective perceptual loss Lpercep by computing distances
between corresponding feature maps before activation rather than after activation, as practiced in the
original SRGAN model. Employing features before the activation layers overcomes two drawbacks
in the original design including extreme sparsity in the activated feature maps, and inconsistent
brightness reconstruction compared with the original HR image. Specially within a very deep network,
sparsity within feature maps leads to weak supervision and inferior performance. The loss function
for the generator in ESRGAN model is as follows [32]:

LG = Lpercep + λLRa
G + ηL1 (23)

where L1 = EILR‖G(ILR) − IHR‖1 is the content loss that evaluates the L1 distance between
super-resolved image G(ILR) and the original HR image IHR, and λ and η are coefficients to balance
different loss terms.

6.2. IQMs for SR Images

In this experiment, a comprehensive quantitative and qualitative assessment is performed on
the resulting SR images by exploiting some standard IQMs that are frequently used for assessing
the performance of different SISR models. Furthermore, a task-based IQM based on the SfM
photogrammetry [78] procedure is carried out. Applying any type of image processing algorithm
on a raw aerial image set can dramatically affect the precision and accuracy of retrieving the interior
and exterior geometry of a camera at image acquisition time. That, consequently, may lead to a
significant decrease in the quality and final accuracy of the main SfM photogrammetry products,
such as point clouds, DSMs, and orthoimages. The authors believe that the chosen task-based IQM can
more accurately exhibit the effectiveness and performance of DCNN-based SISR to enhance the spatial
resolution of LR imagery in RS applications. More specifically, where highly accurate spatial products
from processing RS images are required.

6.2.1. Standard IQM methods

PSNR and SSIM index are evaluated as standard IQMs for quantitative assessment of predicted SR
images. Choosing those two IQMs enables performance comparison in DCNN-based SISR applications
when it is applied on two different categories of images (general images and aerial RS images).
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6.2.2. SfM Photogrammetry for Task-Based IQM

SfM photogrammetry procedure, as illustrated in Figure 6, is employed on all available image
sets including HR ground truth, LR, and predicted SR image sets. SfM photogrammetry is a low-cost
method, based on stereoscopic photogrammetry, for highly accurate topographic reconstruction using
a series of overlapping images acquired from multiple viewpoints [78]. In contrast to traditional
photogrammetry, in SfM photogrammetry, interior geometry of the camera, usually referred to as
interior orientation (IO) parameters, position and orientation of each camera station with respect
to the scene’s global coordinate system, commonly called exterior orientation (EO) parameters,
and the geometry of the scene, i.e., the 3D coordinate of each point of the 3D scene, are resolved
automatically. All required parameters are calculated simultaneously based on the highly redundant
and iterative bundle adjustment (BA) computations using a rich database of corresponding image
features automatically extracted from a set of multiple overlapping images [79]. SfM photogrammetry
addresses the key problem of determining the 3D locations of a large number of corresponding features
extracted from multiple overlapping images, taken from different positions and angles with respect to
the 3D scene.

Figure 6. Steps of SfM photogrammetry.

Most image-based 3D reconstruction software that work based on the SfM photogrammetry
principle, first solve for camera IO and EO parameters followed by a multi-view stereo (MVS)
algorithm to escalate the density of the sparse point cloud generated by the SfM algorithm [78].
In the first step, several overlapping images are imported into the software, and a keypoints detection
algorithm, usually the popular scale invariant feature transform (SIFT) algorithm [80], is applied
to detect keypoints and keypoint correspondences across and between all images using a keypoint
descriptor. In the SIFT algorithm, for example, the keypoint descriptor is determined by computing
local image gradients and transforming them into a representation substantially insensitive to some
image feature variations, including illumination, orientation, and scale [80]. These descriptors are
unique enough to allow features to be matched in large image datasets. The BA technique is performed
to minimize the errors in the phase of finding point correspondences [78].

