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ABSTRACT

Cooperative object transport is an intriguing research area in swarm and multi-

agent robotic systems. Global-view is a challenge in cooperative transport where

different aspects such as providing the global picture, what information to share and

how to share are still being explored. One simple way of addressing global view is by

using a situated agent which has an elevated view of the environment and capable of

communicating it. Various works that employ this strategy often rely on a centralized

or global control where the agent with the global view makes the decisions. We

propose a strategy modeled after Behavior-Based Robotics principles which enables

the robots to react to the environment and thereby achieve cooperation to accomplish

the task. Instead of relying on a sophisticated controller or a centralized leader, the

robots simply react to the stimuli in different ways by executing simple behaviors

from their own repertoire. The ’Observer’, a situated agent with the global view has

no decision-making responsibilities and simply serves as a means of stimulus. Also,

the Observer employs simple techniques to extract and share very limited information

with other agents. Different experiments were performed with real robots and various

metrics were collected to demonstrate and evaluate the strategy.
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CHAPTER 1

INTRODUCTION

Box-pushing is an interesting research area where the basic goal is to move a box-

like object to a predefined location using a robot. If the box is too heavy or too

difficult to handle for a single robot, having multiple robots would be advantageous.

Reduced time-consumption, increased resilience and maneuverability are some of the

other advantages of employing a multi-agent system for this task. Thus, the box-

pushing problem evolves into the Cooperative or Collective object transport problem

and is relevant in various real-life applications such as warehouse stocking, mining,

construction, agriculture and disaster management. The following sections of this

chapter summarizes the motivation behind the research, describes the problem and

lists contributions.

1.1 MOTIVATION

Using multiple robots for the object transport task brings various advantages. How-

ever, employing multiple specialized robots for the task undermines these advantages

since using multiple sophisticated robots is not cost-effective. Thus, less sophisti-

cated robots are often used which brings in other challenges: simple robots often

have limited sensing and computing. These limitations inflict other side effects such

as low computational power, lack of localization techniques and diminishes the over-

all capabilities of the robots. Also, in multi-agent systems, there are various other

associated complexities such as coordination and consensus mechanisms, communica-

tion amongst the agents, sharing the global view. Global information is crucial if the

robots are expected to be autonomous. Various aspects of sharing global information
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such as ’What needs to be shared?’, ’How to convey and how often?’ are still being

explored. This research aims at addressing these open challenges in a multi-agent col-

lective transport system consisting of less-sophisticated robots by taking advantage

of the Behavior-Based Robotics approach. The system explores a strategy where the

robots ’sense’ the global information as a ’stimulus’ and react to it demonstrating

the possibility of increased autonomy with relatively less computational cost.

1.2 PROBLEM DESCRIPTION

The basic objective of the cooperative transport problem is to move an object to

a predefined location with a team of robots working together. The object is an

elongated rectangular box which is large relative to the size of the robots and the

robots move it from an initial location to a designated goal location by pushing it.

Considering that the robots have located the object which is between them and the

goal, now they have to work cooperatively to push the object towards the goal. Since

the box is bigger than the robots, it occludes the robots’ vision and they would not

be able to perceive the goal. There is a situated agent i.e. the Observer, which

has an elevated view of the environment and is capable of detecting both the object

and the goal and thus can assist the robots in the task. Though the Observer can

communicate with the agents and assist them, it has no control over the robots or

their decision making. The robots will have to work cooperatively and move the

box to the goal with the information form the observer. The problem is discussed in

detail in Chapter 4: System Design.

1.3 CONTRIBUTION

The following are the contributions of this thesis:
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• A Behavior-Based Robotics’ system for the cooperative object transport task

where simple behaviors are employed in place of sophisticated controllers to

realize the objective. The strategy provides a mechanism for the robots to

perceive the global information as a stimulus and react to it thereby increasing

their autonomous capabilities.

• Capturing and sharing global information involves low computation as the

Observer does not do any planning or decision making. The Observer simply

assists the robots by generating the necessary stimulus rather than serving as

the centralized controller.

1.4 STRUCTURE OF THE THESIS

The organization of the thesis is as follows. Chapter 2 provides background informa-

tion and summarizes variously related literature, discusses the common challenges,

and concludes with a discussion on Behavior-Based Robotics. Chapter 3 describes

the hardware and software elements where Chapter 4 discusses the System Design

and Implementation in detail. The experimental setup is discussed in Chapter 5 and

Chapter 6 presents and analyzes the experiments and their results.

3



CHAPTER 2

RELATED LITERATURE

This section begins with background information on Swarm/Multi-agent based co-

operative transport systems before moving to collective transport related literature

and Behavior-Based robotics.

2.1 BACKGROUND

The problem of moving an object with multiple robots has been referred throughout

the literature with various names. Cooperative/coordinated transport, collective

transport, box pushing, object placement are some of the names used. Due to the

diverse nature, categorizing the approaches is tricky since there is no concrete way of

classifying the approaches. Tuci et.al. [1] classify the various approaches based on the

method employed by the robots for handling the object. They classified the literature

as Push-only, Grasping and Caging based cooperative transport systems. If classified

based on this approach, the proposed system would be a Push-only cooperative

object transport approach. Though this type of coarse grain classification is simple

and straightforward, the classification becomes fragmented and confusing because of

the diversity and overlap in strategies such as decision making and communication.

Another way of classifying the various collective transport approaches was shown

by Rubenstein et.al. [2]. The approaches were vaguely categorized into two dif-

ferent genres based on the underlying control/ decision-making mechanism. The

first genre comprises of approaches involving centralized decision-making approaches

which mainly focus on developing strategies for planning, controlling and coordi-

nating the robots. Centralized planners, centralized leader-based models, and ap-
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proaches employing centralized decision-making mechanism would fall under this

category. The second genre is the Swarm/collective robotics approach which aims

at achieving the goal through highly decentralized coordination strategies similar

to that of insect swarms. Typically, these systems do not have centralized decision

making and rely on simple robots capable of demonstrating emergence. If classified

based on these genres, the proposed system would be a decentralized strategy where

there is no centralized controller.

Rubenstein et.al. [2] describe that Swarm robotics research has taken a different

approach to the box-pushing problem. Swarm robotics is inspired by various social

insects such as ants and termites. Ants show remarkable abilities to transport bigger

and heavier objects. An ant can easily carry small prey whereas a large prey requires

a coordinated effort. Various species of ants show a variety of impressive coopera-

tive transportation abilities. In collective transport by ants, the physical factors of

the object like the shape, orientation, and size do not matter to ants. They even

achieve the objective without any direct communication amongst themselves. These

phenomenal abilities of ants are extremely appealing to the box-pushing problem

and thus inspired researchers to borrow various strategies from ants. Notably, the

outlook of swarm robotics and social insects like ants show remarkable similarities

in various aspects [3] and thus borrowing ideas from ants would be logically sound.

The Swarm/collective robotics approach to the box-pushing problem aims at achiev-

ing the goal through highly decentralized coordination strategies similar to that of

insect swarms. Another intriguing aspect of swarm robotics is that each robot is in-

significant as an individual. They lack sophistication in most hardware aspects like

computing power, sensors, effectors, communication, and battery. In fact, miniatur-

ization and simplicity of individual members are of high emphasis in swarm robotics.
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Also, each of these robots has relatively simple programs that usually consists of some

basic behaviors which would be invoked based on certain sensor readings. However,

these simple behaviors could result in a large set of complex swarm behaviors which

is denoted as emergent behavior [4, 5, 6]. Emergent behavior in swarm robotics

is analogous to those behaviors observed in nature such as birds flocking and fish

schools avoiding a predator. In other words, swarm-intelligence strives to achieve

meaningful behavior at swarm-level and the behavior at an individual level might be

trivial. Another advantage that numbers give swarm is high fault tolerance [3, 7].

Swarm robots are homogeneous in most scenarios and thus any agent can replace or

take the role of another as there are no specific pre-assigned roles [3]. This also makes

dynamic and decentralized activities possible. Adaptability and faster transport are

other advantages.

2.2 COOPERATIVE TRANSPORT

Before moving to different multi-agent-based concepts and corresponding approaches,

this section begins listing some of the earliest box-pushing research work. The col-

lective transport problem has been addressed by a multitude of approaches and this

section attempts to cover the breadth of it and summarize them. Though the litera-

ture discussed in this section is classified as decentralized or swarm-robotics oriented,

it is relatively easy to notice that one approach could differ from another drastically.

