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PURPOSE. Lipofuscin (LF) accumulation within RPE cells is considered pathogenic in AMD. To
test whether LF contributes to RPE cell loss in aging and to provide a cellular basis for fundus
autofluorescence (AF) we created maps of human RPE cell number and histologic AF.

METHODS. Retinal pigment epithelium–Bruch’s membrane flat mounts were prepared from 20
donor eyes (10 � 51 and 10 > 80 years; postmortem: �4.2 hours; no retinal pathologies),
preserving foveal position. Phalloidin-binding RPE cytoskeleton and LF-AF (488-nm excitation)
were imaged at up to 90 predefined positions. Maps were assembled from 83,330 cells in
1470 locations. From Voronoi regions representing each cell, the number of neighbors, cell
area, and total AF intensity normalized to an AF standard was determined.

RESULTS. Highly variable between individuals, RPE-AF increases significantly with age. A
perifoveal ring of high AF mirrors rod photoreceptor topography and fundus-AF. Retinal
pigment epithelium cell density peaks at the fovea, independent of age, yet no net RPE cell
loss is detectable. The RPE monolayer undergoes considerable lifelong re-modeling. The
relationship of cell size and AF, a surrogate for LF concentration, is orderly and linear in both
groups. Autofluorescence topography differs distinctly from the topography of age-related rod
loss.

CONCLUSIONS. Digital maps of quantitative AF, cell density, and packing geometry provide
metrics for cellular-resolution clinical imaging and model systems. The uncoupling of RPE LF
content, cell number, and photoreceptor topography in aging challenges LF’s role in AMD.

Keywords: retinal pigment epithelium, autofluorescence, photoreceptor, lipofuscin,
cytoskeleton

The leading cause of untreatable vision loss and legal
blindness in industrialized countries is AMD, a disease of

the photoreceptor support system, involving alterations of the
RPE.1–4 The RPE performs numerous functions essential to the
choroid and the photoreceptors,5 including phagocytosis of
photoreceptor outer segments, absorption of excess light,
processing of retinoids for phototransduction (visual cycle),
maintenance of the blood–retina barrier, and secretion of
growth factors, cytokines,6 and lipoprotein particles.7 Lipofus-
cin, nondegradable and brightly fluorescent organelles in the
lysosomal compartment of the RPE accumulate due to a very
slow turnover of ingested photoreceptor fragments.8–11 Retinal
pigment epithelium lipofuscin is comprised of mostly lipids and
less than 2% proteins.12 The principal fluorophores are bis-
retinoids,13,14 byproducts of the visual cycle that delivers
retinoids to photoreceptors, with abundant A2E (n-retinylidene-
n-retinyl ethanolamine) being the best understood. Noninvasive
fundus autofluorescence (AF) imaging has been important in
the clinical diagnosis and management of chorioretinal diseases

for nearly 2 decades, with principal signals mainly from the
RPE.15,16

Because the largest risk factor for AMD is aging, the fact that
RPE lipofuscin was more abundant in human macula than
periphery8 led to an early hypothesis that lipofuscin accumu-
lation was toxic and contributed to outer retinal cell death in
aging and AMD.15,16 Counts of photoreceptors and RPE from
sections of human eyes apparently showing age-related loss of
both cells were presented in support of this hypothesis.15 An
alternate view of lipofuscin arises from a 1978 study by Wing
and colleagues17 demonstrating that like the topography of
photoreceptors in human eyes,18,19 total AF peaked in the
perifovea where rods were numerous and dipped in the fovea
where only cones are found.18 This topography suggested a
role for lipofuscin in the physiology of vision that has not been
explored.10,20

The lipofuscin toxicity hypothesis can be tested by
quantifying RPE cell number and AF levels in donors of
different ages, with the RPE population expected to decline as
lipofuscin accumulated. Published studies do not reveal
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consistent age-changes in RPE cell number,21–23 and the one
study that also assessed histologic AF did not account for the
inhomogeneity of macular photoreceptors.15 As determined in
flat mounts for maximal accuracy, rods are preferentially
vulnerable to aging over cones18,19,24 and at locations closer to
the fovea than can be explained by lipofuscin.17,24,25 Using
spatial variation and differential vulnerability to aging as a
strong independent variables, herein, we determined simulta-
neous RPE cell number and total AF (summed intensity of all
excited lipofuscin fluorophores) in an en face view with
simultaneous melanosome screening in human donor eyes of
two age groups. As in prior photoreceptor mapping studies,
we used flat-mounted tissues, systematic sampling, and
computer-controlled microscopy, and we developed new
methods to reference RPE layer locations to the overlying
retina in millimeters. These digital maps provide new human
RPE metrics and little evidence that lipofuscin accumulation
impacts negatively on RPE cell numbers or packing geometry.

