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ABSTRACT 
 

Fishes of the smallest size classes that inhabit benthic reef habitats are collectively known as 

cryptobenthic reef fishes, and they constitute a significant portion of reef fish biodiversity and 

biomass production. However, for many cryptobenthic reef fishes such as gobies, much is 

unknown about their life history. Understanding the demographics of a species can clarify its 

functional role, productivity, and resilience to disturbances in an ecosystem. The masked/glass 

goby Coryphopterus personatus/hyalinus is an understudied Caribbean reef goby complex that is 

common and abundant. Otolith microstructure techniques reveal that C. personatus/hyalinus 

exhibits an extreme life history relative to other vertebrates due to its short lifespan, fast larval 

growth, and early maturity with linear growth in body length throughout reproductive age. 

Average daily larval growth largely determines pelagic larval duration where faster-growing 

individuals complete the larval stage in less time. The back-calculation of body length at 

settlement indicates that individuals with slower average larval growth had longer larval 

durations, and they compensate by attaining larger body lengths at settlement. Average daily 

growth substantially decreases over the settlement transition zone which approximately 

corresponds to sexual maturity. Notably, linear growth in body length may serve to support 

greater fecundity in older, larger-bodied females and enhance survivorship. The quick 

generational turnover, high abundance/productivity, broad depth range, and planktivorous diet of 

C. personatus/hyalinus indicates that it plays an important trophic role in transferring nutrients 

from pelagic plankton to reef predators and the reef benthos. Estimating life history traits related 

to survival, reproduction, and population size has useful applications in conservation biology and 

resource management.  
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INTRODUCTION 
 

 In part, life history theory aims to describe the diversity of life history strategies and 

understand the ecological mechanisms and consequences of such strategies. Across a broad 

range of terrestrial vertebrate taxa, age at maturity is correlated with lifespan where earlier- 

maturing families have shorter lifespans (Ricklefs, 2010). Similarly, variable extrinsic mortality 

appears to directly influence age at maturity and lifespan where higher mortality rates result in 

earlier maturation and shorter lifespans (Ricklefs, 2010). Understanding the demographics of a 

species can clarify its functional role, productivity, and resilience to disturbances in an 

ecosystem (Winemiller, 2005). As a result, life history theory and establishing baseline estimates 

of life history traits for species of interest has applications in conservation of coral reef 

ecosystems.    

 Coral reefs are one of the most diverse and productive marine ecosystems (Coker et al., 

2014). Cryptobenthic reef fishes make up a significant portion of reef fish biodiversity and 

biomass production (Brandl et al., 2018). These reef fishes are morphologically/behaviorally 

cryptic, and they are recognized for their small adult size (typically < 50 mm total body length, 

Depczynski & Bellwood, 2003) and close association with reef habitat (Coker et al., 2014; 

Brandl et al., 2018). In particular, about half of all currently valid goby species (over 1,700 total, 

Hastings et al., 2014) are associated with reef habitats (Patzner et al., 2011; Brandl et al., 2019), 

comprising a large portion of the cryptobenthic reef fish assemblage (Winterbottom & Southcott, 

2008). Although gobies are the most diverse family of tropical marine fishes (Patzner et al., 

2011; Tornabene et al., 2016) and among some of the smallest vertebrates (Depczynski & 

Bellwood, 2006), much of their life history is unknown (Ackerman & Bellwood, 2000; 

Hernaman et al., 2000).  
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  The masked/glass goby Coryphopterus personatus (Jordan & Thompson 1905)/hyalinus 

Böhlke & Robins 1962 is an understudied Caribbean reef goby complex. Prior studies had 

suggested that these were sister species that existed separately on the basis of morphological 

(number of anterior interorbital pores) and mitochondrial genetic data (Baldwin et al., 2009). 

However, more recent genetic analyses appear to refute this hypothesis, finding mismatches 

between morphotypes and genetic types using both nuclear and mitochondrial markers (Selwyn 

et al., unpubl.data). Coryphopterus personatus/hyalinus is both common and abundant 

throughout the Caribbean (Pezold et al., 2015); moreover, it is frequently the most numerically 

abundant goby on shallow Caribbean reefs (Luckhurst & Luckhurst, 1978; Greenfield & 

Johnson, 1999; Dominici-Arosemena & Wolff, 2005). This species complex forms large social 

aggregations or shoals of 10s to 100s of individuals (Luckhurst & Luckhurst, 1978; Robertson & 

Justines, 1982; Selwyn et al., in prep.). These groups hover in the water column above the edges 

and drop-off slopes of coral reefs (Cole & Robertson, 1988; Thacker & Cole, 2002). 

