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Knowledge of adaptive potential is crucial to predicting the impacts of
ocean acidification (OA) on marine organisms. In the spiny damselfish,
Acanthochromis polyacanthus, individual variation in behavioural tolerance to
elevated pCO2 has been observed and is associated with offspring gene
expression patterns in the brain. However, the maternal and paternal
contributions of this variation are unknown. To investigate parental influence
of behavioural pCO2 tolerance, we crossed pCO2-tolerant fathers with pCO2-
sensitive mothers and vice versa, reared their offspring at control and elevated
pCO2 levels, and compared the juveniles’ brain transcriptional programme.
We identified a large influence of parental phenotype on expression patterns
of offspring, irrespective of environmental conditions. Circadian rhythm
genes, associatedwith a tolerant parental phenotype, were uniquely expressed
in tolerant mother offspring, while tolerant fathers had a greater role in
expression of genes associated with histone binding. Expression changes in
genes associated with neural plasticity were identified in both offspring
types: the maternal line had a greater effect on genes related to neuron
growth while paternal influence impacted the expression of synaptic develop-
ment genes. Our results confirm cellular mechanisms involved in responses to
varying lengths of OA exposure, while highlighting the parental phenotype’s
influence on offspring molecular phenotype.
1. Introduction
As atmospheric CO2 levels increase, so does the amount of CO2 taken up by the
ocean, causing a decrease in seawater pH (ocean acidification (OA)), with
potentially broad-ranging effects on the physiology and ecology of marine
organisms [1]. However, the effects of OA on marine ecosystems will depend
on the relative sensitivity and tolerance of different species, and their ability
to acclimatize and adapt to the environmental changes brought about by
rising CO2 levels [2]. Recent studies show that increased pCO2 levels can
affect the growth, survivorship and physiology of some marine fishes [3–7].
Elevated CO2 has also been shown to alter behaviours in a wide variety of
fish [8–10] and invertebrates [11–13]. However, most experimental studies
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focus on short-term exposure to elevated pCO2 and do not
account for phenotypic variation that may enable populations
to adapt over the time scale at which OA will occur [2,14].

Fish use chemical alarm cues (CACs) from conspecifics to
detect predation threats and respond to CAC presence by
moving away from the cue and reducing activity [15]. Under
elevated pCO2 conditions, juvenile fish can exhibit an impaired
response to CAC, showing a decreased avoidance to CAC, and
in some cases failing to associate CAC with the threat of preda-
tion [16–19]. The underlying cause of this behavioural change is
thought to be impaired function of GABAA receptors (GABA is
the major inhibitory neurotransmitter in the brain) caused by
changes in the concentration of acid-base relevant ions to main-
tain pH homeostasis in a high CO2 environment [17,20–22].
Elevated CO2 has also been demonstrated to affect learning
ability, decision making, turning preference, auditory prefer-
ences, visual acuity, shoaling, boldness and escape responses
in a range of different fish species [16,18,23–25]. Such altera-
tions in behaviour could affect individual performance and
survivorship, with potential implications for community struc-
ture and population replenishment [8,26]. However, there
is also individual variation in behavioural sensitivity to
elevated CO2, with some individuals exhibiting impaired
behaviours, whereas others do not, especially at CO2 levels pro-
jected to occur in the ocean this century (i.e. approximately
700 µatm CO2) [23,27,28]. Such individual variation could be
the raw material for population-level adaptation to rising CO2