Most of the earlier approaches considered using either a centralized approach to

coordinate the robots or considered using sophisticated robots with various capabil-

ities. Also, due to the cost involved most of them were verified based on computer

simulation [2]. One of the earliest physical demonstrations of collective transport by

simple autonomous robots was done by Mataric et.al. [7]. They used the hexapod
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robots named Genghis which took turns to push an elongated rectangular box. A

notable point here is that just one of the robots was capable of generating enough

force to move the box and yet the authors used two robots. The objective here was

to evaluate whether using two robots for the same task would be faster than using

one. There are various notable works that were inspired by social ants [2, 8, 9]. C.

Kube and H. Zhang made detailed studies on collective prey retrieval in ants and

published multiple works in the 90s addressing various aspects of collective transport

by robots [8, 10, 11, 12, 13]. The literature titled “Cooperative transport by ants and

robots” by C. Kube et al. [8] is one such work which was very closely modeled after

prey retrieval in ants. This work established that the dynamics of ants and swarm

robotic systems are very similar and thus a collective behavior resembling ants can

be achieved by implementing ant-like behaviors on individual robots. They also

demonstrated that coordinated effort among robots could be achieved even without

any direct communication. Since there was no communication, all the robots had to

sense the object and the goal. Even after finding the object, a robot had to move

away from the box periodically to detect the direction of the goal to continue pushing

the box successfully. Another interesting consequence was that all the robots tried

to push the box at the same time even though only one of them could have pushed

the box.

Ants show an amazing ability of collectively transporting complex, irregularly

shaped objects without any prior knowledge of the object. Rubenstein et al. [2]

demonstrated that this can be successfully achieved in collective robot systems.

They investigated a simple, decentralized strategy for collective transport where all

the agents act independently without any explicit coordination. They proved their

strategy successful through a physics-based theoretical model. With this model, the
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authors were able to predict various important outcomes such as speed of transport

and the minimum number of agents required to move the object. They were also

able to verify the object trajectory and establish a relation between the scalability of

performance and the number of robots. They demonstrated their work successfully

using the tiny Kilobot [14]. The Kilobot robots were designed to study flocking and

emergent behavior in swarm robotics. They use some unconventional methods such

as reflecting infrared light off the surface for communication and vibrating motors for

locomotion. Kilobots use phototaxis (determine heading by sensing ambient light)

to determine the goal, thus there was no need for any explicit communication.

One of the basic criteria for a robotic swarm is to solve the problem and achieve

their goals through the use of numerous simple robots capable of some sensing and

communication amongst themselves [3]. Communication is a critical area in swarm

robotics which is often overlooked. A little communication amongst the agents would

greatly increase performance, while too much communication would consume re-

sources and undermine performance [6, 15]. Ants communicate in interesting ways,

like stigmergy and touch. The concept of stigmergy is intriguing: it is the means of

indirect communication through the environment using pheromone trails, or through

the object which is being carried by the ants. One of the earliest approaches to adopt

stigmergy for foraging was done by Beckers et.al. [16]. Stigmergic communication

in a swarm of robots would be beneficial for reducing communication overheads and

simplifying implementation etc. Many attempts have been made to emulate the in-

direct communication of ants in robots through chemical traces [17], peer-to-peer

messaging virtual pheromones [18], and phosphorescent light trails.

Another swarm intelligence concept which is often studied in swarm robotics

is flocking. Flocking can candidly be described as the behavior where an agent
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aligns its heading by observing the heading of its neighbors. If all the agents change

their heading in such a way, over iterations, the whole swarm would have an aligned

heading. This type of consensus mechanism is useful in certain situations of the box

pushing problem where not all agents can sense the object or goal. When only a few

of the agents can observe the goal, the overall heading can be estimated relatively if

the agents can communicate among themselves. Campo et al. demonstrated this in

[19]. The same was demonstrated by Rubenstein et al. [2] to validate their theoretical

model. The r-one robots [20] were used for this experiment. Another unconventional

implementation of cooperative transport was demonstrated by J. Chen et al. [21].

In this approach, an agent continuously attempts to occlude itself from the goal

(emulated as a light source) by maintaining the object between itself and the goal.

In other words, the robots re-locate dynamically around the object such that they are

always behind the objects. This strategy does not use any communication among

the agents and is suited for bigger objects which could occlude the agent’s view.

Certain species of ants, like the common weaver ants, form pulling chains to retrieve

the prey. This typically happens when more force must be applied to move the

prey and the area is smaller. The ants which cannot access the prey thus grasp the

other ants which have already attached themselves to the prey, thereby forming a

pulling chain [8]. This strategy is highly useful in certain scenarios and has inspired

various attempts at building modular or self-assembling robots. One such collective

transport strategy with self-assembling robots was successfully demonstrated by M.

Dorigo et al. [9]. This approach considered robots that could both push and pull.

However, this was realized using the highly-sophisticated s-bots [18] which have a

huge array of sensors including 15 IR proximity sensors, 8 light sensors, 8 multi-color

LED, omni-directional camera, torque sensors, and touch sensors.

9



2.2.1 COMMON LIMITATIONS

This section begins by explaining occlusion and discusses some of the general chal-

lenges in multi-agent robotics and collective transport. Since there are numerous

challenges, explanations are saved for those that are more related to this research

while the other challenges are listed.

2.2.1.1 OCCLUSION

Occlusion which was introduced in 1.1 is a common challenge in cooperative transport

with multiple agents where some or all of the agents working on the object might

not be able to observe the goal. This could happen when the object is bigger than

the robot or when the object is very close to the agent and thus occludes it’s view.

Only a handful of literature considers the issue of occlusion and address them while

many others ignore occlusion and concentrate only on the cooperative task.

An interesting approach of tackling the occlusion problem was demonstrated

by Gerkey et.al. [22] where out of the three robots, one would take the role of the

‘watcher’ and the other two would be the ‘pushers’. Their roles were selected by

an auction method called MURDOCH [23]. The pushers are occluded and cannot

sense the goal, as such they must rely on the watcher. The watcher is equipped with

a scanning laser range-finder that can precisely locate the goal and the object and,

mathematically calculate the position and orientation of the box with respect to its

own position. The observer then gives specific commands such as who has to push

(left or right), what should be the velocity, and the pushers execute the commands.

This approach is tightly-coupled since the objective of the authors is to implement

a fault-tolerant cooperative system.

The system proposed by Wang et.al. [24] is a heterogeneous system where
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three different types of agents are used. Figure 1 shows the system overview where

other than the two physical robots, there are four software agents in the system.

There is a vision agent that has a global view of the environment and is capable of

generating positions and orientation coordinates of all robots, the object, and the

obstacles. There is an evolutionary learning agent responsible for generating cooper-

ation plans based on Genetic algorithm and Reinforcement learning approaches. The

two physical robots execute the plan generated by the learning agents. The system

is tightly coupled, and all the software agents run on sophisticated computers and

are connected via Ethernet. Other than software simulations, one type of physical

experiment is presented in the article where one of the robotic agents is a stationary

robotic arm.

Figure 1. System demonstrated by Wang

et.al.[24].

Figure 2. Object placement

problem by Sugie

et. al.[25].

Sugie et.al.[25] addresses a variation of the problem which is referred to as the

‘object placement problem’. It is a special case of cooperative transport where the

robots work together to move multiple objects to one of the goal locations i.e. any

object can be placed at any goal location. The camera placed in the arena is capable

of tracking all the objects, robots and goal locations as shown in Figure 2. The

task planner generates plans for the robots. Though the robots do not communicate
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explicitly, they can infer each other’s intention. This is achieved by applying con-

straints such as the robots having synchronized watches. Also, all the robots use the

same decision-making rules. If there is no uncertainty in the environment, and all the

robots decide behavior at the same time, there would be no contradiction amongst

the robots. Even if conflicts arise eventually, the robots execute one of another set

of rules to resolve the conflict.

Hichri et.al. [26] has a centralized control algorithm in which an external server

globally communicates with the robots. The study was done in a simulation where

a set of homogeneous group of robots were equipped with manipulators for grasping

and lifting an object in order to place the object on top of their bodies. This strategy

requires a prior knowledge of the number of robots in the group, object’s shape, mass

and center of gravity. The server communicates position information to the robots

to approach the object, to lift it, and to carry it to a destination. A similar approach

where an external server coordinates the robots’ actions is described by Wang et.al.

[27] and Yamashita et.al. [28].