In addition to solving for IO and EO parameters, which indicate camera calibration and
pose parameters, respectively, the SfM algorithm generates a sparse point cloud using the image
coordinates of all corresponding keypoints, IO, and EO parameters of the camera in all imaging
stations. The coordinate system related to the generated point cloud is arbitrary. In order to transform
the point cloud coordinate system to any local or global coordinate system, a georeferencing phase
should be adopted. In that phase, a few ground control points (GCPs) with known 3D coordinates in a
local or global coordinate reference frame using land surveying or initial camera positions, e.g., using
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global navigation satellite system (GNSS), is typically required. In this experiment, it is not necessary
to perform the georeferencing step since all images are processed in the same reference frame. The IO
and EO parameters for each camera are used as the input to the MVS algorithm. Leveraging the
known IO and EO parameters for each individual camera, MVS initiates an intense search algorithm
to find more correspondences along all existing epipolar lines in all overlapping images. The accuracy
of the MVS algorithm and the quality of the dense point cloud generated by the MVS algorithm
is highly dependent on the reliability of the IO and EO parameters calculated from the initial BA
computations [81].

Images captured at high spatial resolutions, in general, return the most keypoints and keypoints
correspondences in overlapping images. In addition to the major contribution of the natural texture
in the 3D scene, the quality of the generated point cloud highly depends on several other factors
including the density, sharpness, contrast, and resolution of the image content within the image set [78].
Moreover, decreasing the image acquisition distance, or flight height above ground, leads to an increase
in the image spatial resolution or a finer GSD. This will further enhance the spatial density and spatial
resolution of the resulting point cloud [78]. However, the uncertainty in keypoints extraction and
matching, which is a typical issue in all low quality LR images, may result in poor estimation of a
camera’s IO and EO parameters leading to a very inaccurate and erroneous 3D point cloud.

6.3. Study Site and Dataset

Port Aransas is a town located on Mustang Island along the southern Texas Gulf of Mexico
coastline, USA Figure 7. In 2017, Hurricane Harvey, a category 4 hurricane, made landfall to the north
of Port Aransas along San Jose Island on the night of 25 August 2017. The southern portion of the
eye wall passed within close proximity to Port Aransas causing extensive damage, primarily due to
extreme winds but also surge coming from the bay side of the island.

Figure 7. Port Aransas study site located along the southern Texas Gulf of Mexico coastline. The square
box (top figure) shows the UAS flight area, which has been illustrated with more details in the
UAS-derived ortho-image (bottom figure).

A few days after the landfall of Harvey, a small UAS photogrammetric survey was conducted
over a section of the town directly bordering the Gulf-facing shoreline Figure 7. The purpose was
to inspect and evaluate structural damages to residential and commercial properties caused by the
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catastrophic storm. The flight mission covers almost 0.275 km2 of Port Aransas. Phantom 4 Pro
multi-rotor UAS (SZ DJI Technology C.o., Ltd., Shenzhen, China) was employed to conduct the survey.
The platform was equipped with a 1 inch CMOS RGB sensor to capture 20 megapixel imagery at a
resolution of 5472× 3648 pixels. The flight altitude was designed to achieve a GSD of 2.5 cm, resulting
in a flying height above ground level of about 90 m with forward lap and side lap around 80% and
70%, respectively. A total of 450 HR images were acquired over the study site. These images are used
for the purposes of this study.

6.4. Data Preparation and Model Training

In order to fine-tune pre-trained ESRGAN parameters with the existing dataset,
50 non-overlapping images were chosen from the original HR dataset as ground truth for
fine-tuning ESRGAN during training phase. Scaling factor of ×4 was set between LR and HR images.
LR training images were obtained by down-sampling corresponding HR images. MATLAB bicubic
kernel function was employed for image down-sampling, where its scale factor was set to 0.25.
To make the SISR problem more complicated and realistic, additive white Gaussian noise with mean 0
and standard deviation of one-tenth of the standard deviation of each channel in RGB image was later
added to the LR image set. Due to the high resolution of the original imagery, feeding the full-size
images into the DCNN model rapidly exhausts the whole GPU’s memory. However, in training phase,
large image patches help very deep convolutional networks with wider receptive fields to capture
more semantic information from the training samples. Therefore, this experiment was performed by
extracting 1500 random image patches of resolution 1000× 1000 pixels from the original HR images.
Figure 8 illustrates a LR image and corresponding ground truth HR image for a training sample.
The model is trained in the RGB channels, and data augmentation with random horizontal flips and 90
degree rotations is employed on the training image set. Testing and evaluation of model performance
is then done on 1000 image patches randomly extracted from the remaining 400 images in the original
HR and corresponding LR image sets.

