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ABSTRACT Ensuring real-time reporting of fresh information and maintaining the sustainability of power
supply is of great importance in time-critical green Internet of Things (IoT). In this paper, we investigate
the mobile element scheduling problem in a network with multiple independent and rechargeable sensors,
in which mobile elements are dispatched to collect data packets from the sensor nodes and to recharge them.
The age of information (AoI) is used to measure the time elapsed of the most recently delivered packet
since the generation of the packet. We propose an age-optimal mobile elements scheduling (AMES), which
decides the trajectories of mobile elements based on a cooperative enforcement game and completes the
time-slot allocation in each meeting point, to minimize the average AoI and maximize the energy efficiency.
The cooperative enforcement game enables the mobile elements to make optimal visiting decisions and
avoid the visiting conflicts, and the outcome of the game is pareto-optimal. Compared to the existing
approaches, i.e., greedy algorithm (GA), greedy-neighborhood algorithm (GA-neighborhood), simulation
results demonstrate that AMES can achieve a lower average AoI and a higher energy efficiency with a
higher successful visiting ratio of the sensor node.

INDEX TERMS Mobile element scheduling, data collection, age of information, energy efficiency, green
IoT.

I. INTRODUCTION
Green Internet of Things (IoT) typically consists of a large
number of low-cost and small-size wireless sensors [1], [2].
Traditionally, sensors measure and monitor ambient con-
ditions in the surrounding environment and then send the
measurements and monitored information to a static sink [3].
However, due to the limited capacity of sensors, maintain-
ing sustainable energy supply of sensors becomes a major
research challenge [4], [5]. With the development of wireless
energy transfer technology, the sink as an energy source
can transfer energy to sensors [6]. Due to the limitation of
coverage area of the sink, the mobile elements, i.e, vehicles,
robots and UAVs, have been widely employed to collect
the information from sensors and charge the sensors as a
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relay [7], [8]. With such a great potential, using multiple
such mobile elements to collect data and charge sensors has
become a promising solution in some application services, i.e,
smart cities, public security, critical infrastructure protection
and so on [9], [10].

With the rapid growth of the diversity of IoT applications
andmobile data traffic, the demands for the freshness of infor-
mation and energy efficiency has dramatically increased in
recent years. The Age of Information (AoI) is a performance
metric that measures the time elapsed since the generation
of the data packet [11], which can capture the freshness of
information from the perspective of the destination. For the
applications that generate time-sensitive information such
as position, command and control [12], the transmission
scheduling policies play an important role in minimizing
AoI. In the literature, some works design the transmission
scheduling policies in a single-hop wireless network, where
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sensors directly transmit time-sensitive information to a base
station [13], [14]. Themulti-hop networks are also considered
and studied [15], [16]. the sensor nodes can transmit real-time
data packets and harvest energy from radio frequency signals
to deal with the age of information [17], [18]. Although these
works consider the energy harvesting technology, they only
focus on the single-hop or the multiple-hop situation without
considering mobile elements.

In addition to the transmission scheduling policies, mobile
elements’ trajectories also have a great impact on AoI and
energy efficiency in relay-based green IoT. Moreover, task
scheduling for mobile elements can further reduce the aver-
age AoI and improve energy efficiency [19], [20]. In many
practical applications, the mobile elements cannot predict the
information of sensor nodes such as network topology and
energy consumption rate in advance [21]. Sensor nodes have
to send their energy demand or the information transmission
requests once they need energy supply or detect effective
information [22], [23]. If a mobile element is within its
communication range, the mobile element will receive the
request and put it into the list of all requests and select the
best next candidate to visit.

As we consider the on-line case, the visiting decision of
every meeting point will affect the trajectories of mobile
elements. In order to maximize energy efficiency, various on-
line charging scheduling algorithms are designed [24], [25].
A Linear Programming (LP) for the problem of schedul-
ing a mobile charger is formulated in [26], and an efficient
solution based on the gravitational search algorithm (GSA)
is proposed. The work in [27] jointly optimizes SNs-UAV
scheduling, power allocation strategy and flight trajectory
of the UAV. It aims to minimize the total power consump-
tion of the UAV to maximize the required transmission rate.
To minimize AoI, in [28], two age-optimal trajectories are
designed for UAV-enabled wireless sensor networks in an off-
line case, which aims to minimize the age of the ‘oldest’
sensed information among the sensor nodes (SNs) and the
average AoI of all the SNs respectively when a UAV directly
collects data from the ground sensor nodes. In contrast with
the full charging model, some researchers prefer the partial-
charging model as a more effective and flexible model. Ref-
erence [29] proposes a schedulability evaluation mechanism
for such partial-charging scheduling based on the on-line
charging case. However, very few of them consider both the
energy requestion and the data transmission requestion for the
on-line case.