levels [14,29].
Genetic variation among parents, combined with non-

genetic effects from the parental environment, drive an off-
spring’s phenotype through natural selection, epigenetic
inheritance and changes in molecular mechanisms [30].
These parental effects, genetic and non-genetic, are key to
understanding how populations will adapt and survive in
the face of climate change. Both mothers and fathers make
important contributions to the success and development of
their offspring, yet recent studies have focused singularly
on either maternal or paternal effects, rarely examining how
they may interact to shape their offspring’s performance
[31]. In the marine stickleback, maternal exposure to high
temperatures had a clear impact on the growth of their off-
spring in the same environmental conditions [32]. Maternal
inheritance of increased metabolic capacity led to larger
juveniles, suggesting transgenerational plasticity can mediate
short-term impacts of ocean warming [32]. Another recent
study, on wild salmon, found a correlation between telomere
length in juveniles and paternal time spent in seawater that
appeared unaffected by increased temperatures [33]. Short
telomeres can indicate poor biological health, suggesting
that fathers with an increased time at sea produce healthier
offspring even in the face of environmental variability [33].
There is a significant lack of knowledge about sex-specific
parental contributions in fish, especially under elevated
pCO2 conditions, and the interactions of genetic and non-
genetic effects add to the complexity [34]. Identifying the
parental contributions to specific traits and the molecular
mechanisms behind them will allow us to better predict
how fish will respond and adapt to rapid climate change.

Recent studies on the spiny damselfish, Acanthochromis
polyacanthus, indicate that individual variation in sensitivity
of the behavioural reaction to elevated pCO2 is heritable and
could thus facilitate adaptation [28,35,36]. A portion of fish
from the natural population respond normally to CACs
under predicted end-of-century pCO2 levels of 700–800 µatm
and thus appear to be tolerant to the behavioural effects of
OA. Moreover, there is a strong correlation between the behav-
ioural tolerance of juvenile spiny damselfish to elevated pCO2

and the tolerance of their fathers in both wild and captive
populations [28], indicating that behavioural tolerance to elev-
ated pCO2 has a genetic basis and is heritable. Furthermore,
molecular differences were identified between offspring of
tolerant versus sensitive parental pairs, with those under trans-
generational exposure to elevated pCO2 showing differential
gene and protein expression in the brain [35,37]. Specific
genes related to this signature of tolerance include those that
regulate the circadian rhythm processes and could be creating
a phase shift in the circadian clock to better control their
acid-base regulation [35]. Recent evidence suggests that this
behavioural variation may be passed on paternally through
generations [28]; however, it is still unknown if this heritability
is identifiable in transcriptional changes.

In this study, we investigate maternal and paternal influ-
ence on the molecular signature of behavioural tolerance to
elevated pCO2 in A. polyacanthus. Using a unique transgenera-
tional experimental design, we cross-bred behaviourally
tolerantmotherswith behaviorally sensitive fathers and behav-
iourally sensitive mothers with tolerant fathers. We exposed
breeding pairs and their offspring to ambient and elevated
pCO2 conditions. As described in previous studies [28,35,36],
offspring were exposed to ambient pCO2 (control), elevated
pCO2 from hatching (transgenerational high pCO2 treatment),
or for only 4 days before sampling (acute high pCO2 treat-
ments). Due to previous research implicating the role of
neurotransmitters in behavioural changes under elevated
pCO2, we continued to study the brain. We measured
genome-wide gene expression in 68 juvenile fish from the
different combinations of parental pairs (CO2-tolerant fathers
paired with CO2-sensitive mothers versus CO2-sensitive
fathers paired with CO2-tolerant mothers) and CO2 treatment
conditions, exploring the role of thematernal and paternal phe-
notype in influencing individual offspring expression profiles
under various pCO2 levels and exposure durations.
2. Material and methods
(a) Experimental design
In this study, we sampled the brains of juvenile A. polyacanthus
from the laboratory experiment described in a previous paper
[28]. Full details of the experimental design are provided in
that paper [28]. Briefly, adult A. polyacanthus were collected
from the northern Great Barrier Reef in Australia and transported
to the aquaria facilities at James Cook University (Townsville,
Australia; JCU ethics permit A1828). Adults were placed in elev-
ated pCO2 (754 µatm) (electronic supplementary material, table
S1) for 7 days then tested for their reaction to CAC in a two-
channel flume. Their sensitivity to high pCO2 was determined
by the amount of time spent in the CAC: spending less than
30% of the time in the CAC was considered tolerant to elevated
pCO2, and individuals spending greater than 50% were con-
sidered non-tolerant. Adults were then sexed and paired for
breeding based on their behavioural sensitivity. For the purpose
of this study, we focused only on the tolerant male × sensitive
female (T♂S♀) and sensitive male × tolerant female (S♂T♀)
pairs; however, all parental combinations were made for the
larger experimental design [28,36]. Adults were then placed in
40 L aquaria at control (414 µatm) and elevated pCO2



