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Adaptive Neural Network-Based Event-Triggered
Control of Single-Input Single-Output Nonlinear

Discrete-Time Systems
Avimanyu Sahoo, Hao Xu, Member, IEEE, and Sarangapani Jagannathan, Senior Member, IEEE

Abstract— This paper presents a novel adaptive neural
network (NN) control of single-input and single-output uncertain
nonlinear discrete-time systems under event sampled NN inputs.
In this control scheme, the feedback signals are transmitted, and
the NN weights are tuned in an aperiodic manner at the event
sampled instants. After reviewing the NN approximation prop-
erty with event sampled inputs, an adaptive state estimator (SE),
consisting of linearly parameterized NNs, is utilized to approxi-
mate the unknown system dynamics in an event sampled context.
The SE is viewed as a model and its approximated dynamics and
the state vector, during any two events, are utilized for the event-
triggered controller design. An adaptive event-trigger condition is
derived by using both the estimated NN weights and a dead-zone
operator to determine the event sampling instants. This condition
both facilitates the NN approximation and reduces the transmis-
sion of feedback signals. The ultimate boundedness of both the
NN weight estimation error and the system state vector is demon-
strated through the Lyapunov approach. As expected, during an
initial online learning phase, events are observed more frequently.
Over time with the convergence of the NN weights, the inter-event
times increase, thereby lowering the number of triggered events.
These claims are illustrated through the simulation results.

Index Terms— Adaptive control, event-triggered control (ETC),
function approximation, neural network (NN) control.

I. INTRODUCTION

TRADITIONAL periodic transmission of feedback con-
trol signals in a closed-loop networked environ-

ment requires a higher network bandwidth. Event-triggered
control (ETC) [1]–[12], on the other hand, is emerged recently
as an alternate method to reduce the network communication
and controller execution. In ETC, the aperiodic sampling of
system state vector is proved to be advantageous computation-
ally over periodic sampled control schemes [1].

The ETC technique allows the system errors to increase to a
predefined threshold before transmitting the feedback signals.
The threshold is designed to both avoid instability and meet
a certain desired performance. Therefore, the transmissions of
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the feedback signals and the control input are reduced while
achieving a desired control performance. These transmission
instants are usually referred to as event sampled instants or
simply event-trigger instants [2]. The condition under which a
decision is made to transmit the feedback and control signals
is known as event-trigger condition [2]. The event-trigger
condition is normally a function of the system state error,
which is referred to as event-trigger error [2]–[9] along with
a state-dependent threshold.

Tabuada [2], on ETC, assumed input-to-state stability
of the system with respect to the event-trigger error for
designing an event-trigger condition. It was shown that the
event-based controller ensured the asymptotic stability of the
system with reduced computation. Later, various other ETC
schemes [3]–[12] are developed for both linear and nonlinear
systems. A majority of these ETC schemes are implemented
by using a zero-order-hold (ZOH) [2], [3] in order to maintain
both the last transmitted state vector and control input until
the next transmission.

An alternate to the ZOH scheme is the model-based
scheme [5], [6], [8] where the state vector from a model
is used to generate the control input within any two event-
trigger instants. The model-based approach is shown to reduce
network traffic more than a ZOH-based scheme at the expense
of an additional computation due to the model. However, in
all the ETC effort [2]–[8], the system dynamics are considered
available a priori, while a small bounded uncertainty can be
tolerated [6]. In contrast, in our preliminary work, adaptive
model-based schemes [10], [11] both for uncertain linear
systems and partially unknown nonlinear systems, respectively,
were introduced.

From the stability point of view and to account for the
aperiodic transmissions of the feedback signals, several
closed-loop modeling techniques are also presented. A repre-
sentative list includes the piecewise linear system model [8],
the perturbed system model [6], the hybrid dynamical
system model, and impulsive dynamical system model [8].
All these modeling approaches utilized the Lyapunov method
or its extension for the stability analysis and to design the
event-trigger condition.

In this paper, an adaptive model-based ETC scheme for a
nonlinear discrete-time system in Brunovsky canonical form
is presented. Both the internal dynamics and the control
coefficient function are considered unknown. By using the
approximation property of neural networks (NNs) [16], in an
event sampled context, an adaptive state estimator (SE) is
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designed. The adaptive SE serves as a model of the system and
both approximates the system dynamics and estimates the state
vector. The approximated system dynamics and the estimated
state vector are subsequently utilized for generating the control
input, during any two event sampled instants.

A novel event-trigger condition is derived using the
Lyapunov method of stability. The threshold in the event-
trigger condition is designed as a function of both the
NN weight estimates and the system state vector. Thus,
the threshold becomes adaptive unlike the traditional threshold
conditions [2]–[5], which are the functions of system state
vector alone. This modified adaptive event-trigger condition
not only ensures the function approximation using a nonperi-
odic weight update law but also the stability. The event-trigger
condition further uses a dead-zone operator to prevent the
unnecessary triggering of events, due to the NN reconstruction
error, once the system state is inside the ultimate bound.

The contributions of this paper include: 1) the event
sampled NN approximation with model state vector; 2) the
development of a novel model-based adaptive NN ETC
scheme; 3) an aperiodic tuned NN-based SE or model; and
4) an adaptive event-trigger condition to ensure the stability
and the convergence of NN weight estimates.

The completely uncertain system dynamics make the
event-trigger condition design different from the traditional
ones [2]–[6], including partially unknown dynamics in [11].
The stability of the event-triggered closed-loop system is
proved by using the idea of switched systems, as discussed
in [7] and [13]. The Lyapunov function is allowed to increase
during the inter-event times but bounded. It is shown that
the bound for the Lyapunov function during inter-event
times converges to the ultimate value with events occurring.
This enables the proposed NN-based adaptive event-triggered
scheme to ensure stability in the presence of a significant level
of dynamic uncertainty. It also reduces the network traffic
with fewer numbers of triggered events when compared with
a traditional discrete-time systems.

The remaining part of this paper is organized as follows.
Section II revisits the event-based approximation and formu-
lates the problem for the ETC of uncertain dynamical systems.
Section III details the design procedure for the NN-based
adaptive ETC. The stability is claimed in Section IV.
The simulation results are presented in Section V. Finally, the
conclusion is drawn in Section VI. The Appendix details the
proofs for the lemmas and the theorems.

II. BACKGROUND AND PROBLEM FORMULATION

This section presents a brief background on the traditional
ETC and formulates the problem for adaptive ETC.

A. Background on ETC

Consider a controllable nonlinear uncertain discrete-time
system in Brunovsky canonical form given by

x1,k+1 = x2,k

x2,k+1 = x3,k

...

xn,k+1 = f (xk)+ g(xk)uk

yk = x1,k (1)

where xk = [x1,k x2,k . . . xn,k]T ∈ �n , uk ∈ �, and
yk ∈ � denote the state vector, the input, and the output of
the system. The internal dynamics and the control coefficient
function, f : �n → � and g : �n → �, respectively,
are the unknown nonlinear smooth functions. The system is
considered to be feedback linearizable in the sense that there
exists a diffeomorphism to transform the system into a linear
form.

System (1) can be written in simplified form as

xk+1 = Axk + B f (xk)+ Bg(xk)uk (2)

where

A =

⎡
⎢⎢⎢⎢⎣

0 1 · · · 0

0 0
. . . 0

...
...

. . . 1
0 0 0 0

⎤
⎥⎥⎥⎥⎦

∈ �n×n

and B = [0 0 · · · 1]T ∈ �n . The system dynamics (2) can be
rewritten in a compact form as

xk+1 = Axk + B F̄(xk)ūk (3)

where F̄(xk) = [ f (xk) g(xk)] ∈ �1×2 and ūk = [1 uk]T ∈ �2

are the augmented system dynamics and the input vector,
respectively. These augmented forms are utilized in the model
development and the controller design. To design a controller
by using feedback linearization, the following assumption is
required.

Assumption 1 [14]: The nonlinear function g(xk) is lower
bounded. Without the loss of generality, g(xk) is assumed to
satisfy 0 < gmin ≤ |g(xk)|, where gmin is a known positive
constant and | · | denotes the absolute value.

For system (1), under the complete knowledge of
system dynamics, a feedback linearizable controller of the
following form:

udk = (− f (xk)+ vk)/g(xk) (4)

yields an asymptotically stable closed-loop system. The
closed-loop dynamics can be written as

xk+1 = Acxk (5)

where udk is the ideal control input. The stabilizing control
input is given by vk = K xk , where K = [K1 K2 · · · Kn] is the
control gain vector. The control gain vector K ∈ �1×n can be
designed to ensure Ac is Schur through a suitable pole place-
ment design. The closed-loop system matrix can be written as

Ac = A + B K =

⎡
⎢⎢⎢⎢⎣

0 1 · · · 0

0 0
. . .

...
...

. . .
. . . 1

K1 K2 · · · Kn

⎤
⎥⎥⎥⎥⎦

∈ �n×n.