In this paper, to address the aforementioned problems of
mobile elements scheduling in green IoT scenario, we pro-
pose an age-optimal mobile elements scheduling (AMES)
scheme, in which each meeting point is decided by our
delicately designed cooperative enforcement game. In the
game, each mobile element as a player chooses the next
meeting point of its strategy set after visiting a meeting point.
The strategy set is updated in real-time. In order to reduce
the average AoI, and to increase the energy efficiency and
the successful visiting ratio, only the requesting sensor node

can be added to the strategy set and visited. By following the
rules of the game, the meeting points are chosen without the
conflicts between mobile elements, and the maximum profits
are obtained. The main contributions of this work can be
summarized as follows.

• In order to meet the growing demands for the fresh
of information and the energy efficiency in green IoT,
we formulate the mobile elements scheduling problem
as a multi-objective optimization problem. By optimiz-
ing the trajectories scheduling of mobile elements, it can
minimize the average AoI and maximize the energy
efficiency in an online manner.

• We propose an age-optimal mobile elements scheduling
scheme, in which the visiting conflict between mobile
elements in each decision period is avoided by deli-
cately designing the rules of the cooperative enforce-
ment game. Thus, a sensor node will not be visited by
more than one mobile element in the same requesting
period, and the mobile elements will visit the requesting
sensor nodes in less time and return earlier. The travel
distance, travel time and the corresponding energy con-
sumption of the information transmission can be dra-
matically reduced. Meanwhile, AoI, energy efficiency
and the successful visiting ratio can be significantly
improved.

• To further reduce the travel time and to reduce the
average AoI, the visiting decision-making of mobile
elements not only considers the profit of the requesting
sensor nodes, but also the one of the sensor’s neighbors
in our AMES scheme. Based on this, we design the
payoff function of the game.

• By comparing with the greedy algorithm (GA) and the
greedy-neighborhood algorithm (GA-neighborhood),
the simulation results demonstrate that AMES can avoid
the visiting conflict, reduce the averageAoI, improve the
energy efficiency and enhance the successful visiting
ratio in the network with multiple independent and
rechargeable sensors.

The remainder of this paper is organized as follows.
Section II formulates the multi-objective optimization prob-
lem. The major contributions are introduced in Section III,
which proposes an age-optimal multiple mobile elements
scheduling scheme to solve the proposed problem. Section IV
analyzes and compares the results of our approach with
numerical existing approaches. Finally, Section V concludes
this paper. The key symbols used in this paper are summa-
rized in Table 1.

II. PRELIMINARY AND PROBLEM STATEMENT
A. NETWORK MODEL
As shown in Figure 1, we assume that N sensor nodes
are randomly deployed in a region R, which are denoted
by {i, i ∈ 1, 2, . . . N }. The locations of sensors are
unknown in advance. Each of them has a fixed communica-
tion range that is a circular area with radius r and a unique

81766 VOLUME 8, 2020



J. Ma et al.: AMES for Recharging and Data Collection in Green IoT

FIGURE 1. Demonstration of mobile elements movements.

TABLE 1. Symbols and definitions.

identification (ID). When a sensor node generates a new
packet, or when its power is lower than the threshold,
the request signal will be broadcasted to mobile elements.

There are M mobile elements out of the region R, which
are indicated by {j, j ∈ 1, 2, . . . M}. These mobile
elements collect data from the sensor nodes and recharge the
sensor nodes. The mobile elements depart from the sink point
and serve the sensor nodes in a cyclic fashion, respectively.
In each period, when the condition is satisfied, the mobile
element will return to the sink point. Based on the trajectories
of mobile elements, AoI can be calculated in the following
section.

