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Abstract

Modern society is interested in capturing high-resolution and fine-quality images due to the surge of sophisticated
cameras. However, the noise contamination in the images not only inferior people’s expectations but also
conversely affects the subsequent processes if such images are utilized in computer vision tasks such as remote
sensing, object tracking, etc. Even though noise filtration plays an essential role, real-time processing of a
high-resolution image is limited by the hardware limitations of the image-capturing instruments. Geodesic
Gramian Denoising (GGD) is a manifold-based noise filtering method that we introduced in our past research
which utilizes a few prominent singular vectors of the geodesics’ Gramian matrix for the noise filtering process.
The applicability of GDD is limited as it encounters O(n6) when denoising a given image of size n × n since
GGD computes the prominent singular vectors of a n2 × n2 data matrix that is implemented by singular value
decomposition (SVD). In this research, we increase the efficiency of our GGD framework by replacing its SVD
step with four diverse singular vector approximation techniques. Here, we compare both the computational
time and the noise filtering performance between the four techniques integrated into GGD.
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1. Introduction

The surge of high-caliber imaging devices in the fields such as medical diagnosis, astronomy, and film
industry produces high-resolution and fine-quality images [18]. However, due to unforeseen instrumental and
environmental conditions, the images generated by them might be contaminated with noise [6]. Thus, filtration
of noise to restore the natural image quality that includes all the image features including edges and texture
is required as a prepossessing step. Especially, such noise filtration is essential if the images are used for any
subsequent processes such as remote sensing or object tracking. Since noise, edges, and texture are high-
frequency components of an image, discerning them to filter out noise is an arduous task [33]. This limitation
frequently causes the loss of some vital features of the recovered image. Thus, restoration of the original
quality of the recovered images without losing essential features is a crucial property that denoising methods
should possess. Image denoising methods are two types, patch-based and pixel-based, where patch-based image
denoising methods have significant advantages such as their efficiently smooth flat regions due to overlaps
between patches, and their ability to preserve fine image details and sharp edges [2].

Deep learning based image denoising methods, such as [5], [36], and [37], learn a mapping function on a
training set that contains clean image pairs by optimizing a loss function [7]. Recently, these methods have
received surged attention as they have performed well in many computer vision tasks [7]. However, the deep
learning image denoising frameworks suffer from major drawbacks, that are prominent in typical neural networks,
such as difficulties in training when the noise contamination is high, vanishing gradient when the network is
considerably deep, and high computational cost due to repeated training [16].

Geodesic Gramian Denoising, abbreviated as GGD, [14], is a novel patch-based denoising method that uses
singular vectors of the Gramian matrix of geodesic distances between patches. In GGD, first, the noisy image
of, say of size n × n, is partitioned into partially overlapping moving square-shaped patches with a known
length, say ρ, such that each patch is centered at one unique pixel of the image. Each of these n2 patches is
a point in a ρ2-dimensional space where a low-dimensional manifold underlies [12, 13]. Then, GGD computes
geodesic distances between each pair of points in the patch space. This geodesic distance matrix of size n2 ×n2

is converted into its Gramian matrix where the singular vectors of the Gramian matrix are utilized to generate
the noise-filtered version of the given image. We have shown in Ref. [14] using five benchmark computer vision
test images that GGD attains superior denoising performance. However, GGD suffers from high computational
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complexity of O(n6) when denoising an image of size n× n since it requires the computation of singular value
decomposition (SVD) of a Gramian matrix of size n2 × n2. Numerical implementation of SVD is carried out
using the LAPACK routine available in Ref. [3] that includes two processes: first, the given matrix of size m×n
is reduced to a bidiagonal matrix form using Householder transformations with O(mnmin(m,n)) operations,
and then use the QR algorithm in Ref. [9, 10], to compute the SVD of the bidiagonal matrix [19]. Thus, in
this research, we approximate the singular vectors using four iterative schemes and replace the computationally
expensive SVD scheme in GGD with those approximations.

Monte Carlo Low-Rank Approximation, abbreviated as MCLA, available in Ref. [11], iteratively approxi-
mates a L-rank surrogate for the conventional SVD of a data matrix A of size m× n. Each iteration involves
the reading of O(L) of columns or rows of A, and so the complexity of their algorithm is O(kmn). Compared
to other known algorithms, MCLA guarantees that each iteration is a better L-rank approximation than the
previous iteration. Augmented Lanczos Bidiagonalization, abbreviated as ALB, available in Ref. [4], computes
either a few largest or smallest singular triplets of a large matrix. For that, it makes a sequence of projections
on low-dimensional Krylov subspaces that are determined similarly to the Lanczos bidiagonalization method.
Preconditioned Iterative Multimethod Eigensolver, abbreviated as PIME, available in Ref. [35], provides a pre-
conditioned, two-stage approach to effectively and accurately approximate a small number of extreme singular
triplets. PIME is based on the state-of-the-art eigensolver package, named PRIMME, for both the largest and
the smallest SVs. Randomized Singular Value Decomposition, abbreviated as RSVD, available in Ref. [22], is a
powerful tool that computes partial matrix decompositions and then random samples of those decompositions
to identify a subspace that captures most of the features of a matrix. Now, we replace the SVD step of GGD,
with the above four approximation frameworks, MCLA, ALB, PIME, and RSVD, to create four hybrid versions
of GGD.

This paper is organized as follows: first, we provide the technical details about GGD, MCLA, PRIME, and
RSVD in Sec. 2; then, we analyze and compare the denoising performance of GGD and those four hybrid GGD
frameworks with respect to their parameters, using three reconstruction metrics PSNR, SSIM, and RE in Sec. 3.
Finally, we provide a summary along with conclusions in Sec. 4. Table 1 and Table 2 state nomenclature and
abbreviations, respectively.

2. Method

Here, first, we state GGD algorithm [14], with details and then introduce four diverse algorithms for approx-
imating SVD. These four algorithms are Monte Carlo Rank Approximation (MCLA) [11], Augmented Lanczos
Bidiagonalization [4], Preconditioned Iterative Multimethod Eigensolver (PIME) [35], and Randomized Singular
Value Decomposition (RSVD) [22].

2.1. Geodesic Gramian Denoising

GGD presented in Ref. [14] undergoes five steps including a step that requires it to compute the SVD of a
data matrix of size n2 × n2 for a given image of size n× n. The computational complexity of this step is O(n6)
for denoising an image of size n× n that we will replace with four singular vector approximation techniques.

First, GGD partitions the input noisy image, denoted as Un×n, into equal-sized square-shaped overlapping
patches, denoted as u(xij)’s; i, j = 1, . . . , n, of odd lengths, denoted as ρ, centered at each pixel of the image.
For simplicity, we write u(xk) for u(xij) where k = n(i − 1) + j and 1 ≤ k ≤ n2 in some places. Each
patch u(xk); i = 1, . . . , n2 can be represented as a ρ2-dimensional point. All the patches of a given image
represent a high-dimensional data cloud that can be projected onto a low-dimensional manifold. Second, we use
the neighbor search algorithm in Ref. [1] to create a graph structure, denoted as G(V,E) where V represents
vertices and E represents edges, on this dataset by defining the points, {u(xk)|k = 1, . . . , n2}, as the vertex set
V . For a give neighborhood parameter, defined as δ, we define the edge set E by joining each point u(xk) to its
δ nearest neighbors such that the weight of the edge between the point u(xk) and such neighbor point, defined
as u(xk′), is the Euclidean distance between them, denoted as d(k, k′) where

d(k, k′) = ‖u(xk)− u(xk′ )‖2. (1)

GGD approximates the geodesic distance between two patches in the patch-set as the shortest path distance
between the corresponding two vertices in the graph G(V,E) with the aid of Floyd’s algorithm [8].