It should be emphasized here that due to the large overlap between the employed UAS images,
objects are sometimes captured by multiple images resulting in the appearance of the same object in the
training and testing image sets. However, it should also be noted that such objects are captured from
different viewing angles, causing different perspective and radiometric distortions for each specific
object, or portion of the object, appearing in multiple images. Furthermore, the presence of such similar
scenes within the training image set is necessary for performing transfer learning effectively, in which
the weight parameters from a pre-trained DCNN model trained over a large dataset is applied to
leverage complex mappings learned by very deep CNN models for performing a downstream task [82].
The weight parameters taken from the pre-trained model are, then, fine-tuned by training the model
using a new dataset specific to the prediction task. In fact, one of the main reasons behind the transfer
learning technique is to help the DCNN model to effectively capture a priori information related to the
new task by fine-tuning the parameters of the underlying model using a new dataset for a different
but related task. In the SISR technique, such a priori information can be provided to the SISR model
by introducing information related to objects that are present in the acquired scene. Furthermore,
the main goal of this study is to show the effectiveness of the SISR technique for recovering degraded
or lost image details in the LR UAS images by fine-tuning a DCNN-based SISR model on a very limited
set of HR UAS images.

The original ESRGAN model, before fine-tuning, is also employed to investigate the capability
of the pre-trained ESRGAN, to enhance the image content and downgrade the inherent noise in the
original HR images. The idea is that such a pre-trained model, trained on some standard datasets,
may be capable of capturing the behavior of some types of noise that might be common in many
imaging systems. To do this experiment, the original HR image set is fed to the original pre-trained
ESRGAN with scaling factor of ×1.
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Figure 8. LR and corresponding HR image patches.

The pytorch [83] implementation of ESRGAN model was chosen for training over the UAS dataset.
The training process starts by initializing the ESRGAN model with weights from the pre-trained
network trained on some of the well-known benchmarks in SISR such as the DIV2K dataset [84],
the Flickr2K dataset [85], and the OutdoorSceneTraining (OST) dataset [66], which include thousands of
high quality HR images with a broad diversity in texture and contextual information. The performance
of the trained model has already been tested on widely used SR benchmarks such as Set5 [47],
Set14 [49], BSD100 [86], Urban100 [87], and the PIRM self-validation dataset [88]. Table 1 summarizes
the information related to the ESRGAN model setup and optimization settings for training the model on
the UAS image set. According to the table, dense block architecture for generator was set to 64× 5× 5,
which includes 64 kernels of size 5× 5. The generator is comprised of 23 residual-in-residual dense
blocks (RRDBs). The learning rate α was set to 0.0001, and Adam optimizer was chosen for updating
weights during training. Two exponential decay rate parameters in Adam optimizer β1 and β2, were set
to 0.9, and 0.999, respectively. ε parameter in the optimization algorithm was set to 1× 10−7 to avoid
any division by zero. The experiment was carried out with 100 epochs on Google Colab, Google’s
free cloud service, with one Intel(R) Xeon(R) CPU 2.30GHz and one high-performance Tesla K80 GPU,
having 2496 CUDA cores and 12GB GDDR5 VRAM. Fine-tuning the network took around 48 hours
and inference time for predicting the super-resolved image was 10 sec/image.

Table 1. ESRGAN model and training parameters setup .

Dense Block RRDB Learning Rate Adam Optimization Parameters

64× 5× 5 23 α = 0.0001 β1 = 0.9, β2 = 0.999, ε = 1× 10−7

7. Results

This section provides comprehensive qualitative and quantitative experimental results on
predicted super-resolved, SRpre, images from LR images, virtually downsampled form original
(ground truth) HR, HRgt, UAS image set with additive white Gaussian noise. Also, the result of
applying ESRGAN model on HRgt with scale factor×1, as an image enhancement network, to generate
enhanced HR images, HRenh, is investigated. Furthermore, the results of the task-based IQM using
the SfM photogrammetry procedure implemented with the original and super-resolved imagery
is reported.