B. AGE OF INFORMATION
At time ιi, the sensor node i generates a data packet and
requests to send it to the mobile element. We use Xi(t) to
track the age of information collected from the sensor node i
in the traveling trajectory at time t , which can be calculated
as follows: {

Xi(t) = t − ιi, if t > ιi;
Xi(t) = 0, otherwise.

(1)

Figure 2 shows an example of the AoI process for a sensor
node, in which a1 is the arrival time of the packet generated

FIGURE 2. Sample path of the age process at a sensor node.

FIGURE 3. Sample path of the age process at multiple sensor nodes for
multiple mobile elements.

at time ι1 and a2 is the arrival time of the packet generated at
time ι2. Both two packets are generated by sensor node i, but
they are collected in two rounds, respectively. Figure 3 shows
an example ofmultiple AoI processes from three sensor nodes
to two mobile elements. ι1, ι2 and ι3 are the generation time
of the data packets from sensor nodes 1, 2 and 3. The mobile
element 1 as a relay collects the data packets from sensor
nodes 1 and 2 to the sink point, and the mobile element 2
as a relay collects the data packet from sensor node 3 to the
sink point.

When a mobile element j stops at a meeting point ξ , it does
not only visits this meeting point’s sensor node, but also
the meeting point’s neighbors. We will define the neighbors
in the following section. We consider a time-slotted system
to complete the visiting of each meeting point, which is
{σ
ξ,j
k , k ∈ 1, 2, . . . Nneighborsξ }. Then, at slot σ ξ,jk ,

the information age of sensor node i is given by{
Xi(σ

ξ,j
k ) = σ ξ,jk − ιi, if σ ξ,jk > ιi;

Xi(σ
ξ,j
k ) = 0, otherwise.

(2)

When the mobile element j collected overall sensing infor-
mation of meeting point ξ , we have

σ
ξ,j
Nneighborsξ+1

= σ
ξ,j
1 +

Nneighborsξ∑
k=1

t txk , (3)
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where
∑Nneighborsξ

k=1 t txk is the total time for data transmission
and charging at this meeting point. At this time, the informa-
tion age of sensor node i is given by

Xi(σ
ξ,j
Nneighborsξ+1

) = σ ξ,j1 +
∑Nneighborsξ

k=1 t txk − ιi,

if σ ξ,jNneighborsξ+1
> ιi;

Xi(σ
ξ,j
Nneighborsξ+1

) = 0, otherwise.

(4)

The beginning time of the mobile element j to choose each
meeting points is assumed as {T jξ , ξ ∈ 1, 2, . . . Nj}.
We define

T jξ+1 = σ
ξ,j
Nneighborsξ+1

. (5)

Then, after visiting the meeting point ξ , the information
age of the sensor node i is given by
Xi(T

j
ξ+1) = T jξ + t

v
ξ−1,ξ +1ξ +

∑Nneighborsξ
k=1 t txk − ιi,

if T jξ+1 > ιi;

Xi(T
j
ξ+1) = 0, otherwise.

(6)

1ξ denotes the decision time after the mobile element j
visited the meeting point ξ − 1. tvξ−1,ξ is the travel time of
mobile element j from the meeting point ξ −1 to the meeting
point ξ . We assume each pair of travel distance is the straight-
line dξ−1,ξ between these two points, and the mobile element
j moves at a constant speed vj. Thus, the travel time is given
by

tvξ−1,ξ = dξ−1,ξ/vj. (7)

Here, T jξ is associated with the trajectory of mobile ele-

ment j, and σ ξ,jk is associated with the time-slot allocation in
meeting point ξ .

C. PROBLEM STATEMENT
We assume mobile elements depart from the sink point at
time T0 = 0. To collect data, the trajectories scheduling of
mobile elements is based on the decision of meeting points.
Each meeting point is selected from the requesting sensor
nodes in real-time. If a mobile element receives more than
one request from multiple sensor nodes in a decision-making
process, it needs to decide which is the next meeting point to
visit.