Third, GGD transforms the geodesic distance matrix, denoted as D ∈ R
n2×n2

≥0 , into its Gramian matrix,
denoted as Gn2×n2 , using

G[i, j] = −1

2

[

D[i, j]− µi(D) − µj(D) + µ(D)
]

, (2)

where µi(D), µj(D), and µ(D) are the means of the i-th row of the matrix D, j-th column of that matrix,
and the mean of the full matrix, respectively, [25]. Fourth, the noisy patches uk are denoised using only a

2



Table 1: Nomenclature

Notation Description
σi i-th Singular value
λl l-th eigenvalue
ǫ Machine epsilon
η Tolerance
α Relative Norm of Noise
ζ Relative noise
d(k, k′) Distance between patches u(xk) and u(xk′)
L Singular triplets’ threshold such that l = 1, . . . , L
L′ Singular triplets’ threshold of ALB such that {σ̂i, ûi, v̂i}, i =

1, ..., L′

i,j, k Indices for matrices
l Index for singular triplets.
(t) Index for iterations of an algorithm.
k Index of the ij-th pixel such that k = n(i − 1) + j
m Number of rows of a matrix or length of an image
n Number of columns of a matrix or width of an image
h Number of rows or columns of a matrix
δ Nearest neighbor parameter
ρ Patch size
U = [u1, ...,un] ∈ Rm×n

V = [v1, ...,vn] ∈ Rm×n

Ṽ = [ν1| . . . |νl| . . . |νn2 ]T

Λ = Diag(λ1, . . . , λl, . . . , λn2)
Σ = Diag(σ1, ..., σn)

Ũℓ+1 = [p1, ...,pℓ+1] ∈ Rm×(ℓ+1), Matrix in ALB

Uℓ+1 = [q1, ..., qℓ+1] ∈ Rn×(ℓ+1), Matrix in ALB
ˆ̃Uk+1 Predicted of Ũℓ+1 for (k+1)-th singular triplets

Ûk+1 Predicted of Uℓ+1 for (k+1)-th singular triplets
Bℓ+1,ℓ ∈ R(ℓ+1)×ℓ, Bidiagonal matrix in ALB

B̂k+1 Predicted of Bℓ+1 for (k+1)-th singular triplets
U⊥ A basis for the orthogonal complement subspace of U .

Ũ Denoised Image
D Geodesic distance matrix
G Gramian matrix
I Original image
I Identity matrix
U Input image for the algorithm (often noisy)
Γ Weights of Shepard’s method
Q Orthogonal matrix in randomized SVD
ui i-th left singular vectors
vi i-th right singular vectors
νl l-th eigenvector
wk Vectors in MGSA
ck K columns which are randomly chosen in MGSA
O Eigenvectors corresponding to k largest eigenvalues of G in MCLA
ũ(xij) Denoised version of the patch u(xij)
xij ij-th pixel of the image
u(xij) Patch centered at the point xij

Kℓ(A, b) = span{b, Ab, ..., Aℓ−1b}, ℓ ≥ 1, Krylob subspace generated by A
and b

G(V,E) Graph G with the vertex set V and edge set E

N (xk̃) Neighborhood at the pixel k̃
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Table 2: Abbreviations

Abbreviation Description
GGD Geodesic Gramian Denoising
MCLA Monte Carlo Low-Rank Approximation
ALB Augmented Lanczos Bidiagonalization
PIME Preconditioned Iterative Multimethod Eigensolver
RSVD Randomized Singular Value Decomposition
RE Relative Error
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity Index Measure

few, denoted as L, prominent right singular vectors, defined as νl’s where l = 1, . . . , L, of the Gramian matrix
computed using Def. 2.2 with A = G and n1 = n2 = n because prominent singular vectors only represent image
features excluding image noise. We denote the denoised version of the noisy patch uk as ũk that GGD produces
by

ũ(xk) =
L
∑

l=1

〈u(xk),νl〉νl, (3)

where νl represents l-th prominent singular vector of the Gramian matrix where l = 1, . . . , L, and 〈·, ·〉 denotes
the inner product.

Definition 2.1. Consider that Diag (λ1, . . . , λn) represents a diagonal matrix formed with the vector (λ1, . . . , λn)
as its diagonal. Let A ∈ R

n×n be a matrix and Un×n be a unitary matrix such that UTU = I. Then, ED of A
is A = UΛUT , where Λn×n =Diag (λ1, . . . λn), [19].

Definition 2.2. Consider that Diag
(

σ1, . . . , σmin(m,n)

)

represents a diagonal matrix formed with the vector
(

σ1, . . . , σmin(m,n)

)

as its diagonal. Let A ∈ R
m×n be a matrix, and Um×m and Vn×n are unitary matrices such

that UTU = I and V TV = I, respectively. Then, the SVD of A is A = UΣV T , where Σm×n =Diag
(

σ1, . . . σmin(m,n)

)

with σ1 ≥ · · · ≥ σmin(m,n) ≥ 0. Here, for l = 1, . . . , n, the column vector νl represents l-th right singular vector
of A such that V = [ν1, . . . ,νl, . . . ,νn], [19].

Fifth, in order to construct the denoised image from the denoised patches GGD estimates the intensity of
each pixel of the image using all the other pixels at the same location with respect to the location of the image
but each exists in one of the ρ2 overlapping patches. GGD combines all these estimations using a moving least
square approximation given by using Shepard’s method [29], as

Ũ(xk) =
∑

xt∈N (xk)

Γ(xk,xt)[ũ(xt)]tn , (4)

where the neighborhood of the target pixel xk is

N (xk) = {xt | ‖xk − xt‖∞ ≤ ρ/2}, (5)

[26], and the weight is given by

Γ(xk,xt) =
e−‖xk−xt‖2

∑

xt′∈N (xk)
e−‖xk−xt′‖2 . (6)

Here, for each pixel xt ∈ N (xk), there exists a new index tn such that the extrinsic pixel location (i, j) at
that new index of the patch ũ(xt), denoted by [ũ(xt)]tn , is the same as the extrinsic pixel location of xk. The
weighting term in Eqn. (6) weights close by pixels with more weight while the faraway pixels with less weight.
Thus, according to Eqn. (4), merging assures that the pixel xk of the reconstructed image is highly influenced
by the pixels at the same location of the nearby patches. The main steps of GGD are summarized in Alg. 1.

For an input image of size n × n, step 4 of Alg. 1 requires to compute the ED [see the computation of
{νl|l = 1, . . . L} of Eqn. (3)] of a Gramian matrix G of size n2 × n2. In GGD [14], we employed regular SVD
that calculates the entire singular vector spectrum of G using Def. 2.2 and then we chose L prominent singular
vectors for denoising. Especially, the implementation of SVD is done by two processes: first, the given matrix
of size m× n is reduced to a bidiagonal matrix form using Householder transformations with O(mnmin(m,n))
operations, and then use the QR algorithm1 in Ref. [9, 10], to compute the SVD of the bidiagonal matrix with
O(n) operations [19]. Thus, the computational complexity of GGD is dominated by step 4 of Alg. 1 with O(n6)

1QR algorithm is a procedure to calculate the eigenvalues and singular vectors of a given matrix using a Schur decomposition.
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Algorithm 1 Geodesic Gramian Denoising (GGD) [14].
Inputs: noisy image (Un×n), patch length (ρ), nearest neighborhood size (δ), and singular vector threshold (L).
Outputs: noise-reduced image (Ũn×n).

1: Construct n2 overlapping square-shaped patches each with the length ρ from the noisy image Un×n and
denote the patch set as {u(xk)|k = 1, . . . , n2}.

2: Produce the graph structure G(V,E) from the patch set using the nearest neighbor search algorithm in [1].
Use Floyd’s algorithm in [8], to approximate the geodesic distances in the patch space and then produce
the geodesic distance matrix D.

3: Construct the Gramian matrix G from the geodesic distance matrix D using Eqn. (2).
4: Compute the right singular vectors {νl|l = 1, . . . L} corresponding to the L biggest eigenvalues of the

Gramian matrix G
5: Produce the noise-free patches {ũ(xk)|k = 1, . . . , n2} using the right singular vectors {νl|l = 1, . . . L} as

explained by Eqn. (3).
6: Merge noise-free patches using Eqns. (4) and (6), and generate the denoise image Ũn×n.

as it computed SVD of Gramian matrix of the size n2 × n2 for an input image of n× n. However, GGD always
performs superior denoising with a significantly small number of eigenvectors. Thus, in the Secs. 2.2-2.5, we
present four singular vector approximation schemes that we can use to approximate the required number of
prominent SVs and then replace SVD of step 4 of Alg. 1 to increase the computational efficiency of GGD.