For the class of systems given by (1), any nonlinear controller
can also be utilized, which renders the asymptotic stability
of the system. The ideal controller (4) needs time-based
periodic sampled system state xk for implementation along
with f (xk) and g(xk). In contrast, our main objective in this
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paper is to implement the controller (4) in the event sampled
context without the knowledge of the system dynamics.

In the case of the traditional ETC, the system state vector xk

is transmitted to the controller only at the event sampled
instants. Define a subsequence {ki }∞i=1 of the discrete sequence
of time instants k ∈ N, referred to as event sampled instants.
The events are triggered at ki , ∀ i ∈ N with the first event
occurring at the time instant k0 = 0. The system state vector,
xki , is transmitted through the communication network and
held by a ZOH until the next transmission at ki+1. The last
held state, xki for ki ≤ k < ki+1 at the ZOH is piecewise
constant and used for the controller implementation.

The event sampled instants are determined at the trigger
mechanism by evaluating the event-trigger error against the
threshold value. The deviation between xk and the last trans-
mitted state xki is usually referred to as the event-trigger
error, eET

k . This is represented as

eET
k = xk − xki , ki ≤ k < ki+1, i ∈ N. (6)

Though event-trigger condition is evaluated periodically at
all k ∈ N, the state vector is transmitted to the controller only
at the event sampled instants determined by the event-trigger
condition.

Now, to implement the controller (4), the unknown system
dynamics, f (xk) and g(xk), must be approximated by using
event sampled system state vector, xki . Therefore, the universal
approximation property of the NN is revisited for the
event-based sampling in Section II-B.

B. Problem Formulation

The problem of ETC is formulated in this section by
addressing event sampled NN approximation and transmission
of state vector.

1) Event Sampled NN Approximation: According to the
universal approximation property [16] of the NN, a nonlinear
smooth function h(xk) ∈ �n can be approximated in a compact
set for all xk ∈ �x ⊂ �n . A linearly parameterized NN [16]
with one hidden layers can be used for the purpose. The
two layer NN can consist of a layer of randomly assigned
constant weights, Vh , in the input layer and tunable weight
matrix, Wh , in the output layer. It has been proved that by
randomly selecting the input layer weights, the activation
function forms a stochastic basis [16]. Thus, the NN approx-
imation property holds [16] for all inputs xk belong to a
compact set �x . The function h(xk) ∈ �x with the linearly
parameterized NN can be represented as

h(xk) = W T
h ψh

(
V T

h xk
) + εh(xk) (7)

where Wh ∈ �l×n is the NN target weight matrix.
The randomly assigned input weight matrix is denoted
by Vh ∈ �n×l , and ψh(·) ∈ �l is the activation function
vector. The NN reconstruction error and the number of hidden
layer neurons are denoted by εh(xk) ∈ �n and l, respectively.
So far in the literature, the universal NN approximation
property considers the availability of xk periodically at all-time
instants k.

In the case of an ETC, the approximation of the function
at event sampled instants h(xki ) can be expressed as [12]

h(xki ) = W T
h ψh

(
V T

h xki

) + εh(xki ) (8)

where ψh(V T
h xki ) ∈ �l is the activation function with event

sampled state vector, xki . The reconstruction error at event
sampled instants is given by εh(xki ) ∈ �n . Note that the
approximations (7) and (8) become equal if the events are
triggered at all-time instants. Since the events are occurring
in an aperiodic manner, the function h(xk) for ki ≤ k < ki+1
can be expressed as

h(xk) = W T
h ψh

(
V T

h xki

) + εh,e
(
xki , eET

k

)

ki ≤ k < ki+1, i ∈ N (9)

where εh,e(xki , eET
k ) is the event sampled reconstruction error

computed next.
Consider the periodic approximation of the function h(xk)

as in (7). By adding and subtracting ψh(V T
h xki ) and defini-

tion (6), it can be rewritten as

h(xk) = W T
h ψh

(
V T

h xk
) + W T

h ψh
(
V T

h xki

)

− W T
h ψh

(
V T

h xki

) + εh(xk)

= W T
h ψh

(
V T

h xki

) + W T
h

(
ψh

(
V T

h

(
xki + eET

k

))

−ψh
(
V T

h xki

)) + εh
(
xki + eET

k

)

ki ≤ k < ki+1 ∀i ∈ N. (10)

Comparing (9) and (10), the event sampled
NN reconstruction error εh,e(xki , eET

k ) = εh(xki + eET
k ) +

W T
h (ψh(V T

h (xki + eET
k ))− ψh(V T

h xki )).
The event sampled NN reconstruction error, εh,e(xki , eET

k ),
is a function of the traditional NN reconstruction
error εh(xk) = εh(xki + eET

k ) as in (7) and
an additional error due to event sampled input,
i.e., W T

h (ψh(V T
h (xki + eET

k ))− ψh(V T
h xki )). This additional

error is a function of event sampled state vector, xki , and
the event-trigger error eET

k . Therefore, to approximate a
function with a desired level of accuracy in an ETC context,
the event-trigger error, eET

k , must be kept small. This can
be achieved by designing a suitable event-trigger condition.
Higher is the number of event sampled instants, better will
be the NN approximation. However, this will increase the
number of transmissions leading to higher network bandwidth
usage.

The NN estimation of the function ĥ(xk) for ki ≤ k < ki+1,
∀i ∈ N can be written as

ĥ(xk) = Ŵ T
h,kψh

(
V T

h xk
)

= Ŵ T
h,kψh

(
V T

h xki

) + Ŵ T
h,k

(
ψh

(
V T

h

(
xki + eET

k

))

− ψh
(
V T

h xki

))
(11)

where Ŵh,k ∈ �l×n is the NN weight estimate. The second
term Ŵ T

h,k(ψh(V T
h (xki + eET

k ))− ψh(V T
h xki )) is an additional

error in estimation and a function of the event-trigger error.
It is important to mention here that the event-based aperiodic

transmission precludes the traditional periodic NN weight
update [16]. The NN weights must be tuned in an aperiodic
manner only at the event sampled instants, k = ki with the
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Fig. 1. Structure of the traditional MBETC system.

latest measuring state vector. This, further, requires a suitable
event-trigger condition to maintain estimation accuracy.

From the above discussion, the accuracy of NN approxima-
tion, the reduction in transmissions, and the system stability
depend upon the event-trigger condition. Thus, a tradeoff
must be reached through a careful design of the event-trigger
condition. As a solution, the threshold of the event-trigger
condition is made adaptive in contrast with the fixed
threshold utilized in the traditional ETC design with known
dynamics [2], [3].

An alternate to this ZOH-based technique is the
model-based approach, as discussed in Section II-B2.

2) Model-Based ETC: The structure of a model-based
ETC (MBETC) scheme [5], [6], [8] is shown in Fig. 1.

Traditionally, a system model (known a priori) generates
the state vector between the event sampled instants. The model
state vector is subsequently used by the controller to update
the control input periodically in contrast with a ZOH ETC.
The event sampled instants are determined by the deviation
of the model state from the measured system state vector due
to model uncertainty or disturbance. The measured system
state vector is transmitted at the event sampled instants to
reinitialize the model state vector.

The event-trigger error for an MBETC scheme can be
redefined as the difference between the measured system state
and the model state vector. It is given by

es
k = xk − x̂k, ki ≤ k < ki+1 ∀i ∈ N (12)

where x̂k ∈ �n is the model state vector. The reinitialized
model state vector at the trigger instants can be represented as

x̂k = xk, k = ki ∀i ∈ N (13)

and then, it evolves with model dynamics during the inter-
event times for ki < k < ki+1. Since the system dynamics in
(1) are uncertain, the traditional model-based ETC framework
cannot be directly used. This requires an adaptive NN scheme
to construct the model or SE. Furthermore, the model dynam-
ics must also be approximated in the MBETC context similar
to the ZOH-based case as discussed before. The detailed
design procedure is presented in Section III.

III. MODEL-BASED ADAPTIVE ETC DESIGN

The adaptive MBETC scheme for an uncertain nonlinear
discrete-time system is proposed in this section. We assume a
communication network between the sensor and the controller
but without packet losses and delays. This assumption is
consistent with the ETC literature [8] for the purpose of
controller design.

Fig. 2. Structure of the adaptive MBETC system.

The structure of the traditional MBETC, shown in Fig. 1,
is modified for an adaptive MBETC and shown in Fig. 2.
An NN-based adaptive model or SE is included not only
to estimate the state vector but also to approximate the
unknown system dynamics. An adaptive event-trigger condi-
tion is also proposed using the SE’s estimated NN weights
and the system state. Therefore, a mirror SE at the trigger
mechanism is used to evaluate the event-trigger condition.
This mirror SE estimates the NN weights locally at the
trigger mechanism to avoid the transmission of the NN weight
estimates through the communication network. The mirror
SE operates in synchronism with the SE at the controller. At
the trigger instant k = ki , the system state xki and xki −1,
are transmitted together. The received state vectors are used
to update the NN weights at trigger instants in an aperiodic
manner. Then, the event-trigger error, es

k , in (12) is reset to zero
for the next cycle of triggering. The detailed design procedure
for the NN-based adaptive MBETC scheme is presented
next.