Rubenstein et.al. [2] work around the issue of occlusion through communication

since their approach is swarm robotics oriented and an agent capable of communi-

cating with its neighbors. In the work my Mataric et.al. [7], there is no occlusion

since the pyroelectric sensors on the Genghis II robots are taller than the object and

are capable of sensing the goal, a pair of tungsten lamps, throughout the course of

the experiment. In the work by Kube et.al. [8], the object was a brightly lit box and

the goal was a spotlight facing the floor. The robots were equipped with a narrow

field-of-view sensor to detect the light. This light sensor was capable of sweeping up

and down in an upward pointing arc with a help of a motor. If a signal peak occurs

while facing up, it was caused by the spotlight. Even with this flexible design, the
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robots would often lose sight of the goal and switch to a different behavior where it

would move away and reposition so that the goal could be sensed again. The work by

Machado et.al. [29] has a leader equipped with an omni-directional camera to gen-

erate trajectories whereas Pereira et.al. [30] implemented a design where all robots

were equipped with omni-directional cameras and they directly shared information

to complement each other’s observation and create a global view of the object and

its orientation. Even Tuci et.al.[9] employ omni-directional cameras, however, there

is no problem of occlusion since the object is of the same height as the grippers on

the robots.

2.2.1.2 OTHER LIMITATIONS

Though swarm robotics is inspired by simple insects, achieving performance levels

closer to these insects is still a great challenge. One of the major challenges is a limi-

tation of the resources such as computation, sensing, power, etc. Most of the swarm

robots employ simple micro-controllers with a few bytes of memory. Kube et. al. [8]

used a robot with a Motorola 68HC11 microcontroller with 8KB of RAM, whereas

the Kilobots employ an Atmega328 microprocessor clocked at 8 Mhz with a mere

32K of memory hosting both the bootloader and the program [14]. This limitation

in capabilities is sometimes intentional since swarm robotics desires miniaturization

and strives to achieve meaningful behavior at the swarm level using simple robots.

Localization is another challenge as most of the swarm robots are designed for indoor

environments and they do not equip devices such as GPS. Additionally, the alter-

natives like WiFi localization or localization through environmental and perceptual

cues are computationally expensive and less accurate. Though numbers in swarm

robotics are one of its key advantages, it brings in its own share of complications.
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Individual agents need to be reprogrammed and recharged every time which is de-

manding. Though there are novel strategies such as programming a group of robots

using infrared light [14], these techniques are available only on sophisticated robots

which are expensive.

2.3 BEHAVIOR-BASED ROBOTICS

Behavior-based robotics differs from traditional artificial intelligence by using bio-

logical systems as an inspiration. Typically, classical AI uses a set of steps to solve

problems, where internal representations of events and world models play a role.

Contrastingly, the behavior-based approach relies on adaptability rather than using

preset calculations to handle a situation [4, 5]. Figure 4 compares the flow of infor-

mation in Traditional AI and behavior-based approach. Traditional AI approaches

typically follow the SENSE, MODEL, PLAN, and ACT approach. Whereas in a

behavior-based approach, the robots simply react to their environment rather than

build world models and plan.

Behavior-based robotics consider robots as an organism with some embedded

cognition that can react to certain stimuli. Stimulus in a biological sense is defined

as an event or something that evokes a specific functional reaction in an organ or

tissue or in the organism itself. The stimulus may evoke a response in an organism

but evoking a response is not the reason why the stimulus exists.

Much of the work in the school of behavior-based robots was done in the 1980s

by Rodney Brooks and colleagues at the Artificial Intelligence Laboratory in Mas-

sachusetts Institute of Technology [31]. As shown in Figure 3, a series of wheeled

and legged robots such as ‘Shakey’ and ‘Genghis’ were built based on Brook’s sub-

sumption architecture [32]. Because of the AI winter of the 70s and 80s, and due to
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the processor impoverishment, they developed relatively low cost and fully functional

robots with the principles of behavior-based robotics. Another important milestone

in behavior-based robotics is the book named ”Vehicles – Experiments in Synthetic

Psychology” by Valentino Braitenberg [33]. Braitenberg, through a series of thought

experiments, described how intelligent artificial creatures could be constructed incre-

mentally starting from very simple ones those that can result in complex-appearing

behaviors such as fear and love.

Figure 3. Behavior-based robots,

Artificial Intelligence Lab,

MIT.

Figure 4. Classical AI and Be-

havior-Based robotics

approach[5].

The methodology involved in developing a behavior for a behavior-based system

as described by Arkin RC [4] is shown in Figure 6. This approach to designing

behaviors is attractive in the perspective of software engineering principles due to

the modular way of implantation or “programming by behavior” approach [6]. This

also inherently supports good software engineering practices, especially low coupling,

and high cohesion. While earlier behavior-based/reactive robots often relied only on

SENSE-ACT primitives, they are not applicable universally. For example, avoiding

an obstacle by reading a proximity sensor on a robot can be implemented in a reactive

way, however making that robot reach a goal location on a terrain cannot be done

completely reactive since navigation is a deliberative task. Thus, most of the modern
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behavior-based robots employ a SENSE-PLAN-ACT strategy where they tend to

have a certain hybrid architecture where the deliberation and reaction coexist.

Roomba, the vacuuming robot [34] by iRobot is one of the examples that demon-

strates the principles and applications of behavior-based robotics. Roomba does not

employ any complex navigation or path planning strategies [35]. It employs simple

behaviors such as ’straight’ and ’spiral’, where the Roomba robot goes straight or

in incremental spirals until it hits an obstacle. When it bumps into an obstacle, the

’bump’ behavior makes it turn and go straight to a different direction. There is also

a ’follow wall’ behavior and ’backoff’ behavior to avoid falling down stairs and so

on. The Roomba executes these behaviors in any order and eventually gets the room

cleaned.

Figure 5. Deliberative and Reactive approaches presented as a sliding scale [4]The

more reactive a system tends to be, lesser the representation and compu-

tation.
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Figure 6. Steps for developing behaviors for a behavior-based robot, Arkin RC,

1998[4].
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CHAPTER 3

HARDWARE AND SOFTWARE

Figure 7 summarizes the hardware platform and software while they are discussed

in detail in this chapter.

Figure 7. Hardware and Software.

3.1 KHEPERA IV

For the experiments, Khepera IV robots [36] were used. Khepera IV shown in Figure

8 is a robot for indoor use (table, lab floor) with various state of the art technologies.

It is equipped with an 800MHz ARM Cortex-A8 Processor and 512 megabytes of

RAM and an RGB color camera with a maximum resolution of 752X480 pixels. The

robot includes an array of 8 Infrared Sensors for obstacle detection and 4 more for

fall avoidance or line following. There are 5 Ultrasonic Sensors for long-range object

detection they are also equipped with a gyroscope and an accelerometer. Wi-Fi and

Bluetooth are available for communication and Khepera IV is differential-wheel drive

based and the internal battery provides a running time of about 4-5 hours. Khepera

IV is running a full, standard embedded Linux Operating System i.e. Yocto Linux

which provides several benefits. Also, a library ‘libkhepera’ is available and provides
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an interface with all the robot peripherals. It should be noted that though Khepera

IV has a wide range of sensors, only the RGB camera, and 3 Infra-Red proximity

sensors are used in the current implementation. The RGB camera is used at a

resolution of 192x144 to detect the object and the 3 IR proximity sensors (Front,

Front-Left, and Front-Right) are used for aligning the robots for the pushing task.

Figure 8. Khepera IV [36].

3.2 LANGUAGE AND LIBRARIES

3.2.1 DEVELOPMENT ENVIRONMENT

The implementation was done in C++ with the Eclipse Mars IDE. C++ was chosen

Since the ‘libkhepera’ library is available only in C/C++. Also, the image processing

library OpenCV 3.3 is available in C++ and thus the implementation was done in

C++. The development was done on a generic desktop computer running Ubuntu

14.4. The Eclipse IDE was set up for the cross-compilation such that the resultant

executable would be compatible with the ARM processor on the Khepera IV. There

was no need to cross compile the Observer program since it runs on the desktop PC
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as a standalone C++ application and it uses the OpenCV 3.3 library for its image

processing functions.

3.2.2 LIBRARIES

The ‘libkhepera’ library is currently in version 2.1 and it is the latest. It is capable of

granting control over the robot hardware at a fairly low level in most of the instances.

It allows the user to configure devices, read sensor data and send commands. Some

functions in the library return primitive data types, while others such as the camera

and IR data retrieval functions still output data in unstructured buffers.

As mentioned above, the OpenCV 3.3 library was used for the image processing

on both the Khepera IV and the Observer. Though ‘libkhepera’ provides some

image processing functions, it is primitive and limited. Hence, the decision to use

the OpenCV library was made to save development time.