7.1. Qualitative Assessment

Figure 9 illustrates the qualitative assessment of the SISR performance using ESRGAN model on
two different test samples. According to the visual inspection, and as observed in Figure 9, the ESRGAN
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model is able to upscale the LR images by factor 4 and predict SR images with high similarity in
perceptual and visual quality when they are compared with the corresponding HR counterparts.
A closer look at the qualitative results in this experiment reveals some noise removal properties learned
within the SISR model trained on a sufficient number of LR and corresponding HR images.

Figure 9. Illustration of the qualitative comparison between the predicted SR image and
corresponding LR and ground truth HR images for two test images.

7.2. Quantitative Results

For quantitative evaluation of the SISR performance, in this experiment with ESRGAN model,
PSNR value and SSIM index were calculated for the test image set and enhanced HR (HRenh) image
set. Table 2 illustrate the lowest, highest, and average PSNR values and SSIM indices for both
image sets. The range of values for both PSNR and SSIM index in Table 2, resulting from evaluating
ESRGAN performance on SRpre image set, is comparable in values reported for those IQMs when
ESRGAN, or any other high-performance DCNN-based SISR model, is applied on standard SISR
image sets [23,25,32]. The values of the standard IQMs represented in Table 2 confirm that SISR can
be effectively applied for recovering lost or degraded details in LR UAS imagery, and hopefully on a
wide range of imagery in RS applications, including aerial and satellite imagery, with a comparable
performance.

Table 2. PSNR and SSIM index claculated on image sets.

Image Set Lowest PSNR/SSIM Highest PSNR/SSIM Mean PSNR/SSIM

SRpre 25/0.6675 32/0.9011 28/0.8550
HRenh 43/0.9145 49/0.9940 82/0.9601

7.3. Task-Based IQM and Related Results

Further investigation of ESRGAN model performance in a task-based image quality evaluation
using SfM photogrammetry reveals more about the impact of image super-resolving on the internal
and external camera imaging geometry and the geometry of the reconstructed 3D scene. All available
UAS image sets including the downsampled noisy LR image set (LR), the original ground truth HR
image set (HRgt), the predicted super-resolved image set (SRpre), and enhanced HR image set (HRenh)
were separately imported to Agisoft Metashape software [89] for SfM photogrammetric processing.
Each image set was processed using the exact same settings and workflow procedure to ensure a fair
comparative evaluation could be made on the impact of SR imagery to the BA computations and 3D
reconstruction (i.e., point cloud).

BA computations, using keypoints extracted from each individual image in each image set,
also result in an accurate estimation of camera calibration (IO) parameters in a self-calibration
procedure using a pre-defined camera calibration model. Camera parameters evaluated within
BA computations include the focal distance f , principal point coordinates (Cx, Cy), radial distortion
coefficients (K1, K2, K3, K4), decentering distortion coefficients (P1, P2, P3, P4), and affinity and skew
transformation coefficients (B1, B2), which represent a specific distortion in digital imaging sensors
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accounting for scale distortion and non-orthogonality of pixel elements in the x, and y directions of the
digital sensor [90]. Table 3 illustrates the camera calibration results for LR, HRgt, SRpre, and HRenh
UAS image sets. According to Table 3, the evaluated values of IO parameters for SRpre image set,
especially, the sensor element (or pixel) size, focal distance, f , principal point offset Cx, Cy, and the
first coefficient of radial lens distortion, K1, which are among the most critical camera calibration
parameters, closely approximate the real values derived from HRgt image set. Referring to Table 3,
the calibrated IO parameters for LR image set are different from IO parameters for HRgt, SRpre,
and HRenh, meaning that the parameters defining the internal imaging geometry in LR UAS image set
is different than those in the other HR UAS image sets. It should be emphasized here that the number
of selected keypoints and the level of certainty in finding their correspondences in multiple images
within an image set can have a significant impact on the stability of BA computations and the accuracy
of the estimated IO and EO parameters.

Table 3. Camera calibration results.