Figure 1. Experimental design detailing the creation of breeding pairs, the holding conditions for parents and offspring, the testing conditions prior to euthanasia
for the offspring and the names of the four different treatments as they are identified in the text. The blue colour refers to tolerant female, sensitive male parental
pairs while green indicates tolerant male, sensitive female parental pairs.
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(754 µatm) conditions for three months prior to breeding season
(electronic supplementary material). For this specific study, we
used clutches from 3T♂S♀ pairs and 3 S♂T♀ pairs in control
and 2T♂S♀ pairs and 2 S♂T♀ pairs at elevated pCO2. Breeding
pairs were checked daily for the presence of egg clutches. Con-
sistent with previous observations for this species, there was no
apparent effect of elevated pCO2 on reproductive output,
although this was not directly quantified in the current study.
On the day of hatching (approx. 10 days post-fertilization), the
offspring were transferred to either control or elevated pCO2 con-
ditions (figure 1). This led to two long-term conditions referred
to as control (control parents, offspring reared in control pCO2)
and transgenerational (elevated pCO2 parents, offspring reared
in elevated pCO2). Furthermore, we exposed half of
the offspring from the control condition to elevated pCO2

(754 µatm) 4 days prior to sampling at the end of the experiment.
These offspring came from parents exposed to either control con-
ditions or elevated pCO2 creating two separate offspring acute
treatments named for their parental conditions: control-acute
and high pCO2-acute (figure 1). No significant juvenile mortality
was recorded throughout the experiment across all conditions.
After five months, up to four fish per parental pair were eutha-
nized resulting in approximately nine individuals from each
parental type in each of the four conditions for a total of 68
fish (n = 16 or 18 from each of the four conditions, electronic
supplementary material, table S2). Brains were dissected out
and immediately flash frozen in liquid nitrogen and then kept
at −80°C for further processing. Different fish were euthanized
for this study than those used by Welch & Munday [28] to
measure behavioural response to CAC. In the previous study, off-
spring were tested after six weeks in a two-channel flume to
determine their behavioural phenotype [28]. For this study, we
sampled fish after five months to ensure sufficient brain tissue
was available for the molecular analysis. We did not perform
any behavioural testing prior to sampling at five months to
avoid potential influence of handling disturbance and the testing
regime on the brain transcriptome.
(b) RNA extraction and preparation
Whole-frozen fish brains were homogenized in RLT-plus buffer
for 30 s using a bead beater (BioSpec) with single-use silicone
beads and total RNA was extracted using the AllPrep DNA/
RNA mini kit following the provided protocol (Qiagen). RNA
quantity was determined using a Nanodrop (Thermo Scientific)
then reanalysed for both the quality and quantity with the
Agilent 2100 Bioanalyzer. Extracted RNA was processed at the
King Abdullah University of Science and Technology (KAUST)
Bioscience Core Lab for library preparation and sequencing. Con-
version to cDNA and preparation for Illumina sequencing was
done using the TruSeq RNA Illumina Library Prep Kit. Samples
were sequenced on the Illumina HiSeq 2500 paired end at 100 bp
in KAUST, Saudi Arabia.