3.3 CHALLENGES AND LIMITATIONS

Though Khepera IV is a capable robot in a small package, it is not without any

limitations. One of the major challenges came in the form of a limitation in the

physical design of Khepera IV. Khepera is an indoor robot with a ground-to-top

height of 5.77 cm (wheels included). Khepera was designed to have a minimum

ground clearance of 4 mm to increase the stability and is advised to use only on hard

and flat surfaces. However, considering the other design factors such as the castor

wheels, their solution results in 0.5-1 mm of ground clearance, making the robot very

stable but preventing its use on any surface that is not effectively flat and smooth

[37]. This restricted ground clearance has a great negative impact, making the robot

unfit for anything but flat surfaces as claimed in [37]. This proved to be true our test

20



environment: the lab floor was not even throughout and had various bumps and tiny

pits which would often thwart the free movement of the Khepera IV. Thus, most of

the times the Khepera is stuck when it encounters such a bump on the floor. The

wheels with the thin O-rings that act as tires does not help much in such a situation

as they do not provide enough traction and just slip.

From the implementation point of view, there were other minor limitations re-

sulting from the ’libkhepera’ library. Though the ‘libkhepera’ library is capable of

granting fine-grained control over the robot hardware, the lack of higher-level con-

structs often forces the users to write repetitive code and re-implement frequently

used functionality [37] and thus consumes significant time. Also, the image pro-

cessing functions provided by ’libkhepera’ were primitive, and hence the decision

was made to use the OpenCV library. However, installing OpenCV on the Khepera

4 robot was not feasible since the robots did not have sufficient storage. Thus, it

was decided to cross-compile the OpenCV library with the recommended toolchain

poky− glibc− i686−khepera4− image− cortexa8hf −vfp−neon− toolchain−1.8

and load only the required shared object files (.so)to the Khepera IV.
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CHAPTER 4

SYSTEM DESIGN

This section gives the overview of the system design and then breaks down the system

components into its basic behaviors in the subsequent sections.

4.1 PROBLEM OVERVIEW

The task addressed here is cooperatively moving a rectangular box which is large

relative to the size of the robots from an initial location to a designated goal location

by pushing it. Considering that the robots have located the object which is between

them and the goal, now they have to work cooperatively to push the object towards

the goal. Since the box is bigger, it occludes the robots’ vision and they would not

be able to perceive the goal. There is a situated agent i.e. the Observer, which is

having elevated view of the environment and capable of detecting both the object

and the goal can assist the robots in the task, however, he has no control over the

robots or their decision making. Figure 9 shows an overview of the system.

Figure 9. System Overview.
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4.2 PROPOSED STRATEGY

Since the Observer has a global view, a straightforward solution would be to take

advantage of it to accomplish the task. The previous works that employ such strate-

gies where the agents make use of the global information available to another agent

are discussed in Section 2.1.1 in detail. However, there is a recurrent pattern in all of

these approaches to be noted: the agent (also referred as host or server in the litera-

ture) which is capable of capturing the global view takes control of the cooperative

task. The agent with the global view either does all the processing and gives explicit

commands to the robots [22, 24, 26, 27, 28] or it has to keep track of all the objects,

robots and the goal position(s) [24, 25]. This requires computationally expensive

tracking, planning and prediction methods and a global localization strategy which

might suffer when scaled.

We propose a strategy where the Observer does not have to do extensive com-

puting or tracking or control the other agents but can still assist them by supplying

vital information. The system takes inspiration from Behavior-Based Robotics where

during the design process the robots are considered as a reactive organism which re-

sponds to various external stimuli [4, 5].

Approaching the collective transport problem from a Behavior-Based robotics

perspective, one could realize that the problem of occlusion can be explained as a

lack of stimulus. The stimulus that denotes the goal cannot be directly perceived in

the environment since the sensory organ i.e. the camera of the robot(s) is occluded

by the object. Thus, if a different stimulus that can mimic the deprived stimuli is

perceived by the agents, they can react to it. This is what the Observer is designed

to do: it provides an external stimulus to the agents who cannot perceive the goal.

As discussed in Section 2.3, it should be noted that the input being provided should
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be simple to be considered as a stimulus.

The proposed strategy is summarized below while the individual behaviors are

discussed in the following subsection. The Observer captures the scene and employs

basic color image processing technique such as color blob detection to identify the

objects and the goal. The Observer extracts the centers (2D Cartesian coordinate) of

the object and the goal after identifying them. These points include two coordinate

points representing the extremities of the object and one coordinate point represent-

ing the goal. These points are essentially just pixels on the image that the Observer

captured and does not mean anything in the real world considering the fact that

the images are warped due to the position of the Observer. The Observer can be

located anywhere in the environment in a corner or an edge (so that it could cover a

larger area) which warps the image. No translation or additional processing is done

on the three 2D Cartesian points and are simply stored in a shared memory. The

shared memory is overwritten each time an image frame is captured, and the points

are extracted.

Figure 10. Sample environment where the green circle is the goal and the red box is

the object. D1 and D2 denotes the distances between the goal and the

object.
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The robots rely on their own sensors (the camera) and the global information

from the Observer to locate and approach the object. Once a robot is sufficiently

close to the object, it uses three of its IR proximity sensors (Front, Front-Left, and

Front-Right) to reposition itself to push the box. Now the robot is in a situation

where it has no information on how to proceed since the box occludes its camera. At

this stage, the robot reads the coordinates from the shared memory associated with

the Observer. However, the coordinates are in the reference frame of the observer

and the robot do not know how it would be in their own reference frame. The robot

interprets the points by calculating Euclidean distance between the goal and the two

points representing the object. Figure 10 shows a sample environment where the

green circle is the goal and the red box is the object. The distances between the goal

and the extremities of the box are denoted as D1 and D2. Any following decision

made by the robot is based on the absolute difference between the two distances. This

absolute difference between the distances would be denoted as ∆ . If the absolute

difference between the distances is less than a threshold ∆τ , it means that the

object’s current alignment is good enough and the robots can work together to push

the box towards the goal. If ∆ is greater than ∆τ , it means that the object is out

of alignment and needs to be oriented. Figure 11 demonstrates these two scenarios.
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Figure 11. Left image shows a scenario where the object is out of alignment while

the right image shows a case where the object is aligned towards the goal.

∆ is denoted as |D1−D2| while ∆τ is D1D2 THRESHOLD.

Consider that there are two robots 1 and 2 working on the transport task and

robot 1 has located the box and aligned. Robot 1 now reads the coordinates from

the Observer’s shared memory and calculates D1, D2, and ∆ . Finding that the ∆ is

lesser than the threshold ∆τ , robot 1 decides that the box is ready for cooperative

action and update its STATUS FLAG to ‘STATUS WAITING ’. Robot 1 then reads

its peer’s i.e. robot 2’s STATUS FLAG to learn its status. If robot 2 is not ready,

robot 1 waits for a fixed number of seconds, constantly polling and to check the robot

2’s status at regular intervals. When the timer runs out, robot 1 resets its status

flag to ‘STATUS INACTIVE ’ and continues the loop. When robot 2 is also ready

for the cooperative task, they robots work together and push the box for a certain

amount of time called T . T is not a fixed value, it is dynamically calculated based

on the distance between object and the goal (average of D1 and D2). T is directly

proportional to the distance between the object and the goal: when the distance is
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more, T is longer and vice versa. Also, there is a defined range of duration within

which T lies. This is defined by the limits Tmin and Tmax respectively.

Figure 12. D2 is greater than D1, while 1 and 2 represents robot 1 and robot 2.

To explore the other possible sequence of events, consider that robot 1 has found

the object and decided that the object is out of alignment and needs to be oriented

(∆ > ∆τ ). However, there is no global localization strategy, and this causes various

challenges: the robots do not have a way of deciding who is on which side or who

has to push at a given instant so that the box can be aligned in a way suitable for

cooperative pushing. Thus, the robots start pushing by trial and error. A robot

checks the status of the system before and after it has pushed. Since the objective

of aligning the box is to reduce the difference between D1 and D2, the robot checks

for the distances before and after pushing. For example, if D2 was larger than D1

before pushing, it means that the side that belongs to D2 is far away from the goal

and thus the box is facing outside. This is shown in Figure 12.
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To align the box, D1 must be reduced which improves the position of the box

relative to the direction of the goal. However, if the robot was on the wrong side,

rather than helping, this would worsen the condition by turning the box away. In such

a case, the robot would preempt and let its peer push. Thus, analyzing the status of

the system before and after pushing allows the robot to decide whether it has made

a positive change that could continue until ∆ < ∆τ . However, the robot would

preempt in case where it had made any negative change on the system. Any robot

which is ready to push the box for aligning sets its status to ‘STATUS ACTIVE ’

in order to let the other robot know that it is actively pushing the box. Figure 13

shows the flowchart of the approach while the individual behaviors along with the

pseudo-codes are presented in the next subsection.
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Figure 13. Algorithm flowchart.