Coryphopterus personatus/hyalinus exhibit protogynous hermaphroditism in which all 

individuals begin life as females and some transition to males after settlement in as little as 9 

days; however, this ability is regulated by social hierarchy dynamics within the population (Cole 

& Robertson, 1988; Cole & Shapiro, 1990; Allsop & West, 2004).   

  In order to make some inferences on the functional role of C. personatus/hyalinus, it is 

necessary to consider what is known on the ecology of this reef goby complex. It has a 

planktivorous diet (Baldwin & Robertson, 2015), and it is probably highly susceptible to 

predation due to its small adult body size (Sogard, 1997; Depczynski & Bellwood, 2006; Goatley 

& Bellwood, 2016; Goatley et al., 2017). Coryphopterus personatus/hyalinus are prey of larger 

reef fishes such as lionfish (Morris & Akins, 2009; Côté & Maljković, 2010), wrasse (Steele & 
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Forrester, 2002) and grouper (Randall, 1967). Notably, this species complex is found at a broad 

depth range of 1-70 m (Baldwin & Robertson, 2015). Along with its high numerical abundance, 

these characteristics indicate that C. personatus/hyalinus plays an important trophic role in 

transferring nutrients from pelagic plankton to reef predators and the reef benthos. Examining 

both the ecology and life history (age structure, growth) of C. personatus/hyalinus and other 

cryptobenthic reef fishes can provide a better understanding of their functional role, productivity, 

and resilience in coral reef ecosystems.  

 Otolith microstructure is used to estimate daily age and growth of individual fish with 

lifespans less than one year (Campana, 1992). Otoliths, or ear stones, are calcium carbonate 

structures in the inner ear of teleost fish that assist in balance, orientation, and hearing (Popper et 

al., 2005). The daily deposition of otolith increments, consisting of a dark and light band, has 

been validated for several gobies (Hernaman et al., 2000; Shafer, 2000; Depczynski & Bellwood, 

2006; Wilson et al., 2008) so here it was assumed that one otolith increment corresponds to one 

day. Similarly, the deposition of the first otolith increment near the primordium has been shown 

to occur at or near hatching in coral reef fishes (Thorrold & Hare, 2002). In addition, otolith 

settlement marks recognized by changes in increment width and contrast have been described 

and validated for coral reef fishes including gobies (Radtke et al., 1988; Shafer, 2000; Hogan et 

al., 2017) transitioning from a pelagic to benthic environment (Victor, 1982; Wilson & 

McCormick, 1997).   

 A recent study indicates that cryptobenthic reef fishes like C. personatus/hyalinus 

constitute the majority of fish biomass consumed on coral reefs (Brandl et al., 2019). I 

hypothesize that the high risk of predation mortality selects for an opportunistic life history 

strategy (i.e., short lifespan) in C. personatus/hyalinus which is currently recognized for its small 
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adult body size and highly abundant populations (typical traits of opportunistic life history 

strategists, Winemiller, 2005).  

 The objectives of this study: 

1. Estimate pelagic larval duration, previous body size at settlement, body size structure (i.e., 

maximum body size), age structure (i.e., lifespan), and growth patterns of the C. personatus/ 

hyalinus complex.    

2. Provide inferences and interpretations on the functional role, productivity, and resilience of C. 

personatus/hyalinus populations.  

3. Enhance our understanding of the biology, ecology, and evolution of cryptobenthic reef fishes 

along with their trophic contribution in coral reef ecosystems.  
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METHODS 
 

Coryphopterus personatus/hyalinus specimens were 

collected by divers on SCUBA using hand nets and 

anesthetic clove oil at sites on the windward side of 

Turneffe Islands Atoll, Belize (Fig. 1) in early 

January 2017. Water temperature ranged from 26-

28ºC. Turneffe Atoll is located on the Belize Barrier 

Reef, the second largest barrier reef system in the 

world (Gibson & Carter, 2003), and it was officially 

established as Belize’s largest Marine Protected Area 

(MPA) on November 22nd, 2012 (Belize Fisheries 

Department, 2015). The largest atoll (531 km2) in the 

area, Turneffe Islands is a bank reef consisting of 

mangrove islands, patch reefs, and fringing reefs 

partially encircling a shallow lagoon (Gibson & 

Carter, 2003). Specimens were collected from 

forereef sites at depths between 36 and 57 ft. 