METHODS

Tissue

Twenty eyes from 20 donors (10 � 51 years, 10 > 80 years)
were obtained from 1996 to 1999 from the Alabama Eye Bank
within 4.2 hours of death (median: 2.3 hours; Supplementary
Tables S1 and S2). The institutional review board at the
University of Alabama at Birmingham approved the use of
human tissue, which conformed to the guidelines of the
Declaration of Helsinki. After cornea and iris were removed,
the globe was preserved by immersion in 4% paraformalde-
hyde/0.1 M PBS for 24 hours. After removal of vitreous and
sclera, chorioretinal tissue (~20- to 25-mm total width)
including optic disc, macula, and the retinal vascular arcades
was cut and cryoprotected in glycerol:Sorensen phosphate
buffer (SPB, 0.1 M) solution and frozen (�808C) until used.
Tissue was thawed at 48C overnight and rehydrated in
successive glycerol:SPB solutions (40:60, 30:70, 20:80, 10:90,
respectively; 24 hours in each) and stored in 100% SPB for 3
days. Before freezing, all maculas were determined to be
grossly normal by inspection under a dissection microscope
with trans- and oblique epi-illumination.26 After freezing, ex
vivo spectral domain optical coherence tomography and AF
images (Spectralis, Heidelberg Engineering, Heidelberg, Ger-
many) corroborated these assessments, for 15 tissues.

A2E Analysis by Mass Spectrometry

To determine if the used tissue preservation and storage
methods affected major fluorophores of RPE-AF, the abundance
of A2E was quantitated in recently collected and similarly
prepared tissue punches from four eyes of two donors (63- and
67-year-old Caucasian females lacking retinopathy) following
published methods.27 One eye of each donor was fixed in 4%
paraformaldehyde, and with the fellow eye was untreated. Six
RPE/choroid punches (5-mm diameter) of macula (2) and
periphery (4) were stored at �808C for 1 month. A2E was
extracted and reconstituted for analysis under dim red light and
mass spectrometric analysis was performed on an Agilent 1200
HPLC in-line with an Agilent 6410 triple quadruple with an
electrospray ionization source (Santa Clara, CA, USA).27

Samples were analyzed using Agilent MassHunter Qualitative
Analysis software, version B.03.01 in full-scan (mass-to-charge
ratio [m/z] 100–1000) and multiple reaction monitoring
modes. Transitions to the following product ions were
monitored for the detection of A2E ([MþH]þ 592.5): m/z
105.2 (quantifier ion), m/z 404.2, m/z 418.2. Results indicated

that our tissue preservation methods did not preclude
detection of A2E (Supplementary Fig. S1), for this length of
time in storage. Longer storage times may have influenced A2E
detectability.

Preparing RPE-BrM-Flat Mounts

Using a dissection microscope (SMZ800, Nikon Instruments,
Inc., Melville, NY, USA), we prepared RPE-BrM-flat mounts in a
multistep, photodocumented (Supplementary Fig. S2), process
(SMZ-U Zoom 1:10, Nikon Co-olpix P5000, Nikon, Japan;). (1)
Retina-on: from the tissue belt a central 20 3 20–mm part
including optic disc and macula was excised. To optimize
tissue flatness for microscopy, the tissue was relaxed with
several cuts, (2) retina-off: the retina was detached from the
RPE using forceps (No. 7; WPI, Sarasota, FL, USA) to exclude
light absorption by the luteal pigment of the neurosensory
retina during AF imaging. In a few tissues, the retina tightly
adhered to the RPE, which resulted in loss of small RPE
patches, and (3) retinaþchoroid-off: choroid vessels were
removed with forceps, membrane peeler, and spatula (G-
37513; G-16189, Geuder, Heidelberg, Germany), and/or
brushes (Camel 4 round; Tree House, Oklahoma City, OK,
USA) in a SPB-filled dish. Complete removal of choroid for one
specimen took 6 to 8 hours of fine preparation. The resulting
RPE monolayer attached to BrM was approximately 20-lm
thick. Previous studies of whole mounts have shown minimal
shrinkage confined to the tissue edge.19

Phalloidin Labeling and Tissue Mounting

Single RPE cells were delineated using phalloidin labeling of
filamentous actin (F-actin) to display the cytoskeleton and cell
shapes in en face imaging.28 Tissues were extracted with 0.1%
Triton X-100 (#11332481001; Roche, Mannheim, Germany) for
3 minutes and rinsed (3 35 minutes) with SPB. Each flat mount
was labeled with Alexa Fluor 647 phalloidin (final concentra-
tion: 3 units/lL, #A22287; Life Technologies, Grand Island, NY,
USA) for 20 minutes at room temperature and rinsed (three
times for 5 minutes each) with SPB.

Tissues were mounted as flat as possible with BrM down on
microscope slides (#12-550-15; Fisher Scientific, Pittsburgh,
PA, USA). Remaining fluid beneath the tissue was absorbed
with surgical wedge sponges (Sugi; Kettenbach, Eschenbach,
Germany) before mounting (#P36930, ProLong Gold antifade
reagent; Molecular Probes, Eugene, OR, USA) and cover
slipping (#061812-9; Fisher Scientific). Exposure to light was
minimized. Slides were stored in the dark.