2.2. Monte Carlo Low-Rank Approximation

Monte Carlo Low-Rank Approximation (MCLA) [11], uses an iterative Monte Carlo sampling approach to
approximate the SVD of a data matrix A of size m × n by computing the L-rank approximation, for some
L ∈ N where L < m,n. Each iteration involves the reading of O(L) of columns or rows of the data matrix
that eventually attains a computational time complexity of O(Lmn). Note that, since the Gramian matrix G of
GGD is of size n2 ×n2 for a given image of size n×n, the computational time complexity of MCLA generating
L-prominent singular vectors is O(Ln4). Instead of precisely computing the singular vectors of G as stated in
Step 4 of Alg. 1, we approximate those singular vectors using MCLA and then perform the denoising.

We formulate MCLA for a general data matrix A of size m× n, and then we replace this Am×n by Gn2×n2 .
First, we start the MCLA algorithm by computing the initial L-rank approximation, denoted as B0 ∈ R

m×n,

of G. For that, let c
(0)
1 , . . . , c

(0)
n ∈ R

m be the n columns of A. Choose L integers 1 ≤ n1 < . . . , nL ≤ n

randomly and let ν
(0)
1 , . . . ,x

(0)
L ∈ R

m be the orthonormal set obtained from c
(0)
n1 , . . . , c

(0)
nL using the modified

Gram-Schmidt algorithm given in Alg. 5.2.6 of Ref. [20]. Then, set

B(0) =

L
∑

l=1

x
(0)
l

(

ATx
(0)
l

)T

. (7)

Now, for t = 0, . . . , T , we compute L-rank approximation of A, denoted as B(t) ∈ R
m×n, which is improved

from B(t−1) ∈ R
m×n. Let x

(t−1)
1 , . . . ,x

(t−1)
L ∈ R

m is the orthonormal set involved in the computation of B(t−1)

such that B(t−1) =
∑L

l=1 x
(t−1)
l

(

ATx
(t−1)
l

)T

. Now, we choose random L′ columns of A where 1 ≤ L′ ≤ n

and denote them by c
(t)
1 , . . . , c

(t)
L′ ∈ R

m. Let, X be the subset spanned by x
(t−1)
1 , . . . ,x

(t−1)
L , c

(t)
1 , . . . , c

(t)
L′ .

For L < p ≤ L + L′, we generate orthonormal basis w
(t)
1 , . . . ,w

(t)
L , . . . ,w

(t)
p ∈ R

m of X obtained from

x
(t−1)
1 , . . . ,x

(t−1)
L , c

(t)
1 , . . . , c

(t)
l . For L < p ≤ L + L′ using a modified Gram-Schmidt algorithm. Now, de-

fine a p× p non-negative definite matrix

C =

(

(

ATw
(t−1)
i

)T (

ATw
(t−1)
i

)

)p

i,j=1

. (8)

We compute L-prominent eigenvectors ofC that we denote as x̃
(t)
1 , . . . , x̃

(t)
L ∈ R

p. We compute
{

x
(t−1)
l ∈ R

m
∣

∣

∣
l = 1, . . . , L

}

such that
(

x
(t)
1 , . . . ,x

(t)
L

)

=
(

w
(t)
1 , . . . ,w(t)

p

)(

x̃
(t)
1 , . . . , x̃

(t)
L

)

(9)

Then,

B(t) =

L
∑

l=1

x
(t)
l

(

ATx
(t)
l

)T

, (10)
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is the improved rank L approximation of A from B(t−1). Now, while the approximated L prominent singular
values of A are given by

σl =

√

(

ATx
(t)
i

)T (

ATx
(t)
i

)

, (11)

corresponding right singular values, denoted by
{

ν
(t)
l

∣

∣

∣
l = 1, . . . , L

}

, are given by

ν
(t)
l =

1

σl
ATx

(t)
l , (12)

Algorithm 2 Monte Carlo Low-Rank Approximation (MCLA) [11].
Inputs: data matrix (A ∈ R

m×n), rank (k), number of iterations (TI), tolerance (η).
Outputs: rank L approximation B ∈ R

m×n of A, approximated L prominent singular values
({σl | l = 1, . . . , L}), and their approximated right singular vectors ({νl | l = 1, . . . , L})
1: Compute L-rank approximation of A with L columns (or rows) of A using Eqn.(7).
2: for t = 1 to TI do

3: Select L′ columns (or rows), c
(t)
1 , . . . , c

(t)
L′ ∈ R

m, from A at random. Consider
{

x
(t−1)
l ∈ R

m
∣

∣

∣
l = 1, . . . , L

}

is the orthonormal set involved in the computation of B(t−1).

4: For L ≤ p ≤ L + L′, compute orthonormal basis w
(t)
1 , . . . ,w

(t)
L , . . . ,w

(t)
p of L′ columns and orthonormal

set and compute C using the orthonormal basis as in Eqn. (8).

5: Compute L-prominent eigenvectors
{

x̃
(t)
l ∈ R

p
∣

∣

∣
l = 1, . . . , L

}

of C in Eqn. (8). Convert these eigenvec-

tors to
{

x
(t−1)
l ∈ R

m
∣

∣

∣
l = 1, . . . , L

}

using Eqn. (9)

6: Compute B(t) using Eqn. (10).
7: if ‖B(t−1)‖/‖B(t)‖ > 1− η then

8: Goto 11.
9: end if

10: end for

11: B := B(t);

approximated singular values of A are
{

σl

∣

∣

∣
l = 1, . . . , L

}

where σl :=

√

(

ATx
(t)
i

)T (

ATx
(t)
i

)

, and

approximated singular vectors of A are
{

ν
(t)
l = 1

σl
ATx

(t)
l ∈ R

m
∣

∣

∣
l = 1, . . . , L

}

.

For a given image of size n× n, we compute the Gramian matrix Gn×n using Steps 1-3 in Alg. 1. Then, we
approximate L prominent singular vectors using Alg. 2 with A = Gn×n. Finally, we use those singular vectors
to compute the noise-free image as explained in Steps 5-6 of Alg. 1.

2.3. Augmented Lanczos Bidiagonalization

Augmented Lanczos Bidiagonalization (ALB) [4], is a framework for the computation of a few of the largest
(or smallest) singular triplets of a large matrix, say A of order n×m. ALB computes sequences of projections
of A onto judiciously chosen low-dimensional Krylov subspaces. The method is implemented by augmentation
of Krylov subspaces that are determined similarly as in the standard Lanczos bidiagonalization method where
the augmentation is imposed by either Ritz vectors or harmonic Ritz vectors.

The first step of ALB is to approximate the data matrix A ∈ R
m×n by a bidiagonal matrix, denoted

as B ∈ R
m×n, using the Lanczos bidiagonalization process [4]. Bidiagonalization is a widely used kernel

that transforms a full matrix into a bidiagonal form using orthogonal transformations. The bidiagonalization
procedure is a preprocessing step that significantly lowers the cost of the implicit implementation of the SVD
algorithm. For given data matrix A and the initial unit vector p(1) ∈ R

n, this process yields the decomposition

AP (t) = Q(t)B(t), (13)

ATQ(t) = P (t)
(

B(t)
)T

+ r(t)
(

e(t)
)T

, (14)

where P (t) ∈ R
n×h, Q(t) ∈ R

m×h,
(

P (t)
)T

P (t) = I(t), P (t)e(1) = p(1),
(

Q(t)
)T

Q(t) = I(t), r(t) ∈ R
n, and

(

P (t)
)T

r(t) = 0. Lanczos bidiagonalization governing Eqns. (13) and (14) are numerically implemented in
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Algorithm 3 Lanczos bidiagonalization [4].
Input: data matrix (A ∈ R

m×n), initial vector of unit length (p1 ∈ R
n), and the number of bidiagonalization

steps (TB).
Output: upper bidiagonal matrix (B ∈ R

h×h) with entries αj and βj , matrices of orthonormal columns (P =
[p1, . . . ,pn] ∈ R

n×h and Q = [q1, . . . , qn] ∈ R
m×h), and residual error (r ∈ R

n).

