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ABSTRACT

Satellite-based instruments are essential to the observation of precipitation at a global scale, especially over

remote regions. Each instrument has its own strengths and limitations in accurately determining the

rate of precipitation at the surface. By using the complementary strengths of two instruments, a more

complete analysis of global precipitation can be performed. The Global Precipitation Measurement (GPM)

Core Observatory’s Dual-Frequency Precipitation Radar (DPR) is capable of measuring precipitation at high

and medium precipitation rates by using Ku-band (13.6GHz) radiation. The CloudSat satellite’s Cloud

Profiling Radar (CPR) uses higher-frequency W-band (94GHz) radiation and is therefore capable of mea-

suring precipitation at low rates not detected by the GPMDPR.CloudSat observations from January 2007 to

December 2016 and DPR observations from March 2014 to February 2018 are combined and the results

examined. Since these datasets are not completely coincident, this study is conducted as a multiyear analysis.

Observed precipitation from CloudSat is used starting at the lowest precipitation rates and increasing rates

until the occurrence observed by GPM surpasses that of CloudSat, at which point data from GPM are used.

The precipitation rate at which this change occurs contains important information on the amount of pre-

cipitation missed by each instrument and implications as to the size of the hydrometeors present. Liquid

precipitation retrieval fromCloudSat is not performed over land; analysis over land is produced here using the

information available. By combining the two datasets, a more complete picture of precipitation occurring

globally is obtained.

1. Introduction

Precipitation is an integral part of theEarth–atmosphere–

biosphere system.An accurate description of precipitation

on a global scale is necessary for the assessment and cal-

ibration of global climate and weather forecasting

models, as well as global energy budget and water re-

source calculations (e.g., Xie and Arkin 1997; Adler

et al. 2003; Huffman et al. 2007, 2009; Wood 2012). It is

therefore important to produce an accurate record of

the geographical and temporal distribution of pre-

cipitation events. Satellite-based instruments, particu-

larly active sensors, such as on board the Tropical

Rainfall Measuring Mission (TRMM; Kummerow et al.

1998) andCloudSat (Stephens et al. 2008) satellites, arewell

suited to this task. The measurement capabilities of indi-

vidual instruments, however, are limited by the frequency

of the radiation they use. Instruments using relatively

high-frequency radiation are sensitive to light precipitation

(Lebsock and L’Ecuyer 2011). This sensitivity makes them

unable to accurately measure moderate and heavy pre-

cipitation, however, as the signal is quickly fully attenu-

ated. Longer-wavelength instruments have an opposite

problem; they can observe moderate to heavy precipitation

events, but are unable to fully detect lighter events (Berg

et al. 2010). Since these types of measurements are

complementary, a rainfall climatology produced using

both should be more complete than one produced by a

single instrument (Behrangi et al. 2012).

Several studies (Berg et al. 2010; Behrangi et al. 2012)

have previously combined precipitation measurements

from spaceborne instruments, such as the TRMM Pre-

cipitation Radar (PR) and the CloudSat Cloud Profil-

ing Radar (CPR). These studies combine PR and CPR

data into a single database, using CPR data for light

rain rates (,1mmh21) and PR data for heavier rain rates

(.2mmh21), scaling the amount of rain for rain rates be-

tween the two thresholds to be the same from both sensors

(Berg et al. 2010). Both studies found an underestimation

of light rain rates by the PRand underestimation of heavier

rain rates by the CPR. The study by Berg et al. (2010) was
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limited to the tropics and subtropics, while Behrangi et al.

(2012) extended to the mid- and high latitudes by incor-

porating passive microwave and infrared observations

of precipitation in combination with the CloudSat data.

This study aims to produce a similar dataset, improving

on previous studies by extending the use of active pre-

cipitation measurements to the mid- and high latitudes

for all precipitation rates, including frozen precipitation

in the analysis, utilizing observations over land, and in-

creasing the spatial and temporal resolution of the

analysis.

The Global Precipitation Measurement (GPM; Hou

et al. 2014; Skofronick-Jackson et al. 2017) mission’s core

satellite carries two instruments designed to measure pre-

cipitation: the GPM Microwave Imager (GMI) and the

Dual-Frequency Precipitation Radar (DPR). The DPR

aims to measure moderate to heavy precipitation

(.0.5 mm h21) with a Ka-band (35.5 GHz) radar

(KaPR) and a Ku-band (13.6GHz) radar (KuPR; Seto

et al. 2013). Only measurements from the KuPR were

used in this study, however, because of the wider swath

and increased capability to measure heavy precipita-

tion. The minimum detectable reflectivity of the DPR is

;12 dBZ, corresponding to a minimum detectable pre-

cipitation rate of 0.15mmh21 (Hamada and Takayabu

2016). Complementary to the KuPR measurements,

light precipitation measurements are made by the CPR

on board the CloudSat satellite. The CPR is a W-band

(94GHz) radar originally designed to measure cloud

properties and has a minimum detectable reflectivity

of 228dBZ (Kulie et al. 2016). This allows the CPR to

detect light precipitation and the onset of precipitation

events, but makes it highly susceptible to attenuation

and multiple scattering effects. Haynes et al. (2009)

determined that multiple scattering effects are large and

must be taken into account for CPR measurements of

precipitation rates greater than 3mmh21. When used in

combination, the CPR and DPR can measure pre-

cipitation rates ranging from 0.01 to 300mmh21. This

represents a nearly complete spectrum of precipitation

rates. The work presented here proposes a method for

combining the observations from these two instruments.

With this method, a multiyear analysis of global pre-

cipitation consisting of a full precipitation rate spectrum

is built. Further, we try to understand the regional var-

iations of different precipitation detectability between

the two instruments. The multiyear analysis presented

here is similar to a climatology in many respects and, for

convenience, will hereafter be described as such, despite

the lack of a long time span used to produce a traditional

climatology.