Preserving Foveal Position

To generate AF and cell density maps on a common fovea-
centered coordinate system, it is crucial to have at least one
common landmark in all tissues. We carefully maintain
consistent orientation, placing the optic disc on the horizontal
axis. Using a custom written ImageJ software plugin (http://
imagej.nih.gov/ij/; provided in the public domain by the
National Institutes of Health, Bethesda, MD, USA), an image
overlay showing landmarks common to each dissection step
specified the exact location of the fovea (Fig. 1). Starting with
the retina on-image, the fovea was localized to a characteristic
dip and a reddish, darker spot due to light reflecting from the
choroid and passing through thin overlying tissue. Two to four
landmarks (tissue cuts, choroidal vessel crossings, pigmenta-
tion) on the retina-off and retinaþchoroid-off images were used
by custom software to register each image to the previous one.
Finally, an image overview of the mounted tissue was acquired
using a microscope (see below). Common landmarks between
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this final image and the retinaþchoroid-off image projected the
fovea onto the RPE-BrM-flat mount.

Sampling Scheme

We used a systematic and unbiased sampling scheme to
include RPE in areas with distinctive levels of photoreceptor
related metabolism (fovea: cones only; perifovea: highest rod
density; near periphery: highest rod cone ratio). Samples were
more closely spaced where gradients in cell density were
expected.23,29 Imaging (see below) was performed at eight
evenly spaced positions on rings with increasing diameter
centered around the fovea (radii for the three inner circles: 0.2
mm, 0.5 mm, and 1 mm; radius ring(i) (4 and higher)¼ (i-2) 3
1.0 mm), creating an even tessellation of the tissue
(Supplementary Fig. S3). A total of 75 to 90 areas per tissue
were imaged, depending on variations in tissue size and tissue
integrity (Supplementary Table S3).

Imaging

Fluorescence imaging used a BX51 microscope (Olympus,
Center Valley, PA, USA) with a motorized stage control, oil
objective (UPlanApo 340 oil iris, numerical aperture 1.0;
Olympus), digital camera (Orca R2, Hamamatsu, Middlesex, NJ,
USA), excitation light source emitting a mercury arc lamp
spectrum (Xcite 120Q, Lumen Dynamics Group Inc., Mis-
sissauga, Ontario, Canada), and filter cubes for cytoskeleton
imaging (LF635-B-000, excitation 635 nm, emission >650 nm;
Semrock Inc., Rochester, NY, USA) and AF lipofuscin imaging
(Long-pass GFP filter cube OSF-GFP-30LP-B-Z, excitation: 460–
490 nm, emission >505 nm, Semrock Inc.), all under control of
the integrated microscope software (cellSens Dimension
V1.7.1; Olympus). Camera parameters were set to: CCD
sensitivity HighLight mode, pixel clock 28 MHz, resolution
1344 3 1024 pixels.

To capture the RPE cytoskeleton, tissue was scanned in
several micrometers in the z-direction (in 0.4-mm steps). The
exposure time for AF imaging was determined on trial basis
from 2 to 3 perifoveal regions where high AF signal was

expected.30 Exposure times were adjusted so that the
maximum pixel intensity fell within the linear range of the
fluorescence reference intensity. Scans in z-direction through
the RPE cells were acquired in an apical to basal direction.
Granules at the beginning of the range were back-focused 2 lm
to ensure full capture of the entire cell. Potential loss of signal
due to scattering of light passing through the tissue was not
further evaluated. The effect of fluorophore quenching was
tested using the same settings used for AF imaging. Two RPE-
BrM tissues were excited continuously over 15 minutes, and
images were taken every 30 seconds. Within the first minute,
AF intensity decreased approximately 10%. During follow-up,
AF further decreased (down to 70% of the original AF), with a
steady state after approximately 5 minutes. Since our AF
measurements at one location were performed in significantly
less than 1 minute (~25 seconds), fluorescence quenching
could be omitted from the AF analysis.

Image Postprocessing

All images were processed using the microscope software.
Cytoskeleton imaging was followed by a 3-dimensional
deconvolution for every frame of the z-stack using the
constrained iterative module with the advanced maximum
likelihood estimation algorithm (ADVMLE, 10 iterations). The
extended focal imaging (EFI) module generated a projection
image from the z-stack. Signal originating from labeled f-actin
within RPE apical processes was removed with the ‘‘back-
ground subtraction’’ tool. Background was reduced to get
clearly delineated cytoskeletons. Imaging of autofluorescent
granules was followed by EFI processing only, without
background subtraction.