1: Initialization: P1 = p1, q1 = Ap1, α1 = ‖q1‖2, q1 = q1/α1, and Q1 = q1

2: for t = 1 to TB do

3: r(t) = AT q(t) − α(t)p(t)

4: Reorthogonalization: r(t) = r(t) − P (t)
(

(

P (t)
)T

r(t)
)

5: if t < TB then

6: β(t) = ‖r(t)‖2; p(t+1) = r(t)/β(t), and P (t+1) = [P (t),p(t+1)]
7: q(t+1) = Ap(t+1) − β(t)q(t)

8: Reorthogonalization: q(t+1) = q(t+1) −Q(t)
(

(

Q(t)
)T

q(t+1)
)

9: α(t+1) = ‖q(t+1)‖2; q(t+1) = q(t)/α(t+1), and Q(t+1) = [Q(t), q(t+1)]
10: end if

11: end for

12: B = B(t), P = P (t), and Q = Q(t)

Alg. 3. Alg. 3 is carried out in finite precision arithmetic; thus, the columns of P and Q are not necessarily
orthogonal unless they are reorthogonalized.

Now, we perform SVD on this bidiagonal matrix (Bh×h) according to Def. 2.2 and generate singular triplets
{σl,ul,vl|l = 1, . . . , h} where σ1 ≥ · · · ≥ σh ≥ 0. Entries of the singular triplet hold the relation

Bvl = σlul, BTul = σlvl, l = 1, . . . , h. (15)

We determine approximate singular triplets {σ̃l, ũl, ũl}, l = 1, . . . , h of A from singular triplets of B by

σ̃l = σl, ũl = Qul, ṽl = Pvl (16)

Combining Eqn. (15) with Eqns. (13) and (14) gives

Aṽl = σ̃lũl, AT ũl = σ̃lṽl + reTuj (17)

Eqn. (17) suggests that the singular triplets {σ̃l, ũl, ṽl|l = 1, . . . , h} be qualified to be approximated singular
triplets of A if reTuj is sufficiently small. Especially, the ALM scheme accepts them as singular triplets if

‖r‖2|eTul| ≤ δ‖A‖2, (18)

where δ ∈ R
+ and ‖A‖2 is approximated as the largest SV of B.

It is well known that the implicitly restarted Lanczos bidiagonalization methods can suffer from numerical
instability due to propagated round-off errors that delays or prevent convergence of desired eigenvalues and
eigenvectors [4]. To increase the numerical stability, we augment Krylov subspaces by certain Ritz vectors as
explained in Ref. [30]. Consider that the approximated right singular vectors {ṽl, l = 1, . . . , h} of A in Eqn. (16)
are Ritz vectors of ATA associated with Ritz values {σ̃2

l , l = 1, . . . , h}. Let the Ritz vectors {ṽl, l = 1, . . . , L}
associated with L-largest Ritz values be available, assume that r 6= 0, and introduce the matrix

P̃L+1 =
[

ṽ1, . . . , ṽL,ph+1

]

(19)

Let r̃L be the remainder orthogonal to the vectors {ul, l = 1, . . . , h} defined in Ref. [4] and introduce the
matrices

Q̃L+1 =

[

ũ1, . . . , ũL,
r̃L

‖r̃L‖

]

(20)

and

B̃L+1 =









σ̃1 0 ρ̃1

σ̃L ρ̃L
0 α̃L+1









∈ R
(L+1)×(L+1), (21)

where ρ̃l = (ũl)
TAph+1, l = 1, . . . , h. Then, an analogous representation of Eqns. (13) and (14) using Eqns. (19),

(20), and (21) are

AP̃L+1 = Q̃L+1B̃L+1, (22)
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and

AT Q̃L+1 = P̃L+1

(

B̃L+1

)T

+ rL+1 (eL+1)
T , (23)

respectively.
Augmenting by Ritz vectors as described above gives good approximations to the largest singular triplets of

A. However, Ref. [24] observed that when seeking to compute the smallest singular triplets of A, augmenting
by harmonic Ritz values can give faster convergence than augmenting by Ritz values. Let L′ smallest singular
triplets of Bh×h+1 determine the matrices

U ′ = [u′
1, . . . ,u

′
L′ ] ∈ R

h×L′

V ′ = [v′
1, . . . ,v

′
L′ ] ∈ R

(h+1)×L′

Σ′ = Diag[σ′
1, . . . , σ

′
L′ ] ∈ R

L′×L′

(24)

We now derive the relations analogous to Eqns. (13) and (14) for harmonic Ritz vectors. We introduce QR
factorization

[

B−1
h U

′

LΣ
′

L −βhB
−1
h eh

0 1

]

= Q′
L+1R

′
L+1, (25)

where Q′
L+1 ∈ R

(h+1)×(L+1) has orthonormal columns and R′
L+1 ∈ R

(L+1)×(L+1) is upper triangular. We denote
the matrices

P̂L+1 =
[

p̂1, . . . , p̂L+1

]

= Ph+1Q
′
L+1 (26)

Q̂L+1 =
[

Q̂L, q̂L+1

]

∈ R
m×(L+1), with Q̂L = QhU

′
L, (27)

and

B̃L+1 =









σ′
1 0 γ̃1

σ′
L γ̂L

0 α̂L+1









(

R′
L+1

)−1 ∈ R
(L+1)×(L+1), (28)

where γ̂l = −βh(q̂l)
T q̂h + (q̂l)

TAph+1, l = 1, . . . , L.
Then, an analogous representation of Eqns. (13) and (14) using Eqns. (26), (27), and (28) are

AP̂L+1 = Q̂L+1B̂L+1, (29)

and

AT Q̂L+1 = P̂L+1

(

B̂L+1

)T

+ rL+1 (eL+1)
T
. (30)

respectively.
For a given image of size n× n, we compute the Gramian matrix Gn×n using Steps 1-3 in Alg. 1. Then, we

approximate L prominent singular vectors using Alg. 4 with A = Gn×n. Finally, we use those singular vectors
to compute the noise-free image as explained in Steps 5-6 of Alg. 1.

2.4. Preconditioned Iterative Multimethod Eigensolver

The singular vector approximation scheme that we are utilizing here is named Preconditioned Iterative
Multimethod Eigensolver (PIME) [35], which is an extension of the state-of-the-art package PRIMME [31].
This state-of-the-art SVD package enables practitioners to solve a variety of large and sparse singular value
problems with or without preconditioning that assures unprecedented efficiency, robustness, and accuracy, for
both smallest and largest singular triplets.

PIME inputs a data matrix, denoted as A ∈ R
m×n, and two parameters, namely, the number of desired

singular triplets, denoted as TI , and tolerance, denoted as δ, which then outputs approximated L-many singular
triplets. PIME relies on eigensolvers that work on the equivalent eigenvalue formulations on C, where

C = ATA ∈ R
n×n (or C = AAT ∈ R

m×m), (31)

and on B, where

B =

[

0 AT

A 0

]

R
(m+n)×(m+n). (32)
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Algorithm 4 Augmented Lanczos Bidiagonalization (ALB).
Input: data matrix (A ∈ R

m×n), initial vector of unit length (p1 ∈ R
n), number of bidiagonalization steps (TB),

number of desired singular triplets (L), tolerance (δ), machine epsilon (ǫ), and Boolean variable harmonic (h).

Output: approximated singular triplets
(

{σl,ul,vl}Ll=1

)

.

1: Produce the bidiagonal matrix B by running the Lanczos bidiagonalization Algorithm, e.i., Alg. 3, on A.
2: Compute the SVD of B using Def. 2.2 and generate the singular triplets {σl,ul,vl|l = 1, . . . , h} where

σ1 ≥ · · · ≥ σm ≥ 0.
3: Check convergence:

if all l = 1, . . . , L desired singular triplets satisfy the inequality in Eqn. (18) then
Exit

end if

4: Compute the augmenting vectors:
if not harmonic or σh/σ1 > ǫ−1/2 then

Determine matrices P = P̃L+1, Q = Q̃L+1, and B = B̃L+1 given in Eqns. 19, (20), and 21, respectively.
end if

if harmonic and σh/σ1 ≤ ǫ−1/2 then

Compute the partial SVD of Bh×h+1 using Eqn. (24) and QR-factorization using Eqn. (25). Determine
matrices P = P̂L+1, Q = Q̂L+1, and B = B̂L+1 given in Eqns. (26), (27), and (28), respectively. end if

5: The available matrices P , Q, B, and the vector r satisfy

AP = QB ; ATQ = PBT + reTL.