Individual specimens were photographed shortly 

after collection and before preservation in 95% 

ethanol. Somatic size at capture (standard length, SL; 

total length, TL) of post-larval individuals was measured (precision 0.001 mm) on calibrated 

images using ImageJ software.  

Figure 1: (A) Map of Mesoamerica 

indicating the location of Turneffe 

Atoll, Belize (box). (B) Map of 

Turneffe Atoll indicating the location of 

the sampling area (box). Samples were 

collected from multiple forereef sites on 

the windward side of Turneffe Islands 

Atoll, Belize. The Belize Barrier Reef 

is the string of small islands (running 

north–south) west of the atoll. 
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 Sagittal otoliths were prepared for daily age and growth estimation. First, the sagittal 

otoliths were extracted from a subset of collected individuals since this pair is generally the 

largest, formed the earliest (Green et al., 2009) and has been examined for tropical reef gobies 

(Sponaugle & Cowen, 1994; Depczynski & Bellwood, 2006). Once cleaned of residual material 

with MilliQ water and dried, whole otoliths were mounted flat or sulcus-down to petrographic 

slides with thermoplastic Crystalbond™ leaving the otolith surface exposed. Otoliths were 

viewed using Type B immersion oil and transmitted light at 500X magnification with a Nikon 

Eclipse LV100ND compound microscope to assess how much polishing was needed. Oil was 

blotted dry and otoliths were hand-polished with 3M imperial diamond lapping films (15, 6, 3, 1, 

0.5 µm) until a continuous sequence of growth increments were visible along the longest otolith 

radius from core to edge. Otoliths were imaged at 500X magnification with a Nikon Digital Sight 

DS-fi2 camera, and measurements were made from calibrated images using NIS-Elements 

computer imaging software. Otolith radius, a measure of otolith size, was estimated by summing 

the measurements of the longest larval and post-larval linear radii. Specifically, the larval radius 

was measured as the linear distance from the start of the first increment that bounds the core to 

the start of the settlement mark (Fig. 2). Subsequently, pelagic larval duration (PLD) was 

estimated as the number of daily increments between the otolith primordium (Fig. 2) which is 

oval-shaped in gobiiforms (Brothers, 1984) and the settlement mark (Thorrold & Hare, 2002). 

Post-larval radius was measured as the linear distance from the start of the settlement mark to the 

otolith edge (Fig. 2). Age at capture (in days) and daily growth were measured simultaneously by 

counting increments and measuring their widths (µm) respectively along the otolith radius. 

Increment widths or otolith growth rates were standardized as a proportion (%) of the larval or 

post-larval radius they were measured along. This approach reduces bias in estimating otolith 
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growth rates from the radius chosen for measurement and allows comparison of otolith growth 

rates within and between life history stages. Otoliths were re-aged on a second, separate occasion 

blind to sample identity. The coefficient of variation was used as a measure of precision between 

the two age at capture estimates (Campana, 2001) in which individuals with CV > 10% were 

excluded from analyses (Walker & McCormick, 2004; Hernaman & Munday, 2005a; 

Depczynski & Bellwood, 2006). Only five individuals met this criterion, so a total of 87 

individuals with a mean CV of 2.87% ±2.31 SD were retained for further analyses. For 14 

additional individuals, post-settlement increments were unresolved for measurement; however, 

these individuals were retained for their larval duration (mean CV of 3.52% ±2.66 SD) and larval 

growth estimates. Coefficient of variation was estimated as follows:    

CV �%� =  SD
mean ∗ 100, 

where SD is the standard deviation.  

 

 

 To estimate individual body size (TL in mm) at settlement, the experimental Modified 

Fry back-calculation model (Vigliola & Meekan, 2009) was employed in R package RFISHBC 

(Ogle, 2018). This specific model was chosen because it produced the most precise and accurate 

estimates of previous body length at age for individual reef-associated gobies compared to other 

back-calculation models and the use of otolith radius at age (Wilson et al., 2008). Body length at 

hatch was set at 2 mm (Kramer & Patzner, 2008; T. Gardner, pers. com.), and sagittal radius at 

hatch was averaged across individuals to obtain a mean value of 6.73 µm ±1.68 SD (n = 87). 