A description of the data used is presented in section 2,

alongwith themethodology. Section 3 gives an overviewof

the features of the resulting dataset. A comparison with

data from the Global Precipitation Climatology Project

(GPCP; Huffman et al. 1997) as well as some sources of

error included in the combined dataset is presented in

section 4, while section 5 gives a short summary and

conclusions.

2. Data and methods

a. Data

Two satellite datasets are used in this study, the pre-

cipitation retrieval using KuPR data from the GPM sat-

ellite, and the precipitation estimates using the CPR data

from theCloudSat satellite. The GPM satellite orbits at an

altitude of 407km at an inclination of 658. TheKuPR has a

pixel size of about 5km in diameter and a swath width of

245km (Seto et al. 2013). This gives the sensor a ground

track repeat time of approximately 2 days and allows for

measurements between 658N and 658S. The KuPR pre-

cipitation retrieval algorithm uses a Hitschfeld–Bordan

attenuation correction algorithm (Hitschfeld and Bordan

1954) as well as the Surface Reference Technique (SRT;

Iguchi et al. 2017) to adjust the measured reflectivity to

account for attenuation (Seto et al. 2013; Iguchi et al. 2017).

Precipitation rate is then calculated using the attenuation-

corrected reflectivity, in addition to a relationship between

the precipitation rate R and the mass weighted mean di-

ameter Dm. The path integrated attenuation (PIA) is cal-

culated using this R–Dm relationship and compared to the

PIA obtained using the SRT. The R–Dm relationship is

then adjusted to better match the SRT PIA. A more de-

tailed description of the algorithm can be found in Iguchi

et al. (2017). The GPM core satellite was launched on

27 February 2014. The GPM data used in this study are

the near-surface precipitation retrieval in the version 5

2AKu radar product fromMarch 2014 through February

2018, representing 4 full years of data from the GPM

KuPR. These data can be retrieved from https://pmm.

nasa.gov/data-access/downloads/gpm. The 4-yr average

daily precipitation rate for these KuPRdata over the study

region, 658N–658S, is shown in Fig. 1a. Many large-scale

features can easily be seen, including the intertropical

convergence zone (ITCZ), heavy precipitation over the

Maritime Continent, and midlatitude storm track regions,

especially off the east coast of North America. The GPM

satellite captures the expected distribution of precipitation

reasonably well.

CloudSat was launched as part of the A-Train constel-

lation of satellites on 1 June 2006. It orbits at an altitude of

705km in a sun-synchronous, near-polar orbit. The CPR

has a footprint size of 1.43 1.7km2 and is a nadir-pointing

radar. This allows precipitation measurements to

be made from 82.58N to 82.58S and have a ground
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track repeat time of approximately 16 days. The

sun-synchronous orbit results in measurements being

made twice per day, at the same local solar time, near

0130 and 1330 LT each day. This results in a diurnal

sampling bias in the CloudSat data. Two different al-

gorithms are employed to retrieve both liquid and solid

precipitation from CloudSat measurements. The CPR

2C-PRECIP-COLUMN algorithm is used here for

liquid precipitation. This algorithm estimates the PIA

from an estimate of the surface backscatter (Haynes

et al. 2009). Ocean surface backscatter is calculated

from the surface wind speed and sea surface tempera-

ture; however, complex processes contributing to the

land surface backscatter prevent the easy retrieval of

PIA over land. Therefore, CloudSat liquid precipi-

tation measurements are available over water surfaces

only. Using an assumed drop size distribution, the rain

rate is calculated from the difference between the ob-

served surface backscatter and the clear-sky surface

backscatter, which is determined using the PIA. A soft-

sphere discrete dipole approximation (Liu 2004) is used

to account for the scattering effects of ice particles in the

cloud and a correction for multiple scattering based on a

backward Monte Carlo simulation. For profiles that are

fully saturated at the CloudSat wavelength, only an esti-

mate of the minimum possible rain rate can be deter-

mined. These events are indicated by negative values in the

CloudSat data file. Since these values likely do not repre-

sent the actual rain rate (Haynes et al. 2013) and higher

precipitation rates are intended to be accounted for in this

study using the KuPR observations, these data have been

excluded. A more detailed description of the CloudSat

2C PRECIP-COLUMN algorithm is given in Haynes

et al. (2009).A separate algorithm (2C-SNOW-PROFILE;

Wood et al. 2013a) was developed to retrieve snowfall

rates from the CPR data. The snowfall retrieval is based

on a snow rate–reflectivity algorithm where snow par-

ticle radar backscattering cross sections are calculated

via the discrete dipole approximation constrained by

particle models and a priori information (Wood et al.

2013a; Cooper et al. 2017). Since the snowfall retrieval

algorithm does not depend on surface backscatter, the

retrieval can be performed over both ocean and land

surfaces. Wood et al. (2013a,b, 2014) give a more

complete description of CPR snowfall retrieval, and

Kulie et al. (2016) and Kulie and Milani (2018) have

demonstrated the snowfall statistics using this product.

For both the liquid and solid precipitation algorithms,

precipitation is assumed negligible or nonexistent

at reflectivities lower than 215dBZ (Haynes et al.

2009). The CloudSat data used in this study were col-

lected from January 2007 through December 2016,

representing 9 years of data. These years were chosen

in order to provide the largest number of samples

FIG. 1. Daily average precipitation as observed by (a) GPM KuPR and (b) CloudSat CPR.
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available, despite the battery anomaly which caused

CloudSat to lose its nighttime detection capabilities in

April 2011. Errors that result from this choice of data

will be discussed in section 4. Version 5 of bothCloudSat

products is used here. These data can be obtained from

http://www.cloudsat.cira.colostate.edu/data-products.

The average daily precipitation rates for the CPR data

similar to those presented for KuPR are shown in Fig. 1b.