Append h − L columns to the matrices P , Q, and h − L rows and columns to the matrix B. Denote the
matrices so obtained by Ph, Qh, and Bh, respectively. Determine a new residual vector and denote it by
rh.

6: Goto 4.

PIME starts on C because without preconditioning the convergence in terms of iterations it is much faster than
that on B where the cost per iteration on C is up to two times cheaper than that on B (because of dimension n
versus n+m). PIME refers to the computations on C as the first stage of the method and switches to a second
stage that it works on B if further accuracy is required.

First, PIME computes eigenpairs of C in Eqn. (31) using Def. 2.1. Let,
(

λC
i ,x

C
i ∈ R

n
)

, i = 1, . . . , n be
eigenpairs of C computed using Def. 2.1. Then, Rayleigh-Ritz scheme is used to approximate the eigenpairs,

denoted as
(

λ̃C
i , x̃

C
i

)

, i = 1, . . . , n, on the vector basis of
[

xC
1 , . . . ,x

C
n

]

. Set, the singular triplets (σ̃i, ũi, ṽi) , i =

1, . . . , n such that σ̃i =
√

|λ̃C
i |, ṽi = x̃C

i , and ũi = Ax̃C
i σ̃i. The convergence criterion is set PIME to stop when

the residual norm of the singular value triplets of A is less than ‖A‖2δ, i.e.,

‖r̃i‖ =
√

‖Aṽi − σ̃iũi‖2 + ‖Aũi − σ̃iṽi‖2 < ‖A‖2δ (33)

Eqn. (33) can be transformed into a convergence criterion for the eigensolver on C as

‖r̃Ci ‖ = ‖Cx̃C
i − λ̃C

i x̃i‖2 <

√

|λ̃C
i |‖C‖2δ (34)

This eigensolver returns when all requested triplets satisfy the convergence criterion. However, the eigensolver
may reach its maximum achievable accuracy before the residual norm reduces below the above convergence tol-
erance. If the tolerance is set below this limit the eigensolver may stagnate whereas if the limit is overestimated,
then the number of iterations of the second stage will increase, making the whole solver more expensive.

In the second stage, PIME seeks eigenpairs of the augmented matrix B ∈ R
(m+n)×(m+n) in Eqn. (39). If

U⊥ ∈ R
m×(m−n) is a basis for the orthogonal complement subspace of U ∈ R

m×n, we define the orthonormal
matrix

X =
1√
2

[

V −V 0

U U
√
2U⊥

]

∈ R
(m+n)×(m+n), (35)

where V ∈ R
n×n. The vectors 1√

2
[ṽi; ũi], for i = 1, . . . , L, are set as initial guesses of the eigensolver as follows

from Eqn. (35) and compute ED of B as

BX = X Diag(λ1, ..., λn,−λ1, ...,−λn, 0, ..., 0), (36)

where 0 is repeated (m− n)-times in Diag. This approach can compute all eigenpairs accurately such that the

residual norm is close to ‖A‖2ǫ. Let,
(

λ̃B
i , x̃

B
i ∈ R

m+n
)

, i = 1, . . . , (m+n), be eigenpairs of B approximated by
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applying Rayleigh-Ritz scheme on the vector basis of
[

xB
1 , . . . ,x

B
(m+n)

]

. Set, the singular triplets (σ̃i, ũi, ṽi) , i =

1, . . . , (m+ n) such that σ̃i = |λ̃B
i |, ṽi = x̃B

i (1 : n), and ũi = x̃B
i (n + 1 : m+ n). The convergence criterion is

set PIME to stop when the residual norm of the singular value triplets of B is less than
√
2‖B‖2δ, i.e.,

‖r̃Bi ‖ = ‖Bx̃B
i − λ̃B

i x̃i‖2 ≈
√
2‖r̃i‖ <

√
2‖B‖2δ, (37)

based on the assumption that ‖x̃B
i (1 : n)‖2 ≈ ‖x̃B

i (n+ 1 : m+ n)‖2.

Algorithm 5 Preconditioned Iterative Multimethod Eigensolver (PIME)
Input: data matrix (A ∈ R

m×n), number of desired singular triplets (L), tolerance (δ)
Output: approximated singular triplets {σ̃l, ũl, ṽl, }, l = 1, ..., L.

First stage: working on C:
1: Set the convergence criterion according to Eqn. (33), i.e., the residual norm of the singular value triplets of

A is less than ‖A‖2δ.
2: Compute eigenpairs

(

λC
l ,x

C
l

)

, l = 1, . . . , L using ED in Def. 2.1 seeking L largest eigenvalues of C = ATA
(or C = AAT )

3: Perform Rayleigh-Ritz on the returned vector basis
[

xC
1 , . . . ,x

C
n

]

and approximate eigenpairs
(

λ̃C
l , x̃

C
l

)

, l =

1, . . . , L

4: Set σ̃l = |λ̃C
l |

1
2 , ṽl = x̃C

l , ũl = Gṽl
˜σ−1
l

5: if all the singular triplets of C converged, i.e., satisfy Eqn. (34) then
6: Return {σ̃l, ũl, ṽl, }, l = 1, ..., L
7: end if

Second stage: working on B:

8: Set initial guesses as 1√
2

[

ũl

ṽl,

]

l = 1, ..., L

9: Set the convergence criterion according to Eqn.(37), i.e., the residual norm of the singular value triplets of
B is less than

√
2‖B‖2δ.

10: Approximate the eigenpairs
(

λ̃B
l , x̃

B
l

)

, l = 1, . . . , L of B given in Eqn. (39) by applying the Rayleigh-Ritz

scheme on the vector basis of X in Eqn. (35).
11: Set σ̃l = |λ̃B

l |, ṽl = x̃B
l (1 : n), ũl = x̃B

l (n+ 1 : m+ n).
12: Return {σ̃l, ũl, ṽl}, l = 1, ..., L

2.5. Randomized Singular Value Decomposition

Randomized Singular Value Decomposition (RSVD) [22], combines probability theory with numerical linear
algebra to develop an efficient, unbiased, and randomized algorithm to approximate SVD. RSVD offers an
efficient construction of L number of orthonormal vectors that nearly span the range of given nonsquare data
matrix A ∈ R

m×n so that such vectors enable an efficient approximation for SVD of A. RSVD undergoes two
stages computational process: First stage) computation of an approximate orthonormal basis, denoted as Q,
for the range of A; and Second stage) approximating SVD of A using such orthonormal basis Q. Randomness
only occurs in Step 1 and Step 2 is deterministic for a given Q.

• First stage Here, the goal is to produce an orthonormal matrix Q with as few columns as possible such
that

A ≈ QQ∗A, (38)

where Q∗ denotes the adjoint of Q. Draw L Gaussian random columns ω1, ω2, . . . , ωL from Am×n.
Then, project them sing the linear map A such that Y = AΩ where Ω = [ω1,ω2, . . . ,ωL]. Finally, find
the orthonormal matrix Q by using QR factorization of Y , i.e., Y = QR. While having as few columns
as possible in the basis matrix Q increases efficiency, having more columns in it increases the accuracy of
the approximation.

• Second stage Since the number L of columns of Q is substantially less than both dimensions of Q, we
can efficiently compute

B = Q∗A, (39)
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where B has only L-many rows. We can then efficiently calculate the SVD of B as

B = WΣV ∗ (40)

where the columns of both W and V are orthonormal, and Σ is a diagonal L × L matrix whose entries
are all non-negative. Let,

U = QW (41)

and combining Eqns. (38)–(41) yields SVD of A such that

A ≈ QQ∗A = Q(B) = QWΣV ∗ = UΣV ∗. (42)

If L is substantially less than both dimensions of A, then A has far more entries than any other matrix in
the above calculations.

Algorithm 6 Randomized Singular Value Decomposition (RSVD) [22].
Inputs: data matrix (A ∈ R

m×n) and the number of desired singular triplets (L).
Outputs: approximated singular triplets {σ̃l, ũl, ṽl, }, l = 1, ..., L.