These values obtained for C. personatus/hyalinus are comparable to other reef-associated gobies 

(Wilson et al., 2008) and congeners (Kramer & Patzner, 2008).  Estimated total length at 

settlement was modeled by the following equation:  
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TL� �mm� =  0.75L0p +  exp �log�L0p –  0.75L0p� +

 !"#�$%&' – (.)*$('�+ !"#�$(' – (.)*$('�, ∗  !"#�-.�+ !"#�-('�,
!"#�-%&'�+ !"#�-('� /,  

 where TLs is the total length at settlement, 0.75L0p is the body length at otolith formation, L0p is 

the body length at hatch, Lcap is the total length at capture, Ri is the sagittal radius at settlement, 

R0p is the mean sagittal radius at hatch, and Rcap is the sagittal radius at capture.   

 Model quality and fit were evaluated using statistical measures of probability and power. 

Simple linear regressions were determined as the best fit between x and y variables according to 

(1) linearity of the relationship (p > 0.1; linear model is more appropriate than a curved model), 

(2) homoscedasticity of the residuals across x values (p > 0.01), (3) model significance (p < 

0.001), (4) Explanatory power or r2. A spline smooth was fit to larval data according to (1) 

linearity of the relationship (p < 0.001; curved model is more appropriate than a linear model), 

(2) homoscedasticity of the residuals across x values (p > 0.01), (3) Significance of the smooth 

term or x variable (p < 0.001), (4) Explanatory power or r2, (5) number of knots is appropriate (p 

> 0.1). General linear hypothesis testing was performed using planned post-hoc comparisons to 

test for significant (p < 0.001) differences in average otolith growth between (1) Larval stage and 

10 days post-settlement and between (2) 10 days pre- and post-settlement with free adjustment of 

p-values.  
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Figure 2: Sagittal otolith radius of 

Coryphopterus personatus/hyalinus 

imaged at 500X magnification 

indicating important features. 

Primordium 

Settlement mark 

Edge 
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RESULTS 
 

 Total length at capture ranged from 16.8 to 57.9 mm with a mean of 31.5 mm (n = 596; 

Fig. 3). For a subset of individuals spanning the total length range (Fig. 3), estimated age at 

capture ranged from 51 to 195 days with a mean of 100 days (n = 87; Fig. 4). There was a strong 

linear correlation between sagittal radius and estimated age at capture (p < 0.001; Fig. 5a). 

Similarly, there was a strong linear correlation between sagittal radius and total length at capture 

(p < 0.001; Fig. 5b). Across individuals, estimated age at capture was approximately correlated 

with total length at capture so a linear model fit well to the data (p < 0.001; Fig. 6).  
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Figure 3: Frequency distribution of Coryphopterus personatus/hyalinus total length at capture. 

Binwidth = 1.5 mm. Gray-shaded region indicates the subset (n = 87) of individuals used for 

aging. 
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Figure 4: Frequency distribution of Coryphopterus personatus/hyalinus estimated age at capture. 

Binwidth = 5 days.   
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Figure 5: (A) Relationship between Coryphopterus personatus/hyalinus sagittal radius and 

estimated age at capture modeled by a linear regression. (B) Relationship between 

Coryphopterus personatus/hyalinus sagittal radius and total body length at capture modeled by a 

linear regression. Shaded area is 95% CI.  
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Figure 6: Relationship between Coryphopterus personatus/hyalinus estimated age and total body 

length at capture modeled by a linear regression. The equation to predict age from TL is also 

provided. Shaded area is 95% CI.  

 

 

 Pelagic larval duration ranged widely from 21 to 50 days with a mean of 33 days (n = 

101; Fig. 7). Also, there was a strong inverse relationship between average daily larval otolith 

growth and larval duration (p < 0.001; Fig. 8). Most of the individuals (98/101) with larval 

duration and larval growth estimates, also had all of the estimates needed to back-calculate body 

size at settlement. Estimates of total body length at settlement ranged from 11.6 to 21.9 mm with 

a mean of 15.3 mm ±1.5 SD (n = 98; Fig. 9). Individuals with slower average larval growth and 

longer larval durations compensated by attaining larger total body lengths at settlement (Fig. 9). 