4.3 BEHAVIORS

This section explains the behaviors presented in the state machine (Figure 14) in

detail along with the transition and accompanying conditions. Other minor behaviors
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such as BACKOFF and JERK are not presented as separate states in the state

machine. Though the proposed strategy does not emphasize on the search behavior,

it has been included in the state-machine for delivering a well-rounded picture of the

system.
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ALIGN  
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Figure 14. State machine representing the behaviors and transitions.

4.3.1 SEARCH OBJECT

The robot searches for the object. If the object is not visible, the robot uses the

global information from the Observer and determines its heading direction by mov-

ing in a random direction for a second. It then reads the current location of the

object as seen by the Observer and estimates the turn angle with respect to the

current heading direction and proceeds to move towards it. The robot periodically
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checks its own sensors and moves towards the object. When the robot has found the

object, it verifies whether it is on the correct side of the object. If the robot is on the

correct side, it executes the next behavior, APPROACH OBJECT. If the robot is on

the wrong side (between the object and the goal), it executes a minor behavior called

GO-AROUND-BOX where it goes around the box to reach the other side of the box.

1 If(no red blob)
2 determine heading direction
3 read coordinates from observer
4 calculate angle and turn
5 read coordinates & verify direction
6 go forward for four seconds
7 If(object found)
8 If(on wrong side of the object)
9 go around the box

10 Else
11 SEARCH behavior
12 Else
13 continue

Figure 15. Pseudo-code for SEARCH behavior.

4.3.2 APPROACH OBJECT

After locating the object, the robot approaches it. Since the object is identified by the

red-markers attached on it the robot essentially moves towards the red. The behavior

Inspired by Braitenberg’s vehicles [33] and the color red serves as the stimulus at

this stage. If the robot sees red on the left, biases its right wheel with higher speed

to turn towards the left and so on. When the front IR proximity sensors read a value

greater than a minimum threshold limit Imin, the robot transitions to the reposition

state.
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1 If(red blob)
2 While(IR_FRONT < MIN_IR_THRESHOLD)
3 determine whether object is on LHS or RHS
4 calculate speed bias
5 add speed bias to opposite wheel
6 Else
7 SEARCH behavior

Figure 16. Pseudo-code for APPROACH OBJECT behavior.

4.3.3 REPOSITION

The robot tries to get as close as possible to the object and it tries to reposition

itself such that the absolute difference of Front-Left and Front-Right Infra-Red prox-

imity sensors is within a threshold Iδ. Since the Khepera IV robot has a circu-

lar form factor, there is a possibility that the robot could slide-off while pushing

the object depending on the angle of approach. This behavior is implemented to

align the robot somewhat perpendicular to the side of the box so that the possi-

bility of the robot sliding-off the box reduced. Figure 18 depicts how the IR sen-

sors are used for aligning the robot where L, R, and F stand for the front-left,

front-right and the front IR sensors. This stage is somewhat analogous to dock-

ing since the robot simply tries to align itself and gets ready to push the object.

1 If(IR_FRONT >= MIN_IR_THRESHOLD && red blob)
2 While(IR_FRONT <= MAX_IR_THRESHOLD)
3 move towards object
4 While(IR_DIFF > IR_DIFF_THRESHOLD)
5 determine which side to reposition
6 JERK left or right
7 If(timeout)
8 BACKOFF behavior

Figure 17. Pseudo-code for REPOSITION behavior.

Figure 18. Reposition

using IR.

32



4.3.4 READY TO PUSH

When the robot has repositioned itself close to the box, it enters this state where it

checks for the external stimulus i.e. the coordinate points form the Observer. The

robot calculates the D1 and D2 distances and if the absolute difference i.e. ∆ is lesser

than the threshold ∆τ , the transition leads to the execution of COOPERATIVE

PUSH behavior, else it leads to the ALIGN BOX behavior.

1 If(IR_FRONT >= MAX_IR_THRESHOLD &&
2 IR_DIFF <= IR_DIFF_THRESHOLD)
3 read coordinates form observer
4 calculate D1D2_DIFF
5 If(ABS_D1D2_DIFF < D1D2_THRESHOLD)
6 COOPERATIVE-PUSH behavior
7 Else
8 ALIGN-OBJECT behavior

Figure 19. Pseudo-code for READY TO PUSH behavior.

4.3.5 ALIGN BOX

A robot enters this state when the box is not sufficiently aligned towards the goal

and thus needs to be aligned. The robot reads the peer status and if is the peer is

not actively working on the box, the robot saves the current status of the system

and pushes the box for a fixed amount of time. The robot then reads the current

coordinates form the Observer calculates the status of the system after it has pushed.

If the robot has made a had a positive change on the position of the box and box

needs to be aligned further, the robot continues in this behavior. To continue this

behavior, ∆ should be greater than ∆τ even after the robot has pushed. If the impact

was negative, say when the robot is on the wrong side and makes the situation worse
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by pushing it, the robot relinquishes the control to its peer. Figure 20 portrays

an example of such positive and negative changes that can result from the robots

pushing. The robot could move to the REPOSITION behavior if the IR proximity

sensor readings change suggesting that the box has moved.

20(a) 20(b) 20)(c)

Figure 20. (a) Initial state where D1 is greater than D2; (b) robot A has pushed

the box and made a negative impact; (c) robot B has pushed and made

a positive change.

1 If(ABS_D1D2_DIFF > D1D2_THRESHOLD)
2 IF (peer is not active)
3 update status as active
4 save current D1 & D2
5 push box
6 read coordinates from observer
7 calculate new D1 & D2
8 If(positive change &&
9 ABS_D1D2_DIFF > D1D2_THRESHOLD)

10 continue ALIGN OBJECT
11 Else
12 reset status
13 yield
14 Else If(peer active)
15 continue

Figure 21. Pseudo-code for ALIGN behavior.
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4.3.6 COOPERATIVE PUSH

The robot executes this behavior when the absolute difference between D1 and D2

i.e. ∆ < ∆τ . This means that the object is sufficiently aligned towards the goal

and the robots can cooperatively push. This stage is usually a significant stage since

two robots pushing the box together is much quicker than two robots taking a turn

pushing the box. The transition from READY TO PUSH or ALIGN BOX could

lead to this stage. A robot which is in this stage reads its peer’s status and if the peer

is ready, the robots do a cooperative push for T . This is a dynamic variable which

derived from the distance between the goal and the object. If the distance is more,

the duration would be longer and vice versa. Tmin and Tmax are the boundaries

within which the push duration would fall. These boundaries were selected after

various experiments and they facilitate striking a balance between and speed and

recoverability. If the peer is not ready, the robot checks the peer status periodically

until a timer goes off after which the robot executes the BACKOFF behavior to

reposition towards the object. A cooperative push may lead to the same behavior

continuing or to the ALIGN behavior as illustrated in Figure 22. This is possible

despite the fact that the robots push with the same speed and for the same amount

of time as there are various other non-deterministic factors such as the condition of

the floor, non-uniform friction, position of the robots and so on.
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22(a) 22(b) 22(c) 22(d)

Figure 22. (a) Cooperative push was successful and results in another cooperative

push shown in (b). (c) Cooperative push that was successful, but results

in Align behavior(d). In this case, robot A is comparatively closer to the

edge and thus the box moves towards the right.

1 If(ABS_D1D2_DIFF <= D1D2_THRESHOLD)
2 IF (peer is not ready)
3 While(until timeout)
4 periodically check if peer is ready
5 If(box moved)
6 BACKOFF behavior
7 Else If(peer is ready)
8 save current D1 & D2
9 calculate PUSH_DURATION

10 push for PUSH_DURATION
11 read coordinates from observer
12 calculate new D1 & D2
13 If(positive change &&
14 D1D2_difference <= D1D2_threshold)
15 continue COOPERATIVE-PUSH
16 Else
17 READY-TO-PUSH

Figure 23. Pseudo-code for COOPERATIVE PUSH behavior.
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4.3.7 BACKOFF

This behavior makes the robot back off a few centimeters from the object. This is a

vital behavior which helps the robot recover when it is stuck or realigns when the box

has been moved by another robot. The behavior also helps the robot to maintain the

object in view since the robot’s camera is blacked out when is in contact with the box

and thus cannot receive any useful feedback. This behavior has multiple entry points

or in other words, various events could trigger this behavior. A common trigger is

a change in the IR proximity sensors readings since it denotes the box has moved

(because of some activity by the peer). Another trigger is timeout: while trying

to REPOSITION or APPROACH the object the movement of the robots could be

hindered because of the uneven surface. When BACKOFF is triggered three times

continuously denoting that the robot is stuck in a position, the robot invokes a

variation of the behavior where it jerks left and right alternatively to overcome the

inertia and then back off.