Cell Counts, Voronoi Analysis (Supplementary Fig.
S3)

We used images of phalloidin-labeled RPE to define the center
of each cell using a custom ImageJ plugin. In many images,
these estimates required examination and only minor editing
by a trained observer. In others, cell centers were identified

FIGURE 1. Retinal pigment epithelium–BrM flat-mount cytoskeleton and AF images are the basis for numerical density and AF maps. Representative
micrographs and digital maps show two donors at different ages. For each map, RPE flat mounts were imaged at 75 to 90 predefined locations in an
unbiased sampling pattern (Supplementary Table S2). At each location, cytoskeleton imaging ([A, E] fovea is shown) was followed by lipofuscin AF
imaging (B, F). Single RPE cells are delimited by labeled cytoskeleton (A, E). Autofluorescence values were normalized by a reference standard.34

The RPE layer shows variable AF (B, F), because the lipofuscin load differs from cell to cell, and because other organelles occupy space and block
signal transmission (e.g., nuclei in the middle and melanosomes in the apical 1/3). Retinal pigment epithelium numerical density (C, G) peaks in the
foveal center, decreases with eccentricity, and is similar in these age groups. Autofluorescence intensity (D, H) is highest outside the foveal center in
a perifoveal annulus and is higher in the older eye. Maps are displayed as left eyes, and rings are centered on the fovea and at intervals of 2 mm. The
black oval represents the optic disk. Maps of all study eyes are presented in Supplementary Figures S4 and S5.
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manually. For accurate cell densities, we defined a central
counting window in each image. This manually-chosen
polygon had at least one row of cells between it and the
image edge, and it included only cells with clearly delimited
cytoskeletons. Delaunay triangulation and Voronoi Diagrams
are well-established methods in retinal neurobiology in
defining plane cellular mosaics.31–33 Voronoi Diagrams were
generated for every RPE cytoskeleton image for determining
RPE packing geometry and cell area. A Voronoi Diagram is a
collection of regions that tessellate a plane, appearing similar
but not identical to an image of the cells. Voronoi regions were
used as surrogates for cells. The Delaunay triangulation is the
‘‘straight line dual’’ of the Voronoi Diagram and provided
information about packing geometry. Autofluorescence for
each cell was computed by summing intensities for all pixels
whose centers were inside the Voronoi region containing that
cell’s center. Autofluorescence for the entire image was
computed from the individual cell values. All AF values were
normalized to a common standard (see below).

Maps of Derived Values

Composite maps of mean cell density and AF between age
groups and differences between age groups were computed
for points assigned to nominal positions in the standard
sampling pattern,24 despite minor positional variations be-
tween tissues. Differences between 51 years and younger and
older than 80 years of age groups were computed for all
possible pairs of younger and older eyes at each sample point,
and the mean of those differences was calculated. For display,
values at locations between the nominal sampling points were
linearly interpolated.

Fluorescence Reference Standard

Properties of the fluorescence reference are detailed else-
where.34 Texas red dye and other proprietary compounds are
embedded in a plastic matrix (Microscopy/Microscopy Educa-
tion, McKinney, TX, USA). The reference was examined to
verify that the distribution of fluorescent material within it was
homogeneous by examining five randomly-chosen images
taken on two different days (data not shown).

Normalization of AF

AF intensities were normalized using these formulas:

IR ¼ ðG 3 sR 3 RÞ ð1Þ

IAF ¼ ðG 3 sAF 3 AFÞ ð2Þ

R ¼ IR=ðG 3 sRÞ ð3Þ

AF ¼ IAF=ðG 3 sAFÞ ð4Þ

AF=R ¼ ðIAF 3 sRÞ=ðIR 3 sAFÞ ð5Þ

where G ¼ gain of detection system (including optics and
filters); R ¼ fluorescence emission from reference; AF ¼
fluorescence emission from retina; IR ¼ measured reference
signal integrated over the exposure duration sR; IAF¼measured
flat mount signal integrated over the exposure duration sAF.

Equations 1 through 3 are calculations of the fluorescence
intensity of the reference; 4 is the calculation of the
fluorescence intensity of the AF image; and 5 is the
normalization formula for AF images at each location.

Plotting AF Versus Cell Area

For Voronoi regions representing individual RPE cells, total AF
(intensities summed over all pixels within the RPE cytoskele-
ton) was plotted versus cell area.

If AFpx equals AF for one pixel (the sum of pixel intensities
of a vertical stack of scans through the RPE cell), and N equals
number of pixels within the RPE cytoskeleton boundary, then
the total AF from one RPE cell is:

AFRPEcell ¼
XN

1

AFpx ð6Þ

AFRPEcell

CellArea
is a projected concentration, since it reflects the sum of

all pixels in the volume of the RPE cell.
There are limitations to this analysis. For our plots, we

assumed a linear relationship between total AF per cell and cell
area. We also determined that R2 of linear and quadratic
regressions did not provide better fits (data not shown).