A. Adaptive Estimator and Controller Design

The dynamics of the adaptive SE can be expressed as

x̂k+1 = Ax̂k +B f̂ (x̂k)+Bĝ(x̂k)uk, ki ≤ k < ki+1 ∀i ∈ N

(14)

where x̂k = [x̂1,k x̂2,k · · · x̂n,k]T ∈ �n represents
the estimated state vector. The functions f̂ (x̂k) ∈ � and
ĝ(x̂k) ∈ � represent the approximation of the nonlinear
functions f (xk) and g(xk), respectively. The system state
vector, xk , is available intermittently only at k = ki , ∀i ∈ N.
Thus, the approximation of the nonlinear functions is
expressed as f̂ (x̂k) and ĝ(x̂k) with the estimated state
vector, x̂k . Furthermore, as proposed, the SE state vector is
reinitialized as in (13).

The dynamics of the SE in (14), in an augmented form as
in (3), for both inter-event times and event sampled instants
using (13), can be represented as

x̂k+1 =
{

Ax̂k + B ˆ̄F(x̂k)ūk, ki < k < ki+1

Axk + B ˆ̄F(xk)ūk, k = ki

(15)

where ˆ̄F(x̂k) = [ f̂ (x̂k) ĝ(x̂k)] and ˆ̄F(xk) = [ f̂ (xk) ĝ(xk)].
Consider the augmented system dynamics (3). The nonlinear

function, F̄(xk), can be approximated in the event sampled
context, similar to (8) and (9), using the SE state x̂k as input
to the NN. Hence, F̄(xk) can be expressed as

F̄(xk) = W T�( ˆ̄xk)+�e
(
x̂k, es

k

)
, ki ≤ k < ki+1 ∀i ∈ N

(16)
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where W = [W T
f W T

g ]T ∈ �2l×1 is the unknown target
NN weight matrix with W f ∈ �l and Wg ∈ �l represents the
target weights for f (xk) and g(xk). The event-based activation
function matrix is denoted by

�( ˆ̄xk) =
[
ϕ f

(
V T

f x̂k
)

0l×1

0l×1 ϕg
(
V T

g x̂k
)
]

∈ �2l×2

where V f ∈ �n×l and Vg ∈ �n×l are randomly assigned
constant weights at the input layers, and ϕ f (·) and ϕg(·)
represent the NN activation functions for f and g, respectively.
The input matrices can be selected as V f = Vg = V . Then,
ˆ̄xk = V T

f x̂k = V T
g x̂k = V T x̂k . The event-based reconstruction

error using the SE state vector is denoted by

�e
(
x̂k, es

k

) = �
(
x̂k +es

k

) + W T (
�

(
V T (

x̂k + es
k

))−�(
V T x̂k

))

where �(x̂k + es
k) = �(xk) = [ε f (xk) εg(xk)] ∈ �1×2 is

the traditional reconstruction error in augmented form. The
reconstruction errors ε f (xk) and εg(xk) are the errors for the
function f and g, respectively. The additional error term,
as in the case of ZOH-based approximation in (9), is given
by W T�((V T (x̂k + es

k))−�(V T x̂k)).

The actual NN estimation of the function, ˆ̄F(xk), with
SE state, x̂k , can be written similar to (11) for ki ≤ k < ki+1 as

ˆ̄F(xk) = Ŵ T
k �(x̄k)

= Ŵ T
k �( ˆ̄xk)+ Ŵ T

k

(
�

(
V T (

x̂k + es
k

)) −�
(
V T x̂k

))

(17)

where Ŵk = [Ŵ T
f,k Ŵ T

g,k]T ∈ �2l×1 represents the estimated
NN weight vector and

�(x̄k) =
[
ϕ f (V T xk) 0l×1

0l×1 ϕg(V T xk)

]

is the augmented activation function with x̄k = V T xk .
Remark 1: The error term �(V T (x̂k +es

k))−�(V T x̂k), both
in (16) and (17), is the result of the model state x̂k as input to
the activation function during ki < k < ki+1 instead of system
state xk . In the case of a traditional NN-based model [16],
where the system state is used periodically, this error is not
present. Since the activation functions are smooth functions,
this error can be represented in terms of event-trigger error,
es

k using the Lipschitz continuity as given next.
Assumption 2 [16]: The target weight vector W , the

NN activation function �(·), and the reconstruction error �(·)
are bounded above [16] satisfying ‖W‖ ≤ Wmax,
‖�(·)‖ ≤ �max, and ‖�(·)‖ ≤ �max, where Wmax, �max,
and �max are positive constants.

Assumption 3: The NN activation function �(x̄k) is
Lipschitz continuous on a compact set for all xk ∈ �x . Then,
there exists a constant L > 0 such that ||�(x̄k) − �( ˆ̄xk)|| ≤
L||x̄k − ˆ̄xk|| ≤ L�||es

k|| are satisfied, where L� = L||V || is a
constant.

The SE dynamics (15) by the NN approximation can be
expressed as

x̂k+1 =
{

Ax̂k + BŴ T
k �(

ˆ̄xk)ūk, ki < k < ki+1

Axk + BŴ T
k �(x̄k)ūk, k = ki .

(18)

The event-based control input with the estimated SE state
vector, x̂k , and the SE dynamics (15) can be represented as

uk =
{
(− f̂ (x̂k)+ K x̂k)/ĝ(x̂k), ki < k < ki+1

(− f̂ (xk)+ K xk)/ĝ(xk), k = ki .
(19)

The control law using the approximated dynamics from (18)
is given by

uk =
{(− Ŵ T

f,kϕ f ( ˆ̄xk)+ K x̂k
)
/Ŵ T

g,kϕg( ˆ̄xk), ki < k < ki+1(− Ŵ T
f,kϕ f (x̄k)+ K xk

)
/Ŵ T

g,kϕg(x̄k), k = ki .

(20)

To ensure that the control law (20) is well-defined,
i.e., Ŵ T

gk
ϕg( ˆ̄x) 
= 0 at all-time instants k, the estimate ĝ(x̂k) is

defined as

ĝ(x̂k) =
{

Ŵ T
g,kϕg( ˆ̄xk), Ŵ T

g,kϕg( ˆ̄x) ≥ gmin

Ŵ T
g,k−1ϕg( ˆ̄xk−1), otherwise.

(21)

The augmented function approximation error can be written
from (16) and (17) as

˜̄F(xk)= F̄(xk)− ˆ̄F(xk)= W̃ T
k �(x̄k)+�(xk), ki ≤k<ki+1

(22)

where ˜̄F = [ f̃ g̃] with f̃ (·) = f (·) − f̂ (·) and
g̃(·) = g(·) − ĝ(·) are the function approximation errors for
f and g, respectively. The NN weight estimation error is
denoted by W̃k = W − Ŵk .

B. Event-Trigger Error Dynamics and Aperiodic Update Law

The dynamics of the event-trigger error (12) using
(3) and (15) for ki < k < ki+1 can be written as

es
k+1 = xk+1 − x̂k+1 = Axk + B F̄(xk)ūk − Ax̂k − B ˆ̄F(x̂k)ūk

= Aes
k + B ˜̄F(xk)ūk + B( ˆ̄F(xk)− ˆ̄F(x̂k))ūk

ki < k < ki+1. (23)

Recalling the event-based function approximation (17) and
the augmented function approximation error (22), (23) can be
expressed as

es
k+1 = Aes

k + BW̃ T
k �(x̄k)ūk + B�k ūk + BŴ T

k �̃(x̄k, ˆ̄xk)ūk

(24)

for ki < k < ki+1, where �̃(x̄k, ˆ̄xk) = �(x̄k) − �( ˆ̄xk) and
�k ≡ �(xk) for brevity. Similarly, the event-trigger error
dynamics at the trigger instants using (3) and (18) become

es
k+1 = BW̃ T

k �(x̄k)ūk + B�k ūk, k = ki . (25)

To ensure the convergence of the NN weight estimation
error, W̃k , the NN weight update law in an event-triggered
context is selected as

Ŵk = Ŵk−1 + γkα�(x̄k−1)ūk−1esT

k B

1 + ‖�(x̄k−1)‖2 ‖ūk−1‖2 − γkκŴk−1

ki−1 ≤ k < ki (26)
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where α > 0 is the learning rate and κ > 0 is sigma
modification term similar to that in the traditional adaptive
control [15]. The indicator function, γk , is defined as

γk =
{

0, event is not triggered, ki−1 < k < ki

1, event is triggered, k = ki .
(27)

The indicator function enables the NN weights to be updated
once an event is triggered, i.e., γk = 1. The event-trigger error
es

k is first used to update the NN weights in (26), and then reset
to zero for the next trigger. As the trigger instants are aperiodic
in nature, the NN weights are updated in a nonperiodic manner,
as proposed. This saves the computation when compared with
the traditional NN-based control approaches [16].

