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Canopy temperature is an important variable directly linked to a plant’s water status. Recent advances in Unmanned Aerial Vehicle
(UAV) and sensor technology provides a great opportunity to obtain high-quality imagery for crop monitoring and high-
throughput phenotyping (HTP) applications. In this study, a UAV-based thermal system was developed to directly measure
canopy temperature, skipping the traditional radiometric calibration process which is time-consuming and complicates data
processing. Raw thermal imagery collected over a cotton field was converted to surface temperature using the Software
Development Kit (SDK) provided by the sensor company. Canopy temperature map was generated using Structure from
Motion (SfM), and Thermal Stress Index (TSI) was calculated for the test site. UAV temperature measurements were compared
to ground measurements acquired by net radiometers and thermocouples. Temperature differences between UAV and ground
measurements were less than 5%, and UAV measurements proved to be more stable. The proposed UAV system was successful
in showing temperature differences between the cotton genotype. In conclusion, the system described in this study could
possibly be used to monitor crop water status in a field setting, which should prove helpful for precision agriculture and crop
research.

1. Introduction

Canopy temperature is an important indicator of water avail-
ability, water stress, and irrigation status in agriculture [1].
Measuring crop canopy temperature can help establishing
relationships with harvest yield, as well as support water
management decisions [2]. Remotely sensed data, which are
acquired by sensors on space-borne, air-borne, or ground-
based platforms, have been widely used in agriculture to esti-
mate crop parameters such as vegetation indices and Leaf
Area Index (LAI) [3, 4]. However, limitations of traditional
remote sensing technologies include low spatial and tempo-
ral resolutions for time-series analysis, as well as high cost
and low efficiency [5, 6].

Unmanned Aerial Vehicle (UAV) and sensor technology
are quickly evolving and offering a great opportunity for the
development of precision agriculture and high-throughput
phenotyping (HTP) systems for a variety of applications.
Most studies using UAV for agriculture have focused on
red-green-blue (RGB) and/or multispectral sensors to calcu-
late vegetation indices and monitor crop development for
yield forecasting. Advanced UAV systems can provide fine
spatial and high temporal resolution data at relatively low
cost so that crop traits such as height, canopy morphology,
and greenness can be estimated [2, 6–8]. Vegetation indices
were calculated by remotely sensed data from a multispectral
sensor mounted on a UAV to estimate LAI, which is one of
the key parameters determining photosynthesis, respiration,
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and transpiration of vegetation [2, 9]. Chang et al. [6] pro-
posed a method to monitor the growth of sorghum using a
commercially-available UAV, while Anthony et al. [7] used
a Micro-UAV system with a laser scanner to measure crop
height. Furthermore, Patrick and Li [8] generated 3D models
of blueberry bushes from UAV data to extract morphological
traits for genotype selection and found a strong relationship
between traditional growth indices and image-derived bush
volume. The UAV platforms with hyperspectral sensors have
used to extract phenotypes and to predict biomass for sor-
ghum [10–12]. Ramanurthy et al. [10] extracted features
from hyperspectral and RGB images for predictive modeling
of sorghum plants. Zhang et al. [11] developed nonlinear
regression models to predict sorghum biomass from multi-
temporal UAV-based hyperspectral and RGB data, while
Ali et al. [12] adopted hyperspectral, LiDAR, and RGB data
for sorghum biomass prediction.

Although canopy temperature may be used to detect crop
stress [13], there are challenges associated with the ability to
accurately measure canopy temperature using thermal cam-
eras, whether mounted on a ground-based platform [13],
manned and unmanned aerial platforms [14–17] or satellite
[18]. Data from each platform could be useful for different
purposes, however, as long as their different spatial resolu-
tion output is accounted for. Postharvest and quality evalua-
tion operations of fruits and vegetables have been conducted
using sensors and ground-based platforms [19–21]. Bulanon
et al. [22] studied fruit recognition using thermal imaging to
enhance the robotic harvesting of citrus. Berni et al. [14],
Zarco-Tejada et al. [15], and Gonzalez-Dugo et al. [16] used
a UAV platform to collect multispectral, hyperspectral, and
thermal data to calculate vegetation indices, water stress,
and canopy temperature of fruit tree species. Remotely
acquired thermal images from aerial platform have also been
used to derive the Crop Water Stress Index (CWSI) and map
canopy conductance in olive orchards [17]. Thermal imagery
collected from fixed-wing platforms at altitudes of 150m or
higher to cover large agricultural areas complicates image
preprocessing methods including radiometric calibration
and atmospheric correction [14, 15]. Ribeiro-Gomes et al.
[23] proposed an uncooled calibration algorithm for thermal
camera used in UAV applications for agriculture, while Berni
et al. [14] performed laboratory calibration using a blackbody
source to estimate stabilization procedure and absolute tem-
perature shifts for the radiometric sensor calibration. Atmo-
spheric correction methods have been applied to thermal
imagery based on the MODTRAN radiative transfer model
to calculate surface temperatures [15, 16]. Single-layer atmo-
sphere (uniform conditions including air temperature, rela-
tive humidity, and barometric pressure) corrections of
thermal imagery for fixed-wing UAV have been proposed
[14]. Additionally, thermal sensors can be affected by camera
tilt angles caused by the platform’s orientation, viewing
angle, and directional effects [17]. Rotary-wing UAV sys-
tems, on the other hand, could be a good alternative to over-
come limitations of fixed-wing platforms. Although rotary-
wing UAVs cover smaller areas at lower altitudes (<100m)
usually, these platforms tend to be more stable and provide
reliable data with higher spatial resolution (<10 cm) [6]. In