Overall, the expected global distribution of precipita-

tion is seen by CloudSat as well; however, the amount of

precipitation measured by the CPR is much less than

that measured by KuPR in many areas, especially in

the ITCZ.

By comparing Figs. 1a and 1b, the strengths and

weaknesses in the precipitationmeasurements made by

both satellites can easily be seen. As stated previously,

the KuPR captures well the distribution of moderate

and heavy precipitation, but many regions consistently

experiencing light precipitation, such as the oceanic

regions off the coasts of southwestern Africa andNorth

and South America and the band of precipitation over

the midlatitude Southern Hemisphere ocean, see little

to no precipitation when observed by the KuPR. When

these regions are examined with the CPR, much more

precipitation can be seen, due to the sensor’s ability to

capture these light precipitation rates. Likewise, in areas

where heavy precipitation is expected, CPR measure-

ments vastly underestimate the precipitation rate occur-

ring, whereas theKuPR is able to record the precipitation

rate more accurately. The strengths of these two satellites

are highly complementary, which makes them suitable

for producing a precipitation dataset that contains the

full spectrum of precipitation rates.

b. Methods

The method used here for combining the CPR and

KuPR precipitation rate measurements utilizes the dif-

ferences in precipitation rate occurrence observed by

the two satellites and is somewhat similar to the meth-

odology presented in Behrangi et al. (2012) and

Adhikari et al. (2018), but including snow precipitation

and seasonal variation of precipitation rate spectra.

First, the difference in resolution between the two

radars is accounted for by applying a five-pixel run-

ning mean to the CPR data (Berg et al. 2010; Stephens

et al. 2010; Behrangi et al. 2012). The 9 years of CPR

data and the 4 years of KuPR data are then separated

into 90 log-scaled precipitation rate bins ranging

from 0.01 to 300mmh21. The bins are calculated for

each 18 3 18 grid box ranging from 658N to 658S for all

longitudes, the observable area common to both satel-

lites. The precipitation rates are then averaged monthly

to form two separate climatologies based on each

satellite (previously shown in Fig. 1). Once the datasets

are so divided, the unconditional precipitation occur-

rence is calculated for each bin and grid box. Average

occurrence per precipitation rate bin for the entire do-

main is shown in Fig. 2a. This shows, unsurprisingly, that

the CPR records a higher occurrence of low pre-

cipitation rates than the KuPR, and conversely, KuPR

shows a higher occurrence of medium to high precipita-

tion rates. The KuPR begins recording a higher occur-

rence when the precipitation rate reaches approximately

2mmh21 on average. To form the CPR–KuPR combined

dataset, occurrence plots similar to Fig. 2a are calculated

for each grid box on a monthly time scale. For all pre-

cipitation rate bins where CPR observes a higher occur-

rence, the total amount of precipitation and number of

observations of that precipitation rate obtained from the

CPR are considered as the amount of precipitation and

number of observations of that intensity for that month in

that grid box. The same is done using KuPR data for

precipitation rates where the KuPR records the higher

frequency of occurrence. This produces a binned spectrum

of precipitation similar to those produced by the CPR and

KuPR datasets separately. This new spectrum is then av-

eraged to produce a value of combined precipitation for

each 18 3 18 grid box. The occurrence and contribution by

each precipitation rate in this combined dataset is in-

dicated by the thick red line in Figs. 2a and 2b, respectively.

This figure highlights the importance of the combined

dataset, as a significant number of precipitation events

fromone end of the spectrumor the other aremissedwhen

considering one satellite alone.

Figure 3 shows the average number of precipitation

profiles observed by GPM (KuPR; Fig. 3a), CloudSat

(CPR; Fig. 3b), and the number that subsequently make

up the combined dataset (Fig. 3c). The monthly average

number of precipitation events comprising the com-

bined dataset is shown per precipitation rate bin in

Fig. 4, for the five points indicated in Fig. 3c. Three

points were chosen along the same longitude at North-

ern Hemisphere, Southern Hemisphere, and equatorial

latitudes, along with a CPR-dominated region off the

coast of South America and a land region, where data

comes only from the KuPR. These points were chosen

in an attempt to display a variety of different locations

and scenarios where the algorithm is applied. None of

the points chosen show a deficiency in observations,

except the land region (purple line), where observa-

tions of light liquid precipitation are, unsurprisingly,

missing.

After producing the spectrum of combined pre-

cipitation rates similar to that depicted in Fig. 2a for

each grid box, the results are averaged to a daily value

and displayed in Fig. 5. It can be seen that this dataset
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contains features observed by both the KuPR and

CPR (Figs. 1a and 1b, respectively). Heavy precipitation

regions such as the ITCZ and Maritime Continent are

visible, as well as the relatively large amount of light

precipitation occurring in stratocumulus regions, such as

the midlatitude Southern Hemisphere, and near the

coasts of North and South America and Africa. The

relative importance of each satellite in these regions is

shown in Fig. 6. In regions dominated by moderate to

heavy precipitation, such as the tropics, and over land

regions where CPR liquid precipitation is missing, the

KuPR contributes nearly 100% of the precipitation in-

cluded in the combined database (Fig. 6a). However, in

midlatitude ocean regions, where light precipitation

from stratocumulus clouds is more significant, the CPR

contributes over 60%, and in some places up to 100% of

the combined database’s precipitation (Fig. 6b). Berg

et al. (2010) found a similar pattern of missed pre-

cipitation by the TRMM PR. Over heavy precipitation

regions, such as the ITCZ, TRMMmissed 10% or less of

the total precipitation, but missed up to 70% of the

precipitation in stratocumulus regions, especially off the

western coast of South America. By accounting for

precipitation from both types of features, the combined

dataset presented here is a more complete precipitation

dataset than that of either the GPM KuPR or CloudSat

CPR alone.

3. Results

a. Geographic distribution of precipitation

The seasonal distributions of precipitation from the

KuPR, CPR, and combined datasets are shown in

Figs. 7–9, respectively. Figure 7 displays the expected

seasonal features of heavy to moderate precipitation.