The update law (26) needs both xki −1 and xki at the trigger
instant ki for updating the NN weights and to reset the model
state. As proposed, both the current and previous state vectors
are transmitted as a single packet at the trigger instants.

The NN weight estimation error dynamics using (26) and
forwarding one time step ahead can be derived as

W̃k+1 = W̃k − γkα�(x̄k)ūkesT

k+1 B

1 + ‖�(x̄k)‖2‖ūk‖2 + γkκŴk, ki ≤ k < ki+1.

(28)

The convergence of the NN weight estimation error, W̃k ,
requires the vector, �(x̄k)ūk , in (28), persistently exciting
which is a well-known fact in traditional adaptive and NN-
based control [15]–[16], [18]–[19]. For completeness, the
definition of the PE condition is given.

Definition 1 ([18] Persistency of Excitation): A vector
φ(xk) ∈ �n is said to be persistently exciting over an interval
if there exist positive constants δ, c, d , and kd ≥ 1, such that

cI ≤
kd +δ∑
k=kd

φ(xk)φ
T (xk) ≤ d I (29)

where I is the identity matrix.
Remark 2: A PE like condition for�(x̄k)ūk , can be achieved

by adding an exploration noise to the control input [20]. This
keeps the control input and, in turn, the system states away
from zero. Furthermore, the activation function also satisfies
PE and 0 < �min ≤ ‖�(xk)‖ ≤ �max holds.

Lemma 1: Consider the adaptive SE (18) and the control
law (20). Suppose Assumptions 1 and 2 hold, the NN weights
be initialized in a compact set and tuned by using (26), and the
vector �(x̄k)ūk satisfies the PE condition. Let k0 be the initial
trigger instant, k p be the pth trigger instant for an integer p,
and N ≥ k p is an integer representing the time instant. Then,
the NN weight estimation error W̃k is bounded for all time
and will converge to the ultimate bound when ki > k p or,
alternatively, for all-time instants k > k0 + N provided the
learning gains satisfy 0 < α < 1/4 and 0 < κ < 1/4.

Proof: Refer to the Appendix.
Note that the ultimate bound can be made arbitrarily small

by selecting the proper design parameters and the number of
neurons, as discussed in Remark 5. Next, the main results are
claimed.

IV. EVENT-TRIGGER CONDITION AND STABILITY

In this section, the ultimate boundedness (UB) [16] of
the closed-loop ETC system state vector and NN weight
estimation error is presented by designing a suitable adaptive
event-trigger condition.

A. Closed-Loop System Dynamics

The closed-loop dynamics of the ETC system can be
derived by using (2) and (19). Consider the inter-event times,
i.e., ki < k < ki+1, ∀i ∈ N. The closed-loop dynamics can be
written as

xk+1 = Axk + B f (xk)+ (Bg(xk)(− f̂ (x̂k) + K x̂k)/ĝ(x̂k))

= Acxk + B K es
k + B ˜̄F(xk)ūk + B( ˆ̄F(xk)− ˆ̄F(x̂k))ūk .

By using the NN estimation (17) and (18) and the function
approximation error (22), the closed-loop dynamics become

xk+1 = Acxk + B K es
k + BW̃ T

k �(x̄k)ūk + B�kūk + BŴ T
k

× �̃(x̄k, ˆ̄xk)ūk, ki < k < ki+1. (30)

Similarly, at the trigger instants, k = ki , ∀i ∈ N, the
closed-loop dynamics using (2), (3), (19), and (20) can be
written as

xk+1 = Acxk + BW̃ T
k �(x̄k)ūk + B�kūk, k = ki . (31)

Furthermore, the closed-loop dynamics of the SE can be
derived by using (14) and (19) as

x̂k+1 =
{

Acx̂k, ki < k < ki+1

Acxk, k = ki .
(32)

The flowchart in Fig. 3 shows the implementation of the
adaptive MBETC scheme designed in Sections III and IV.

B. Main Results

In this section, we claim the main results by designing
an adaptive event-trigger condition. The closed-loop stability
of the adaptive MBETC is shown by evaluating a single
Lyapunov function for both during the events or trigger
instants and inter-event times. It is shown in [7] and [13]
that the Lyapunov function need not monotonically decrease
both during the inter-event and event times [7]. Due to the
aperiodic NN weight update, it is shown that the Lyapunov
function may increase during the inter-event times but remains
bounded. It is further shown that the bound during the inter-
event times converges to the ultimate value with the trigger of
events; this is shown in Fig. 4.

Consider the event-trigger error (12). The events occur
when the following condition, referred to as the event-trigger
condition, given by:

D
(∥∥es

k

∥∥)
> μET

k ‖xk‖ (33)

is satisfied, where

μET
k =

√
�σmin(Q)/

(
8‖K‖2‖�1‖ + 8L2

�‖ūk‖2‖Ŵk‖2‖�1‖
)

denotes the threshold coefficient and 0 < � < 1. The matrices
�1 and Q are positive definite matrices and satisfy the
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Fig. 3. Flowchart of the proposed ETC system.

Fig. 4. Evolution of the Lyapunov function during event and inter-event
times.

Lyapunov equation ĀT
c �1 Āc − �1 = −Q with Āc = √

2Ac,
as shown in Remark A.1. The minimum singular value of Q is
denoted by σmin(Q). The dead-zone operator D(·) is defined as

D
(∥∥es

k

∥∥) =
{∥∥es

k

∥∥, if ‖xk‖ > Bx

0, otherwise
(34)

where Bx is the desired ultimate bound for the system state
vector.

Remark 3: The threshold coefficient μET
k in (33) is a

function of the NN weight estimate, ‖Ŵk‖ and gets updated
by (26). Therefore, the event-trigger condition (33) becomes
adaptive. This helps in generating the required number of
events for the function approximation during the learning
phase of the NNs, as discussed in Section II-B1. Furthermore,
μET

k is also a function of the control gain K . The choice
of control gain K is based on the desired closed-loop

performance and the stability of the system such that Āc is
Schur. This implies that the event-trigger condition is also
driven by the system performance. Hence, for different choices
of K , the trigger condition will ensure the required number of
events to achieve the desired performance.

Remark 4: The dead-zone operator (34) is utilized in the
event-trigger condition in order to reset the event-trigger
error es

k to zero once the state vector is within the ultimate
bound. This avoids unnecessary triggering of events due to
the NN reconstruction error.

Theorem 1: Consider the nonlinear discrete-time system (1)
along with the NN-based SE given in (18). Assume
Assumptions 1–3 hold and the NN initial weight matrix Ŵ0 be
initialized in a compact set. Suppose the system state vectors,
xki and xki −1, are transmitted, the SE state vector, x̂k , is
reinitialized, and the NN weights are updated using (26) as per
the event-trigger condition (33). Let k0 be the initial trigger
instant, k p be the pth trigger instant for any positive integer p,
and N ≥ k p is an integer represents the time instant. Then,
the control input (20) ensures the closed-loop event-triggered
system state vector, xk , the SE state vector, x̂k , and the
NN weight estimation error, W̃k , are bounded for all time and
converge to the ultimate bound for all trigger instants ki > k p

or, alternatively, for all k > k0 + N provided learning gains
are selected, as shown in Lemma 1.

Proof: Refer to the Appendix.
Remark 5: From the proof of Theorem 1 (see the Appendix),

the bounds on the system state vector, Bx , and NN weight
estimation errors, BW̃ , depend upon the traditional NN recon-
struction error, �max, and the design parameters, α and κ .
Through the proper selection of the number of neurons in the
hidden layer and the design parameters α and κ , the bounds
Bx and BW̃ can be made arbitrarily small (see simulation
results).

The minimum inter-event time, δkmin = mini∈N(δki ), where
δki = ki+1 − ki for i ∈ N, implicitly defined as the event-
trigger condition (33), is the minimum time required for the
event-trigger error, ‖es

k‖, to evolve from zero and reach the
event-trigger threshold, μET

k ‖xk‖, over all inter-event times.
In the case of a discrete-time system, which can be considered
as discretized version of a continuous time system with a
suitable fixed sampling time, trivially, the minimum inter-
event time is the sampling time. Furthermore, in our case
of model-based adaptive NN ETC, the minimum inter-event
time may be one sampling time during the learning phase,
but the inter-event times increase with the convergence of
NN weight estimation error, thereby reducing the transmission.

V. SIMULATION RESULTS

In this section, the proposed NN-based MBETC scheme is
evaluated by using two examples.

Example 1: A second-order single-input and single-output
nonlinear discrete-time system was selected for simulations
whose dynamics are given as

x1,k+1 = x2,k

x2,k+1 = f (xk)+ g(xk)uk (35)

where f (xk) = x2,k/(1 + x2
1,k) and g(xk) = 2 + sin(x1,k).
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Fig. 5. Convergence of (a) state vector, (b) control input, (c) function
approximation error f̃ (xk), and (d) function approximation error g̃(xk).