First stage:

1: Generate an n× L Gaussian matrix Ω by drawing columns of A randomly.
2: Produce Y = AΩ.
3: Generate an orthonormal matrix Q using QR factorization, i.e., Y = QR.
4: Construct a matrix Q whose columns form an orthonormal basis for the range of Y .

Second stage:

5: Form B = Q∗A
6: Compute an SVD of the small matrix B = WΣV ∗

7: Set U = QW
8: Return {σ̃i, ũi, ṽi}, i = 1, ..., L, where σ̃i, ũi, and ṽi are the i-th diagonal entry of Σ, i-th column of U , and

i-th column of V ∗, respectively.

3. Performance Analysis

Here, we analyze the performance of four hybrid GGD frameworks, made by integrating four SVD approxi-
mation techniques, namely, MCLA, ALB, PIME, and RSVD, in terms of accuracy and computational time by
implementing them on image denoising tasks. The scope of our experimental procedure is applying GGD and its
four hybrid variations to three test images, namely Barbara, Cameraman, and Mandrill, that are contaminated
with three relative noise levels. The accuracy of the noise filtration is assessed by three performance metrics,
relative error (RE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). Thus,
this section includes three subsections, image preprocessing, performance metrics, and examples.

3.1. Image preprocessing

Gaussian noise is one of the most famous types of noise present in images taken by cameras; thus, we
contaminate our test images with Gaussian noise and then attempt to filter it out using hybrid GGD frameworks
presented in this paper. The probability density function (PDF) of Gaussian noise is given by

Pg(z, µ, γ) =
1

σ
√
2π

e
−(z−µ)2

2σ2 , (43)

where z is gray-level, µ is the mean of the distribution, σ is the standard deviation of the distribution.
Consider that we are given a noise-free image of size n × n, denoted as In×n. We draw a noise sample of

size n× n, denoted as Nn×n, from the Gaussian PDF given in Eqn. (43) with µ = 0 and some σ. Noisy image,
denoted as Un×n, is generated by additive rule as

Un×n = In×n +Nn×n. (44)

Since our analysis is based on gray images, we transform the colored images into gray images by taking the
average across the three color channels. We compute the relative percentage noise, denoted as ζ, by

ζ =
‖U − I‖2
‖I‖2

100%. (45)
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The original noise-free image I100×100 is imposed with diverse levels of noise intensities by changing σ of the
PDF in Eqn. (43) to create three noisy images with ζ = 30%, 40%, and 50%. Since U ’s represent images, each
entry of these matrices should be between 0–255 even after imposing the noise. Thus, we adjust U by replacing
the values less than zero with zeros and the values more than 255 with 255s.

3.2. Performance metrics

The performance of the four hybrid GGD frameworks is assessed by three famous performance metrics RE,
PSNR, and SSIM which we provide in Def. 3.1, Def. 3.2, and Def. 3.3, respectively. While RE and PSNR
measure two aspects of the quality of the image reconstruction, RE and PSNR are related since the term
‖I − Ũ‖2 in RE is related to RMSE in PSNR by ‖I − Ũ‖2 = n×RMSE. Thus, RE becomes a small value and
PSNR becomes a large value in the case of I ≈ Ũ that guarantees better denoising.

Definition 3.1. Let, the two-dimensional matrix I represents a reference image of size n×n and Ũ represents
any other image of interest. The relative error, abbreviated as RE, of the image Ũ with respect to the reference
image I is defined as

RE(I, Ũ) = ‖I − Ũ‖2
‖I‖2

. (46)

Here, max(I) represents the maximum possible pixel value of the image I. RE ranges between zero and one
such that zero ensures pure similarity between I and Û while 1 ensures perfect dissimilarity.

Definition 3.2. Let, the two-dimensional matrix I represents a reference image of size n×n and Ũ represents
any other image of interest. Peak signal to noise ratio [23], abbreviated as PSNR, of the image Ũ with respect
to the reference image I is defined as

PSNR(I, Ũ) = 20 log10

(

max(I)
RMSE(I, Ũ)

)

. (47)

Here, max(I) represents the maximum possible pixel value of the image I. Since the pixels in our images of
interest are represented in 8-bit digits, max(I) is 255. PSNR ranges between zero and ∞ such that zero ensures
pure dissimilarity between I and Û while ∞ ensures perfect similarity.

Definition 3.3. Let, a two-dimensional matrix I represents a reference image of size n× n and Ũ represents
an image of interest. Structural similarity index measure [34], abbreviated as SSIM, of the image Ũ with respect
to the reference image I is defined as the product of luminance distortion (I), contrast distortion (C), and loss
of correlation (S), such as

SSIM(I, Ũ) = I(I, Ũ)C(I, Ũ)S(I, Ũ), (48)

where

I(I, Ũ) = 2µIµŨ + c1
µ2
I + µ2

Ũ + c1
,

C(I, Ũ) = 2σIσŨ + c2
σ2
I + σ2

Ũ + c2
,

S(I, Ũ) = σIŨ + c3
σIσŨ + c3

.

(49)

Here, µI and µŨ are means of I and Ũ , respectively; σI and σŨ are standard deviations of I and Ũ , respectively;
and σIŨ is the covariance between I and Ũ . Moreover, c1, c2, and c3 are very small positive constants to avoid
the case of division by zero. SSIM ranges between -1 and 1 such that -1 indicates pure dissimilarity while 1
indicates perfect similarity.

3.3. Examples

Here, we implement the four hybrid GGD frameworks to denoise noisy versions of three benchmark computer
vision test images, Barbara, cameraman, and mandrill available in Ref. [28]. In order to assess the computational
time of GGD and its four hybrid versions, we implement these five frameworks on images of variable sizes on the
same computer with the configuration of 11th Generation Intel Core i7-1165G7, 4 cores each with 4.70 GHz, 8
GB DDR4 3200MHz RAM. Here, we work on square-shaped images of size n×n for simplicity. First, we create
six versions of the image Barbara with the lengths n = 50, 60, 70, 80, 90, 100 and impose an additive Gaussian
noise sample with relative percentage noise of 30%. Then, we execute GGD and the other four of its hybrid
frameworks over the images of n = 50, 60, 70, 80, 90, and 100 with some arbitrary parameter combination of
(δ, ρ, L) = (10, 5, 15), and compute the computational time for denoising. Fig. 1 showing the computational
time, in seconds (s), with respect to image length (n) justifies that the hybrid versions of GGD that are made
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Figure 1: Computational time, in seconds (s), of GGD and its four hybrid versions with respect to the length of one side of a square-
shaped image, i.e, n for an image of n× n. First, we create six versions of the image Barbara with the sizes n = 50, 60, 70, 80, 90,
and 100, and impose an additive Gaussian noise sample with relative percentage noise of 30%. We executed all five frameworks
over these test images on a computer with the configuration of 11th Generation Intel Core i7-1165G7, 4 cores each with 4.70 GHz,
8 GB DDR4 3200MHz RAM. (a) Computational time attained by each framework of denoising six test images where the plots of
MCRA, ALB, RSVD, and PIME are overlapped. While (b) shows the first cropped version of (a) which limits the vertical axis at
1s, (c) shows the second cropped version of (a) which limits the verticle axis at 0.1s.

by incorporating SVD approximation techniques into GGD attain significantly less computational time. We
observe that the order from the smallest to the largest computational cost of the hybrid frameworks is RSVD,
MCRA, PIME, and ALB.

Now, we asses the denoising performance of GGD and four of its hybrid frameworks by implementing them
on three test images Barbara, cameraman, and mandrill. Our parameter space is δ = 8, 10, 12, ρ = 3, 5, 7,
and L = 15, 20, 25 for ζ =20%; δ = 10, 12, 14, ρ = 5, 7, 9, and L = 15, 20, 25 for ζ =30%; and δ = 12, 14, 16,
ρ = 7, 9, 11, and L = 15, 20, 25 for ζ =40%. First, we impose three noise levels, ζ = 20%, 30%, and 40% into
each of the three test images. Then, for each test image and the noise level, we implement GGD and the four
of its hybrid frameworks with all the parameter combinations, i.e., δ’s, ρ’s, and ζ’s. We compute the similarity
between the noise-free original test image and its denoised version using the three performance metrics RE,
PSNR, and SSIM. For each test image and noise level, we choose the best-denoised version with respect to each
PSNR and SSIM. Table 3 presents both RE and PSNR along with optimized parameter values with respect to
PSNR, as they are related so that the best denoising is predicated by small RE and big PSNR. Fig. 2 shows
the images denoised by each method with their optimized parameter values. We observe that RSVD attains
the best denoising performance with respect to PSNR while PIME attains the second best. The performance
of GGD, MCLA, and ALB are mostly similar. The performance, assessed using PSNR, of all five methods
decreases as the noise contamination increases. Table 4 presents SSIM and optimized parameter values with
respect to SSIM. Fig. 3 shows the images denoised by each method with their optimized parameter values.
We observe in Table 4 that while PIME attains the best denoising performance with respect to SSIM, all the
other frameworks’ performances are mostly similar. The structural similarity between the true image and the
denoised image decreases for all five methods decreases as the noise contamination increases.