(c) Gene expression analysis
Raw reads were quality checked with FastQC [38] and sequences
were trimmed using Trimmomatic v. 0.36 [39] with set parameters
including a phred score of 33, a minimum length of 40 and removal
of the first 13 bp of each sequence as well as the Illumina adapter
sequences.Readswere rechecked in FastQC for quality toverify cor-
rect adapter trimming. Sequences were then aligned to the
Acanthochromis polyacanthus genome (ENSEMBL ASM210954v1)
using hisat2 v. 2.1.0 [40] with an average successful alignment rate
of approximately 80%. SAM output files from mapping were then
sorted and converted into bam files using SAMtools v. 1.5. Feature
counts (Subreads v. 1.5.3) [41] was used to create a matrix of raw
exon read counts and the gene-ids provided in the genome annota-
tion. Minimum mapping quality was set to 20 and both fragment
pairs were required to align to the reference. The data matrix was
then imported into R v. 3.4.0 and differential expression between
conditions and parental pairs were statistically determined with
DESeq2 [42]. A likelihood ratio test (LRT) was used to determine
the interactions between the multiple variables as well as the best
design formula for further analysis (p-adj < 0.05). Significant differ-
entially expressed genes (DEGs) were identified using a q-value <
0.05 and a minimum log twofold change of 0.3. All graphs were
created using the R packages Vegan and ggplot2 [43,44].

Gene ontology of each gene was annotated using Blast2Go
Pro v. 4.19 (Gene Ontology Consortium [45]. Enrichment was
performed in RStudio v. 1.1.463 with the GO-MWU script that
uses a Mann–Whitney U test and a Benjamini–Hochberg correc-
tion to determine statistical significance [46], (scripts available at:
https://github.com/z0on/GO_MWU). The enrichment test
was carried out separately for each of the different GO domains
using stringent filtering including collapsing redundant cat-
egories, only selecting those genes represented by more than 5
GO-Terms, and employing an FDR cutoff of 0.1.
3. Results
(a) Condition-specific expression patterns
Duration of exposure to elevated pCO2 had the greatest
effect on expression profiles of A. polyacanthus offspring. The
number of DEGs was higher when comparing the two acute-
elevated pCO2 treatments to control than in the comparison
of the transgenerational-elevated pCO2 treatment to control
(figures 2 and 3). The influence of length of exposure to elev-
ated pCO2 on patterns of gene expression in the brain was
also seen by the high number of overlapping DEGs between
offspring of both acute treatments (1642), whereas offspring

https://github.co
https://github.co
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from the transgenerational treatment only shared one DEG
with the acute treatments. When comparing the control and
transgenerational treatments, there is a stronger grouping by
parental identity than by condition, but this grouping is less
evident within the two acute treatments (figure 4a,b).

(b) Influence of parental identity in control and
transgenerational treatments

Comparing offspring from tolerant mothers (S♂T♀ parental
pair) with offspring from tolerant fathers (T♂S♀ parental
pair), we identified 1592 and 1443 significant DEGs in the con-
trol pCO2 and transgenerational-elevated pCO2 treatments,
respectively (figure 3). This revealed a clear influence of par-
ental phenotype on the expression profile of the offspring
when fish were kept transgenerationally at the same pCO2

levels (figure 4a). Functionally enriched pathways included
an upregulation of neuropeptide activity, developmental
growth and dopamine receptor signalling in offspring of toler-
ant fathers in both control and the transgenerational-elevated
pCO2 treatment. By comparison, pathways such as spectrin
binding, mismatch repair and RNA splicing were identified
as significantly upregulated in offspring of tolerant mothers
under control and transgenerational-elevated pCO2.

There were 264 DEGs when comparing different environ-
mental pCO2 levels (control versus transgenerational-elevated
pCO2) for offspring of tolerant mothers, but only 68 DEGs
when comparing these treatments for offspring of tolerant
fathers (figure 3). Only 11 of these genes were shared between
offspring of the two parental groups, including upregulation of
a gene known to protect cells from reactive oxygen species
(GSTA1) andacytoskeleton-relatedgene (CKAP2).Genes signifi-
cantly differentially expressed in the offspring of tolerant
mothers included several related to growth (TNNT3, MYSS
and MLRV). Further analysis on total body weight revealed
that offspring of tolerant mothers were on average smaller than
those of tolerant fathers, with a significant difference between
the two in the transgenerational-elevated pCO2 treatment
(electronic supplementary material, figure S1 and table S3).