Fig. 6. Performance of the model-based adaptive NN ETC. (a) Evolution
of event-trigger threshold and event-trigger error. (b) Cumulative number of
trigger instants with and without dead-zone operator. (c) Inter-event time.
(d) Comparison of the data rate between the traditional periodic transmission
and the event-triggered transmission.

The following parameters were chosen during the
simulation. The initial states of the system and the SE were
selected to be [3 2]T , since the first event is considered at k0.
Initial NN weights V ∈ �2×15, Ŵ f,0 ∈ �15 and Ŵg,0 ∈ �15

were chosen randomly from a uniform distribution in the
interval [0, 1] with 15 neurons each in the hidden layers. The
activation functions used were symmetric sigmoid functions
(tanh (·)) for both the NNs with learning gains α = 0.24 and
κ = 10−5. The control gain K = [0.35 0.2] such that the
matrix Āc = √

2Ac is Schur. The event-trigger condition was
derived from (33) with gmin = 1 and � = 0.99. The Lipschitz
constant L� was computed as L‖V ‖ = 3.28 with L = 1. The
system was simulated for 15 s. with a sampling time of 0.01 s,
i.e., 1500 sampling instants. The ultimate bound for the system
state vector was chosen to be 10−3. The simulation results are
shown in Figs. 5–7.

Fig. 5(a) shows the convergence of the system state vector
close to zero with the event-based approximated control input
in Fig. 5(b). The NN approximation errors of the nonlinear
functions f (xk) and g(xk) are shown in Fig. 5(c) and (d),
respectively. Due to NN initial weights being far away from
the target, large initial errors are noticed in the plot, and finally,
they converge to a bound close to zero. The boundedness

Fig. 7. Cumulative number of events with different values of (a) learning
gain α and (b) event-trigger parameter �.

of these errors close to zero validated the event-based
approximation discussed in Section II-A.

Next, the performance in terms of the triggering of events
is shown in Figs. 6 and 7. Fig. 6(a) shows the evolution
of the state-dependent event-trigger threshold and the error.
The event-trigger error [see the zoomed-in view of Fig. 6(a)]
resets to zero once the error reaches the threshold, and the
system states were transmitted. Fig. 6(b) shows the count on
the number of trigger instants that have occurred with respect
to the total number of sampling instants. It was found that a
total of 306 events occurred out of 1500 sampling instants.
In addition, the plot indicates that the events are triggered
frequently at the initial phase as a result of large approximation
error resulting from the random initialization of NN weights.
As the NN weights are updated and converge close to the target
weights, the inter-event times increase. As expected, changing
initial NN weights resulted in different numbers of events for
the convergence of the weights.

The reduction in the number of cumulative events [the
y-axis in Fig. 6(b)] demonstrates the effectiveness of the
event-trigger scheme in reducing the number of state vector
transmissions over the network in comparison with a
traditional periodic sampled discrete-time control. The
durations between two consecutive transmissions are shown
in Fig. 6(c) and are aperiodic in nature. Assuming every
packet size of 8 bit data, a comparison plot for the data
rate in bits per second is shown in Fig. 6(d). In the case of
the traditional discrete-time system, the data rate is constant,
i.e., 800 b/s. In contrast, in the proposed ETC, the data
rate reduces over time, since the transmissions are reduced
and finally reaches to 100 b/s. This confirms a reduction in
bandwidth usage and proves the effectiveness of the approach.
Furthermore, the NN weights are updated 306 times, and
thus reducing the computation for approximating the unknown
nonlinear functions when compared with the traditional
NN-based approach. However, the use of mirror adaptive
SE for the evaluation of the event-trigger condition requires
an additional computation.

A comparison between the trigger mechanisms with and
without a dead-zone operator, in terms of cumulative number
of event-trigger instants, is shown in Fig. 6(b). When the dead-
zone operator is not used, as shown in Fig. 6(b) (dotted line),
the events trigger continuously due to the NN reconstruction
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Fig. 8. Convergence of (a) state vector, (b) control input, (c) function
approximation error f̃ (xk), and (d) function approximation error g̃(xk).

error even the system state vector is inside the ultimate
bound. Hence, the dead-zone operator is necessary to reset
the event-trigger error to zero once the state vector converge
and stay inside the ultimate bound. This stops the unnecessary
triggering of events, as shown in Fig. 6(b) (bold line).

Furthermore, the effect of different learning gains α and
event-trigger parameters � on the number of events is shown
in Fig. 7. As shown in Fig. 7(a), for different values of α, the
cumulative number of events is different. This is due to
the change in convergence rate of the NN weight updates.
The number of cumulative triggers reduced with an increase in
value �, since the threshold value increases with an increase
in �. Note that Lyapunov stability is a sufficient condition.
Therefore, the event-trigger threshold for � = 1 still maintains
the stability of the system.

Example 2: In this example, another second-order system
as in (35) was chosen where the system dynamics are given
by f (xk) = x2

1,kx2,k/(1 + x2
1,k + x2

2,k) and g(xk) = 1 +
(2/(1 + x2

1,k + x2
2,k)).

The simulation parameters were as follows. The initial
values for the system and the SE states were [1.5 2.5]T.
The initial NN weights, V ∈ �2×16, Ŵ f,0 ∈ �16, and
Ŵg,0 ∈ �16 were chosen randomly in the interval [0, 1] with
16 neurons each in the hidden layers. Symmetric sigmoid func-
tions were used as the activation functions for both the NNs.
Design parameters were selected as α = 0.24, κ = 10−5,
gmin = 1, � = 0.99, L� = 3.6, and K = [0.3 0.25]. The
system was simulated for 5 s with a sampling time of 0.01 s,
i.e., 500 sampling instants. The ultimate bound threshold of
system state vector was chosen to be 8 × 10−3.

The convergence of the system state and the control input is
shown in Fig. 8(a) and (b), respectively. The NN approxima-
tion errors f̃ and g̃ are shown in Fig. 8(c) and (d), respectively.
The cumulative number of triggers as shown in Fig. 9 (b) was
observed to be 80 out of 500 sampling instants implying the
saving in network resources and computation.

From both the examples, it is clear that the adaptive
trigger condition is able to generate required number of
triggers for the event-based function approximation with
aperiodic update law. Furthermore, the reduction in the

Fig. 9. Performance of the model-based adaptive NN ETC. (a) Evolution
of event-trigger threshold and event-trigger error. (b) Cumulative number of
trigger instants versus the total number of sampling instants. (c) Inter-event
times. (d) Comparison of the data rate between the periodic transmission and
the event-triggered transmission.

number of transmission verified the saving in communication
bandwidth.

VI. CONCLUSION

In this paper, an NN-based adaptive ETC scheme for
an uncertain nonlinear discrete-time system was introduced.
An approximation of system dynamics by using NN was
accomplished in the context of reduced event sampled
communication. Two linearly parameterized NNs approximate
the unknown nonlinear functions quite satisfactorily. The
novel adaptive event-trigger condition ensured the stability
and the desired performance of the complete uncertain system.
In addition, the simulation results proved the efficacy of the
proposed algorithm in terms of reducing the network traffic.
It was observed that the number of triggered instants vary
with the initial NN weights and the learning gain. Though a
stabilizing controller was designed, it is not optimal. Hence,
the design of the event-based optimal controller for uncertain
systems will be as part of the future research.

APPENDIX

Proof of Lemma 1: The NN weights are updated only at the
trigger instants and held during the inter-events times. Thus,
the proof for the UB of the NN weight estimation error is
carried out by evaluating a Lyapunov function candidate for
both the cases as follows.

Case I [At the Trigger Instants (k = ki , ∀i ∈ N)]:
Consider the Lyapunov function given by

VW̃ ,k = tr
{
W̃ T

k W̃k
}
. (A.1)

The first difference, �VW̃ ,k = tr{W̃ T
k+1W̃k+1} − tr{W̃ T

k W̃k},
along the weight estimation error dynamics (28) with the
indicator function γk = 1 can be written as

�VW̃ ,k = tr

{(
W̃k − α�(x̄k)ūk

1 + ‖�(x̄k)‖2‖ūk‖2 esT

k+1 B + κŴk

)T

×
(

W̃k − α�(x̄k)ūk

1 + ‖�(x̄k)‖2‖ūk‖2 esT

k+1 B + κŴk

)}

− tr
{

W̃ T
k W̃k

}
.
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Substitute the error dynamics in (25). Applying
Cauchy–Schwartz (C–S) inequality with definitions
Ŵk = W − W̃k and BT B = 1, the first difference
satisfies

�VW̃ ,k

≤ − α

1 + ‖�(x̄k)‖2‖ūk‖2 tr
{

W̃ T
k �(x̄k)ūk ūT

k �
T (x̄k)W̃k

}

+ α

1 + ‖�(x̄k)‖2‖ūk‖2 tr
{
�k ūk ūT

k �
T
k

}

+ 4α2�
ūT

k �
T (x̄k)�(x̄k)ūk

(1 + ‖�(x̄k)‖2‖ūk‖2)2

× tr
{(

W̃ T
k �(x̄k)ūk

)(
W̃ T

k �(x̄k)ūk
)T } − 2κ tr

{
W̃ T

k W̃k
}

+ 4κ2tr{W T W } + 4κ2tr
{
W̃ T

k W̃k
} + 2κ tr

{
W̃ T

k W
}

+ 4α2 ūT
k �

T (x̄k)�(x̄k)ūk

(1 + ‖�(x̄k)‖2‖ūk‖2)2
tr{(�k ūk)(�k ūk)

T }.
Observe that

ūT
k �

T (x̄k)�(x̄k)ūk

1 + ‖�(x̄k)‖2‖ūk‖2 ≤ ‖�(x̄k)‖2‖ūk‖2

1 + ‖�(x̄k)‖2‖ūk‖2 ≤ 1.