Parameters LR HRgt SRpre HRenh

Pixelsize(mm) 0.00964 0.00241 0.00241 0.00241
f (pix) 911.785 3689.370 3701.798 3681.261
Cx(pix) −0.9885 −49.8694 −57.7129 −40.4323
Cy(pix) 0.7271 −13.8803 −16.2507 −15.3213
K1 0.00726 0.00512 0.00656 0.00402
K2 −0.04381 −0.00924 −0.01842 −0.01004
K3 0.07859 0.01028 0.02948 0.01011
K4 −0.04655 −0.00124 −0.01439 −0.00140
P1 0.00187 −1.7070 × 10−5 −2.8148 × 10−5 −1.6030 × 10−5

P2 0.00068 −1.0218 × 10−5 −1.4783 × 10−5 −1.0199 × 10−5

P3 0.28067 −11.0844 −3.01011 −10.7841
P4 −0.06669 4.86345 −0.51856 4.00345
B1 0.19185 0.00048 0.12109 0.00078
B2 0.69768 0.62977 0.63074 0.60117

Figure 10 displays plots representing the average reprojection error vectors from BA computations
across the image space for LR, SRpre, HRenh, and HRgt UAS image sets. This error quantifies the
distance between a certain keypoint location on an image and the location of the corresponding 3D
point reprojected on that image. The magnitude of reprojection error in the image space depends on
the quality of estimated camera calibration parameters and pose parameters, as well as on the quality
of the extracted keypoints on each individual image [89]. Maximum and RMS of reprojection errors
across the image space, and the average camera location errors with respect to the 3D scene have
been depicted in Table 4 for LR, HRgt, SRpre, and HRenh image sets. According to the table, both the
maximum and RMS of the reprojection errors in SRpre image space are closely comparable with those
derived from HRgt image set. The errors related to the quality of the 3D space, reconstructed by
SRpre image set, confirm the same quality in scene reconstruction when HRgt image set is employed.
In addition, Figure 11 illustrates a graphical view of the camera locations and their errors represented
by the error ellipsoids for all UAS image sets.

The process of point cloud densification was carried out on each individual UAS image set after
BA computations and digital surface models (DSMs) were later generated from the 3D point cloud
data by the post-processing within the SfM photogrammetry software. Figure 12 displays the dense
point cloud over a small area of the study site for all UAS image sets. Moreover, Table 5 summarizes
the processing report from SfM photogrammetry for each individual image set. According to Figure 12
and Table 5, visual and quantitative inspections on the density of the resulting dense point cloud,
which is the average number of points per square meter, demonstrate that the dense point cloud
generated from HRgt, SRpre, and HRenh are about ×17 denser than the dense point cloud generated
from the LR image set.
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To investigate how closely the DSM generated based on the SRpre image set approximates the
corresponding DSM generated from HRgt image set, DSM from SRpre was subtracted from the DSM
generated from HRgt image set. Figure 13 displays the resulting differential surface. Referring to
Figure 13, the average height difference between the two DSMs is about −0.5 cm. However, there are
some areas showing large height differences. These areas are mostly related to the edges of tall
man-made and natural objects. Areas with lack of texture, such as water bodies, also contribute to
the large height differences observed in Figure 13. The histogram in Figure 14 displays a statistical
representation of the pixel-wise height differences based on the frequency of occurrence for pixel
values in differential DSMs after filtering blunders.

(a) LR reprojection error. (b) HRgt reprojection error.

(c) SRpre reprojection error. (d) HRenh reprojection error.

Figure 10. Average reprojection error vectors plotted on image space. Colors of the error vectors
represent increasing magnitudes of the reprojection error progressing from blue to red respectively.
The scale bar at bottom shows the magnitude of the error vector in pixel units.

Table 4. Bundle adjustment results for reprojection and camera location errors.

Image Set LR HRgt SRpre HRenh

Max reprojection error (pix) 15.90 56.96 57.21 55.05
Reprojection error (pix) 0.4984 0.7868 0.9932 0.6348
X error (m) 1.7702 2.4005 2.4174 2.3241
Y error (m) 2.3225 2.6635 2.6691 2.3993
Z error (m) 0.5504 4.3415 4.1831 3.9901
XY error (m) 2.9202 3.5856 3.6012 3.503
Total error (m) 2.9716 5.6307 5.5197 5.4201
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(a) LR (b) SRpre

(c) HRenh (d) HRgt

Figure 11. Camera locations and related uncertainties for image data sets. Ellipse color represents Z
error. Errors in X and Y directions are represented by ellipse shape. Black dot within each individual
ellipse represents estimated camera locations.