recent days, a multirotor UAV with a thermal camera used
to estimate the adaptive CWSI for precision agriculture
[24]. UAV-based thermal system provided relevant instanta-
neous and seasonal variations of water status [25].

In this study, we developed a UAV-based thermal system
using a quad-copter platform and a radiometric thermal sen-
sor. The framework of data collection and processing is pro-
posed to directly measure crop canopy temperatures without
the traditional radiometric calibration and/or atmospheric
correction as well as field-based measurement. Thermal
images can be collected over a cotton field to generate a can-
opy temperature and the crop stress index map. Canopy tem-
perature measured by the UAV-mounted sensor was
compared with ground-based measurements to evaluate the
performance of the proposed system.

2. Materials and Methods

2.1. Study Area and Data Acquisition. The test site was
located at the Texas A&M AgriLife Research and Extension
Center in Corpus Christi, Texas, USA (-97°33′E, 27°47′N)
(see Figure 1). Two genotypes of cotton (Gossypium hirsu-
tum L.) contrasting in leaf pigmentation were used. The line
TAMU4920 (Red leaves) has a marked presence of anthocy-
anins, whereas DP1044 (Green leaves) do not. Plot size for
each line was limited to 20 rows that were 12.2m long, spaced
0.96m apart, and followed East-West orientation. The mate-
rials were planted on June 20, 2016. Irrigation tapes were
installed on July 3, 2016, and plots were irrigated as needed
throughout the season, to promote adequate vegetative

641705 641720 641735

30
73

74
5

30
73

73
0

30
73

71
5

641735641720641705

0 5 10 15 m30
73

71
5

30
73

73
0

30
73

74
5

Figure 1: Image of study area taken by a Phantom 4 Pro on
September 8th, 2016. The coordinate system is WGS84 UTM 14N.
The red rectangle indicates the placement of ground sensors
(net radiometer and thermocouples), in the 11th row from
North. Meteorological data were collected at the study site by a
weather station located in the middle of the field between the
two cotton genotypes.
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growth. The crop height between red and green cotton was
similar at UAV data collection.

Ground-based leaf temperature measurements were col-
lected in each plot using ten type-T thermocouples (OMEGA
Engineering, Bridgeport, NJ), placed on row 11 (Figure 1).
The average of ten measurements was used to estimate the
leaf temperature of the plots. The sensors were installed at
the centre of the abaxial surface of sunlit main-stem leaves
using clear surgical tape with the sensor wires secured around
the leaf petioles by zip ties. Two 4-channel net radiometers
(model CNR1, Kipp & Zonen, Delft, Netherlands) were used
to measure net radiation (Rn) over the plots. The instruments
were installed at the centre of each field at a height of 2m
above the soil surface. The radiometer measured four com-
ponents of the surface radiation balance separately: direct
incoming shortwave radiation (SWin), reflected shortwave
radiation (SWout), longwave radiation from sky (LWin), and
longwave radiation emitted by the surface (LWout). LWout
was converted to surface temperature [26, 27] as

Tc =
LWout − 1 − εð ÞLWin

εσ

� �0:25
− 273:15, ð1Þ

where ε is the emissivity of the crop, assumed to be
0.96 [28], and σ is the Stefan-Boltzmann constant
(5:67 × 10 − 8Wm − 2K − 4).

The sensors were controlled by dedicated data-loggers
(model CR1000, Campbell Scientific, Logan, UT). The ther-
mocouples were multiplexed. For TAMU4920, an AM25T
(Campbell Scientific, Logan, UT) multiplexer was used, while
for DP1044, an AM16/32B (Campbell Scientific, Logan, UT)
multiplexer was used. The data-loggers were programmed to
scan the sensors every 30 seconds and compute 10-minute
averages.