Asmentioned above, AoImainly includes thewaiting time,
the data uploading time and the time elapsed from the sensor
node to the sink point. Thus, the average AoI based on the
trajectories scheduling scheme µ can be calculated as Equa-
tion (8). In Equation (8c), µj denotes the trajectory schedul-
ing scheme of the mobile element j, and X jξ (uj) denotes the
total ages of information collected at meeting point ξ . In
Equation (8d), the time-slot allocation strategy π ξj of meeting
points is considered to improve the successful visiting ratio
and the survival ratio of sensor nodes.Nj denotes the number
of meeting points, which is chosen by the mobile elements j

in a round, andNneighborsξ indicates the number of neighbors
of the meeting point ξ .

X̄ (u), (8a)

=
1
N

N∑
i=1

Xi(u), (8b)

=
1
N

M∑
j=1

Nj∑
ξ=1

X jξ (uj), (8c)

=
1
N

M∑
j=1

Nj∑
ξ=1

Nneighborsξ∑
k=1

X ξk (π
ξ
j ), (8d)

We useEs andEm to represent the battery capacity of a sen-
sor node and a mobile element, respectively. Esri (t) denotes
the residual energy of the sensor node i at time t . When
the residual energy is lower than the threshold, the sensor
node sends a charging request. Besides, a sensor node is
charged when it transmits data to a mobile element. When a
mobile element arrives at a meeting point, all the requesting
neighbors of this point directly transmit data to the mobile
element by wireless transfer technology. According to [30],
to deliver an l-bit message over the distance of di,ξ the energy
consumption of sensor node i in ξ -th meeting point will be

ct (l, di,ξ ) = Etx−elec(l) + Etx−amp(l,di,ξ ) = lEelec + lεfsdαi,ξ ,

(9)

where di,ξ is the transmission distance between the sensor
node i and the mobile element ξ . α is the path loss expo-
nent [31]. Besides the transmission consumption, sensing the
target also consumes the energy of the sensor node. We use
τics to denote the sensing energy consumption, where τi
denotes the visiting time since the sensor is chosen by a
mobile element and cs denotes the sensing energy consump-
tion rate of per second. Thus, the energy consumption of
sensor nodes when it is visited by a mobile element is

cv(i) = ct (l, di,ξ )+ τics. (10)

The sensor node i request Erequesti energy from the target
mobile element, which is shown as follows:

Erequesti = Es − Esri (t)+ cv(i). (11)

The total energy obtained by sensor nodes can be calcu-
lated as follows:

Esc =
N∑
i=1

Erequesti . (12)

Emrj denotes the residual energy of the mobile element j.
The total energy consumed by all the mobile elements is:

Emc =
M∑
j=1

(Em − Emrj ). (13)
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In order to obtain the minimum average AoI and maximum
energy efficiency, we formulate a multi-objective optimiza-
tion problem as follows:

minimize
u

X̄ (u), (14)

maximize
u

η =
Esc
Emc

, (15)

subject to (dj,i + di,o)δj/vj ≤ E
mr
j − E

c
i,j, (16)

cv(i) < τiϕi (17)

Equation (16) is the bound constraint, which guarantees
the mobile element j will have enough energy to return
to the sink point if it visits the sensor nodes i. δj denotes
the moving energy consumption rate of the mobile element.
Eci,j denotes the energy consumption of mobile element j if
it visits the sensor node i. The average energy replenishment
rate of sensor node i in the charging process is denoted by
ϕi. Equation (17) is another bound constraint, which ensures
the energy replenishment rate is much larger than the energy
consumption rate for every visiting.

III. THE PROPOSED AMES SCHEME
In the previous section, we proposed a multi-objective
optimization problem to optimize the age of collected infor-
mation and improve the network energy efficiency. For multi-
objective optimization problems, due to the contradiction and
non-commensurable of multiple objectives, it is impossible to
achieve the optimal solutions for all objectives. We propose
AMES scheme to obtain a pareto solution. Except for the sink
point, the trajectory is supposed to contain the sequence of
the meeting points. In each step of the scheduling process,
a mobile element may receive multiple requests and has its
own strategy set. Due to the requests of the sensor nodes
update at any time and it is also related to the current loca-
tion of the mobile element, the strategy set is different in
each decision. Besides, there are conflicts between mobile
elements to obtain the visiting rights of sensor nodes, inwhich
each mobile element wants to visit the sensor node that can
obtain the most profit. Therefore, we design a cooperative
enforcement game to deal with this conflict and make the vis-
iting decision. Based on the transmission and energy request
of each requested sensor node, we design the game strategy
as follows.