Therefore, the first difference is upper bounded as

�VW̃ ,k

≤ − α(1 − 4α)

1 + ‖�(x̄k)‖2‖ūk‖2 tr
{
W̃ T

k �(x̄k)ūk ūT
k �

T (x̄k)W̃k
}

+ α(1 + 4α)

1 + ‖�(x̄k)‖2‖ūk‖2 tr
{
�k ūk ūT

k �
T
k

} + 2κ tr
{

W̃ T
k W

}

− 2κ tr
{
W̃ T

k W̃k
} + 4κ2tr{W T W } + 4κ2tr

{
W̃ T

k W̃k
}
.

By using the inequality 2tr{AT B} ≤ ‖A‖2 + ‖B‖2 and
Frobenius norm, the first difference leads to

�VW̃ ,k ≤ − α(1 − 4α)

1 + ‖�(x̄k)‖2‖ūk‖2

∥∥W̃ T
k �(x̄k)ūk

∥∥2 + κW 2
max

+ κ‖W̃k‖2 − 2κ‖W̃k‖2 + 4κ2W 2
max + 4κ2‖W̃k‖2

+ (
α(1 + 4α)‖ūk‖2�2

max/(1 + ‖�(x̄k)‖2‖ūk‖2)
)
.

Since 0 < �min ≤ ‖�(x̄k)‖ is ensured by the PE condition,
as discussed in Remark 2, the following inequality holds:

‖ūk‖2

1 + ‖�(x̄k)‖2‖ūk‖2

= ‖�(x̄k)‖2‖ūk‖2

(1 + ‖�(x̄k)‖2‖ūk‖2)‖�(x̄k)‖2 ≤ 1

�2
min

.

The first difference using the above inequality leads to

�VW̃ ,k ≤ −(α(1 − 4α)/(1 + ‖�(x̄k)‖2‖ūk‖2))

× ∥∥W̃ T
k �(x̄k)ūk

∥∥2 − κ(1 − 4κ)‖W̃k‖2 + BW̃
M

where BW̃
M = (α(1 + 4α)�2

max/�
2
min) + (κ + 4κ2)W 2

max and
0 < α < 1/4. Dropping the first negative term, it holds that

�VW̃ ,k ≤ −β‖W̃k‖2 + BW̃
M , k = ki ∀i ∈ N (A.2)

where β = κ(1 − 4κ) > 0 by selecting 0 < κ < 1/4.
From (A.2), the first difference of the Lyapunov function,
�VW̃ ,k , is less than zero as long as ‖W̃k‖2 > BW̃

M /β ≡ BW̃
UB.

Therefore, by using Lyapunov theorem [16], the NN weight

estimation error W̃k is bounded at the trigger instants provided
the vector �(x̄k)ūk satisfies the PE condition.

Case II [During the Inter-event Times (ki < k < ki+1,
∀i ∈ N)]:

Consider the Lyapunov function in (A.1). Along the
NN weight estimation error dynamics (28) with γk = 0, the
first difference of VW̃ ,k can be expressed as

�VW̃ ,k = tr
{
W̃

T
k+1W̃k+1

} − tr
{
W̃

T
k W̃k

}

= tr
{
W̃

T
k W̃k

} − tr
{
W̃

T
k W̃k

} = 0. (A.3)

From (A.3), the NN weight estimation error W̃k is a
constant during the inter-event times. Since the NN weights
are bounded at the trigger instants as demonstrated in Case I,
and the initial weights are being finite, the weight estimation
error, W̃k , is bounded during the inter-event times.

From both the cases, we need to show that the NN weight
estimation error converges to the ultimate bound. The first
difference (A.2) in Case I for k = ki can be expressed as

VW̃ ,ki +1 − VW̃ ,ki
= tr

{
W̃ T

ki +1W̃ki +1
} − tr

{
W̃ T

ki
W̃ki

}

= ‖W̃ki +1‖2 − ‖W̃ki ‖2 ≤ −β‖W̃ki ‖2 + BW̃
M .

Rearranging the above expression, one can express the above
inequality as

‖W̃ki +1‖ ≤ (1 − β)‖W̃ki ‖2 + BW̃
M . (A.4)

It is clear that 0 < 1 − β < 1 by the choice of 0 < κ < 1/4.
Furthermore, W̃k , during the inter-event times, from (A.3)
in Case II, remains constant. Thus, ‖W̃ki ‖ = ‖W̃ki−1+1‖ for
ki−1 < k < ki , ∀i ∈ N. Therefore, (A.4) can be rewritten as

‖W̃ki +1‖ ≤ (1 − β)‖W̃ki−1+1‖2 + BW̃
M . (A.5)

Solving the difference inequality in (A.5) recursively, with
the initial NN weight estimation error ‖W̃k0 ‖ = ‖W̃0‖ = BW̃0,
the NN weight estimation error in (A.5) can be expressed as

‖W̃ki +1‖2 ≤ (1−β)i+1 B2
W 0+((1−(1−β)i+1/β)BW̃

M ≡ BW̃
i .

(A.6)

Therefore, the constant upper bound on the NN weight estima-
tion error during the inter-event times, from (A.6), is given by

‖W̃k‖2 ≤ (1 − β)i+1 B2
W 0 + ((1 − (1 − β)i+1/β)BW̃

M ≡ BW̃
i

(A.7)

for ki < k < ki+1, ∀i ∈ N.
The NN weights are initialized with a finite value, and the

target weights are bounded. Therefore, the initial NN weight
estimation error ‖W̃k0 ‖ = ‖W̃0‖ = BW̃0 is bounded.

Furthermore, from (A.6), BW̃
i is a piecewise constant, con-

verging sequence of functions since β satisfies 0 < β < 1.
Therefore, there exists an integer p (number of events) such
that for the number of events i > p, the upper bound BW̃

i

converges to the ultimate bound, i.e., BW̃
i → BW̃

UB for all event-

trigger instants ki > k p, where BW̃
UB = BW̃

M /β from (A.2).
Consequently, from Cases I and II, the NN weight estima-

tion error W̃k is bounded for all-time instants and converges to
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the ultimate bound when ki > k p. Since ki is a subsequence
of k, the NN weight estimation error W̃k is UB for k > k0+N ,
where N ≥ k p is a positive integer.

Proof of Theorem 1: The proof of the theorem is completed
by considering two cases, i.e., at the event-trigger instants
and during the inter-event times. The first difference of the
Lyapunov function is evaluated for both the cases, and finally
combined to show the UB.

Case I [At the Trigger Instants (k = ki ,∀i ∈ N)]:
Consider the Lyapunov function candidate given as

Vk = Vx,k + ηVx̂,k +�VA,k +�VW̃ ,k +�VB,k (A.8)

where Vx,k = x T
k �1xk , Vx̂,k = x̂ T

k �2 x̂k , VA,k = (x̂ T
k �2 x̂k)

2,
VW̃ ,k = tr{W̃ T

k W̃k}, and VB,k = tr{W̃ T
k W̃k}2. The matri-

ces �1 and �2 are the symmetric positive definite matrices
and satisfy the Lyapunov equations Āc�1 Āc −�1 = −Q and
Ac�2 Ac − �2 = −Q̄, where Āc = √

2Ac. The matrices Q
and Q̄ are the positive definite matrices. The constant
coefficients are defined as η = max{17‖K‖2�2

max‖�1‖/g2
min

×σmin(Q̄), 9‖�1‖�2
max‖K‖2/g2

minσmin(Q̄)}, � = max{9‖K‖2

×‖�1‖�2
max/{g2

minσmin(Q̄)σmin(AT
c �2 Ac+�2)}, 5‖�1‖‖K‖4/

g2
minσmin(Q̄)σmin(AT

c �2 Ac +�2)}, � = 2(4�2
max‖�1‖g2

min

+16‖�1‖�2
max(�

2
maxW 2

max +�2
max))/g2

minβ and � = 42
×�4

max‖�1‖/{g2
minβ(2 − β)} with σmin(·) is the minimum

singular value.
For brevity, we will compute the first difference of each

term in (A.8) individually and combine them at the final step
to obtain the overall first difference.