4. Conclusion

Filtering out noise from an image while preserving image features is an arduous task as noise blends into
features. Our previous work presented in Ref. [14], named GGD, presented an image denoising framework that
is capable of producing accurate denoising of a noisy image. However, the implementation of GGD for denoising
of big images is inefficient as it requires computing singular vectors through conventional SVD which gets highly
expensive when the image gets bigger. In this paper, we utilized four diverse singular vector approximation
techniques to replace the conventional SVD computation step. The performance analysis is based on three test
images each imposed with three nose levels. The performance of GDD and each of its hybrid frameworks are
compared using visual perception and three similarity metrics, namely, RE, PSNR, and SSIM.

The conventional SVD encounters a computational complexity of O(mnmin(m,n)) for a matrix of order
m × n. Denoising an image of size n × n requires GGD to compute some, say L, prominent singular values
of patches’ geodesic distance matrix of size n2 × n2 using SVD that encounters computational complexity of
O(n6), which makes the complexity of GGD to beO(n6). The approximation methods that we incorporated were
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Table 3: PSNR and RE for the denoising of GGD and its four hybrid frameworks, MCLA, ALB, PIME, and RSVD. Three test
images, namely, Barbara, cameraman, and mandrill, are imposed with three Gaussian relative noise levels, ζ = 20%, 30%, and
40%. Each noisy image is denoised using each method along with its best parameter combination (δ, ρ, L) that is optimized with
respect to PSNR. The best parameter combinations are shown in parenthesis, the REs for those combinations are shown in square
brackets, and the PSNRs for those combinations are shown in other values. For each noisy image, we used the coloring red, blue, and
green to indicate the method with the best, second best, and third best performance. The parameter space for the optimization is
δ = 8, 10, 12, ρ = 3, 5, 7, and L = 15, 20, 25 for ζ =20%; δ = 10, 12, 14, ρ = 5, 7, 9, and L = 15, 20, 25 for ζ =30%; and δ = 12, 14, 16,
ρ = 7, 9, 11, and L = 15, 20, 25 for ζ =40%.

data ζ(%) GGD MCLA ALB PIME RSVD

Barbara

20
22.84 [0.1358] 22.22 [0.1459] 22.88 [0.1353] 22.88 [0.1351] 22.89 [0.1351]
(10, 5, 20) (10, 7, 15) (10, 7, 15) (10, 7, 15) (8, 7, 15)

30
22.32 [0.1443] 21.39 [0.1605] 22.09 [0.1481] 22.09 [0.1481] 22.17 [0.1468]
(10, 5, 15) (10, 7, 20) (10, 7, 15) (10, 7, 15) (12, 9, 15)

40
20.80 [0.1719] 20.27 [0.1826] 21.02 [0.1676] 21.02 [0.1676] 21.26 [0.1629]
(12, 7, 15) (14, 7, 25) (16, 9, 15) (16, 9, 15) (16, 9, 15)

Cameraman

20
20.94 [0.1721] 22.91 [0.1371] 21.07 [0.1695] 22.28 [0.1474] 22.28 [0.1474]
(10, 3, 25) (8, 3, 15) (12, 7, 15) (10, 3, 15) (10, 3, 15)

30
19.61 [0.2005] 20.78 [0.1753] 20.54 [0.1801] 21.20 [0.1670] 20.97 [0.1714]
(12, 7, 15) (14, 5, 25) (14, 7, 15) (14, 5, 15) (12, 5, 15)

40
17.91 [0.12439] 19.29 [0.2081] 19.60 [0.2007] 19.60 [0.2007] 19.78 [0.1968]
(16, 11, 25) (14, 7, 15) (16, 7, 15) (16, 7, 15) (16, 9, 20)

Mandrill

20
21.07 [0.1530] 21.36 [0.1481] 20.29 [0.1675] 21.38 [0.1477] 21.15 [0.1517]

(8, 3, 25) (8, 7, 15) (12, 7, 15) (8, 3, 15) (8, 3, 15)

30
19.02 [0.1939] 18.80 [0.1989] 18.98 [0.1947] 18.98 [0.1947] 19.03 [0.1937]
(12, 7, 20) (10, 7, 25) (10, 7, 15) (10, 7, 15) (14, 7, 15)

40
14.98 [0.1948] 18.93 [0.1959] 19.20 [0.1899] 19.20 [0.1899] 19.23 [0.1891]
(14, 7, 25) (14, 9, 20) (16, 9, 15) (16, 9, 15) (14, 7, 15)

Table 4: SSIM for the denoising of GGD and its four hybrid frameworks, MCLA, ALB, PIME, and RSVD. Three test images,
namely, Barbara, cameraman, and mandrill, are imposed with three Gaussian relative noise levels, ζ = 20%, 30%, and 40%. Each
noisy image is denoised using each method along with its best parameter combination (δ, ρ, L) that is optimized with respect to
SSIM. The best parameter combinations are shown in parenthesis and the SSIMs for those combinations are shown in other values.
For each noisy image, we used the coloring red, blue, and green to indicate the method with the best, second best, and third best
performance. The parameter space for the optimization is δ = 8, 10, 12, ρ = 3, 5, 7, and L = 15, 20, 25 for ζ =20%; δ = 10, 12, 14,
ρ = 5, 7, 9, and L = 15, 20, 25 for ζ =30%; and δ = 12, 14, 16, ρ = 7, 9, 11, and L = 15, 20, 25 for ζ =40%.

data ζ(%) GGD MCLA ALB PIME RSVD

Barbara

20
0.6395 0.6527 0.6398 0.6638 0.6536

(12, 5, 15) (8, 5, 25) (12, 7, 15) (8, 5, 15) (12, 5, 15)

30
0.5848 0.5864 0.5858 0.5858 0.5882

(10, 5, 15) (10, 5, 25) (14, 9, 15) (14, 9, 15) (14, 9, 15)

40
0.5069 0.5168 0.5310 0.5310 0.5309

(12, 7, 15) (16, 7, 20) (16, 9, 15) (16, 9, 15) (14, 9, 15)

Cameraman

20
0.6359 0.5991 0.6256 0.6256 0.6221
(8, 7, 25) (8, 5, 25) (8, 7, 15) (8, 7, 15) (12, 7, 15)

30
0.5784 0.5063 0.5170 0.5170 0.5207

(12, 7, 15) (10, 7, 20) (10, 7, 15) (10, 7, 15) (12, 7, 15)

40
0.4820 0.4542 0.4550 0.4550 0.4485

(12, 7, 15) (16, 11, 20) (12, 11, 15) (12, 11, 15) [12, 9, 15]

Mandrill

20
0.5847 0.6326 0.5239 0.6050 0.5825

(10, 3, 15) (8, 7, 15) (8, 7, 15) (8, 3, 15) (10, 3, 15)

30
0.4144 0.4579 0.4250 0.4435 0.4427

(14, 5, 20) (12, 5, 20) (10, 7, 15) (12, 5, 15) (12, 5, 15)