A. BASIC ELEMENT OF GAME
Game theory contains three basic elements: players, strategy
set, and payoff functions. In this work, the game theory
model is built for formalizing the visiting decision-making
process. Each mobile element is regarded as a player, involv-
ing in the game process. For each player, it owns a strategy
set Sj which contains all possible actions for it to choose
and guide its future movement. The strategy chosen by
mobile element j is represented by sj. Thus, the strategy
chosen by all the mobile elements are denoted by a strat-
egy profile s = {s1, s2, . . . , sM }. Based on the strategy

Algorithm 1 Game Process
Input:

Mobile elements.
Output:

The best strategy profile s∗.
1: for j = 1; j ≤ M; j++ do
2: for i = 1; i ≤ N ; i++ do
3: if sensor node i within the communication range of

mobile element j and send a request then
4: Sj← Sj ∪ {i};
5: end if
6: for all sjk ∈ Sj do
7: Calculate the payoff value according to Equa-

tion (19);
8: end for
9: end for
10: Find the optimization solution of mobile element j.
11: end for
12: if the conflicts are existing between mobile elements

then
13: Find a strategy profile s∗ that can bring the maximum

total profits.
14: end if

return s∗.

set, the decision is made by considering the payoff of each
action. The payoff is denoted by Pj(sj, s−j) where s−j =
{s1, . . . , sj−1, sj+1, . . . , sM } indicates all other mobile ele-
ment’s strategies except j.

B. GAME THEORY PROCESS
Based on the on-line case, the location and energy consump-
tion rate of sensor nodes cannot be predicted. In the game pro-
cess, cooperative games cannot be completed among mobile
elements, and mobile elements tread to act selfishly. How-
ever, when more than one mobile element chooses the same
sensor node as the meeting point, the sensor node knowns all
the payoff information of them. Based on these information
and the designed rules, the sensor node enforces the mobile
elements to make the cooperative decisions to maximize the
total payoff.

For each mobile element, after visited a meeting point,
it needs to choose the next meeting point in the new strategy
set. The strategy set contains all the requesting sensor nodes
within the communication range when the mobile element
is making the decision. In the process of a game, the payoff
function is used to constrain the player’s behavior. As men-
tioned above, we use Pj(sj, s−j) to represent the payoff of
mobile element j if it chooses the strategy sj. The payoff
of the mobile element is a value that is used to indicate the
increase or decrease of the profit, which can be increased or
decreased.

The energy consumption for traveling is the loss of prof-
its and the energy for charging the sensor node makes
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a profit. Similarly, that the data packet is received by the
mobile element makes profits. The moving energy con-
sumption is related to the distance between the mobile ele-
ment j and the sensor node i, and the distance can be
calculated as

dj,i =
√
(xj − xi)2 + (yj − yi)2, (18)

where the location of the mobile element j is represented by
its coordinate (xj, yj) in the two-dimensional space, and the
location of the sensor node i is represented by (xi, yi) in the
two-dimensional space.

The battery capacity of a mobile element is much larger
than the battery capacity of a sensor node. Even so, themobile
element requests enough energy to return after completed the
visiting tasks. Thus, we design our payoff function as follows:

Pj(sj, s−j) =

∑Nneighborsξsj
k=1 (Es − Esrk (t)+ cv(k)+ Xk (t))

dj,i
,

(19)

where
∑Nneighborsξsj

k=1 (Es − Esrk (t) + cv(k)) denotes the energy

that all the neighbors obtain in strategy sj.
∑Nneighborsξsj

k=1 Xk (t)
denotes the total information ages when the mobile element j
execute strategy sj.
Thus, we can see that if the total residual energy at the

meeting point is lower, the corresponding payoff will be
higher. In addition, if the total information ages at the meet-
ing point is higher, the payoff is higher. When the distance
between the mobile element and the next meeting point is
shorter, the payoff is higher. Therefore, by properly choosing
the meeting point, the high profit obtains. Especially, when
more than one mobile elements choose the same meeting
point at the same decision-making process, we could use the
game to make the visiting decision and avoid the conflict.
Since the decision processes of trajectories are converted
into repetitive games among mobile elements, we illustrate
the game process for one round only, and this is shown in
Algorithm 1.