Consider the first term, Vx,k = x T
k �1xk . The first difference

along the system dynamics (31) can be expressed as

�Vx,k = [
Acxk + BW̃ T

k �(x̄k)ūk + B�kūk
]T
�1

×[
Acxk + BW̃ T

k �(x̄k)ūk + B�kūk
] − x T

k �1xk .

Applying C–S inequality, one can arrive at

�Vx,k ≤ x T
k

(
2AT

c �1 Ac −�1
)
xk + 4

[
BW̃ T

k �(x̄k)ūk
]T
�1

×[
BW̃ T

k �(x̄k)ūk
] + 4[B�kūk]T�1[B�kūk]

≤ −σmin(Q)‖xk‖2 + 4�2
max‖�1‖‖W̃k‖2‖ūk‖2

+ 4‖�1‖‖ūk‖2�2
max

where 2AT
c �1 Ac −�1 = −Q and ‖B‖ = 1.

Remark A.1: The Lyapunov equation ĀT
c �1 Āc −�1 = −Q

has a positive definite solution only when the matrix
Āc = √

2Ac is Schur. As per the definition of matrix Ac in (5),
the control gain K can be selected to ensure Āc is Schur.

By using the facts ϕ f,max ≤ �max and ‖W f,k‖ ≤ ‖Wk‖, the
control input at the trigger instants given in (20) satisfies

‖ūk‖2 = 1 + ‖uk‖2

= 1 + ∥∥[ − Ŵ
T
f,kϕ f (x̄k)+ K xk

]
/Ŵ

T
g,kϕg(x̄k)

∥∥2

≤ 1 + 4�2
maxW2

max

g2
min

+ 4�2
max

g2
min

‖W̃k‖2 + 2‖K‖2

g2
min

‖xk‖2.

(A.9)

Substituting inequality (A.9) and separating the cross product
term using Young’s inequality, 2ab ≤ a2 + b2, the first

difference is bound by

�Vx,k ≤ −σmin(Q)‖xk‖2 + 4�2
max‖�1‖‖W̃k‖2

+ (
16/g2

min

)
�4

maxW 2
max‖�1‖‖W̃k‖2

+ (
20/g2

min

)
�4

max‖�1‖‖W̃k‖4 + (
4/g2

min

)‖�1‖
×‖K‖4‖xk‖4 + (

16/g2
min

)‖�1‖�2
max�

2
maxW 2

max

+ (
16/g2

min

)‖�1‖�2
max�

2
max‖W̃k‖2 + (

8/g2
min

)

×‖�1‖�2
max‖K‖2‖xk‖2 + 4‖�1‖�2

max. (A.10)

Considering the second term of the Lyapunov function
Vx̂,k = x̂ T

k �2 x̂k , the first difference along the closed-loop SE
dynamics (32), with x̂k = xk at k = ki , becomes

�Vx̂,k = x̂ T
k+1�2 x̂k+1 − x̂ T

k �2 x̂k

= (Acxk)
T�2(Acxk)− x T

k �2xk

= x T
k

(
AT

c �2 Ac −�2
)
xk

= −x T
k Q̄xk ≤ −σmin(Q̄)‖xk‖2. (A.11)

Moving on for the third term, VA,k = (x̂ T
k �2 x̂k)

2, the
first difference �VA,k = (x̂T

k+1�2x̂k+1)
2 − (x̂T

k �2x̂k)
2 can be

written as �VA,k = �Vx̂,k(�Vx̂,k + 2xT
k �2xk). Substituting

�Vx̂,k from (A.11) reveals that

�VA,k ≤ −σmin(Q̄)σmin
(
AT

c �2 Ac +�2
)‖xk‖4. (A.12)

Now, the first difference of the fourth term VW̃ ,k in the
Lyapunov function can be written from (A.2) in Lemma 1
and given by

�VW̃ ,k ≤ −β‖W̃k‖2 + BW̃
M . (A.13)

Considering the last term VB,k = tr{W̃ T
k W̃k}2, the first

difference can be computed using (A.13) as follows:
�VB,k = (

tr
{
W̃ T

k+1W̃k+1
}2 − tr

{
W̃ T

k W̃k
}2)

≤ ( − β‖W̃k‖2 + BW̃
M

)(
(2 − β)‖W̃k‖2 + BW̃

M

)
.

Appling Young’s inequality 2ab ≤ pa2 + (b2/p) reveals that

�VB,k ≤ −(1/2)β(2−β)‖W̃k‖4+(((2−β)/2β)+ 1)
(
BW̃

M

)2

(A.14)

where (2 − β) > 0 by the selection of 0 < κ < 1/4.
Finally, combining all the individual first differences given

in (A.10)–(A.14), the overall first difference �Vk = �Vx,k +
η�Vx̂,k + ��VA,k + ��VW̃ ,k + ��VB,k, with η, � , � ,
and � from (A.8), found to be

�Vk ≤ −σmin(Q)‖xk‖2 − (
1/g2

min

)‖�1‖�2
max‖K‖2‖xk‖2

−
(

4�2
max‖�1‖ + 16

g2
min

‖�1‖�2
max

× (
�2

maxW 2
max + �2

max

)) ‖W̃k‖2

− (
1/g2

min

)‖�1‖‖K‖4‖xk‖4

− (
1/g2

min

)
�4

max‖�1‖‖W̃k‖4 + Bc2
T M (A.15)

where Bc2
T M = (16/g2

min)‖�1‖�2
max�

2
maxW 2

max+4‖�1‖�2
max+

�BW̃
M +�(((2 − β)/2β)+ 1)(BW̃

M )
2.
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From (A.15), the Lyapunov first difference �Vk is less than
zero as long as

‖xk‖>max

{√
Bc2

T M/σmin(Q),
√

g2
min Bc2

T M/‖�1‖�2
max‖K‖2,

4
√

g2
min Bc2

T M/‖�1‖‖K‖4

}
≡ Bx

1,M

or

‖W̃k‖ > max

×
{√

g2
min Bc2

T M{
4�2

maxg2
min‖�1‖+16‖�1‖�2

max

(
�2

maxW 2
max+�2

max

)} ,

4
√

g2
min Bc2

T M/�
4
max‖�1‖

}
≡ BW̃

1,M .

Therefore, by using the Lyapunov theorem [16], the system
state xk , the SE state x̂k , and the NN weight estimation
error W̃k are bounded at the trigger instants. Furthermore,
when i > p or, alternatively, all trigger instants ki > k p, where
p is an integer representing the events, the system state xk ,
the SE state x̂k , and the NN weight estimation error W̃k are
all ultimately bounded.

Case II [During the Inter-event Times (ki < k < ki+1,
∀i ∈ N)]:

Consider the Lyapunov function given in (A.8) in Case I.
Similar to Case I, we will evaluate the individual terms
separately. Note that the NN weights are not updated during
the inter-event times and held at their previous values.

Consider the first term Vx,k = xT
k �1xk of the Lyapunov

function candidate (A.8). The first difference �Vx,k along the
closed-loop system trajectory (30) can be expressed as

�Vx,k = xT
k+1�1xk+1 − xT

k �1xk

= [
Acxk + BKes

k + BW̃
T
k �(x̄k)ūk

+ B�k ūk + BŴ
T
k �̃(x̄k, ˆ̄xk)ūk

]T

×�1
[
Acxk + BKes

k + BW̃
T
k �(x̄k)ūk

+ B�k ūk + BŴ
T
k �̃(x̄k, ˆ̄xk)ūk

] − xT
k �1xk .

Applying C–S inequality, the first difference can be repre-
sented as

�Vx,k ≤ −xT
k Qxk + 8

(
BW̃

T
k �(x̄k)ūk

)T
�1

(
BW̃

T
k �(x̄k)ūk

)

+ 8(B�k ūk)
T�1(B�k ūk)

+ 4
[
BKes

k+BŴ
T
k �̃(x̄k, ˆ̄xk)ūk

]T

×�1
[
BKes

k+ BŴ
T
k �̃(x̄k, ˆ̄xk)ūk

]

where Q satisfies the Lyapunov equation
ĀT

c �1 Āc −�1 = −Q with Āc = √
2Ac. By using Frobenius

norm and triangle inequality with the fact ‖B‖ = 1 reveals

�Vx,k ≤ −σmin(Q)‖xk‖2+8�2
max‖W̃k‖2‖ūk‖2‖�1‖+8‖ūk‖2

×‖�1‖‖�k‖2+4
∥∥BKes

k +BŴ
T
k �̃(x̄k, ˆ̄xk)ūk

∥∥2‖�1‖.
Applying C–S and Young’s inequalities and replacing

‖�̃(x̄k, ˆ̄xk)‖ ≤ L‖x̄k − ˆ̄xk‖ ≡ L�‖es
k‖ from Assumption 3,

the first difference is expressed as

�Vx,k ≤ −σmin(Q)‖xk‖2 + 8�2
max‖W̃k‖2‖ūk‖2‖�1‖

+ 8‖K‖2‖es
k‖2‖�1‖ + 8L2

�‖Ŵk‖2‖es
k‖2‖ūk‖2‖�1‖

+ 8‖ūk‖2‖�1‖‖�k‖2. (A.16)

By definition of the control input (20) for ki < k < ki+1, the
following inequality holds:

‖ūk‖2 ≤ 1 + 4�2
maxW2

max

g2
min

+ 4�2
max

g2
min

‖W̃k‖2 + 2‖K‖2

g2
min

‖x̂k‖2.