15 
 

Larval duration explained 25.5% of the variation in total body length at settlement (p < 0.001; 

Fig. 9a), while average daily larval otolith growth explained 26.9% of the variation in total body 

length at settlement (p < 0.001; Fig. 9b). Average daily otolith growth was fastest during the 

larval phase relative to post-settlement (p < 0.001; Fig. 10a & 11). Average daily otolith growth 

decreased 28% from the pre-settlement zone (average of 10 days before settlement = 3.2% ±0.79 

SD; n = 87) to the post-settlement zone (average of 10 days after settlement = 2.3% ±0.93 SD; n 

= 87) (p < 0.001; Fig. 10b & 11).   
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Figure 7: Frequency distribution of Coryphopterus personatus/hyalinus pelagic larval duration. 

Binwidth = 1 day. Modal PLD is 31 days.  
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Figure 8: Inverse trend between Coryphopterus personatus/hyalinus average daily larval otolith 

growth and pelagic larval duration modeled by a spline smooth. Daily larval otolith growth rates 

were standardized as a proportion (%) of the larval radius they were measured along. Means 

were calculated by summing daily larval otolith growth rates and dividing by PLD for each 

individual. Shaded area is 95% CI.  
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Figure 9: (A) Relationship between Coryphopterus personatus/hyalinus pelagic larval duration 

and back-calculated total body length at settlement modeled by a linear regression. (B) 

Relationship between Coryphopterus personatus/hyalinus average daily larval otolith growth and 

back-calculated total body length at settlement modeled by a linear regression. Shaded area is 

95% CI. 
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Figure 10: Average daily otolith growth (±1 SE, %) profile of Coryphopterus 

personatus/hyalinus. Increment numbers are centered around the settlement mark at 0. Negative 

increment numbers indicate larval increments while positive increment numbers indicate post-

settlement increments. (A) Entire life history profile where only 3 individuals had post-

settlement ages ≥ 99 days. (B) Close-up profile of the settlement transition, 10 days pre- and 

post-settlement. 

 



20 
 

 

 

Figure 11: Distribution of Coryphopterus personatus/hyalinus average daily otolith growth 

between growth stages. n = 87 for each factor level. The larval, 10 days pre-settlement, and 10 

days post-settlement levels are distributions of individual mean values. The settlement level is 

not a distribution of means since it represents 1 day of otolith growth or measurement for each 

individual. These boxplots indicate the min, 25% quartile, median (bold bar), 75% quartile and 

max where outliers are plotted as individual points. ***: p < 0.001.  
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DISCUSSION 
 

 Here I found that otolith microstructure analysis is a reliable and useful technique for 

estimating life history traits of C. personatus/hyalinus. Sagittal radius at capture is strongly 

proportional to both age and total length at capture (Fig. 5a & b). The former makes otolith size 

(measured as a radius) a useful predictor of age and indicates that otolith increments are 

continually deposited in older individuals which reduces bias in age underestimations. The latter 

indicates that daily otolith growth is proportional to daily somatic growth and supports back-

calculation of previous body length at settlement (Campana & Neilson, 1985; Thorrold & Hare, 

2002; Vigliola & Meekan, 2009).  

 Coryphopterus personatus/hyalinus have an abbreviated life cycle with life history traits 

consistent with those of other cryptobenthic reef fishes (Depczynski & Bellwood, 2006). This 

species complex attains small maximum body sizes (max = 58 mm TL; Fig. 3), and their 

reproductive lifespans are short (max post-settlement age = 164 days; however, 95% of 

individuals had post-settlement ages of ≤ 98 days, n = 84). Notably, these individuals maintain 

linear growth in body length throughout reproductive age which makes body size a useful 

predictor of age (Fig. 6). Interestingly, growth rate during the larval phase largely determines 

larval duration (Fig. 8) and to a lesser extent total body length at settlement (Fig. 9b), indicating 

that the environment experienced during the larval stage can drive demographic patterns in these 

populations (Hogan et al., 2017). Average daily growth was fastest during the pelagic larval 

phase (Fig. 10a & 11) and decreased substantially during the settlement transition to benthic reef 

habitat (Fig. 10b & 11), possibly due to a shift from somatic growth to reproduction early post-

settlement.  
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 Individuals that grew faster during the pelagic larval phase spent less time in the pelagic 

environment. This may be beneficial if it allows these individuals to settle onto quality reef 

habitats and reach reproductive maturity sooner with less time constraints post-settlement. 