GO enrichment revealed upregulation of the circadian
rhythm pathway as well as circadian regulation of gene
expression in offspring from tolerant mothers, including the
circadian repressors PER3, CIART and HT7R (figure 4).
Unique differentially enriched pathways in offspring of
tolerant fathers when comparing control to transgenerational
included downregulation of reactive oxygen species biosyn-
thesis and the H4 histone complex as well as upregulation
of axon development (figure 5).

(c) Influence of parental identity in acute-elevated CO2
treatments

Fewer DEGs due to parental identity were identified in both
acute-elevated pCO2 treatments compared with the control
and transgenerational-elevated pCO2 treatment. Two hundred
and seventy-twoDEGswere found between offspring of T♂S♀
(tolerant fathers) and S♂T♀ (tolerant mothers) parents in the
control-acute treatment, and 270 DEGs between offspring of
the two parental pairs in the high pCO2-acute treatment
(figure 3). There was a strong common response to the
acute-elevated pCO2 treatments versus control, regardless of
the parental condition or parental identity, which consisted
of 1642 DEGs. The enriched functions for these shared genes
include collagen binding, neurotransmitter receptor activity
and GABA receptor activity (figure 5). GABA-related genes
included KCC1, NXPH1 and NXPH2, several solute carriers
specializing in GABA transport, and GAD2 involved in
GABA catalysis. Carbonic anhydrase (CA) genes (CAH4, 8,
10 and 15) were also differentially expressed between control
and both acute-elevated pCO2 conditions. Circadian rhythm
activators (RORa and b) involved in stability of the clock
were highly upregulated in all acute treatments when
compared to control.

Comparing control to control-acute and high pCO2-acute
led us to identify 604 shared DEGs from offspring of tolerant
fathers and 567 shared DEGs from offspring of tolerant
mothers. In offspring of tolerant mothers, SC6A1 and S6A11
were both upregulated in the acute-elevated pCO2 treatment.
Offspring of tolerant mothers exhibited highly upregulated
glutamate-related genes (NMD3B and GRIK2), as well as
genes related to neuron plasticity, growth and development
(AMIGO1, GFRA2 and CDK5R1). Several genes downregu-
lated in offspring of tolerant mothers exposed to acute-
elevated pCO2 conditions were related to development and
growth (TNNI2, TNNC2, MYSS, ACTA1 and ACTN3). Path-
ways unique to the offspring of tolerant mothers were
nervous system development, serine family biosynthesis
and RNA methylation (figure 5). In offspring of tolerant
fathers, solute carrier genes involved in GABA transport
were both upregulated (S6A11 and S6A13) and downregu-
lated (SC6A1) in acute-elevated pCO2 conditions. These
offspring also showed upregulation of genes related to synap-
tic plasticity (MPDZ) and inhibition of synaptic development
(IGSF9B) as well as a cytoskeleton gene (ANK1) and growth
factor genes (FGF6 and FGF14) involved in cell proliferation
and nervous system development. Downregulated genes
including transcriptional repressors (HES5 and 6) as well as
NEUROG1 involved in transcriptional regulation and cell
differentiation were identified in offspring of tolerant fathers
under acute-elevated pCO2 conditions. Also identified as
downregulated genes were a histone-binding gene (NASP),
a gene involved in immunity and cell death (PERF), and
one involved in DNA repair (PAF15). These genes corre-
sponded to unique pathways such as histone binding,
ATPase activity, hydrogen transport and microtubule
polymerization enriched in offspring of tolerant fathers
(figure 5).
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4. Discussion
In this study, we show that parental phenotype shapes the
transcriptomic response in the brain of spiny damselfish off-
spring, regardless of the duration or level of pCO2 exposure.
Within the control and transgenerational-elevated pCO2