For example, the expected northward propagation of

the ITCZ in the boreal summer and subsequent south-

ward propagation during the austral summer can be

seen when comparing Fig. 7b [June–August (JJA)] and

Fig. 7d [December–February (DJF)]. The stark contrast

in precipitation amount over the Indian subcontinent

between these two figures indicates the detection of the

Indian monsoon by the GPM satellite. A double ITCZ

feature is visible in Fig. 7a [March–May (MAM)], a

phenomenon described first from satellite observations by

Kornfield et al. (1967) and likely due toLaNiña conditions
(Lietzke et al. 2001). La Niña conditions occurred during

2016 (www.cpc.noaa.gov), the effects of which would be

visible in theKuPR data presented here.When comparing

these figures for the KuPR to their counterparts for the

combined dataset (Fig. 9), it is evident that these important

climatological features have been retained.

Many other features appear more prominent in the

combined dataset than in KuPR data. An example is the

Northern Hemisphere midlatitude storm tracks, which

FIG. 2. (a) Unconditional occurrence and (b) contribution by precipitation rate from 658N to

658S for the entire CloudSat CPR, GPM KuPR, and combined datasets.
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are visible in all seasons with varying intensity. In

September–November (SON), KuPR observes a large

amount of precipitation in the northern Atlantic Ocean

(Fig. 7c). When compared with the corresponding figure

for the combined dataset (Fig. 9c), however, pre-

cipitation in this region is muchmore widespread. This is

the result of the addition of weak precipitation in this

region from CPR observations (Fig. 8c), and, if it is as-

sumed interannual variability is small, highlights the

KuPR’s inability to detect weak precipitation, as well as

the importance of the inclusion of these missed events in

an analysis of precipitation.

There are also several important climatological fea-

tures that the CPR data contribute to the combined

dataset. The widespread band of light precipitation in

the Southern Hemisphere ocean is one such feature,

prominently visible in all four seasons (Fig. 8). Heavier

precipitation is observed in this region in the austral

winter (JJA; Fig. 8b) than during the austral summer

(DJF; Fig. 8d). This is supported by in situ observation

(Boers et al. 1996, 1998), as well as prior satellite studies

of the region (Mace and Avey 2017). A region of light

precipitation (1–2mmday21 on average) can be seen off

the western coast of South America in JJA, SON, and

DJF (Figs. 8b–d). These features are also observed in

the corresponding panels of Fig. 9, indicating that the

prominent features of the distribution of light pre-

cipitation have also been preserved.

The zonally averaged distribution of precipitation from

the CloudSat CPR, GPM KuPR, and the combined data-

set is shown in Fig. 10. The expected distribution of pre-

cipitation is shown for each dataset, with peaks at tropical

and middle latitudes and lower amounts of precipi-

tation near approximately 208N and 208S. The relative

FIG. 3. Average number of precipitation events observed per month by (a) GPM KuPR and

(b) CloudSat CPR. This gives (c) the average number of events per month used to form the

combined dataset. The average number of observations per precipitation rate for the indicated

points is given in Fig. 4.
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contribution of each satellite to the combined pre-

cipitation amount is also apparent. This figure high-

lights the previously mentioned dominance of KuPR

observations at tropical latitudes and the increasing

importance of the CPR at higher latitudes, especially

in the Southern Hemisphere. This can also be seen in

Table 1, where the mean unconditional precipitation

for different latitude regions is presented for each

dataset. In tropical regions (208N–208S), the amount

of precipitation over the ocean observed by the KuPR

is over 3 times that observed by the CPR, and thus

KuPR and combined precipitation amounts for this

region are nearly identical. In midlatitude regions

(658–408N and 408–658S), however, ocean precipitation

seen by the CPR is slightly greater than that observed

by the KuPR, and the combined precipitation amount

in this region is closer to the CPR observation than

in other latitude bands. Differentiation between land

and ocean for Table 1 was determined by applying a

18 3 18 binary land–oceanmask. This was used instead of

the land–ocean differentiation made by the satellites’

retrieval algorithms for consistency across both satel-

lites. There is a slight discrepancy between the pre-

cipitation amounts from the KuPR and combined over

land, especially in the subtropical and tropical regions.

While there is a small amount of precipitation over land

in this region observed by the CPR, in the form of snow

over the Andes, the majority of the difference in pre-

cipitation over land between KuPR and combined in

these regions is due to areas identified as land by the

18 3 18mask but determined to be ocean by CPR’s finer

resolution. These values have been left off of Table 1 in

order to avoid confusion, as most are not truly land

precipitation, but they are still included in the dataset.

The CPR–KuPR combined database contains the im-

portant and prominent global precipitation features of

both CPR and KuPR observations, all of which are

previously observed and well known (e.g., Adler et al.

2003, Boers et al. 1996, 1998, Kornfield et al. 1967, Mace

and Avey 2017, Huffman et al. 1997).

The amount of precipitation contributed to the com-

bined database by KuPR observations is displayed in

Fig. 11. This is similar to Fig. 6a, but for each season.

Regions where KuPR detection of precipitation does

well, and conversely where it is deficient, are apparent.

Unsurprisingly, the KuPR contributes nearly 100% of

the precipitation occurring over land and in deep con-

vective oceanic regions such as the tropics. The excep-

tion is at high latitudes and altitudes in the Northern

Hemisphere when snow is possible. This is especially

true during DJF (Fig. 11d) when KuPR detection is

as low as 15%–20% over northern high-latitude land

and the Tibetan Plateau, indicating a significant contri-

bution from light snow. There is also significant under-

estimation by the KuPR in several oceanic regions when

progressing toward the poles in both hemispheres. This

is especially true in the widespread stratocumulus re-

gions off the western coasts of Africa and North and

South America. The KuPR detects less than 20% of the

precipitation occurring over large areas in these regions,

FIG. 4. Monthly average number of precipitation profiles per

precipitation rate bin used to form the combined dataset for the

five points indicated in Fig. 3c.