Statistical Analysis

Linear regression mixed models were used to assess the
relationship between age group with measured outcomes
including cell density, AF, cell area, and number of neighbors
for specified regions of the flat mounts. Mixed models were
used to account for the within-person correlation that occurs
when multiple observations are taken from the same speci-
men. The standard variance component covariance structure
was specified. Similar models were used to assess the
relationship between fovea and annulus categories with
measured outcomes.

Analysis of covariance models were used to evaluate the
relationship between age group and normalized AF after
controlling for the area of individual cells. Two types of SEs
are available for these models: empirical- and model-based
estimators. Empirical- than model-based SEs were used,
because they are based on actual variations in the cluster-level
statistics, are considered to be more robust, and generate
consistent estimates even with a nonspecific correlation
structure.35,36 After an iterative fitting process, an unstructured
working correlation matrix was specified, because it mini-
mized the difference in variance estimates between empirical
and model-based SEs. Separate models were run for each
region of the eye. An interaction term was included in the
model to assess if the association between cell area and
normalized AF differed by age group. PROC GENMOD in SAS
v9.3 (SAS Institute, Inc., Cary, NC, USA) was used to account
for within-specimen variance. For both models, P-values less
than 0.05 were considered significant.

RESULTS

Overall topography of normalized RPE-AF and between-
individual variability are shown for representative tissues (Figs.
1, 2; Supplementary Fig. S4). The highest AF eyes were in the
older than 80 group (Supplementary Fig. S4). In both young
and older eyes, AF was highest in a perifoveal annulus 2 to 4
mm from the fovea (Figs. 1D, 1H), patterns highlighted in
composite maps of each age group (Figs. 2B, 2D). The
topography of AF is strikingly similar to the topography of
rod photoreceptors, which are absent from the foveal center
and high in a perifoveal annulus that is horizontally elongated
(Supplementary Fig. S6).24,37 Interestingly, cones also contrib-
uted to AF signal, as the signal in the foveal rod-free zone was
nonzero (Supplementary Fig. S4). Relative to AF, RPE cell
density was less variable. The peak density of 7500 cells/mm2
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was found at the fovea in both age groups, and density
decreased gradually with eccentricity to values of approxi-
mately 5000 cells/mm2 at the edge of the macula (3 mm; Figs.
1, 2; Supplementary Fig. S5; Supplementary Table S4). These
densities are in agreement with previous studies reporting
densities along single meridians (Fig. 2, Supplementary Table
S2)23,29 and are substantially higher than values reported for
RPE flat mounts by investigators who also reported unusually
low photoreceptor densities.38 Accordingly, foveal RPE cells
were significantly smaller than perifoveal and peripheral cells
(Supplementary Table S4).39,40

Age groups were compared through difference maps.
Despite individual variability, AF intensity increased significant-
ly with age (Fig. 2; Supplementary Table S4), most prominently
in an annulus of high AF but also extending superior-nasally,
and at lower overall levels in the foveal center. In marked
contrast, the RPE difference maps showed no significant cell
loss with age (Fig. 2, Supplementary Table S4), and even a
slight rise in some areas. Accordingly, the mean area of
individual cells did not change significantly with age. Our
observations concurred with previous literature showing
minimal age-changes in density (Supplementary Table S3).
Thus, high perifoveal AF in aging was unaccompanied by
detectable changes in cell number.

Measures of spatial density may have masked small or focal
losses that are accompanied by compensatory re-arrangements
within the monolayer.41 Therefore, we turned to a more
sensitive measure of packing geometry, using Voronoi analysis
to determine cell area and number of neighbors.33 Maximum
and minimum cell areas were more variable in older eyes than
younger eyes (Supplementary Table S4). The energetically most
favorable state for RPE cells is hexagonal,40,42 with constant
center-to-center spacing and six neighbors.43 We found a
predominance of six-neighbored cells only in the younger adult
fovea, where 58.9% of cells had six neighbors (Fig. 3). In older
eyes, smaller cells had three to four neighbors, and larger cells
had eight or more neighbors, up to 13 (Fig. 3). With age, the
proportion of six-neighbored RPE cells decreased, and six-
nonneighbored cells increased, with a significantly higher
proportion of cells with greater than or equal to eight neighbors
(Fig. 3). Thus, we conclude that RPE cells continuously re-
arrange themselves during lifetime, including in younger adults.
That lipofuscin load initiates this re-arrangement seems unlikely
in that this process occurs similarly in all regions examined.
While not appreciably losing cells, the intact RPE monolayer
nevertheless dynamically responds to its environment and
maintains geometric precision.