Accordingly, faster larval growth may reduce predation risk by producing larger size-at-age 

individuals that abbreviate their high mortality larval stage by reaching developmental 

competence sooner (Fontes et al., 2011). In contrast, individuals that grew slower during the 

pelagic larval phase spent more time in the pelagic environment which may increase their ability 

to disperse and colonize relatively isolated reef habitats (Victor, 1986c; Wellington & Victor, 

1989). Given a relatively long larval duration, accumulated larval growth can produce 

individuals with larger body lengths at settlement. In this study, variation in back-calculated 

settlement size (CV = 9.76%) was less than variation in larval duration (CV = 17.01%) which 

suggests selection for a settlement size threshold required to survive in reef habitats. Here, back-

calculated estimates of total length at settlement are comparable to measurements obtained from 

field collections of recently settled C. personatus/hyalinus (8-8.5 mm SL, Victor, 2015) given 

the average length of the caudal fin (5.5 mm ±1.64 SD, TL - SL, n = 592) for individuals of this 

study.  

 Similar correlations between larval growth, larval duration, and body length at settlement 

have been found for other common Caribbean reef fishes (Sponaugle & Cowen, 1994; Bergenius 

et al., 2005; Sponaugle & Grorud-Covert, 2006; Rankin & Sponaugle, 2014). Gobies, like many 

reef fishes, are aggressive most frequently with conspecifics, where larger individuals generally 

initiate and win competitive interactions for food and shelter (Shulman, 1985; Munday & Jones, 

1998; Forrester et al., 2006, Potter et al., 2019). Further, larger body size at settlement could be 

advantageous in competitive interactions between individuals for reef resources at settlement or 
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shortly afterwards (Rankin & Sponaugle, 2014). Notably, competitively dominant individuals 

influence the growth, maturity, and mortality along with habitat use of subordinate individuals, 

which can regulate population distribution and abundance (Shulman, 1985; Munday & Jones, 

1998; Forrester et al., 2006).  

 Settlement is a very stressful period in a fish’s life in which there are major 

morphological and physiological changes that coincide with the transition from the pelagic 

environment to the benthos. Otoliths often record this transition as a change in growth rate and/or 

particularly large increment (Wilson & McCormick, 1999). The settlement mark of C. 

personatus/hyalinus can be best described as Type 1a, which is characterized by an abrupt 

decrease in average otolith growth over settlement. This is the most common settlement pattern 

reported for coral reef fishes (Wilson & McCormick, 1999). Contrasting other coral reef fishes 

with a Type 1a settlement pattern, C. personatus/hyalinus appear to settle during their peak 

otolith growth which may represent developmental “competence” to settle (Wilson & 

McCormick, 1999).  

 Post-settlement C. personatus/hyalinus mature at a small size of 17-19 mm TL; however, 

males appear to mature at a smaller size of 13-15 mm TL based on gonad histology (Cole & 

Robertson, 1988). Interestingly, body length at maturity for males (13-15 mm TL) and females 

(17-19 mm TL) roughly coincides with body length at settlement calculated here (12-22 mm TL; 

Fig. 9) or shortly afterwards indicating a very abbreviated juvenile phase. Based on my linear 

size-at-age model, I estimate that a 20 mm TL individual matures at 41 total days (including 

PLD). However, maturity probably occurs earlier, because using the upper estimate of total 

length at maturity inflates the estimate of age at maturity. By using age at settlement to interpret 

age at maturity, I estimate that age at maturity instead occurs earlier between 22-51 total days. 
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Moreover, the mean age at settlement of 34 days could be used as a relative estimate of mean 

total age at maturity which indicates that some individuals mature as soon as they settle. In 

addition, C. personatus/hyalinus has been shown to change sex from female to male at a mean 

TL of 24 mm (Cole & Robertson, 1988) which corresponds to 57 total days based on my linear 

size-at-age model. The abrupt decrease in daily growth immediately following settlement may 

result from energy being allocated to reproduction instead of somatic growth (Cole & Robertson, 

1988; Winemiller, 2005).  