The UAV system and thermal sensor used in this study
were a 3DR X8 octocopter system, (3D Robotics, Berkeley,
USA), and FLIR Vue Pro R 640 radiometric thermal camera
(FLIR, Wilsonville, USA), respectively (Figure 2). A PixHawk
flight controller (3DR, Berkeley, USA) was used for platform
and sensor integration; the sensor was mounted to the plat-
form using a custom 3D-printed mount. The thermal sensor
was equipped with a 9mm lens, producing images with
640 × 512 pixels and a spectral response in the range of
7.5-13.5μm. The detectable temperature range of the sensor

is -20-50°C. The raw images were saved as uncompressed
14-bit radiometric images with telemetry in standard meta-
data fields. The camera was factory-calibrated to calculate
temperatures with 5% measurement accuracy. The sensor
manufacturer, FLIR, provides a Matlab library for conversion
of pixel values in the raw image output to surface temper-
atures using radiometric metadata information and param-
eters such as emissivity, atmosphere temperature, relative
humidity, reflective temperature, and distance of the sen-
sor to target. Raw images were converted to canopy tem-
perature before applying the Structure from Motion
(SfM) algorithm to generate the orthomosaic image and
canopy temperature map.

The UAV flight parameters were determined based on
the field size and sensor specification (see Table 1). We
adopted a grid-style flight pattern and nadir view for data
collection, as described by Chang et al. [6]. A total of 89
geo-tagged thermal images were collected for the study site.

2.2. Conversion of Thermal Imagery and Image Mosaicking.A
Matlab Software Development Kit (SDK) is currently being
offered by FLIR as an “Add on Tool” to support the use of
FLIR thermal sensors. Although it is not open-source, the
user can install it for free and use the tools to view, analyze,
and capture data from FLIR thermal sensors directly in
Matlab. Five parameters, including emissivity, atmosphere
temperature, relative humidity, reflective temperature, and
sensor distance to target, have to be entered in order to con-
vert raw imagery to surface temperatures. Emissivity is
defined as the ratio of infrared energy emitted by the object,
compared to that emitted by an ideal blackbody. We used
an emissivity value of 0.96 for cotton [29]. Reflective temper-
ature is any thermal radiation originating from other objects
that reflects off the target [30]. We used the temperature
measured by a weather station in the field as a reflective tem-
perature. Atmosphere temperature and relative humidity
were selected in the National Centers for Environmental
Information (NCEI) provided by NOAA [31]. Flight altitude

GPS antenna

Flight
controller

Mount

Thermal

Figure 2: The integrated UAV platform, radiometric thermal sensor, and other components such as GPS and 3D printed mount.

Table 1: The summary of flight plan and data collection.

Flight parameters Value

Altitude 40m above ground

Overlap 75%

Date and time September 8, 2016 11 : 10~20 AM
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was used as the sensor’s distance to target. The digital num-
ber (DN) of each pixel in raw thermal images was input to
the function of the SDK with the parameters to calculate sur-
face temperatures. Figures 3(a) and 3(b) show individual raw
(digital number) and converted surface temperature images,
respectively.

After image conversion, surface temperature images were
processed using the Agisoft Photoscan Pro software to gener-
ate an orthomosaic image of the study area. Photoscan Pro
adopts the Structure from Motion (SfM) algorithm, which
is a photogrammetric imaging technique to estimate 3D
structures from 2D images [2, 6, 32, 33]. Generally, UAV
images can be stitched using tie-points between the images
for alignment and geo-referenced with GPS coordinate of
image location determined by GPS module equipped in the
UAV platform. In this study, the flight controller, PixHaw,
recorded GPS coordinates (X, Y, Z) when a trigger signal
was sent to the thermal sensors to capture images. Although
the single GPS module was used, all images included a GPS
coordinate in its metadata. Geo-tagged information was
input into Photoscan Pro to generate a geo-referenced ortho-
mosaic canopy temperature map. Image alignment to gener-
ate a sparse point cloud, the point optimization, dense point
cloud generation, and DSM/Orthomosaic generation were
conducted sequentially.

2.3. Thermal Stress Index (TSI). Canopy temperature has
been considered as a proxy for monitoring crop water status
[16]. Although CWSI can be calculated from thermal images,
upper and lower baseline temperature of air and canopy
should be measured over the whole growing season. How-
ever, Thermal Stress Index, which was optimized for cotton,
was defined as Equation (2) as below.

TSI =
max T f , Tb

� �
− Tb

Tb
, ð2Þ

whereT f is foliage temperature and Tb is the biochemically
determined baseline temperature. The crop-specific bio-
chemical temperature optimum was suggested as baseline
temperature. In the literature, The 27.5°Cmidpoint tempera-
ture of the Thermal Kinetic Window, which means the tem-
perature range for which the value of the apparent Michaelis

constant remained within 200% of the minimum observed
value, for cotton was examined as a baseline temperature
(Tb) for the TSI [34]. The values of TSI range from zero
to some positive limit. The biochemical-based TSI and
the physically based CWSI were highly correlated for cot-
ton across a range of environmental conditions. In this
study, the temperature value in the orthomosaic tempera-
ture map was considered as the foliage temperature (T f )
to calculate TSI.