treatments, we found an almost 10-fold increase in the
number of significantly differentially expressed genes in off-
spring from CO2-tolerant fathers versus CO2-tolerant
mothers compared to the number of DEGs between the con-
trol and transgenerational-elevated pCO2 treatments. A
notable response uniquely upregulated in offspring of toler-
ant mothers was circadian rhythm regulation. This included
circadian repressors that were previously found upregulated
in offspring of tolerant parents when both parents exhibited
tolerance in the same condition [35]. Circadian rhythm
genes are closely linked to homeostatic ion-regulatory adjust-
ments and have been identified as an important component
in the response of fish to elevated pCO2 [35,47–49]. Previous
research linked this circadian rhythm shift to adaptive poten-
tial in the face of OA that could be inherited across a
generation [35]. The ability of offspring from tolerant mothers
to make changes in the circadian clock could lead to greater
flexibility of ion-control and thus avoid maladaptive behav-
ioural reactions to elevated pCO2. Research on parental
effects on circadian regulation especially in fish are lacking;
however, several studies in mice have confirmed both the
role of parental identity and maternal effects on circadian
rhythm regulation of their offspring [50,51]. For example,
Borengasser et al. [50] identified the effects of maternal obes-
ity on circadian disruptions via suppression of key genes
leading to detrimental metabolic effects in the offspring.
This is consistent with our findings that the mother’s pheno-
typic identity influences circadian rhythm regulation in
juvenile fish exposed to elevated CO2.

While there is an effect of parental identity on gene
expression profiles with the transgenerational and control
exposures, this identity weakens under acute exposure to
elevated pCO2. The decrease in significant differential gene
expression between parental phenotypes is likely to be due
to an intense cellular response to the acute exposure to elev-
ated pCO2 [52]. This population-wide response could
minimize the observed molecular variation based on parental
phenotype. Importantly, we found a common response to
acute exposure to elevated pCO2, regardless of parental con-
dition or phenotype, which consisted of the upregulation of
GABA receptor activity and neurotransmitter receptor path-
ways. GABA receptors play a pivotal role in maintaining
the inhibitory–excitatory balance in the brain; under elevated
CO2 these receptors are thought to become overwhelmed by
altered neuronal gradients of Cl− and HCO3− attempting to
maintain pH homeostasis [20]. A recent study [21] highlights
the impact of near-future pCO2 levels on the creation of a
vicious cycle caused by functional alterations to GABA recep-
tors and ultimately leads to the behavioural impairments
observed in fish [18,24,36]. This vicious cycle can quickly
cause increased excitatory ion fluctuations in the presence
of relatively small changes in pCO2 levels, such as those
experienced in the acute treatments. Elevated CO2 could
potentially have other neurological effects. For example, gly-
cine receptors are also Cl−/HCO3− channels and thus could
potentially be affected by elevated CO2 in a similar way to
GABA receptors [53], although this has not been tested.
Indeed, we found several glycine receptors significantly upre-
gulated in both acute-elevated pCO2 conditions and offspring
of both parental phenotypes. CA genes, another key player in
acid-base regulation, were also identified as upregulated in
both acute-elevated pCO2 conditions when compared to con-
trol, regardless of parental phenotype. CAs are highly
abundant in neurons and play an important role in the
hydration of CO2 in the cell [7,54,55]. Upregulation of these
genes suggests an elevation of intracellular HCO3

− that
would further excite the GABA receptors and contribute to
the vicious cycle, thereby leading to an ion imbalance in
the brain. Previous studies only identified CA genes to be
downregulated in fishes; however, these studies focused on
the gill tissues which could have different regulatory mechan-
isms in response to elevated pCO2 than the brain [56,57].
Identification of these upregulated genes in all offspring
regardless of parental phenotype suggests tolerance or sensi-
tivity to elevated pCO2 cannot protect these fish from this
vicious cycle under short-term exposures. However, the
absence of differential expression of these genes and path-
ways in offspring exposed transgenerationally to elevated
pCO2 suggests that acclimation via stabilization of acid-base
regulation occurs with long-term exposure [58].