It is also possible that measures of mean AF masks age-
related changes in the fluorescence of individual RPE cells with
potential significance for cell loss at more extreme ages or in
AMD. For example, unusually bright cells with a high
lipofuscin load may be particularly vulnerable to disease. It
was apparent that the AF of individual cells was highly variable
in each of three canonical retinal locations of older eyes
(Supplementary Table S5), with a coefficient of variation (SD/
mean) of approximately 80%. This variability was explored by
assessing the relationship of AF to cell area, with DAF/ Darea
(slope of a linear fit) serving as a surrogate for the cellular
concentration of lipofuscin. This analysis revealed that the
total AF of an individual cell increased with cell size (Fig. 4),
most likely due to more intracellular AF granules, fewer light-
blocking melanosomes, or both.8,9 Similar linear fits were
found across ages at the fovea and perifovea (Fig. 4). In the
periphery of older eyes, this relationship had steep slopes. This
may be explained in part by reduced screening by melano-
somes. It also cannot be excluded that our peripheral samples,
at 8- to 10-mm eccentricity, were approaching the retinal edge
where fl uorophore A2E is abundant in humans

(Supplementary Fig. S1).44 These data imply that lipofuscin
load is regulated, and that regulatory principles are similar
throughout adulthood in healthy eyes.

DISCUSSION

We provided the first maps of human RPE cell number and AF,
without screening by pigments in overlying neurosensory

FIGURE 2. Composite and difference maps of RPE numerical density
and AF. Composite and difference maps of numerical density and AF
(AF intensity of human RPE in individuals � 51 years and > 80 years).
Composite maps (A–D): RPE numerical density peaks at the fovea (�
51: 6520 6 946 cells/mm2; >80: 6405 6 1323 cells/mm2) and
decreases with eccentricity in both age groups (Supplementary Table
S4). An annulus of intense AF localizes to the perifovea in both age
groups, corresponding to highest rod densities (Supplementary Fig. S6)
but slightly lower in inferior nasal quadrant.83 Difference maps (E–F):
warm colors indicate higher values, and cool colors indicate lower
values in the older group. Green indicates minimal differences between
groups. The numerical density difference map shows no significant age
change at fovea and periphery and a significant increase in cell density
with age in the perifovea (details in Supplementary Table S4). The AF
difference map shows significantly increased intensity in all regions
with age, especially at 2 to 4 mm from the foveal center. Difference
maps display the mean of all pair-wise differences between eyes each
of the locations analyzed in flat mounts. Excluding the youngest donor
(16 years) from the analysis did not change the results. Color bar for
differences in numerical density ranges between �2000 and þ2000
cells in increments of 250 cells/mm2. Color bar for differences in AF
intensity ranges between �0.3 and þ0.3 in increments of 0.0375
arbitrary units (a.u.). Other visualization conventions are the same as in
Figure 1.

RPE Autofluorescence and Cell Density IOVS j August 2014 j Vol. 55 j No. 8 j 4836

http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1
http://www.iovs.org/content/55/8/4832/suppl/DC1


FIGURE 4. The relationship between total AF and cell area is a measure of lipofuscin concentration and how it is regulated. Total AF per cell
increases with increasing cell size in both age groups. The slopes (DAF/Dcell area) do not change significantly with age at the fovea and perifovea
(fovea: P¼ 0.5662, perifovea: P¼ 0.5299). Slopes are significantly steeper in the periphery (P < 0.0001) for the younger than 80-years group. This
could be explained by more densely packed AF granules or loss of light blocking melanosomes8 or, most likely, the recent observation that
concentration of A2E, an abundant lipofuscin fluorophore, rises toward the retinal edge, where it is maximal.44 The relationship DAF/Dcell area is a
measure of the concentration of lipofuscin-attributable AF in individual cells. The plot shows total AF (a.u.) per cell versus cell area (lm2) on a
double logarithmic scale for illustrative clarity, for both age groups. Fovea, a region representative of other locations (for this measure, is shown
(Supplementary Table S5). Total AF is the sum of AF intensities of all pixels bounded by cytoskeleton of an individual RPE cell. Autofluorescent
granules within RPE cells are stacked rather than lying in a plane.8 Therefore, AF is expressed as a planimetric density (Supplementary Fig. S3). Each
circle represents a single cell. In total, more than 83,300 cells were analyzed (Supplementary Table S2). Linear fits are plotted for every tissue. Foveal
data were not available from all 20 tissues.