4.3.8 GO AROUND BOX:

This is a minor behavior executed when the robot realizes that it is on the wrong side

of the object. The robot follows steps similar to that observed in wall-following where

a robot moves along a wall maintaining a certain distance. Once the robot reaches the

other side, the regular behaviors such as APPROACH OBJECT or REPOSITION

are executed.

4.3.9 JERK LEFT/RIGHT:

This another minor behavior which helps the robot reposition or recovers from a po-

sition where it is unable to move from. This behavior sends short pulses the wheels
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in succession thus helping it move when stuck or turn in place while docking with the

box.

1 //Main Loop
2 While (goal not reached)
3 capture image and look for red blobs
4 If(red blob)
5 APPROACH OBJECT
6 //object is close
7 If (IR_FRONT >= MIN_IR_THRESHOLD)
8 REPOSITION
9 //aligned with object

10 If(IR_FRONT >= MAX_IR_THRESHOLD &&
11 IR_DIFF <= IR_DIFF_THRESHOLD)
12 //READY TO PUSH
13 IF (ABS_D1D2_DIFF <= D1D2_THRESHOLD)
14 COOPERATIVE PUSH
15 Else If (ABS_D1D2_DIFF > D1D2_THRESHOLD)
16 ALIGN BOX
17 Else If (no red blob)
18 SEARCH

Figure 24. Pseudo-code representing the complete algorithm as a loop. Each condi-

tion which leads to the execution of particular behavior is analogous to

a stimulus. The behaviors are highlighted with bold-face fonts.
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CHAPTER 5

EXPERIMENTS AND EVALUATION

The effectiveness of the approach was tested with different sets of physical experi-

ments in the laboratory. Various metrics were collected to evaluate and analyze the

approach and are presented in this chapter.

5.1 EXPERIMENTAL SETUP

The test environment consists of two different setups in our Pixel Island lab located

in room 209 of the Engineering building. Arena 1 as is smaller measuring about 12 x

11 feet. The Observer camera was placed about 9.5 feet from the floor and 4 inches

from the ceiling. Arena 2 is about twice the size, measuring 22 feet long and 8 feet

wide. Figure 26 and 27 shows arena 1 and arena 2 as seen by the observer. The black

markers on the floor denote the boundaries of the arena for the viewers’ reference.

Figure 25. From left: Goal, Khepera IV robots, object(back) and red markers.

As discussed earlier in Section 3.3, not the entire floor in the arena was flat due

to the worn-out condition. Certain parts of the floor had small bumps which made
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it harder for the robots to move. Thus the experiments were conducted in the area

where the surface was with less hindrance and workable for the robots. The object

is an elongated rectangular cardboard box measuring 33 inches (2.75 feet) in length

and 7.2 inches tall and 4.4 inches wide. The Khepera IV robots are 58 mm (2.2

inches) tall while their camera is 2.5 cm above the ground. The objects were marked

with red square patches of 4.5inches while the goal was a bright green box measuring

7.1 x 6.8 inches.

Figure 26. Arena 1: 12x11 feet. Figure 27. Arena 2: 22x8 feet.

5.2 METRICS

To analyze and evaluate the approach, various metrics were collected for each of the

trials and such metrics are introduced here while the experiments and the correspond-

ing results are presented in the following sub-sections. The metrics are presented

below:

1. Path efficiency(PE): Path efficiency of a trial is defined as the ratio of the

shortest distance between the centroid of the object and the goal to the actual

distance traveled by the object’s centroid in that trial. This metric gives an idea

about the distance traveled by the object versus the shortest possible distance.
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In formula 5.1, Distanceoptimal is the shortest distance between the object and

the goal and Distanceactual denotes the actual distance traveled by the object

before entering the goal region or making contact with the goal. The distances

are Euclidean and are derived directly from the image frames captured by the

Observer and thus all the distances are in pixels. Since hundreds of frames

are generated for a given trial, the frames are sampled at regular intervals to

calculate the cumulative distance traveled by the object.

PathEfficiency =
Distanceoptimal

Distanceactual
(5.1)

2. Completion Time: The completion time of a trial is defined as the time

elapsed from the start of a trial until the end of the trial which is when the

centroid enters the goal region. The completion time is measured in seconds

and essentially denotes how much time a trial took.

3. Angular Displacement: Angular displacement is defined as the difference

between the relative difference in the orientations of the object at the beginning

and the end of a trial. Let p(t0) and q(t0) be the centroids of the two tracking

markers on the object at the beginning of a trial. The orientation vector a(t0)

of the object at the beginning shown in 5.2.

a(t0) = p(t0)− q(t0) (5.2)

Similarly, considering that the centroids are p(t1) and q(t1) at the end of the

trial, the angular displacement D(t0, t1) is calculated as shown in Figure 28.
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Figure 28. Angular displacement

4. Cumulative Angular Displacement: Cumulative angular displacement is

calculated as the sum of the angular displacements of the object at each step of

the trial. This metric gives an idea of how much the orientation of the object is

changing throughout a trial or in simple words gives an estimate of how much

the object ’wiggles’ while being transported. The metric Angular displacement

described above simply shows the relative orientation of the object and does

not represent anything significant. Thus cumulative angular displacement is

calculated as another metric that gives the relative change in the orientation

of the object throughout a trial.

5. Final Distance from Goal: Final distance from goal is calculated as the

distance between the centroid of the object and the goal when a trial ends.

The distance is Euclidean and gives an idea about how much closer the object

is when a trial ends.

5.3 EXPERIMENTS AND RESULTS

Various experiments were performed to demonstrate the approach and are catego-

rized as Experiment A, B, C, D and E. Each experiment with the corresponding

procedure and results are presented below. Figure 29 shows a plan view of the ex-

periments A, B, and C respectively. Experiments A, B, D and E were conducted on

Arena 1 (Figure 26) while experiment C was done in Arena 2 (Figure 27). Apart

from demonstrating that the approach works, each experiment had other underlying
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objectives. Experiment A and B were to examine the stability of the approach while

Experiment C was conducted to demonstrate and examine the factors that affect

performance in a bigger arena. Experiment D was conducted to evaluate how how

well the approach can work in situations where the object and goal locations are

different within the test environment and how the orientation of the object affects

the performance. The purpose of Experiment E is to test the SEARCH behavior.

To convert the image coordinates to real world coordinates, the observer cameras

were calibrated with a checkerboard pattern to derive the intrinsic and extrinsic pa-

rameters. The cameraCalibrator application in Matlab was used for this task. The

experimental procedure and analysis are presented in the following sections.

10 ft 12 ft 22 ft

29(a) 29(b) 29)(c)

Figure 29. (a)(b)(c) Experimental setup for Experiment A, Experiment B, and C

respectively(not drawn to scale). The red box is the object and the blue

triangles within circles represent the robots. The green dot denotes the

goal while the dashed line around the goal represents the goal region.

43



5.3.1 EXPERIMENT A

The objective of this experiment is to evaluate the performance in a situation where

the robots cooperatively work to move an object which is already aligned towards

the goal. The robots have to move the object to the goal which is located about 10

feet ahead. The experimental procedure is described below.

The initial conditions are the same as stated in the problem description where

the robots have already located the object and positioned themselves appropriately.

Now, the robots have to cooperatively work and push the object towards the goal

which is about 10 feet ahead of the object. As shown in Figure 29 (a), the plan

view of the experiment, the object is placed close to the bottom of Arena 1 while

the object is placed at the top. The box is sufficiently aligned towards the goal

location and thus the robots can start cooperatively pushing the box quickly instead

of aligning it. The stop condition is when the object makes contact with the goal.

20 trials were performed with the same initial conditions in Arena 1. The mean and

standard deviation of the various metrics for the 20 trials performed are presented

below in Table I while the histogram representing the final distance between the goal

and the object is presented in Figure 31.

Completion
Time(s)

Angular
Displacement(deg)

Cumulative
Angular

Displacement(deg)

Distance
from Goal
(mm)

PE

MEAN 167.14 15.74 105.69 154.14 0.9595
SD 67.41 12.35 101.19 157.84 0.0554

Table I. Mean and standard-deviation for Experiment A(20 trials) where PE stands

for path-efficiency.

The average completion time is about 160s while the median is about 154s.