Welch & Munday [28] found that heritability of behav-
ioural tolerance to increased pCO2 in the fish from this
experiment was only detectable in the acute exposure con-
ditions; therefore, we endeavoured to find a molecular
response correlated with the observed behavioural response
between offspring of different parental pairs in the sampled
acute treatments. Upregulation of genes and pathways
associated with neuron plasticity and development, as well
as glutamate-related genes were identified in offspring of
tolerant mothers (S♂T♀). Glutamate is a key part of GABA
synthesis, as well as other neurotransmitter pathways, and
upregulation of these genes could be part of a compensatory
mechanism along with neuronal plasticity in the face of
short-term increases in pCO2 [18,24,36]. The identification
of downregulated growth-associated genes suggests a nega-
tive impact of elevated pCO2 on development in juvenile
fish and is consistent with previous research [7,59,60]. This
suggests that the maternal line could be primarily responsible
for neural plasticity used to compensate for changes in
seawater chemistry.

In offspring of tolerant fathers (T♂S♀), we identified upre-
gulated genes and pathways directly related to neuronal
plasticity, which suggests these offspring also have compen-
satory neural mechanisms in response to acute increases in
pCO2. Histones and transcriptional repression mechanisms
were found to be downregulated in this study, and in the pre-
vious study by Schunter et al. [36] that investigated offspring
of fully tolerant parents, under acute-elevated pCO2 con-
ditions. Histones control chromatin dynamics and also play
a part in gene expression by regulating transcription [61].
Decreases in repression of transcription and histone binding
lead to increases in gene expression, suggesting both a gen-
etic and epigenetic control of parental phenotype on the
offspring’s expression profile in response to acutely elevated
pCO2. Epigenetic changes can be heritable through the germ
line and can be strongly influenced by environmental factors
that induce specific phenotypes in parents and their offspring
[62,63]. Parental influence on histone modifications are
understudied; however, numerous studies have examined
heritability of epigenetic changes via methylation [62,64,65].
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A recent study on medaka identified paternally influenced
changes in methylation patterns across multiple generations
of male fish after initial exposure to hypoxia [62], whereas
studies on zebrafish suggest that maternal methylation is
reprogrammed in the embryo [66]. Therefore, it is possible
that epigenetic influence on the offspring is more likely to
come from fathers than from mothers [62,66]. Previous
research on A. polyacanthus has already shown that epige-
netics plays a key role in transgenerational acclimation to
increased temperatures via histone regulation and selective
DNA methylation [67,68]. This leads us to speculate an
important role for epigenetic inheritance from fathers in
acclimation to elevated pCO2.

By combining a multi-generational experimental design
with genome-wide gene expression measurements, we were
able to identify effects of parental phenotypes on expression
patterns of their offspring to end-of-century pCO2 levels.
Our results suggest that there are both maternal and paternal
contributions involved in OA tolerance and that their relative
importance may differ depending on length of exposure to
elevated CO2. Although maternal and paternal influence on
specific traits is a growing research field, few studies have
attempted to distinguish the separate parental contributions
in transgenerational experiments [69]. In the marine stickle-
back, maternal influences were shown in growth rates and
genetic covariance under elevated temperatures [32], but in
wild salmon a correlation between telomere length and
paternal growth was identified [33]. Therefore, it appears
that parental contributions may vary between species as
well as between specific traits. This is supported by our
results; for example, maternal tolerance impacted circadian
rhythm genes in their offspring while epigenetic modifi-
cations were influenced in the tolerant paternal line. The
role of epigenetics in transgenerational acclimation to future
climate change scenarios is also seen in recent research on
DNA methylation of A. polyacanthus [67,68].
Further research is necessary to determine the exact mech-
anisms of maternal and paternal effects. Transgenerational
studies spanning further generations could give insight into
whether inheritance of pCO2 tolerance is maintained across
multiple generations, as well as clarifying the developmental
time point when these expression changes occur. Also, more
complex experimental designs could help clarify the relative
importance of genetic versus non-genetic effects and tease
apart the maternal versus paternal components of these differ-
ent mechanisms. Nevertheless, it is clear from this study that
variations in parental phenotype can be highly important in
shaping the response of fish to future OA conditions.
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