C. CONFLICT AVOIDANCE
We take two players (m1 and m2) as an example to show
the game process. The profits can be expressed as the payoff
matrix Pm1,m2 as:

P1rs1 ,P
2
rs1 · · · P1rs1 ,P

2
rsb · · · P1rs1 ,P

2
rsN ′2

...
...

...
...

...

P1rsa ,P
2
rs1 · · · P1rsa ,P

2
rsb · · · P1rsa ,P

2
rsN ′2

...
...

...
...

...

P1rsN ′1
,P2rs1 · · · P1rsN ′1

,P2rsb · · · P1rsN ′1
,P2rsN ′2


where Pjrsa indicates the profit of the mobile element j
if it visits the requesting sensor node rsa. N ′1 and N ′2

Algorithm 2 Queue for the Visiting Competition Within the
Meeting Point
Input:

Nneighborsξ .
Output:

The best strategy π ξ∗j for mobile element j.
1: for k = 1; k ≤ Nneighborsξ ; k++ do
2: Qξj ← Qξj ∪ {k};
3: end for
4: Sort the Qξj based on the residual energy of them;
5: if themobile element j receives a new request from sensor

node i when it is visting the meeting point ξ
then

6: Qξj
′

← Qξj
′

∪ {i};

7: Sort the Qξj
′

based on the residual energy of them;
8: end if

return the best strategy π ξ∗j .

denote the number of requests which are received by
these two mobile elements at the same decision period,
respectively.

In the game, each mobile element tends to choose a
requesting sensor node that can obtain the maximum profits
as the next meeting point. However, a conflict may happen
whenmultiple mobile elements tend to visit the same request-
ing sensor node. In this case, to avoid the waste of time and
energy, a sensor node can only be visited by only one mobile
element for one request. The mobile element who can obtain
the most payoff value from this sensor node can get access.
To obtain the maximum total profits, other mobile elements
choose the suboptimum sensor nodes as the meeting points in
their strategy sets.

D. JUMP AND RE-QUEUEING
We define the requesting sensor nodes which are within the
communication range of a meeting point are the neighbors
of this meeting point. When a mobile element has chosen
a meeting point and arrived at this point, all the neighbors
of this meeting point will be visited. We design a jump
and re-queueing time-slot allocation to schedule the mobile
element to visit these neighbors. Notice that no matter how
the scheme design, the AoI and energy efficiency could not
be affected. This is because the time-slot allocation cannot
change the request time and the arrival time of these neigh-
bors’ information. However, based on the residual energy of
neighbors to schedule the access order of the mobile element,
the shutdown period of the low energy neighbors can be
shortened, and the successful visiting ratio can be improved.
This process is shown in Algorithm 2.

If some new requests which are within the communication
range of the meeting point send to the mobile element when
the meeting point is being visited, the new requesting sensor
nodes become the neighbors of this meeting point and will be
visited by this mobile element at this round.
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E. RETURN POLICY
In order to shorten the AoI of collected information,
we design a return policy. The policy does not encourage the
mobile element return after it tends to consume all the energy
of itself. On the contrary, if one of the following conditions
is satisfied, the mobile element returns.

• All the sensor nodes have been visited at this round.
• Sj is empty twice.
• Themobile element does not have enough energy to visit
more sensor nodes.

• The travel time of the mobile element is equal or longer
than the threshold.

F. ANALYSIS
In this section, we theoretically analyze the characteristic of
the proposed scheme.
Lemma 1: In the network, the requests of sensor nodes for

data transmission follow the poisson distribution.
Proof: The poisson distribution is popular for modeling

the number of occurrence times of an event in an interval of
time or space. In our model, whether a sensor node needs to
send data is independent of other sensor nodes. The number
of new requests in any given subinterval is independent of any
other subinterval. We assume the probability of more than
one request in a subinterval is very small. The probability
of one request sending in a subinterval is proportional to the
length of the subinterval. Thus, the number of requests for
each interval follows the possion distribution, it can be shown
as follows:

P(X = Nr ) =
λNr e−λ

Nr !
, (20)

where λ is equal to the expected value of X and we have λ =
Np. p denotes the probability of sending a request.Nr ! is the
factorial of Nr . We use this equation to estimate the number
of request Nr in each subinterval. �
Lemma 2: In the game, when a conflict exists, based on

the rules of AMES, the outcome is pareto-optimal.
Proof: when more than one mobile element chooses

the same one sensor node as the meeting point, the conflict
happens. Based on the rules of the cooperative enforcement
game, the mobile elements as the players, the target sen-
sor node knowns all the payoff information of these play-
ers and enforce the player which can bring the maximum
profits get access. The other players choose the subopti-
mal strategy of their strategy sets. The results of this game
constitute a strategy profile s. If it is not pareto-optimal
and the pareto-optimal strategy profile is s′, the total pay-
off of s′ should be greater than s. This is contradictory
to the rules of the cooperative enforcement game. There-
fore, when a conflict exists, the outcome of the game is
pareto-optimal. �
Lemma 3: In the game, when a conflict does not exist,

based on the rules of AMES, the outcome is pareto-optimal.

TABLE 2. Simulation parameters.

Proof: If there is no conflict in the game, each mobile
element chooses the maximum payoff strategy and these
choices constitute a strategy profile s. In this condition, no one
has the possibility to obtain another strategy that any of
players can obtain more profits than it can obtain by strategy
profile s.
Thus, when a conflict does not exist, based on the rules of

AMES, the outcome of the game is pareto-optimal. �
In summary, whether or not a conflict exists in the game

process, the outcome of AMES is pareto-optimal.

IV. PERFORMANCE EVALUATION
In this section, the performance of AMES is evaluated and
compared with the existing approaches through extensive
simulations.

A. SIMULATION SETUP
The parameters used in the simulations are listed in Table 2. In
our simulation, we consider 200 sensor nodes randomly scat-
tered over a 200× 200 square meters area. The sink point is
located at (300, 200). 10mobile elements depart from the sink
point with full charged battery and return when they follow
the return policy of AMES. We assume the mobile elements
move at a speed of 0.5m/s with the traveling cost rate 50J/s.
The battery capacity of a mobile element is Em = 2 × 106

J . The battery capacity of a sensor node is Es = 1.08 × 103

J and the path loss exponent is α = 2. The communication
radius of a sensor node is 40m. When the energy of a sensor
node is less than 20 percent of its battery capacity, the sensor
node sends a charging request. The effective receiving power
is εfs = 10 PJ/bit/mα and Eelec = 50 nJ/bit . The sensing
energy consumption rate is 1 nJ/s.
We compare our scheme with GA based scheme when

different reasonable parameters are adopted. GA is a classic
trajectory scheduling algorithm, which chooses the meeting
point with the minimum distance between the meeting point
and the mobile element in each meeting point decision. In
order to verify the effects of the neighborhood, we extend
our scheme to an AMES-neighborless, in which the mobile
elements only visit the sensor nodes which are at the meeting
points. GA is also extended to a GA-neighborhood scheme
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FIGURE 4. Performance comparison between AMES,AMES-Neighborless, GA, GA-Neighborhood with the different number of sensor nodes in terms of
(a) average AoI, (b) energy efficiency, (c) successful visiting ratio.

FIGURE 5. Performance comparison between AMES,AMES-Neighborless, GA, GA-Neighborhood with the different sizes of sensing area in terms of
(a) average AoI, (b) energy efficiency, (c) successful visiting ratio.

to future verify this. All results are the average of 100 runs of
simulations.

B. IMPACT OF NETWORK SCALE
To investigate the scalability of AMES, we evaluate the
performance with different network scales w.r.t the size of
the sensing area and the number of deployed sensor nodes.
Based on the different number of sensor nodes, the resultant
average AoI, energy efficiency and successful visiting ratio
are shown in Figure 4. We can see AMES achieves the best
average AoI and successful visiting ratio. With the increasing
of the number of sensor nodes, the averageAoI increases until
it reaches the return threshold. Comparing to AMES, both
the average AoI of GA and GA-neighborhood maintain on
the return threshold. This mean the mobile elements return
until the return threshold is reached. Even though GA and
GA-neighborhood spent more time to collect information,
the successful visiting ratio is lower than AMES. Besides,
increasing the number of sensor nodes, the energy efficiency
increases, and AMES obtains the best energy efficiency when
it exceeds 200.