Though the task is simple where the robots need to push the object forward, due
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to various factors such as non-uniform friction, position of the robots and the floor

condition, the completion times vary drastically. The completion times recorded

ranges between 86 and 273s. This can be explained based on the sequence of be-

haviors that were executed in each trial. As mentioned earlier in chapter 4, the

ALIGN OBJECT behavior is much slower than the COOPERATIVE PUSH behav-

ior. Though the initial condition implies that the robots can start by executing the

quicker COOPERATIVE PUSH behavior, the outcome is non-deterministic. The

initial cooperative push might lead to either the align object state or the coopera-

tive push state as shown in 22. If the robots enter the align state frequently, they

would be spending more time aligning the box which is slower. Comparing that to

a situation where the robots enter the cooperative push stage frequently, it could

be understood that how the behaviors influence completion time. Thus, if a trial

involves frequent align operations, it tends to be slower. Also, other parameters such

as the ∆τ and the T influence the performance and this is discussed in section 5.4.
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Figure 30. Paths taken by the object’s centroid for various trials of Experiment A.

Figure 30 shows the paths of the centroids of the object traced from the logs for

all the trials of Experiment A.Though the experiment is straight forward where the

object has to be simply pushed to the goal, from Figure 30, it is easy to spot how non-

deterministic the paths taken by the object is. This demonstrates how experiments

being conducted in a real-world environment are subject to various influential factors

such as non-uniform friction, the position of the robots and floor condition.
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5.3.2 EXPERIMENT B

The objective of this experiment is to evaluate the performance in a situation where

the robots cooperatively work to move an object which is not aligned towards the

goal. This means that the robots need to align the object first and then cooperatively

work on the task. The experimental procedure is described below.

The initial conditions for Experiment B is same as the problem description:

the robots have already located the object and repositioned themselves as needed.

However, unlike Experiment A, the box is not aligned towards the goal and thus the

robots will have to align the box before beginning the cooperative push. Also, the

goal is about 12 feet form the object and placed such that the path taken by the

object would be diagonal. The object itself is located at the bottom right corner of

Arena 1 while the goal is placed diagonally on the top left as shown in Figure 29(b).

The stop condition is either the object’s centroid is within 160 pixels from the goal

location or the object colliding with the goal. 20 trials were performed in Arena 1

and the results are presented in II.

Completion
Time(s)

Angular
Displacement(deg)

Cumulative
Angular

Displacement(deg)

Distance
from Goal
(mm)

PE

MEAN 141.57 32.68 174.47 369.96 0.9646
SD 48.00 7.58 43.72 151.65 0.0216

Table II. Mean and standard-deviation for Experiment B(20 trials) where PE stands

for path-efficiency.

The mean and standard deviation of the various metrics for the 20 trials per-

formed are presented above in Table II where PE denotes the path efficiency. The

average time taken for completion is about 141s which is comparatively lesser than

that of Experiment A where the task was much simpler and the goal was com-
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paratively closer. This is because Experiment B and Experiment A used different

parameters. Since Experiment A and B are different, comparing their results to an-

alyze them is not appropriate and thus the impact of the parameters are discussed

in section 5.4 with different sets of experiments. While path efficiency is similar to

that of Experiment A, the final distance from the goal in is comparatively higher in

B. This is again attributed to the influence of the different parameters.
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Figure 31. (a)Final distance from goal presented as histogram for Experiment A and

Experiment B(b). The number of bins is 8.

The histogram representing the final distance between the goal and the object

for both Experiment A and Experiment B is presented in Figure 31. The histograms

have eight bins each while the bin-width is about 83mm and 62mm respectively.

Figure 32 shows the paths taken by the the centroids of the object traced from the

logs for the trials of Experiment B.
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Figure 32. Paths taken by the object’s centroid for various trials of Experiment B.

5.3.3 EXPERIMENT C

Experiment C carried out in Arena 2 to demonstrate that the algorithm is capable

of working in a larger area. Arena 2 is 22 feet long and the robots need to push the

object across the room. The experimental procedure is described below.

The initial conditions are that the robots have already found the object and

repositioned them sufficiently. Another initial condition is that the object is not

aligned towards the goal and thus the robots have to align the object first. As shown
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in Figure 29 (c), the object has to be moved from the bottom right corner to the goal

location across the room. For some of the trials, the goal location and the object

location was swapped. The stop condition is that the object’s centroid is within

40 pixels from the goal. Due to the longer distance, the image was warped and

the regular markers used to track the the object were tiny and undetectable by the

Observer. Different markers were used: two red cubes of 4.5 inches were affixed on

either end of the object to serve as markers. The mean and standard deviation of

the various metrics for the 10 trials performed are presented below in Table III.

Completion
Time(s)

Angular
Displacement(deg)

Cumulative
Angular

Displacement(deg)

Distance
from Goal
(mm)

PE

MEAN 335.9 6.35 182.48 814.44 0.9602
SD 92.59 6.40 69.74 382.61 0.0275

Table III. Mean and standard-deviation for Experiment C(10 trials) where PE stands

for path-efficiency.

Since the distance traveled is significantly higher, the completion time is also

relatively higher than the previous experiments. Path efficiency similar to the other

experiments while the final distance from goal is significantly higher. This is due

to the warping of the image: farther an object is from the camera, lesser the pixels

representing the object in the captured image.

5.3.4 EXPERIMENT D

This experiment consists of various trials performed to demonstrate that the pro-

posed approach is capable of working with the different initial position of the goal

and the object. In other words, these experiments demonstrate that the strategy

works for different object and goal location provided that the problem constraints

are met. The experiments were done in Arena 1 and the initial location of the goal
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and the object were decided at random. The experimental procedure is described

below.

The object and the goal locations were chosen at random while the initial

conditions were the same as the other experiments: The object has been located by

the robots. The goal position was changed to different places and the box orientation

was also different for the experiments. Figure 33 shows time-lapse images captured

from various trials. 15 Trials were performed in Arena 1 and the results are presented

in Table IV.

Completion
Time(s)

Angular
Displacement(deg)

Cumulative
Angular

Displacement(deg)

Distance
from Goal
(mm)

MEAN 129.76 46.98 237.82 578.36
SD 72.94 43.78 150.54 365.68

Table IV. Mean and standard-deviation for Experiment D(15 trials).

From the results, it can be observed that the cumulative angular displacement

is higher than all the previous experiments. This would be attributed to the varying

initial orientations of the box. Since the initial angle between the goal and the object

is higher for these trials, the box has been moved and aligned more often and thus

the overall change in the orientation of the box is higher. Completion time does

not relay anything significant as the object did not travel the same distance in all

the trials. The current implementation of the algorithm works well in most cases.

However, there is a chance that the approach would fail when the angle between the

object and the goal is close to ninety degrees.

51



Figure 33. Time-lapse images of sample trials of Experiment D (12 trials are dis-

played).

5.3.5 EXPERIMENT E

The objective of Experiment E is to demonstrate the SEARCH behavior. Due to the

limited vision capabilities of the robot, the object would spotted often and thus the

robot has to rely on the search behavior to locate the object. For this experiment,

the robot would be placed at random initial location with a random orientation and

it has to search and locate the object. In some of the trials, the orientation and

position of the object was also changed randomly. Figure 34 shows all the traced

paths for all the 15 trials.
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Figure 34. Paths taken by the robot during the search operation of Experiment E (15

trials). The dots denote the starting location while the arrows denotes

the end point of the traced path.

The mean completion time for the 15 trials was 116.06 seconds while the stan-

dard deviation was 57.76. Figure 35 below shows some the traced paths for some

of the sample trials under Experiment E. It could be noted from Figure 34 and 35

that the search algorithm is not very efficient. This is because the coordinates being

shared by the observer is less meaning full for the observer since there is no direction

component in it. For example, the robot can estimate the angle it has to turn how-

ever it would be hard to know which direction(turn left or right). Thus the robot

calculates an angle and proceeds in that direction for one second and stops to verify
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if it is heading in the right direction. If the direction is wrong, the robot corrects its

heading direction and moves forward. Also, since the robot’s camera is blurry and

running at a low resolution, they often mistake colors of similar shade for red and

head in a wrong direction. However, when they get sufficiently close, they realize

that the color is different and execute the search behavior again. All these factors

result in the robot taking erratic paths to find the object as shown in Figure 34

Figure 35. Experiment E: Traced paths for 12 sample trials. The dots denote the

starting location while the arrows denote the end point of the traced

path. The curves are resulting from the FOLLOW-THE-BOX behavior

where the robot goes around the box to reach the other side.
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5.4 ANALYSIS ON PARAMETERS

Comparing the metrics from Experiment A and B, a trend observed is that Experi-

ment B had shorter completion times than Experiment A even though the distance

traveled was more. Another pattern is that the angular displacement is compara-

tively lower in the trials belonging to Experiment A. These outcomes are due the

reason that Experiment A and B used different parameters in their algorithm. There

are two major parameters which could be changed to influence the performance and

are described below:

1. ∆τ or D1D2 THRESHOLD : As described earlier in Chapter 4, ∆τ is the

threshold denoting when the robots execute the align object and cooperative

push behaviors. This parameter value can influence the performance greatly

as they dictate which behavior needs to be executed. If the threshold value is

higher, the robots can execute the cooperative push behavior more often. Since

the cooperative push behavior is quicker than the align object behavior, the

completion time would be comparatively lesser in this case. However, with a

higher threshold, the error values such as the cumulative angular displacement

and final distance form goal tend be comparatively higher since the robots do

not align the object frequently. The key aspects of the ∆τ are summarized

below.