FIG. 5. Daily average precipitation from the combined dataset.
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particularly in the two Southern Hemisphere regions

during JJA and SON (Figs. 11b,c). Continuing south-

ward, there is a widespread shallow precipitation over

the Southern Ocean between approximately 308 and

608S. KuPRdetection is higher in this region, though still

only about 60% on average during all seasons.

The contribution to the total precipitation by different

precipitation rates is shown in Fig. 12. These percentages

have been calculated using the combined precipitation

amounts. Contribution by light precipitation rates

(,0.5mmh21) is shown in Fig. 12a. The regions where

stratocumulus clouds are dominant, off thewestern coasts

of the continents, especially South America and Africa,

and in the Southern Ocean, show the highest percentage

contribution from these low precipitation rates. Low

precipitation rates also contribute a relatively high per-

centage of the precipitation over high-latitude land, in-

dicating the importance of snowfall in these regions.

Conversely, the percent contribution from precipitation

rates greater than 20mmh21 and greater than 50mmh21

are shown in Figs. 12b and 12c, respectively. The contri-

bution from these higher precipitation rates show a

similar distribution to each other, with the highest per-

centages being found at tropical latitudes, especially over

the Maritime Continent and along the equator near the

western coast of Africa. According to Liu (2011), 50% of

the rainfall in these regions comes from systems with

an echo-top height greater than 10km. Relatively high

contributions from more intense precipitation rates

can also be seen in the Gulf of Mexico, the Arabian Sea,

and the Bay of Bengal (Fig. 12b).

b. Cloud properties

In addition to information about the global distribu-

tion of precipitation, the combined database also con-

tains information about the dominant cloud properties

in a region, by way of the combination algorithm.

Figure 13 shows the geographic and seasonal distribu-

tion of the minimum rain rate at which the occurrence

observed by the KuPR becomes higher than that ob-

served by the CPR, hereafter referred to as the switch

point. Higher switch points indicate areas where theKuPR

may underestimate precipitation, due to KuPR’s inability

to detect the precipitation predominantly occurring in

these regions. This may be related to KuPR’s relatively

large footprint missing the small size of these precipitation

events or to the smaller drop sizes associated with these

light rain events, due to either aerosol or meteorological

impacts, or weak snow events with smaller ice crystals.

Some regions show higher switch points than the sur-

rounding regions (values of 1–2mmh21) during all sea-

sons. Many of these regions were identified to be areas

where the climatological occurrence of marine stratocu-

mulus clouds is high, for example, the oceanic regions

defined by Klein andHartmann (1993) as the Californian

(208–308N, 1208–1308W), Peruvian (108–208S, 808–908W),

and Namibian (108–208S, 08–108E) stratus regions. These
areas are climatologically predisposed to have a high

FIG. 6. Fraction of the combined dataset contributed by (a)GPMKuPRand (b)CloudSatCPR.
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occurrence of marine stratocumulus clouds and the ac-

companying small cloud droplet sizes and low rain rates

due to the large-scale subsidence, cold sea surface tem-

peratures, and high static stability that dominate as a

result of large-scale atmospheric and oceanic circulations

(Klein and Hartmann 1993; Wood 2012). Thus, the GPM

KuPR has difficulty detecting precipitation occurring in

these regions year round. Seasonal variations in switch

point over areas where low-level stratocumulus clouds

occur frequently are likely due to seasonal changes in

cloud and precipitation amount. Klein and Hartmann

(1993) analyzed variations in several large-scale dynamic

and thermodynamic variables and found that low-level

static stability had the highest correspondence to strato-

cumulus cloud amount. They found that the Namibian

and Peruvian regions had the highest static stability and

largest cloud amounts during SON. High static stability

was associated with a minimum in sea surface (and con-

sequently surface air) temperature during SON (Klein

and Hartmann 1993). SON and JJA have the highest

switch points in those regions, with the area of in-

creased switch point (.4mmh21) also appearing the

most widespread during these seasons (Figs. 13b,c).

MAM and DJF also show areas with very high switch

point, though over smaller areas, which is indicative of the

year-round dominance of stratocumulus clouds in these

regions. High switch point areas in the Californian stra-

tocumulus region are less well defined than the Peruvian

and Namibian regions, but appear highest during JJA

and smallest during DJF. JJA is the season of peak

cloud amount and static stability described by Klein and

Hartmann (1993) while DJF was described as the mini-

mum. It is important to include light precipitation in

FIG. 7. Daily average precipitation (mmday21) in each season as

observed by the GPM KuPR for (a) MAM, (b) JJA, (c) SON, and

(d) DJF.

FIG. 8. As in Fig. 7, but as observed by the CloudSat CPR.

DECEMBER 2018 HAYDEN AND L IU 1943

Brought to you by TEXAS A&M UNIV-CORPUS CHRISTI | Unauthenticated | Downloaded 02/03/22 05:40 PM UTC



regions where stratocumulus clouds are common since

these types of events contribute the majority of the pre-

cipitation that occurs there (Wood 2012).