Table 5. SFM photogrammetry report summary for different image sets.

Parameters LR HRgt SRpre HRenh LR to SRpre HRgt to HRenh

Num. of images 440 440 440 440 0.0% 0.0%
Flying altitude (m) 106 106 107 106 0.9% 0.0%
Tie points (points) 1,398,877 11,051,665 8,268,475 11,630,227 490.0% 5.2%
Dense cloud (points) 1,805,966 31,041604 31,052,606 31,940,817 1619.4% 2.8%
Point density (points/m2) 5.82 94.5 94.4 94.9 1521.9% 0.4%
DSM resolution (cm/pix) 41.40 10.30 10.30 10.30 75.1% 0.0%

(a) LR (b) SRpre

(c) HRenh (d) HRgt

Figure 12. Resulting dense RGB point cloud computed within the SfM photogrammetry process using
different image sets.
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Figure 13. Illustration of DSM difference between HRgt and SRpre image set.

Figure 14. Height-difference histogram between DSMs from HR and SR.

8. Discussion

Visual inspection of image samples in SRpre and corresponding HRgt image sets confirms that
the ESRGAN model performs much better over man-made objects and natural objects with definite
boundaries than other targets, as shown in Figure 9. One reason may be due to the fact that natural
objects usually comprise extremely intricate structures and severely random patterns with very fine
details. In addition, natural objects, such as vegetation, may be moving due to the wind during
image acquisition in an outdoor environment, inducing dynamic image motions in the recorded
images. More accurate visual inspection on SRpre images demonstrates that the model is able to predict
super-resolved images with lower level of noise and blur when they are visually compared with the
corresponding HRgt images. This noise reduction property of the model, however, may result in
removing unpleasing pseudo-noise patterns within some natural targets, such as vegetated areas.
This noise reduction capability of the ESRGAN model is more evident over man-made structures and
surfaces as illustrated in the right example of Figure 9.

Such image enhancement and noise removal characteristics can also be observed on both natural
and man-made objects that appear in HRenh image set, where the HRgt images were used as input and
the naive pre-trained SISR model, with scale factor×1, was used as an image restoration network. This
observation demonstrates that pre-trained ESRGAN, on several standard image sets for SISR, has been
able to capture, to some extent, the behavior of some types of noise that are common in almost all
digital imaging systems. Considering the fact that this model has already been trained to predict SR
images with scale factor ×2 and ×4, the observations with scale factor ×1 divulges that there might
be some types of noise that may commonly appear in different image scales where the pre-trained
network has been able to differentiate them from the real signal.
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The high IQM values reported for the HRenh image set in Table 2 is due to the high degree of
similarity in image content and quality between corresponding images in HRenh and HRgt image sets.
This observation demonstrates that pre-trained ESRGAN can be used as an image restoration network
when it is employed with scale factor ×1.

It is worth mentioning that employing pre-trained ESRGAN, without fine-tuning the parameters
using LR and corresponding HRgt UAS image sets for predicting the super-resolved images (SRpre),
decreases the model performance around 15% for both PSNR and SSIM index in this experiment.
The relatively high values for those standard image quality metrics on SRpre UAS image set,
whose contents are intrinsically different from those on which the vanilla ESRGAN model has been
trained, verifies that the transfer learning technique and fine-tuning of the pre-trained parameters
significantly helps the DCNN-SISR model to extract more related semantic information from the UAS
images. This information is optimally encoded as abstract information within multiple layers of a
DCNN-SISR model. Interestingly, according to Table 2, the vanilla ESRGAN model trained on standard
image sets, resulted in high values for PSNR and SSIM index when it was employed on the HRgt image
set as an image restoration network. This is regardless of the fact that the model did not previously see
the UAS images for which it has been employed to predict on in this experiment.