 Coryphopterus personatus/hyalinus show linear post-settlement growth, and individuals 

do not appear to reach an asymptotic or maximum body size based on the length-at-age 

relationship (Fig. 6). Natural selection may produce this pattern since larger body size is related 

to an increase in fecundity in older, larger-bodied females (Wootton, 1990; Heino & Kaitala, 

1999). The short reproductive lifespans of this species complex indicate that constant growth and 

consequently larger body size can confer an increasing fitness advantage with age. For many 

sequential hermaphroditic species such as C. personatus/hyalinus, larger body size enables 

dominance in social groups and is often linked to the transition between female and male (Liu & 

Sadovy, 2004). Also, becoming a dominant male in a haremic system confers considerable 

fitness advantages for coral reef fishes (Warner, 1988). For C. personatus/hyalinus, larger body 

length allows successful mate and nest site monopolization in males and can induce sex-change 

in females (Cole & Robertson, 1988; Allsop & West, 2004). Sex-change from female to male 

may alleviate mate competition and enhance reproductive output in C. personatus/hyalinus 

which exhibits small home ranges (Forrester & Steele, 2004; Dominici-Arosemena & Wolff, 

2005) and a sex ratio skewed toward females about 4:1 (Cole & Robertson, 1988). Along with 

reproductive advantages, constant growth may also provide advantages associated with an 
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individual’s vulnerability to predation. Natural mortality rates of juvenile and small adult 

cryptobenthic reef fishes can decline rapidly with increasing body size where small increases in 

total length can result in notable increases in lifespan (estimated 11 days per 1 mm increase in 

TL for post-settlement fishes < 43 mm TL, Goatley & Bellwood, 2016). Interestingly, the 

majority of C. personatus/hyalinus individuals measured here are smaller than this body size 

threshold (Fig. 3).   

 Several features of the ecology (i.e., small adult body size, broad depth range, 

planktivorous diet) and life history (i.e., linear growth, quick generational turnover rates, short 

lifespan) of C. personatus/hyalinus indicate that it plays an important trophic role in transferring 

nutrients to Caribbean reef predators and the reef benthos. The rate of biomass accumulation, 

generational turnover, and energy transfer to other trophic levels through predation provides an 

indication of a species prevalence within a food web (Thillainath et al., 2016). Predation pressure 

(i.e., presence/absence, predation intensity, or predator abundance) can select for faster growth 

and earlier maturity in fishes (Reznick & Endler, 1982; Heibo & Magnhagen, 2005; Walsh & 

Reznick, 2008). In captivity, C. personatus/hyalinus are capable of reproducing at 1 year of age 

and attain considerably longer lifespans up to 4 years of age (Oceans, Reefs & Aquariums, pers. 

com., 2018) which suggests high extrinsic risk of mortality in the wild (Ricklefs, 2010; Eckhardt 

et al., 2017). Lifespans of less than 1 year described here for C. personatus/hyalinus are 

relatively rare among both terrestrial and aquatic vertebrates (3 of 3,761 vertebrate species with 

lifespan estimates in AnAge database, De Magalhaes & Costa, 2009). However, fishes represent 

only 25% of these lifespan estimates in AnAge partly because their life histories are understudied 

relative to terrestrial vertebrates. Coryphopterus personatus/hyalinus is best described as an 

opportunistic life history strategist selected for small maximum body size, high reproductive 
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effort or early maturity and short lifespan (Winemiller, 2005). Along with, and presumably a 

result of, high post-settlement predation mortality (indicated by field, lab and otolith studies: 

Steele & Forrester, 2002; Forrester & Steele, 2004; Hernaman & Munday, 2005b; Depczynski & 

Bellwood, 2006; Goatley & Bellwood, 2016; Goatley et al., 2017), this suite of opportunistic life 

history traits seems to characterize cryptobenthic reef fishes (Sponaugle & Cowen, 1994; 

Wilson, 2004; Depczynski & Bellwood, 2006; Longenecker & Langston, 2006; Winterbottom & 

Southcott, 2008; Victor et al., 2010; Kingsford et al., 2017). As a consequence of these life 

history traits, C. personatus/hyalinus is widespread in the Caribbean, found in large numbers, 

and constitutes a considerable amount of biomass on coral reef habitats. Similarly, fast-growing 

and short-lived cryptobenthic reef fishes as a guild may serve as keystone forage species or 

trophic intermediates between basal food levels (i.e., plankton, detritus, algae) and piscivorous 

predators (Depczynski et al., 2007; Brandl et al., 2018). Further, cryptobenthic reef fishes such 

as gobies and blennies make substantial contributions to biomass productivity (g/m2 · wk-1) that 

match or exceed those of larger reef fishes such as acanthurids and labrids (Depczynski et al., 

2007). Moreover, a third of reef fish growth production in length and mass available to predators 

is supported by cryptobenthic reef fishes (Depczynski et al., 2007).  