Besides the regions climatologically predisposed to

have a high occurrence of stratocumulus clouds, increased

switch points also occur in regions where the cloud mi-

crophysical properties have been affected by the addition

of aerosols. Berg et al. (2006) described observations of

rainfall in the South China Sea by the TRMM satellite

where the PR was unable to detect light rainfall occur-

ring during DJF, while the TRMM Microwave Imager

(TMI), a passive instrument on board the same satellite,

was able to detect these clouds, and estimated the rain

rate to be up to 4mmh21. They postulated that this re-

duction in PRdetectability may have been due to indirect

effects of sulfate aerosols, present at high concentrations

in this region during that time. They proposed that the

increased aerosol concentration had caused a reduction

in cloud droplet size via the second aerosol indirect

effect (Albrecht 1989), resulting in a decrease in the

reflectivity of these clouds and the missed detection by

the PR. If this was indeed the cause, the KuPR data

used here should experience a similar problem in high

aerosol regions, as well as any other area where the

average cloud droplet size is small, since the PR and the

KuPR have similar wavelengths. Relatively high switch

points, implying reduced detection by KuPR, are

present during SON and especially DJF (Figs. 13c and

13d, respectively) in the South China Sea adjacent to

the eastern coast of China at approximately 258N. This

is consistent with the results of Berg et al. (2006), as

they found decreased PR detection compared to TMI

coincident with increased aerosol concentrations dur-

ing DJF in the same region from 1997 to 2000. It is

possible, then, that this increase in switch point is

caused by the same phenomenon, though more sup-

porting evidence is needed.

High aerosol concentrations are also found off the

western coast of Africa, from the equator to approxi-

mately 108S and extending out from the African coast

past 108W. These high aerosol concentrations are due

to biomass burning throughout central Africa from July

through October and were characterized and seen to

interact with the stratocumulus clouds of the region by

several recent field campaigns (e.g., Zuidema et al.

2016). This appears to correspond with the increased

switch points extending from the western African coast

along the equator, during SON (Fig. 13c), appearing

as a northward extension of the increased switch points

corresponding to the Namibian stratocumulus region

described earlier. This area of elevated switch point is

not present during other seasons, except perhaps a slight

FIG. 9. As in Fig. 7, but for the CPR–KuPR combined dataset.

FIG. 10. Zonal average precipitation for the CloudSat CPR, GPM

KuPR, and combined datasets.
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increase very near the coast during JJA (Fig. 13b).

Amiri-Farahani et al. (2017) also described a link be-

tween the microphysics of marine stratocumulus and

African dust in the region between 108 and 408N and

between 108 and 458W. Analysis of this region showed a

plume of dust extending off the coast of Africa from

approximately 158 to 258N. Their study showed an in-

crease in shallow clouds and an increased negative

aerosol–cloud radiative effect in this region during

JJA when the aerosol optical depth was highest and the

dust plume extended farthest. Switch point increases

slightly along a line extending from the west coast of

Africa at approximately 158N during JJA (Fig. 13b),

possibly caused by this change in cloud properties and

amounts.

The tropical eastern Pacific region near the equator

also shows high switch point values (;5–6mmh21), es-

pecially during JJA and SON (Figs. 13b,c). Few in situ

studies have been conducted in this region; however, it

was observed to be a region of low TRMM PR rainfall

detectability by Shige et al. (2008). This underestimation

in PR rainfall over this area was attributed to smaller

drop sizes and greater frequency of low cloud tops when

compared to the tropical western Pacific. Munchak et al.

(2012) also found smaller droplet sizes in this region and

postulated that this may be the result of lower updraft

speeds in clouds forming here since they are far from

land and thus have relatively small CAPE. They also

observed that this region had a higher frequency of

clouds that existed entirely below freezing, eliminating

the possibility of increases in droplet size from cold-

cloud processes. High switch points and increasedKuPR

underestimation are thus expected in this area.

In the Southern Hemispheric ocean poleward of 308S,
underestimation may occur at rain rates up to 2mmh21.

Observations have shown that aerosol amount and

cloud droplet number concentrations are higher during

DJF than JJA (Yum and Hudson 2004; Boers et al.

1998), but the switch point shows an opposite trend.

Thus, the changing switch point in this region is likely

due to CloudSat observing a higher occurrence of pre-

cipitation for all precipitation rates in JJA, while KuPR

observes little difference in precipitation occurrence

between winter and summer, especially for precipita-

tion rates lower than 3mmh21 (not shown). We specu-

late that both small liquid- and ice-form hydrometeors

during these seasons would lead to much lower re-

flectivity. These small particles are more difficult for

the KuPR to detect, given the same precipitation rate.

An additional interesting feature visible in this region is

the presence of a narrow band of low switch points

within the more widespread area of high switch point

values in this region. This may be the result of increased

droplet sizes and thus reflectivities caused by themelting

of ice-form hydrometeors, similar to a brightband effect.

Also plotted in Fig. 13 is the seasonal average 2-m 08C
isotherm determined from the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA-

Interim reanalysis data (Dee et al. 2011). This can be

seen to follow the southern edge of this low switch point

band quite closely, implying that the transition back to

high switch points is due to precipitation reaching

the ground as snow rather than rain, subsequently re-

sulting in lower reflectivites. This brightband region is

also visible at midlatitudes in the Northern Hemisphere

and is most easily visible during DJF (Fig. 13d) off the

northwestern coast of North America and the north-

eastern coast of Asia. Switch points in these midlati-

tude regions are still relatively high overall compared

to other areas, which is indicative of the compara-

tively small hydrometeor size and shallow cloud depth,

making these regions and the midlatitude Southern

Hemisphere in particular an area of significant KuPR

underestimation.

TABLE 1. Mean unconditional precipitation (mmday21) for GPM, CloudSat, and the combined dataset, over land and ocean, for the

latitude ranges 208N–208S; 408–208N and 208–408S; and 658–408N and 408–658S, as well as the latitude range for the full dataset, 658N–658S.

Unconditional

precipitation (mmday21) 208N–208S 408–208N and 208–408S 658–408N and 408–658S 658N–658S

GPM Ocean 3.8 2.3 1.6 2.5

Land 3.1 1.3 1.1 1.7

Total 3.6 2.0 1.5 2.3

CloudSat Ocean 0.8 1.3 1.9 1.4

Land — — 0.4 0.2

Total 0.6 0.9 1.9 1.2

Combined Ocean 4.0 2.7 2.3 3.0

Land 3.0 1.4 1.3 1.8

Total 3.7 2.3 2.0 2.6

GPCP Ocean 3.5 3.6 2.9 2.9

Land 4.0 1.7 1.8 2.3

Total 3.6 2.3 2.5 2.8
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4. Discussion

a. Comparison with GPCP

To validate the climatology presented here, a brief

comparison with data from the GPCP was performed.