3. Results and Discussion

3.1. Canopy Temperature & TSI Map. A canopy temperature
map was created from thermal images collected with the
UAV-based system using the SfM algorithm and geo-
tagged temperature images (see Figure 4(a)). The final can-
opy temperature map had a 7 cm spatial resolution. In this
study, an orthomosaic image with finer spatial resolution
could be generated since rotary-wing UAVs can fly at lower
altitude with fairly stable orientation, when compared to a
fixed-wing system. The temperature of bare soil and road
was higher than those of vegetation. Temperature differences
were also visible between green and red cotton, with the
green genotype exhibiting lower canopy temperatures.

A TSI map was computed using Equation (2) and ther-
mal data (see Figure 4(b)). As expected, similar to what was
seen for the surface temperatures, TSI values for the green
cotton genotype were lower and ranged from 0.2 to 0.3, while
the red cotton genotype exhibited TSI values approximately
0.1 higher. In the TSI map, it was found crops in the northern
area had more pressure of water. It could be supposed that
water was not enough due to the irrigation system, terrain
slope, or vegetation cover.

3.2. Evaluation of Canopy Temperature. The canopy temper-
ature from UAV and ground-based sensors was compared
(see Figure 5). The average of pixels on 11 rows in orthomo-
saic temperature map was adopted as UAVmeasurement. As
indicated by ground and UAV measurements, the red plants
were warmer than the green ones. The temperature of the red
cotton measured by the net radiometer, thermocouples, and
UAV was 33.69, 33.77, and 34.65°C, respectively. For the
green cotton, the net radiometer, thermocouples, and UAV

4700
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Figure 3: Examples of (a) raw image and (b) temperature-converted result.

4 Journal of Sensors



measured 31.96, 33.60, and 33.22°C, respectively. For both
plots, the UAV measurements slightly overestimated the
temperature of the plants. For the red cotton, the UAV over-
estimated the temperature with respect to the net radiometer
and thermocouples by 2.85% and 2.60%, respectively, while
for the green cotton, it overestimated by 3.94% and underes-
timated by 1.1%. The trend can be explained by the measur-
ing location of temperature and atmosphere effect. The
temperature at the top of the plant canopy should be higher
than at the middle layer of the plant. Since UAV measures
of the canopy surface, especially the top area, UAV overesti-
mated the temperature. Although UAV thermal imagery was
collected at the lower altitude (40m) than the conventional
platform, the higher atmosphere temperature (34.11°C) than
canopy affected the thermal camera capturing the energy in
the wavelength range. The leaf level measurements showed
a greater variability than the canopy temperature derived by
the UAV as shown by the standard deviations in Table 1. It
is well known that leaf temperature measurements tend to
be rather variable, since they are strongly influenced by the

angle of incidence of SWin [35]. Although the temperature
measured by the thermocouple was closer to it of the net
radiometer, the UAV measurements were in agreement with
the ground sensors and were successful in showing tempera-
ture differences between the plots (see Table 2).

4. Conclusions

In this study, a UAV-based thermal sensor system was
developed to measure canopy temperature using a radio-
metric calibrated thermal camera. Geo-tagged thermal
imagery was collected over a cotton field including two
different cotton genotypes exhibiting red and green leaves.
Raw thermal data was converted to surface temperature
using Matlab SDK provided by the sensor manufacturer.
Radiometric calibration was performed using environmen-
tal parameters such as emissivity and weather conditions.
Canopy temperature from UAV measurements was com-
pared with that of net radiometer and thermocouples.
The results show that the UAV system slightly overesti-
mated canopy temperature when compared to the ground
sensors. However, the errors did not exceed 5%, thus
showing that the deviations were small and not significant
for practical purposes. Additionally, the UAV system was
successful in showing temperature differences between
the plots. The proposed method showed the advantages
of measuring canopy temperature and generating crop
stress index map without field-based measurement. In
the future, UAV and ground-based multiple thermal data-
sets will be collected for a newly designed plot to verify
the proposed UAV-based thermal system for precision
agriculture.

The proposed methodology could be applied to various
agriculture fields to monitor crops for water stress and possi-
bly the development of precision irrigation management
applications in the future. However, there are a number of
challenges that need to be addressed in order to make UAV
technology practical for large commercial operations. One
of the current limitations is the difficulty to generate precise
geo-referenced orthomosaic thermal image without ground
control points. Timely processing of a large volume of UAV
data is also an issue that needs attention. Especially for crop
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Figure 4: Orthomosaic image of (a) canopy temperature and (b) Thermal Stress Index (TSI) for the study area.
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precision management applications, the time between data
collection and the output of actionable information needs
to be drastically reduced.
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