 Generally, pelagic forage fish (i.e., abundant and planktivorous clupeids, engraulids, 

capelin) contribute to the catch and value of commercially harvested predators and serve as 

important prey for various non-harvested marine predators (Pikitch et al., 2014). Aphia minuta, a 

pelagic neritic goby found in the Mediterranean, feeds on zooplankton and has been found in 

large numbers in the stomachs of Atlantic bluefin tuna (Iglesias et al., 1997) which supports a 

high-valued commercial fishery (Collette et al., 2011). Cryptobenthic reef fishes may make 

similar trophic contributions to coral reef ecosystems and the fisheries they support. For 
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example, exploited predatory fishes of the Great Barrier Reef obtain the majority of their 

biomass production from planktonic primary production possibly through planktivorous trophic 

intermediates such as pomacentrids and labrids (Frisch et al., 2014). Continually, planktivores 

represent 43-70% of total fish biomass on forereefs of the Great Barrier Reef (Williams & 

Hatcher, 1983). Biomass production of basal consumers can have important consequences for 

predators of freshwater ecosystems as well. For instance, fishes from two New Zealand streams 

fed primarily on invertebrate primary consumers (i.e., plant and detritus feeders) rather than 

invertebrate secondary consumers (Hopkins, 1976). Greater production of primary consumers 

7.6 -72.1 g/m2 · y-1 relative to secondary consumers 0.8 -11.9 g/m2 · y-1 may support exploitation 

by both fish and invertebrate predators (Hopkins, 1976). Such studies including the current one, 

highlight the important functional role of abundant basal consumers; that is, food web production 

and nutrient transfer in various ecosystems such as coral reefs, coastal pelagic waters and 

freshwater streams.    

Future Directions 

 

Many fishes are dependent on coral reef habitats for prey, niche space, for settlement, 

reproduction and refuge from predators among other parameters of survivorship (Coker et al., 

2014). Habitat quality can influence the early survivorship of individuals; moreover, it can affect 

the abundance along with the somatic size and age structure of fish populations (Shulman, 1984; 

Jones, 1988; Connell & Jones, 1991; Tupper & Boutilier, 1997; Beukers & Jones, 1998; Ross, 

2003; Forrester & Steele, 2004). Small-bodied organisms like gobies may benefit from reef 

characteristics that are inaccessible to larger organisms. Further, small cryptobenthic fishes can 

exploit fine-scale reef microhabitats for abundant, nutrient-rich prey items and refuge from 

predators (Depczynski & Bellwood, 2004; Ticzon et al., 2012). As a result, these individuals 
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may reap life history advantages such as faster growth and higher survivorship. Coryphopterus 

personatus/hyalinus show extreme differences in density among microhabitats (Selwyn unpubl. 

data) which suggests that habitat may play an important role in the population dynamics of this 

species complex.   

The International Union for the Conservation of Nature lists C. personatus/hyalinus as 

vulnerable (Pezold et al., 2015) due to invasive, predatory lionfish and decreasing coral reef 

habitat in the Caribbean (59% from 1970-2011, Jackson et al., 2014). The combined impacts of 

invasive species and habitat degradation are identified as the leading cause of extinction in fishes 

(Clavero & García-Berthou, 2005; Rocha et al., 2015). The quick generational turnover of some 

cryptobenthic reef fishes such as C. personatus/hyalinus, could enable greater population 

resilience to ecosystem threats (i.e., invasive species, habitat degradation, environmental change, 

Lefèvre et al., 2016). The ecology, life history, putative functional role and resilience of C. 

personatus/hyalinus, makes it an ideal model species complex for the guild of cryptobenthic reef 

fishes. Determining the effects of microhabitat use and quality on the demographics (i.e., age 

structure, growth) of C. personatus/hyalinus and other species can provide a better understanding 

of their population dynamics and in turn improve conservation and management strategies. DNA 

barcoding of gut contents can be used to identify specific predators (Valdez-Moreno et al., 2012; 

Paquin et al., 2014) of cryptobenthic reef fishes, which can clarify their trophic contribution in 

coral reef ecosystems. In addition, short-lived vertebrates can serve as model organisms for 

research on human senescence, age-related diseases and ultimately health (Harel et al., 2015; 

Reuter et al., 2019).    
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