Results of the task-based IQM using SfM photogrammetry adds more to the previous findings.
Referring to Table 3, calibrated sensor element size, or image pixel size, for LR images is about 4
times bigger than that for images in other image sets, which is compatible with our experiment.
The calibrated focal lengths in SRpre and HRenh image sets closely approximate the real focal length
evaluated in HRgt ground truth image set. The difference in calibrated focal length for LR, SRpre,
and HRenh image sets from the calibrated focal length for HRgt image set are −0.010 mm, −0.030 mm
and 0.020 mm, respectively. Furthermore, calibrated Cx and Cy values shows an accurate estimation of
the principal point location in SRpre images with respect to the HRgt images. For LR images, however,
those calibrated parameters show a very different location for the principal point in LR image space.

Referring again to Table 3, the remaining calibration parameters, including radial and decentering
lens distortion coefficients, affinity, and skew transformation parameters in SRpre and HRenh image sets
show a high degree of compatibility with HRgt parameters confirming that lens distortion parameters
and other sensor related distortions can be accurately estimated in both super-resolved SRpre images
and restored HRenh images. However, interpreting the values of those coefficients, especially between
LR and HRgt images, is not very meaningful because some of them are usually highly correlated with
other parameters, especially the focal length, principal point location, and the first coefficient of radial
lens distortion [90,91].

Referring to Figure 10, the behavior of the average reprojection error in SRpre image space
accurately approximates that in the original HRgt image space. This finding can be supported further
by our above findings when referring to the calibrated camera parameters, where results showed
that the internal geometry of the sensor can be accurately recovered in the SRpre images. The plot
related to the average reprojection error in LR image space represents less similarity with the error
behavior in HRgt and SRpre image space, especially in the center of the image space. On the other hand,
the average reprojection error plot for HRenh image space (Figure 10d) is very similar to the reprojection
error plot for the HRgt image space (Figure 10b). This observation demonstrates that image restoration
processing carried out on the HRgt images within the pre-trained ESRGAN has not meaningfully
changed the IO parameters of the camera derived from the SfM analytical self-calibration procedure.

According to Table 4, investigation on maximum reprojection error and its RMS in the SRpre and
HRenh image spaces shows that they closely approximate those values in the HRgt image space with
sub-pixel magnitudes. However, RMS of reprojection error in HRenh image space is about 20% less
than it is in HRgt image space. Part of this decrease in reprojection error might be due to the noise
reduction process in HRenh image space with respect to the original HRgt image space. Referring to
the average camera location errors in Table 4, SRpred and HRenh image sets closely approximate those
in the original HRgt image set. This suggests that the SISR process employed with factor ×4 on the LR
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image set, and employed with the image restoration process on HRgt, preserves the external imaging
geometry with respect to the 3D scene. As depicted in Table 4, pre-trained ESRGAN model with scaling
factor×1, as image restoration network, resulted in 3% improvement on total error in camera positions
for HRenh image set. There is also 2% improvement in that error for SRpre dataset. Figure 11 shows
that camera locations and their positional errors in the HR UAS imagery can be accurately retrieved
in the predicted SR image set. Furthermore, it shows that image enhancement performed with the
employed pre-trained ESRGAN model does not dramatically change the external imaging geometry.

Carefully exploring the differential DSM in Figure 13 reveals that large differential offsets are
occurring in areas that include natural and man-made water bodies with lack of texture and along the
edges of tall natural and man-made structures. Filtering out those areas from the original differential
DSM and calculating some statistics over them shows that the minimum, maximum, and standard
deviation (SD) of height difference in those areas are −8.308 m, 8.075 m, and 30 cm respectively.
The height-difference histogram in Figure 14, for filtered differential DSM, confirms that the geometry
of the reconstructed 3D scene, as reflected by the DSM, can be accurately retrieved with a SD around
2.50 cm. The minimum, maximum, and mean of height-differences within the filtered differential DSM
are about −4.85 cm, 5.73 cm, and −0.02 cm, respectively.