FIGURE 3. Retinal pigment epithelium cell packing geometry reflects monolayer remodeling over the lifespan. (A, B) Perifoveal RPE cells in a
younger adult are mostly hexagonal in shape, with six neighbors, whereas cells in an older adult, while still polygonal, have a more variable number
of neighbors. (A) A 36-year-old male donor, perifovea; (B) A 90-year-old female donor, perifovea. For illustrative purposes, red was manually
sharpened and brightened in (A, B) using Photoshop CS6 (Adobe, San Jose, CA, USA). (C) Retinal pigment epithelium cells have 3 to 13 neighbors.
Cells deviant from six neighbors can be found in both age groups. Phalloidin-labeling of actin cytoskeleton is shown. (D) Hexagonal cells are most
frequent (>50%) in the fovea, and decrease in frequency (<50%) with increasing eccentricity from the fovea, confirming in vivo findings in humans
by Morgan and colleagues.33 With age, the number of cells with six neighbors decreases significantly in the fovea and perifovea. In contrast, in the
fovea, the number of cells with five neighbors increases significantly, while in the perifovea the number of cells with five and seven neighbors
increases significantly. Cell density, mean cell area, and number of neighbors (Supplementary Table S4) indicate RPE cell re-arrangement occurs
throughout life (Supplementary Table S3). To highlight the differences in six-neighbored cells, the exact percentages are plotted next to the
columns.
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retina but with screening of RPE melanosomes in an en face
view, replicating the in vivo situation. Our results confirm and
extend the results that Wing et al.,17 obtained in histologic
cross-sections in 1978 using a different eye donor pool (Boston
versus Birmingham, unspecified race versus Caucasian).
Because our maps accounted for macular photoreceptor
inhomogeneity, our results reinforce the concept that RPE
lipofuscin formation starts at the photoreceptor outer seg-
ments13 and suggest that the topography of lipofuscin may
reflect differences in phagosome production and/or processing
by RPE in rod- and cone-rich areas of the macula. This idea was
considered early10,17 but was downplayed in pursuit of
lipofuscin toxicity and macular pigment protection theories,
and on the basis of evidence from animal models lacking strong
gradients in photoreceptor topography.20 Our novel analysis
provided unique insights with multiple areas of high signifi-
cance to clinical ocular imaging, diagnosis, and treatment.

First, our histologic AF maps provide a new cellular basis for
clinical AF findings.30,34,45 The variability, topography, and age-
related increase in histologic RPE AF paralleled clinical qAF,
which includes a photoreceptor bleaching step to isolate the
RPE signal.45 Consistent with the highest qAF intensities, peak
histologic AF was found at an eccentricity of 108 to 158 (2.9–
4.3 mm, perifovea) from the foveal center. Our results also
reflect the clinically observed increase of the total fundus AF in
healthy, aging maculas. As clinical qAF intensities decline after
age 70,30 our data from donors aged older than 80 years
possibly reflects a somewhat decreased total fluorescence
compared with the overall lifetime peak. Nevertheless, our
histologic data appear to exclude cell loss as an explanation for
the late life decrease in fundus AF. Other explanations for this
decline, such as an age-related increase in screening by
melanosomes or a dramatic reduction in photoreceptor outer
segment length, seem also unlikely.9,46 In particular, the
consistency of our results with AF in flat mounts and with
AF in tissue sections,17 which largely obviates concern about
screening by melanosomes, suggest that melanosome reduc-
tion is not responsible for these results. Therefore, we
hypothesize that this decrease is due to the loss of lipofuscin
granules from individual RPE cells, signifying declining health.
Conversely, the rise in RPE-AF in vivo before 70 years is not
detrimental and may be neutral in its effect, at least on cell
number. The effect of lipofuscin on other RPE functions in vivo
remains undetermined but may be neutral also.

Second, our data indicate that a contribution of RPE
lipofuscin to the age-related loss of overlying rod photorecep-
tors is unlikely. An early histologic analysis that permitted
neither accurate counts nor accurate localization relative to the
fovea reported loss of photoreceptors and RPE, correlated with
RPE lipofuscin.15 In contrast our studies using whole-mounted
retinas concluded that the primary locus of macular rod loss
was close to the fovea (0.5- to 3-mm eccentricity), that is, on
the inner slope of the ring of highest lipofuscin accumulation
(Fig. 5).24,25 Further, the current study found that foveal AF
increased where cone photoreceptors were relatively stable in
number. Thus, rod loss may be alternatively explained better
by age-related changes elsewhere in the photoreceptor
support system. With aging, Bruch’s membrane, a vessel wall
between the RPE and the choroidal blood supply, accumulates
lipoproteins of intraocular origin,47 creating a barrier to
transport,48 especially under the fovea, which lacks a blood
supply from the inner retina. In this vascular insufficiency/
nutritional deficiency model of aging,49 rods are affected
before RPE, because they are further from the vasculature, and
before cones, because cones are additionally supported by
Müller cells, at least for retinoids. Over time, translocation of
essential nutrients to the photoreceptors is hindered, causing
their decline. Age-related choroidal thinning, choriocapillary

endothelial loss, and endothelial gene expression changes also
support this model.50,51

Third, Voronoi analysis, a sensitive metric of cell packing in
a monolayer, provided evidence that RPE undergoes a life-long
re-arrangement. Possible mechanisms include cell division,
compensatory enlargement after cell loss,52 and fusion of
neighboring cells. Unequal cell division53 resulting in 3- and 13-
neighbored cells is a possibility but human RPE cells54

reportedly do not proliferate.55 It is yet uncertain whether
limited repair and regeneration arising from mitotic stem or
progenitor cells55 occurs in the postmitotic RPE. Interestingly,
large RPE cells with more than six neighbors were polygonal,
fit in an orderly mosaic, and obeyed population rules for
fluorophore accumulation (Fig. 4), suggesting that they are
healthy.42 We observed multinucleate RPE cells,39,56 implicat-
ing cell fusion, perhaps on a cooperative basis, as a strong
candidate mechanism for producing large cells. Our data from
elegant, polygonal, and spatially organized packing geometry
of human RPE provides metrics for model systems. While
cultured RPE cells may express RPE-specific proteins, their
packing often differs qualitatively from that of native RPE.
Therefore, an intact and polygonal (but not necessarily
hexagonal) RPE cytoskeleton should be included as a criterion
for physiological relevance of RPE and RPE-substitutes in
culture. We hypothesize that deviation from this geometrically
precise RPE polygonality potentially signifies distress, with an
aberrant deployment of proteins leading to interpretable
changes in morphology.