40
0.3643 0.4536 0.4173 0.4173 0.4503

(16, 7, 20) (12, 7, 15) (16, 9, 15) (16, 9, 15) (16, 7, 15)
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Figure 2: Denoising images using GGD and four of its hybrid frameworks, MCLA, ALB, PIME, and RSVD. Three test images,
namely, Barbara, cameraman, and mandrill, are imposed with three Gaussian relative noise levels, ζ = 20%, 30%, and 40%. Each
noisy image is denoised using each method along with its best parameter combination (δ, ρ, L), shown in Table 3, which is optimized
with respect to PSNR.
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Figure 3: Denoising images using GGD and four of its hybrid frameworks, MCLA, ALB, PIME, and RSVD, with optimized
parameters with respect to SSIM. Three test images, namely, Barbara, cameraman, and mandrill, are imposed with three Gaussian
relative noise levels, ζ = 20%, 30%, and 40%. Each noisy image is denoised using each method along with its best parameter
combination (δ, ρ, L), shown in Table 4, which is optimized with respect to SSIM.
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Monte Carlo Low-Rank Approximation (MCLA), Augmented Lanczos Bidiagonalization (ALB), Preconditioned
Iterative Multimethod Eigensolver (PIME), and Randomized Singular Value Decomposition (RSVD). While
the conventional approximation techniques, MCLA, ALB, and PIME encounter computational complexity of
O(mnL), the randomization-based approximation method RSDV encounter only O(mn log(L)). Compared to
the original GGD, all of its hybrid methods significantly reduced the computational time and the order of the
computational time from the best hybrid framework to the worst is RSVD, MCRA, PIME, and ALB. Moreover,
we observed that the computational time differences of RSVD and MCRA are not much significant. While the
PSNR values provide that RSVD performs the best and PIME performs the next best, SSIM values provide
that all the four hybrid frameworks perform similarly. If we consider both the computational efficiency and
denoising quality, while RSVD performs the best, MCRA performs next.

We have been developing deep learning techniques for data imputation in computer vision [17] and time
series forecasting in financial markets [15]. We are planning to extend our data imputation and time series
forecasting techniques along with this efficient image denoising technique so that the extended framework is
capable of operating on partially observed noisy image sequences. Such a framework is capable of denoising a
video that contains some objects which are partially observed due to natural phenomena such as occlusion or
change of appearance. The applications of such techniques could include learning the dynamics of animal groups
in wild, analyzing pedestrians on streets, counting vehicles on roads, and tracking sports players on courts [32].
Utilization of a single hybrid framework is favorable rather than three separate frameworks each for denoising,
tracking, and trajectory imputation, as this hybrid framework increases both the computational efficiency and
robustness. Future work also includes comparing these hybrid GGD frameworks with state-of-the-art deep
learning image restoration tools such as Generative Adversarial Network [21], U-Net [27]. However, the use of
deep learning techniques to learn image features requires the ground truth, and it could be a limitation of such
a denoising method as ground truth is not always available. The hybrid GGD frameworks presented in this
paper are only capable of processing gray-color images; thus, we are planning to extend these four methods in
the future such that they are capable of processing color images. For that, first, we decompose the given noisy
color image into its three color channels. Then, each channel is denoised with our hybrid GGD separately with
its best parameter values. Finally, we merge the denoised color channels and produce the denoised color image.

In this paper, we extended our patch-based image denoising technique GGD that uses eigenvectors of the
geodesics’ Gramian matrix computed using SVD. The extension is focused on reducing the computational cost
of GGD encountered during its SVD step, by integrating singular vector approximation frameworks, namely,
MCLA, ALB, PIME, and RSVD. Both, the computational time comparison and denoising performance com-
parison evidence that the hybrid GGD framework RSVD is the most efficient and robust scheme among all the
other techniques.
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[23] Alain Horé and Djemel Ziou. 2010. Image quality metrics: PSNR vs. SSIM. In Proceedings - International
Conference on Pattern Recognition. hore2010, 2366–2369. https://doi.org/10.1109/ICPR.2010.579

[24] Effrosyni Kokiopoulou, Constantine Bekas, and Efstratios Gallopoulos. 2004. Computing smallest singular
triplets with implicitly restarted Lanczos bidiagonalization. In Applied Numerical Mathematics, Vol. 49.
North-Holland, 39–61. https://doi.org/10.1016/j.apnum.2003.11.011

[25] John Aldo Lee, Amaury Lendasse, and Michel Verleysen. 2004. Nonlinear projection with curvilin-
ear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57, 1-4 (2004), 49–76.
https://doi.org/10.1016/j.neucom.2004.01.007

[26] François G. Meyer and Xilin Shen. 2014. Perturbation of the eigenvectors of the graph Laplacian: Appli-
cation to image denoising. , 326–334 pages. https://doi.org/10.1016/j.acha.2013.06.004

18

https://doi.org/10.1186/s42492-019-0016-7
https://doi.org/10.1145/367766.368168
https://doi.org/10.1093/comjnl/4.3.265
https://doi.org/10.1093/comjnl/4.4.332
https://doi.org/10.1109/sysose.2006.1652299
https://doi.org/10.1016/j.patcog.2020.107661
https://doi.org/10.1016/j.patcog.2018.10.020
http://arxiv.org/abs/2010.07769
https://doi.org/10.48550/arxiv.2205.04678
https://doi.org/10.1016/j.patcog.2022.108891
https://doi.org/10.1049/ipr2.12623
https://doi.org/10.1137/090771806
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1016/j.apnum.2003.11.011
https://doi.org/10.1016/j.neucom.2004.01.007
https://doi.org/10.1016/j.acha.2013.06.004


[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing and computer-assisted
intervention. Springer, 234–241.

[28] Alireza Sepas-Moghaddam, Danial Yazdani, and Jalil Shahabi. 2014. A novel hybrid im-
age segmentation method. Progress in Artificial Intelligence 3, 1 (apr 2014), 39–49.
https://doi.org/10.1007/s13748-014-0044-7

[29] Donald Shepard. 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings
of the 1968 23rd ACM National Conference, ACM 1968. ACM Press, New York, New York, USA, 517–524.
https://doi.org/10.1145/800186.810616

[30] Danny C. Sorensen. 1992. Implicit Application of Polynomial Filters in a k -Step Arnoldi Method. SIAM
J. Matrix Anal. Appl. 13, 1 (jul 1992), 357–385. https://doi.org/10.1137/0613025

[31] Andreas Stathopoulos and James R McCombs. 2010. PRIMME: PReconditioned Iterative MultiMethod
Eigensolver—methods and software description. ACM Transactions on Mathematical Software (TOMS)
37, 2 (2010), 1–30.

[32] Tamás Vicsek and Anna Zafeiris. 2012. Collective motion. Physics Reports 517, 3-4 (aug 2012), 71–140.
https://doi.org/10.1016/j.physrep.2012.03.004

[33] Qi Wang, Jing Ma, Siyuan Yu, and Liying Tan. 2020. Noise detection and image de-
noising based on fractional calculus. Chaos, Solitons and Fractals 131 (feb 2020), 109463.
https://doi.org/10.1016/j.chaos.2019.109463

[34] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. 2004. Image quality
assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4
(apr 2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

[35] Lingfei Wu, Eloy Romero, and Andreas Stathopoulos. 2017. Primme svds: A high-performance precon-
ditioned svd solver for accurate large-scale computations. SIAM Journal on Scientific Computing 39, 5
(2017), S248—-S271.

[36] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017. Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing 26, 7 (jul
2017), 3142–3155. https://doi.org/10.1109/TIP.2017.2662206 arXiv:1608.03981

[37] Kai Zhang, Wangmeng Zuo, and Lei Zhang. 2018. FFDNet: Toward a fast and flexible solution for
CNN-Based image denoising. IEEE Transactions on Image Processing 27, 9 (sep 2018), 4608–4622.
https://doi.org/10.1109/TIP.2018.2839891 arXiv:1710.04026

19

https://doi.org/10.1007/s13748-014-0044-7
https://doi.org/10.1145/800186.810616
https://doi.org/10.1137/0613025
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.chaos.2019.109463
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/TIP.2018.2839891

	1 Introduction
	2 Method
	2.1 Geodesic Gramian Denoising
	2.2 Monte Carlo Low-Rank Approximation
	2.3 Augmented Lanczos Bidiagonalization
	2.4 Preconditioned Iterative Multimethod Eigensolver
	2.5 Randomized Singular Value Decomposition

	3 Performance Analysis
	3.1 Image preprocessing
	3.2 Performance metrics
	3.3 Examples

	4 Conclusion