• Influences which behavior is executed.

• Larger value: Robots enter COOPERATIVE PUSH behavior quicker and

more frequently. Thus, completion time would be comparatively less.

However, larger ∆τ leads to more errors since robots align the box less

frequently.
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• Lesser value: Robots take more time to align the box. Since the ALIGN

behavior is relatively slower, the completion time will also be higher.

• Appropriate limits: 20 - 45 pixels (determined through various experi-

ments).

2. PUSH DURATION : T determines how long the cooperative push can hap-

pen. The push duration is dynamically calculated based on the distance be-

tween the object and the goal. However, the calculated push duration should

be within an range. Through various trials, it was found that the appropriate

limits of the push duration is 3 - 8 seconds. When the push duration is about

3 seconds, the robots do not seem to make as much progress. When the robots

start pushing, a lot of effort is spent to overcome the inertia and to get the box

moving. If the push duration is low, the robots would not make much progress

in moving the box since they would have already stopped by the object started

moving. Longer push duration can reduce time taken, however very large val-

ues increases the possibility of the box being pushed to a state where the robots

cannot realign the box and recover. The key aspects are summarized below

• Determines how long cooperative-push happen.

• Two variables Tmin and Tmax are the boundaries within which the push

duration falls.

• Longer cooperative-push time reduces completion time.

• Appropriate limits: 3 – 8 seconds (determined through various experi-

ments).

To demonstrate the influence of the parameters, experiments were conducted
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with different parameters in the same setup and the results are presented in Figure 36

and Table V.

Figure 36. Mean and standard-deviation for varying ∆ . A bigger value leads to

quicker completion but the error values such as angular displacement,

distance from goal tend to be higher as well.

Completion Time T = 4s-6s T = 5s-8s

MEAN 373.20 298.6

SD 103.59 71.27

Table V. Completion time for varying T limits in Arena 2. A longer duration results

in comparatively faster completion.

The impact of the parameter ∆ is explained here by comparing the results of

Experiment A and B from the previous section as examples. As described earlier,

∆τ determines how much effort is made in aligning the box towards the goal before

pushing. In Experiment A, the threshold value of the difference between the two

extremities of the object is lower and thus the robots invest more time in orienting

the box. This reduces the possibility of the box traveling in a less optimal direction.

However, this also results in the side effect where the completion time is compara-

tively longer for Experiment A. Contrastingly, if the objective is to push the object

quickly, the threshold value of ∆τ would be higher since and thus the angular dis-

placement would also be comparatively higher. Another interesting observation is

that though the overall distance traveled in Experiment B is longer than Experiment

A, the completion time is comparatively less.
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Experiment C brought a different set of challenges. Though the initial exper-

iments were successful, they took a long time to reach the goal. This was due to

the fact that the image was warped. The farther the object is form the camera,

lesser the pixels representing the object on the image. Thus, the image pixels does

not represent the actual distance between the object and the goal. This resulted in

situations where the Euclidean distance calculated from the image pixels were much

lesser than the actual distance. Since the T is directly proportional to the calculated

distance, the robots tend to cooperatively push only for shorter bursts and thus tak-

ing a long time eventually. To optimize the completion time for this case, the Tmin

was increased from 4s to 6s, resulting in much shorter completion times.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

A Behavior-Based Robotics strategy was developed for the cooperative transport

problem demonstrating that the task can be achieved through a simple rule-based

approach instead of relying on global decision making or sophisticated controllers.

Contrasting to other approaches that use a centralized global view, the Observer

has no decision making responsibilities in this system. Since the system is based on

simple SENSE-REACT primitives, the information being shared by the Observer is

also simple thereby reducing the computational load on the Observer. The Behavior-

Based Robotics approach considers the robots as simple organisms with embodied

cognition to a certain extent. This could be observed to be true in our approach as

well since the robots have a way of distinguishing or sensing ’good’ and ’bad’ with

respect to the given task. Also, The approach demonstrates that the robots could

gain more autonomy by relying on their senses to make decisions instead of relying

on external instructions.

Various experiments were also performed in a real environment to evaluate and

analyze the approach. The completion time is greatly influenced by behaviors being

executed. When the robots push the object cooperatively, they are able to move the

object further and faster. Also, there are various other supporting behaviors that

are little slow, but play important roles. As the robots use euclidean distance as a

measure and as there is no directional component in the information being shared

by the observer, various additional behaviors are required to align, reposition and

push the object. Also, the orientation of the object influences the outcome. This

is because rectangular objects are easily susceptible to rotation and thus it is more
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challenging to transported them.

The completion time of the proposed system can be improved. For example, the

ALIGN behavior is very slow compared to the COOPERATIVE PUSH behavior.

This is because when both the robots push together, it is much easier to overcome

the friction and thus the box could be moved further with the same effort form each

of the robot. Though the ALIGN could not be made as fast as the cooperative push,

optimizing the aligning process would shorten the completion time. The robots often

make wrong decisions on who needs to push and when a wrong robot pushes, the

box needs to realigned. If more wrong decisions are made, more time has to be

spent correcting the orientation of the box and thus leading to longer completion

times. Performance would improve if this type of wrong decisions are avoided. In

the current implementation, though the robots have a sense of realizing good and

bad, they do not remember or keep track of it for future decisions. The robots do not

keep track of which side of the object they are pushing(left or right). If the robots

are programmed with some mechanism of remembering their position, the possibility

of wrong robot pushing the box can be avoided. This would improve performance

by reducing the completion time.

Also, the robots spend more time repositioning themselves to dock with the box.

Some of the behaviors such as Back-off and Reposition are important due to factors

such as limited sensing and the shape of the robot. These behaviors are executed

frequently and the robots spend a sizable chunk of their time in these behaviors.

Since these behaviors are little slow, it gives an impression that the robots are slow

overall. Improvement in performance could be observed if these behaviors could be

optimized. For example, the Back-off behavior is executed very often: when the

robot is very close to the object, its camera is rendered less useful. Thus, in order to
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make sure that a robot is maintaining the object in view and not pushing another

robot, it executes the back-off behavior. Then the robot captures a frame to make

sure the object is ahead and approaches it. This behavior need not be eliminated,

however it could be optimized. To optimize this scenario, the robot can either use

the coordinates from the observer to make sure of its current position or it can rely

on the infra-red proximity sensors to keep track of its orientation with respect to

the box. This way the robot can execute these expensive behaviors less frequently

thereby saving time.

Also, the current system was implemented considering only two agents where

each agent can communicate with the other agent. This strategy of communication

might not scale when the number of agents increases and thus should be approached

differently. For example, if there are ten agents in the system, it might not be possible

to communicate with all of the agents. In the various multi-agent system, polling and

voting for consensus is a common strategy which could be integrated to this system.

For example, if there are five agents (out of ten) that agree on a cooperative task,

the robots can all execute the cooperative push. This kind of approach would make

it possible for multiple agents to be involved in the task, however there are various

other challenges such as prior knowledge on the number of agents and a broadcast

type of communication.

By designing the system based on behavior-based principles, the need for the

Observer to be the centralized controller can be eliminated. Though the observer is

not the centralized controller, the system is still centralized as the Observer is the

source of the stimulus. Thus, this system is prone to single-point of failure like any

centralized system. If the observer fails because of any reason, the robots would

be helpless. To address this such as scenario, a set of additional behaviors could be
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added to the robots which would enhance their capabilities. If the robots are capable

of realizing that the observer has failed and electing one of them as an observer, the

system would continue to function. This would give the robots the ability to switch

roles as the Observer or a pusher based on the situation. However, this would require

the robots to have better sensing capabilities and reliable communication channels.

In such as situation, other flavors of multi-agent systems especially various swarm-

robotic concepts such as collective computation and distributed coverage would be

helpful.

The current implementation is a synchronous closed-loop system. As presented

earlier in the pseudo-code Figure 24, all the behaviors reside in a loop and the

behaviors are executed based on the various stimuli present at a given instant of

time. This type of implementation is analogous to a state-machine and thus is

more intuitive and easy to implement. However, a common shortcoming in such a

synchronous implementation is I/O wait. For example, when the the program is

reading data form the camera or polling its IR sensors, the program is essentially

halted as the inputs being gathered are required for further decision making. If these

functions could be performed asynchronously, greater performance could be achieved.
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