Fourth, our data bring from human eye pathology important
new information to the debate on lipofuscin’s role in AMD. The
lipofuscin toxicity hypothesis has driven extensive research
using cell culture, animal models, and clinical studies for 25
years. Unlike lipofuscin from other postmitotic cells which
contains abundant proteins of mitochondrial origin,57,58 the
composition of RPE lipofuscin granules is uniquely bis-retinoid
enriched.12,59,60 A biosynthetic pathway starting with all-trans

retinal in photoreceptors has been elucidated.61 The most
abundant bis-retinoid, A2E, was used in many in vitro

FIGURE 5. The topographies of age-related RPE-AF increase and
photoreceptor loss in aging human retina are not obviously related.24,25

Normalized AF along the vertical meridian from the 51 years or
younger and the 80 years or older groups in the current study and
spatial density photoreceptors along the same meridian from youngest
adult group in Curcio et al.24 are shown. Cone density was not shown
to change with aging in the 1993 study and is illustrated for the oldest
group only. Dotted line delimits the macula. The RPE-BrM-choriocap-
illaris complex is depicted schematically on the lower x-axis. An age-
related accumulation in lipoproteins in BrM, believed to contribute to a
transport barrier between choroidal vasculature and outer retinal
cells,48,84 and is thickest under the fovea (yellow).85 Arrows indicate
the highest proportional change for rod density and RPE-AF. Retinal
pigment epithelium–AF increases most near the perifoveal rod ring and
the foveal cone peak. Rod loss is worst where cone density is stable,
and where an accumulation in BrM that would affect transport to both
photoreceptor types is also abundant (yellow).
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experiments that seemingly supported this hypothesis by
achieving milestones of AMD progression-like cell death and
complement activation, following exogenous loading and light
exposure.62 Hyper-AF at the border of geographic atrophy, an
AMD end-stage featuring an inexorable spreading outward of
RPE atrophy, superficially supported a mechanism of increased
lipofuscin accumulation within individual cells before they
succumbed.63 These studies lead to the idea that reducing
lipofuscin accumulation or detoxifying lipofuscin components
are viable therapeutic strategies for GA, currently implemented
in clinical trials and preclinical studies.64–68 Moreover, the
rationale for blue-blocking IOL implantation after cataract
surgery for AMD prevention, which accounts for 25% of IOL
worldwide,69 assumes that lipofuscin components are photo-
sensitizers.70

However, mounting evidence, including the current study,
supports an alternate scenario. First, in the AMD end-stage of
geographic atrophy, lipofuscin-attributable hyper-AF does not
spatially predict progression,71 and focal fundus hyper-AF can
be just as easily explained by stacked cells as increased
intracellular lipofuscin concentration.72 Second, AF in the
posterior pole is not primarily associated with A2E in situ in
humans, although it is in mice.44,73,74 Third, RPE with impaired
autophagy recycles retinoids to photoreceptors poorly, sug-
gesting that lipofuscin may even be necessary for healthy
vision.75 Fourth, alternate theories for cell death and extracel-
lular lesion formation not involving lipofuscin, also based on
new eye pathology findings, now exist.76,77 Therefore, a
critical evaluation of the lipofuscin toxicity hypothesis should
be part of interpreting the outcomes of interventions involving
visual cycle modulators68 and blue-blocking IOL cataract
surgeries.

Finally, quantitative descriptors of single RPE cells at
precisely defined locations in human eyes will help validate
advanced RPE diagnostic techniques just as accurate photore-
ceptor maps contributed to the development of adaptive
optics-assisted cone imaging and rapid dark adaptometry, now
available commercially.78,79 These techniques include clinical
qAF, adaptive optics scanning laser ophthalmoscopy linked to
fluorescence or dark-field imaging,80,81 and hyperspectral
imaging to apportion total RPE-AF into constituent molecular
peaks.82 Our flat-mount data show RPE cell number, packing
geometry, and AF as a snapshot in time, and it cannot be
excluded that some of these donors might have developed
AMD had they lived longer. This requisite limitation of
histology will be addressed by our ongoing studies that
investigate flat mounts of donors with AMD, and by
longitudinal studies of living patients using imaging technol-
ogies newly informed by the normative data that we provide
herein.
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