Fixing the number of sensor nodes 200, we evaluate the
performance of AMES with varying the length of the side
of the sensing area from 100 to 300, as shown in Figure 5.
Due to the limited communication radius, the number of

the received requests and the successful visiting ratio are
decreased with the increasing of the size of the sens-
ing area. AMES achieves the best energy efficiency when
the sensing area size is more than 40000 square meters,
and the average AoI and the successful visiting ratio of
AMES are always better than the other schemes in the
figure.

C. IMPACT OF THE NUMBER OF MOBILE ELEMENTS
An important factor determines the visiting ability in per-
forming visiting tasks is the number of mobile elements.
With the number of mobile elements varying from 2 to
20, we evaluate the average AoI, energy efficiency and
successful visiting ratio in Figure 6. As all the mobile
elements depart from the sink point, travel in the network
and return to the same sink point, increasing the number of
mobile elements may lead to a reduction of energy efficiency,
as shown in Figure 6(b). However, in this case, the average
AoI obviously decreases, and the successful visiting ratio
increases to nearly 1. Although a mobile element only visits
a sensor node that can obtain a small average AoI, the other
two performance and the mobile element utilization are low.
Thus, the trajectories scheduling of multiple mobile elements
has a great influence on these performances and AMES has
its advantages.
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FIGURE 6. Performance comparison between AMES, AMES-Neighborless, GA, GA-Neighborhood with the different number of mobile elements in terms
of (a) average AoI, (b) energy efficiency, (c) successful visiting ratio.

FIGURE 7. Performance comparison between AMES, AMES-Neighborless, GA, GA-Neighborhood with the different travel speeds of mobile elements in
terms of (a) average AoI, (b) energy efficiency, (c) successful visiting ratio.

FIGURE 8. Performance comparison between AMES, AMES-Neighborless, GA, GA-Neighborhood with the different sizes of communication radius in
terms of (a) average AoI, (b) energy efficiency, (c) successful visiting ratio.

D. IMPACT OF THE TRAVEL SPEED OF MOBILE ELEMENTS
Another factor affects the mobile element’s ability in per-
forming visiting tasks is its travel speed. We explore the
performance of AMESwith varying travel speed from 0.5m/s
to 5m/s. The resultant average AoI, energy efficiency and
successful visiting ratio are shown in Figure 7. It can be
seen that increasing the travel speed of the mobile element
can reduce the average AoI. The advantage of the average
AoI of AMES can be clearly observed. Although increasing

the travel speed has little effect on the energy efficiency
and successful visiting ratio, the successful visiting ratio of
AMES is obviously higher than the other three schemes.

E. IMPACT OF THE SIZE OF COMMUNICATION RANGE
To future investigate the performance of AMES, we eval-
uate and analyze the impact of the size of the communi-
cation radius on the original problem in this section. With
the communication radius varying from 30 to 70 meters,
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the evaluation results on the average AoI, energy efficiency
and successful visiting ratio are shown in Figure 8. The
size of the communication radius affects the number of the
received requests. Although the energy efficiency has some
declines because of the charging and transmission path loss
in Figure 8(b), we can see that the advantage of averageAoI of
AMES obviously increases with the increasing of the request-
ing sensor nodes within the communication range until the
communication radius is greater than 60 in Figure 8(a). In
Figure 8(c), the successful visiting ratio of AMES is increased
with the increasing of the size of the communication radius.
When the communication radius is longer than 60, the suc-
cessful visiting ratio of AMES is nearly 1. Thus, in this case,
the average AoI of AMES tends to be stable.

V. CONCLUSION
This paper mainly focused on themobile elements scheduling
problem and formulated a multi-objective optimization to
minimize the average AoI and maximum the energy effi-
ciency for multiple independent and rechargeable sensors
network in green IoT. Based on the design of the cooperative
enforcement game, AMES scheme was proposed to schedule
the trajectories of mobile elements to solve this problem.
By obeying the rules of the game, the conflicts are avoided
between the mobile elements, and the outcome of the game
is pareto-optimal. We evaluated and compared the proposed
scheme by extensive simulations. The results showed that the
performance of the average AoI, the energy efficiency and the
successful visiting ratio have been improved significantly.
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