The GPCP (Huffman et al. 1997, 2009; Adler et al. 2003,

2016) is a climatology produced from a combination of

passive satellite precipitation measurements and Global

Precipitation Climatology Centre (GPCC) precipitation

gauge measurements. The satellite precipitation esti-

mates utilized by the GPCP include passive microwave

estimates from the Special Sensor Microwave Imager

(SSM/I) instruments, IR-based estimates from the

Geostationary Operational Environmental Satellite

(GOES) Precipitation Index (GPI) and Advanced

Very High Resolution Radiometer (AVHRR) data,

and estimates from theTelevision and InfraredObservation

Satellite (TIROS) Operational Vertical Sounder (TOVS)

and Outgoing Longwave Radiation (OLR) measurements,

which are used for SSM/I gap filling and during the pre-

SSM/I period, respectively (Adler et al. 2003). The dataset

is available from 1979 to the present on a monthly time

scale at 2.58 3 2.58 spatial resolution. The latest GPCP

version 2.3 (Adler et al. 2016) data were used here andwere

obtained from https://www.esrl.noaa.gov/psd/data/gridded/

data.gpcp.html. The comparison is presented in Fig. 14.

Figure 14a shows the GPCP average daily precipitation

from 2007 to 2017, whichwas chosen in an attempt tomatch

the data included when producing the combined clima-

tology. Figure 14b shows the previously presented com-

bined dataset (seeFig. 5). Both datasets have been averaged

to a common 58 3 58 resolution in this figure for ease of

comparison. A cursory comparison of the top two panels

shows that the distribution of precipitation for these two

datasets is highly similar. When the combined average

precipitation is subtracted from the GPCP average pre-

cipitation (Fig. 14c), it can be seen that the differences in

precipitation between these two datasets are typically less

than 4mmday21.

Over land, GPCP records higher average unconditional

precipitation rates. This is expected, since the majority of

precipitation over land in the combined dataset comes

from the KuPR only, resulting in an underestimation of

light precipitation in these regions. GPCP estimates of

precipitation over land are not subject to this bias,

since gauge data are included. Therefore, the combined

dataset is less reliable than the GPCP over land regions,

especially those with a high density of gauge observa-

tions. Over ocean regions, the combined dataset records

more precipitation, for similar reasons; gauge data are

not available to compensate for biases produced by

the satellites used by GPCP, while CPR rainfall is

available over oceans and can compensate for the under-

estimation of light rain by the KuPR. This is evidenced

by the region of higher precipitation amounts shown in

the combined data at midlatitudes in the Southern Hemi-

sphere where, as was previously mentioned, the CPR is

able to detect a significant amount of light rain.

A more quantitative comparison between the com-

bined dataset and the GPCP is given in Fig. 15, with

values shown in Table 1. The mean amount of pre-

cipitation over the ocean from GPCP is similar to

the combined dataset, though slightly smaller in most

regions, as was previously mentioned. This is espe-

cially true over tropical (208N–208S) and subtropical

(408–208N, 208–408S) regions (Table 1). The zonal dis-

tribution (Fig. 15) over ocean is similar in shape and

magnitude for both datasets, with a few differences.

The tropical peak in precipitation from the combined

FIG. 11. Fraction of the combined dataset contributed by GPM

KuPR for (a) MAM, (b) JJA, (c) SON, and (d) DJF.
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dataset is slightly offset from that of GPCP, for both

oceanic and total precipitation. The increased pre-

cipitation over the Southern Ocean (approximately

308–508S) by the combined dataset is again shown here.

Over land, the magnitude of the underestimation of

precipitation by the combined dataset can be seen at all

latitudes. This underlines the need for caution when

applying this dataset to land regions. Overall, when

considering ocean and land regions together, pre-

cipitation from the combined dataset is similar to that

from the GPCP in both distribution and magnitude.

b. Sources of error

There are several sources of error that require con-

sideration when using the combined dataset presented

here. One is that no consideration has been given to

errors inherent the CPR–KuPR retrieval of precipi-

tation. While both CPR and KuPR retrievals have

documented errors (Ellis et al. 2009; Smalley et al. 2014;

Kubota et al. 2014), these errors are not taken into ac-

count when preparing this dataset. Also, since CloudSat

is in a sun-synchronous orbit, the data from this satellite

only contain precipitation that occurs at the same two

times every day, corresponding to CloudSat’s equator

crossing time of approximately 0130 and 1330 local

standard time. This is not expected to cause much of a

discrepancy over ocean (Berg et al. 2010), as the diurnal

cycle of precipitation over the oceans is not large. Berg

et al. (2010) analyzed the difference in precipitation

frequency and volume between the full TRMM PR

dataset and data from only the CloudSat observation

times and found the difference to be less than 1% for

precipitation rates less than 2mmh21. Leon et al. (2008)

estimated the diurnal cycle of precipitation in stratocu-

mulus clouds using CloudSat. They found the day–night

difference in precipitation rate in these regions was

largest for the lowest quartile of precipitation rates, with

these rates experiencing a slight increase in strength at

FIG. 12. Percent contribution to the total precipitation amount by precipitation rates (a) less

than 0.5mmh21, (b) greater than 20mmh21, and (c) greater than 50mmh21, as calculated

from the combined dataset.
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night. Each stratocumulus region, including both sub-

tropical and midlatitude regions, experienced an in-

crease of only 0.03mmday21 or less in this quartile,

however. Higher precipitation rates experienced a

more minimal effect. The CloudSat CPR data used here

have a bias toward daytime precipitation, as nighttime

observations are not available from April 2011 onward.