(A.17)

Substituting (A.17) in the first difference (A.16) and with
simple mathematical manipulation, one can reach at

�Vx,k ≤ −σmin(Q)‖xk‖2 + (
16/g2

min

)‖K‖2�2
max‖�1‖‖x̂k‖2

+ (
8/g2

min

)‖K‖2‖�1‖‖x̂k‖4�2
max

+ (
8‖K‖2‖�1‖ + 8L2

�‖Ŵk‖2‖ūk‖2‖�1‖
)∥∥es

k

∥∥2

+ 8�2
max‖�1‖

(
1 + (

4/g2
min

)(
�2

maxW2
max +�2

max

))

×‖W̃k‖2+(
8/g2

min

)
�2

max‖�1‖‖W̃k‖4(4�2
max+‖K‖2)

+ 32
(
�2

max/g2
min

)‖�1‖W2
max�

2
max + 8‖�1‖�2

max.

Recall the event-trigger condition (33). During the inter-event
times, for the case when the system state vector is outside
the ultimate bound, it holds that ‖es

k‖ ≤ μET
k ‖xk‖. Using

this inequality and substituting μET
k from (33) into the above

first difference and one can arrive at

�Vx,k ≤ −(1 − �)σmin(Q)‖xk‖2+(
16/g2

min

)‖K‖2�2
max‖�1‖

×‖x̂k‖2 + 8�2
max‖�1‖‖W̃k‖2

×(
1 + (

4/g2
min

)(
�2

maxW2
max +�2

max

))

+ (
8/g2

min

)‖K‖2‖�1‖�2
max‖x̂k‖4

+ (
8/g4

min

)
�2

max‖�1‖‖W̃k‖4

×(
4�2

max + ‖K‖2) + (
8‖�1‖

+ (
32/g4

min

)
�2

maxW 2
max‖�1‖

)
�2

max. (A.18)

Consider the second term Vx̂,k = x̂ T
k �2 x̂k of the Lyapunov

function (A.8). The first difference �Vx̂,k along the
closed-loop SE dynamics (32) for ki < k < ki+1 can be
represented as

�Vx̂,k = x̂T
k+1�2x̂k+1 − x̂T

k �2x̂k = −x̂T
k Q̄x̂k

≤ −σmin(Q̄)‖x̂k‖2 (A.19)

where the positive definite matrix Q̄ satisfies the Lyapunov
equation AT

c �2 Ac −�2 = −Q̄.
The first difference of the third term VA,k = (x̂T

k �2x̂k)
2 can

be written using (A.19) as

�VA,k ≤ −x̂T
k Q̄x̂k

(−x̂T
k Q̄x̂k + 2x̂T

k �2x̂k
)

≤ −σmin(Q̄)σmin
(

AT
c �2 Ac +�2

)‖x̂k‖4. (A.20)

The first difference of the fourth term, VW̃ ,k = tr{W̃T
k W̃k},

in (A.8) can be written from (A.3) and given as

�VW̃ ,k = 0. (A.21)
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Therefore, the first difference of VB,k = tr{W̃T
k W̃k}2

from (A.21) is written as

�VB,k = 0. (A.22)

The overall first difference, �Vk = �Vx,k + η�Vx̂,k +
��VA,k +��VW̃,k +��VB,k, by combining (A.18)–(A.22),
and recalling the definition of η and � , is upper bounded by

�Vk ≤ −σmin(Q)(1 − �)‖xk‖2 − (
1/g2

min

)
�2

max‖K‖2‖�1‖
×‖x̂k‖4−(

1/g2
min

)‖K‖2�2
max‖�1‖‖x̂k‖2+B M

� +B M
W̃ ,i

(A.23)

where B M
� = (8‖�1‖ + (32/g4

min)�
2
maxW 2

max‖�1‖)�2
max and

B M
W̃ ,i

= 8�2
max‖�1‖(1 + (4/g2

min)(�
2
maxW2

max + �2
max))B

W̃
i +

(8�2
max‖�1‖/g2

min)(4�
2
max+‖K‖2)BW̃ 2

i with BW̃
i is piecewise

constant bound of W̃k for the i th inter-event time from Lemma
1. From (A.23), the overall first difference �Vk is less than
zero as long as

‖xk‖ >
√
(B M
� + B M

W̃ ,i
)/σmin(Q)(1 − �) ≡ Bx

2,i

or

‖x̂k‖ > max

{√(
B M
� + B M

W̃ ,i

)
g2

min/‖K‖2�2
max‖�1‖,

4
√(

B M
� + B M

W̃ ,i

)
g2

min/‖K‖2‖�1‖�2
max

}
≡ Bx̂

2,i .

This implies either the system state vector outside the ball
of radius Bx

2,i or the SE state vector outside the ball of
radius Bx̂

2,i , both will converge to their respective bounds
in a finite time. Since inter-event times are followed by the
trigger instants, the initial values of xk , x̂k , and W̃k , during
the inter-event times, are the updated values from the trigger
instants. It is shown in Case I that xk , x̂k , and W̃k , are bounded
at the trigger instants. Therefore, the system and SE state
vectors are bounded during the inter-event times. Note that
the function B M

W̃ ,i
in (A.23) is a piecewise constant function,

since BW̃
i in (A.7), from Lemma 1, is constant during the

i th inter-event time. Therefore, the bounds for the system and
the SE state vectors, Bx

2,i , and Bx̂
2,i , respectively, are piecewise

constant functions.
During the initial learning phase of the NN, the upper

bound on the NN weight estimation error BW̃
i in (A.7) may

be large. Hence, the piecewise constant function B M
W̃ ,i

and in

turn Bx
2,i and Bx̂

2,i are of larger value. The system and SE state
vectors inside the ball of radius Bx

2,i and Bx̂
2,i , respectively,

may increase within these bounds. It follows that the Lyapunov
function (A.8) may increase and bounded by the piecewise
constant bound. The upper bound on the Lyapunov function
using the upper bounds of the system state, the SE state, and
the NN weight estimation error can be expressed as

Vk ≤ Bx2

1,i + ηBx̂2

2,i +� Bx̂4

2,i + �BW̃
i +�BW̃ 2

i (A.24)

for ki < k < ki+1, ∀i ∈ N.
To show the UB of xk , x̂k , and W̃k , we need to

show the functions B M
W̃ ,i

, Bx
2,i , and Bx̂

2,i converge to their

ultimate values. The bounds B M
W̃ ,i

, Bx
2,i , and Bx̂

2,i are the

functions of BW̃
i . Since BW̃

i in (A.7) is a converging sequence,

shown in Lemma 1, and converges to BW̃
UB for all i > p, the

function B M
W̃ ,i

in (A.23) converges to the ultimate value,

i.e., B M
W̃ ,i

→ B M
W̃ ,M

for all i > p, where B M
W̃ ,M

= 8�2
max‖�1‖

×(1+(4/g2
min)(�

2
maxW 2

max +�2
max))B

W̃
UB+(8�2

max‖�1‖/g2
min)

(4�2
max +‖K‖2)BW̃ 2

UB . Consequently, the bounds Bx
2,i → Bx

2,M
and Bx̂

2,i → Bx̂
2,M for all i > p, where

Bx
2,M =

√
(B M
� + B M

W̃ ,M
)/σmin(Q)(1 − �)

and

Bx̂
2,M = max

{√(
B M
� + B M

W̃ ,M

)
g2

min/‖K‖2�2
max‖�1‖,

4
√(

B M
� + B M

W̃ ,M

)
g2

min/‖K‖2‖�1‖�2
max

}
.

Therefore, combining results from Cases I and II, the system
state xk , the SE state x̂k , and the NN weight estimation
error W̃k are bounded for all time and converge to the ultimate
bound when i > p or with events occurring such that ki > k p.
Therefore, all the closed-loop system signals are UB for all
time k > k0 + N , since ki is a subsequence of k, where
N ≥ kp represents the time instant.

From both the cases of the proof and Lemma 1, the
bounds for the system state vector, the SE state vector,
and the NN weight estimation error can be selected as
Bx = max(Bx

1,M , Bx
2,M ), Bx̂ = max(Bx

1,M , Bx̂
2,M ), and

BW̃ = max(BW̃
UB, BW̃

2,M ), respectively.
Remark A.2: It is routine to check that for the case

|ĝ(x̂k)| < gmin, in (21), the first differences
in (A.15) and (A.23) also hold. Therefore, with similar
arguments, the closed-loop event-triggered system is
ultimately bounded.
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