It is worth mentioning that there are numerous environmental and sensor-related factors as
well as flight design parameters which contribute to the quality and the spatial resolution of images
captured by the UAS. Texture quality, related to each individual object in the scene, can highly affect
the training and inference phases of the DCNN-based SISR model, which subsequently affects the
results of the SfM process. Ambient environmental conditions, such as lighting or any instability of the
platform during image capturing, such as due to the wind, can impact the above results. Similarly,
flight design including altitude above ground and camera perspective (e.g., oblique versus nadir) will
impact the GSD and appearance of land cover features. As a result, the visual representation of the
same target may deviate from one exposure to another in a single UAS flight mission and across repeat
data acquisitions. Thus, the authors emphasize that the results shown here, are valid for the specific
data set acquired at a certain time over the specific study site. The results presented here, in terms of
reconstruction accuracy, cannot be necessarily generalized to other sites with very different targets and
textures, or the same area imaged at a different time and during different environmental conditions,
without further experimentation. However, we believe that the high capacity of deep CNN models to
efficiently extract informative contextual features from the raw UAS images in an end-to-end manner
have the potential to be extended further by training DCNN-based SISR models using a time-series of
UAS images acquired over the same area, or UAS images captured from the same area under different
weather conditions. Also, training and evaluating the performance of a certain DCNN-based SISR
model on multiple UAS image sets including images from different areas with a wider range of targets
and varying textures may be considered for further analyses.

9. Conclusions

SISR seeks to obtain HR images from corresponding LR images, which is a notoriously arduous
and ill-posed problem. Investigating different IQMs evaluated on SR images predicted from
corresponding LR images in a DCNN-based SISR network revealed two important findings with
respect to this study’s experiment on UAS imagery. First, the quantitative measures of image quality,
including PSNR and SSIM index, applied to the super-resolved UAS imagery, confirm that the
DCNN-based super-resolution technique employed here (ERSGAN architecture) can achieve the
same level of performance for spatial-resolution and pictorial information enhancement relative to
the original HR ground truth image set. Both quantitative and qualitative assessment of SR images
showed that the level of additive white noise to the LR image remarkably decreases in the SR image.
Furthermore, visual comparison of SR images with corresponding HR images in some areas showed
that the SR image may exhibit less amount of noise.
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The second important finding relates to the task-based IQM performed using SfM
photogrammetry. Results confirmed that the geometry of UAS image acquisition can be recovered in
SR images with high accuracy. Camera interior and exterior parameters, evaluated by processing SR
images in auto-calibration module within the SfM photogrammetry procedure, closely approximate
the original results derived from the same procedure on the ground truth HR images. Preserving the
geometry of imagery can significantly increase the reliability of using super-resolution techniques in
many different RS applications, specifically where extracting spatial information from RS images is
required. The densified point cloud generated by SfM photogrammetry on the SR UAS images is about
15 times richer than the point cloud generated from the artificially degraded LR UAS images, which
provides more details about the underlying terrain. Furthermore, the differential DSM and related
height-difference histogram show the STD around 2.5 cm, which confirms the closeness of the two
reconstructed surfaces generated from the SR and HR image sets.

Overall, results from this study’s experiment on UAS imagery show that DCNN-based SISR
enhancement techniques can exploit spatial and non-spatial information in LR and HR imagery
for effectively discriminating the signal from noise in image space resulting in high performance in
recovering image details and more visually appealing images for different RS applications. For example,
one practical application of the SR technique for UAS mapping is that it can potentially enable flights
at higher altitudes and lower GSDs to cover more area in a certain time duration, thereby leading to
more flight efficiency. Then, a DCNN-based SISR technique, such as presented in this study, could be
applied to super-resolve the imagery to a specific resolution and generate a dense point cloud from
SfM photogrammetry, and subsequently DSM or orthoimage, as though the data were acquired from a
UAS flight conducted at a lower altitude and with similar quality.

Future work will seek to investigate the real scenario of employing SISR to reduce UAS image
acquisition flight time for aerial surveying operations when mapping of a relatively large area at high
resolution is demanded. This will be investigated by employing two UAS image sets acquired at two
different altitudes over the same area. Performance of the DCNN-based SISR model to super-resolve
the LR (high altitude) images can then be assessed by comparing SfM processing results with the
super-resolved LR images and original HR (low altitude) images in terms of 3D reconstruction fidelity
and image quality. The effect of different lighting and environmental conditions, and the impact
of different study sites with different objects of varying textures, on model performance may also
be explored. Finally, examining the most optimized DCNN-based SISR techniques, with the lowest
time-complexity in training and inference phases, might be a topic of great interest where it can help
pave the path for integration of SISR into real-time remote sensing application scenarios.
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