This bias is expected to be small, due to the small diurnal

cycle over ocean, especially in CPR-dominated regions.

To verify this, CPR observations from 2007 to 2010 were

used, comparing the full set of observations to a subset

using the daytime observations only. Differences in av-

erage precipitation rate were typically small, especially

when only those rates that would be included in the

CPR–KuPR combined dataset were considered. For these

small precipitation rates, the difference was ,1% for all

ocean regions, with the highest difference (0.02mmday21)

being found at mid- to high latitudes.

Another source of error in this dataset that has al-

ready beenmentioned is the lack of a retrieval algorithm

for liquid precipitation over land using the CPR. This

results in an underestimation of light liquid precipita-

tion over land, mentioned in the previous section (see

Table 1). This has the potential to introduce large errors

into the dataset, which is partially demonstrated by

Fig. 15; however, a quantification of this error is not

attempted at this time. Future versions of this dataset

will attempt inclusion of ground-based rain gauge data

to account for this. As was also previously mentioned,

CPR and KuPR footprint sizes are different. To account

for this, a five-pixel running mean was applied to the

CPR data, as was described in section 2b. This was

chosen based on the error analysis and results of several

other studies including Berg et al. (2010), Stephens et al.

(2010), and Adhikari et al. (2018). The CPR was found

to have a very low sensitivity to the number of pixels

used to form the running mean; ;1mmyr21 or 1%

(Adhikari et al. 2018). The sensitivity of the combina-

tion algorithm to the resolution has also been examined.

The algorithmwas rerun using KuPR and CPR data first

processed into 28 3 28 bins, rather than 18 3 18. Differ-

ences in the resulting combined daily average pre-

cipitation were found to be 0.06mmday21 or about 2%

on average. The switch point was similarly examined

and the pattern of high and low switch point values

globally was found to be highly similar. The exact value

of the switch point is relatively unimportant to the

analysis and was typically shifted by only a few pre-

cipitation rate bins. Here the CPR and KuPR pre-

cipitation data in two different periods are combined.

The interannual variation of the precipitation is as-

sumed relatively small and neglected. However, this

could still lead to an uncertainty up to 10% (Adhikari

et al. 2018), and a longer record of data could help re-

solve this. The above sources of error should be kept

in mind when using this CPR–KuPR combined pre-

cipitation dataset.

5. Summary and conclusions

A method for combining CloudSat CPR and GPM

KuPR precipitation data has been presented here. By

combining these two datasets, we have produced a more

complete climatology than that produced by either sat-

ellite. The KuPR on board the GPM satellite is able to

observe events with moderate to heavy precipitation

rates, and the combined dataset retains the precipita-

tion features provided by this instrument, including the

ITCZ and Indian monsoon. CloudSat’s CPR is able to

FIG. 13. Seasonal average switch point (mmh21), the point at

which the combined dataset switches from CPR to KuPR for

(a) MAM, (b) JJA, (c) SON, and (d) DJF. Also indicated is the

average 2-m 08C isotherm, determined from ECMWF reanalysis.

1948 JOURNAL OF HYDROMETEOROLOGY VOLUME 19

Brought to you by TEXAS A&M UNIV-CORPUS CHRISTI | Unauthenticated | Downloaded 02/03/22 05:40 PM UTC



observe light precipitation rate features, many of which

are missed by the KuPR due to their small droplet size.

These features are represented in the combined database

as well and consist of many stratocumulus-dominated

regions, such as the midlatitude Southern Hemisphere

ocean. Precipitation from these regions, while light,

is nontrivial and important to include in a precipita-

tion climatology, since these light precipitation rates

are the greatest contributors to precipitation in these

regions.

The point at which the combined dataset switches from

the CPR to the KuPR was also introduced as an indicator

of the general microphysical properties and cloud type of

the region, as well as the potential for underestimation by

the KuPR in that region. In some regions, the switch point

can often be greater than 2mmh21, and in some cases

greater than 5mmh21, indicating that the KuPR would

underestimate the amount and occurrence of precipita-

tion from events with precipitation rates less than this.

Since the regions where this occurs most often are domi-

nated by these light precipitation events, there is the po-

tential for significant underestimation of the precipitation

in these regions. The switch point may also indicate the

general microphysical properties of the region, although

this requires further refinement and investigation. The

combined dataset has the potential to indicate more than

the climatological precipitation rate, however.

Precipitation rates from the combined dataset were

compared against those from the GPCP for verification.

The combined dataset is generally very comparable to

the GPCP, with higher precipitation rates shown by

GPCP over land and lower precipitation rates over

the ocean, in general. This is likely due to the inclusion

of gauge data in the GPCP accounting for the light

FIG. 14. Daily average precipitation from (a) GPCP (2007–17) and (b) the CPR–KuPR com-

bined dataset. The difference is shown in (c).
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precipitation over land and the inclusion of CPR data

in the combined database accounting for light pre-

cipitation over the ocean. A useful next step for the

combined database would be the inclusion of gauge

data, to fill in the missing weak precipitation over land.

Several sources of error are inherent in the combined

database, which warrant consideration when using the

data presented here. These errors include the lack of

light precipitation over land, the diurnal sampling bias

from CloudSat’s non-sun-synchronous orbit and lack of

nighttime observations for much of the time period,

different footprint sizes of the two radars, and retrieval

errors. Where possible, an attempt at quantification of

these errors has been made, often resulting in a differ-

ence of less than 1%, with the largest quantified source

of error being the interannual variability (;10%).

Overall, many of the abovementioned errors are small,

and the combined dataset should give a reasonable es-

timate of precipitation, at least over ocean regions. As

the methodology can be expanded to include other da-

tasets, some of these errors may be reduced, especially

through the inclusion of gauge data to account for light

precipitation over land. By combining measurements

of precipitation from multiple sensors, the strengths of

each can be exploited and a more complete spectrum of

precipitation can be represented.
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