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ABSTRACT

The purpose of this thesis is to prove the existence of a unique solution to a system of par-

tial differential equations which models the flow of a compressible barotropic fluid under periodic

boundary conditions. The equations come from modifying the compressible Navier-Stokes equa-

tions. The proof utilizes the method of successive approximations. We will define an iteration

scheme based on solving a linearized version of the equations. Then convergence of the sequence

of approximate solutions to a unique solution of the nonlinear system will be proven. The main

new result of this thesis is that the density data is at a given point in the spatial domain over a

time interval instead of an initial density over the entire spatial domain. Further applications of the

mathematical model are fluid flow problems where the data such as concentration of a solute or

temperature of the fluid is known at a given point. Future research could use boundary conditions

which are not periodic.
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CHAPTER I: INTRODUCTION

The purpose of this thesis is to prove the existence of a unique solution to a system of partial differ-

ential equations which models a compressible barotropic fluid. Since the fluid is compressible, any

change in pressure results in a change to the volume. A barotropic fluid is one who’s pressure is

only dependent upon density. The equations in this thesis come from modifying the compressible

Navier-Stokes equations. In our equations we have included a capillary stress term. The modified

conservation of mass equation uses an approximation to the divergence of velocity. Our system’s

dependent variables are the velocity and density of the fluid.

The data for our system consists of an initial velocity at time t = 0 for all x ∈Ω, where Ω =T2,

the two-dimensional torus, is the spatial domain, the density at a single point x0 ∈T2 for 0≤ t ≤ T ,

and the divergence of velocity for 0≤ t ≤ T and for all x ∈ T2. This thesis will prove the existence

of a unique solution to the system of modified Navier-Stokes equations under periodic boundary

conditions for the time interval 0≤ t ≤ T . Using density data at a given point in the spatial domain

instead of using initial density is the main new result of this thesis.

The proof in this thesis will utilize the method of successive approximations. We will define

an iteration scheme based on solving a linearized version of the equations. Then convergence of

the sequence of approximate solutions to a unique solution of the nonlinear system will be proven.

The main theorem to be proven appears in Chapter 4. The proof of the existence of a solution

to the linearized equations appears in Appendix A. The convergence of the sequence of solutions

is proven in Chapter 5. Appendix B contains lemmas supporting the proof. We will begin by

reviewing the literature in Chapter 2 and then present the model’s equations in Chapter 3.
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CHAPTER II: REVIEW OF THE LITERATURE

The system of equations to be studied is a modified version of the Navier-Stokes equations for a

compressible barotropic fluid, which consist of partial differential equations for the balance of lin-

ear momentum and for the conservation of mass. The existence of a solution to the Navier-Stokes

equations has been studied by many researchers under the condition that initial data for the density

be given. For example, Bresch, Desjardins and Gerard-Varet [2], Choe and Kim [3], Desjardins

[10], Hoff [14, 15], and Mellet and Vasseur [16] proved the existence of a solution to a system

of equations modeling the flow of a compressible, barotropic fluid when the initial value of the

density is given. None of the work done by these researchers uses the condition that the value of

the density is specified at a point x0 in the domain, and that the initial value of the density is not

given.

The methodology used in my thesis to prove the existence of a unique solution to this sys-

tem of equations is similar to the methodology appearing in Embid [11, 12], which he uses to

prove the existence of a solution to equations modeling zero-Mach number combustion by proving

convergence of a sequence of approximate solutions to an iteration scheme based on a linearized

version of the system of equations. In other related work Denny in [5, 6, 7] proves the existence

of a solution to a quasilinear elliptic equation with data at a spatial point. In [8], Denny proves

the existence of a solution to a system of equations modeling the flow of a nearly incompressible,

inviscid fluid with a capillary stress term, and with density data at a point in the spatial domain.

Song [17] uses an iteration scheme to prove the existence and uniqueness of a solution to a system

of equations which model compressible fluid flow. Song’s equations do not include a term for con-

vection or capillary stress effects. The system of equations being studied in my thesis is a system

of equations which is different from the equations studied by Denny, Embid, and by Song.
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CHAPTER III: MODEL’S EQUATIONS

3.1 The Mathematical Model

The Navier-Stokes equations for a compressible barotropic fluid are

ρ
Dv
Dt

+∇p = ν∆v+ γ∇(∇ ·v) (3.1)

∇ ·v =− 1
ρ

ρt−
1
ρ
(v ·∇ρ) (3.2)

p = p̂(ρ) (3.3)

where ρ is the density, Dv
Dt =

∂v
∂ t +v ·∇v is the material derivative, v is the velocity, p is the pres-

sure, ν and γ are coefficients of viscosity, which are positive constants.

The Navier-Stokes equations are modified to include capillary stress effects by adding a term

cρ∇∆ρ , which produces the equations:

ρ
Dv
Dt

+∇p = ν∆v+ γ∇(∇ ·v)+ cρ∇∆ρ (3.4)

where the capillary stress coefficient c is a positive constant.

We will be studying a modified version of equations (3.4), (3.2), and (3.3). The first notable modifi-

cation we will make is to assume that the conservation of mass equation (3.2) can be approximated

by:

∇ ·v = f (3.5)

where f is a given function such that
∫

Ω
f dx = 0.

Next, from the equation of state (3.3) it follows that ∇p = p
′
(ρ)∇ρ . Applying this to our

equation (3.4) we obtain:

vt +v ·∇v+
p
′
(ρ)

ρ
∇ρ =

ν

ρ
∆v+

γ

ρ
∇(∇ ·v)+ c∇∆ρ (3.6)

3



To have a well-posed problem boundary conditions should be given. We apply periodic bound-

ary conditions on a two-dimensional spatial domain T2 = [0,2π]x[0,2π] so that:

v(0,y, t) = v(2π,y, t) (3.7)

v(x,0, t) = v(x,2π, t) (3.8)

for x ∈ [0,2π] and y ∈ [0,2π].

The periodic boundary conditions are also applied to ρ(x, t). The given data for the initial velocity

v(x,0) for all x ∈Ω and for the density ρ(x0, t) at a spatial point x0 ∈Ω for 0≤ t < T is:

v(x,0) = v0(x) (3.9)

ρ(x0, t) = g(t) (3.10)

where g(t) is a given positive smooth function, and v0(x) is a given smooth periodic function.

Our model’s equations are given by (3.5)-(3.10).

3.2 Non-Dimensionalization

Now we will non-dimensionalize the equations (3.6) and (3.5). To do so, we define:

• x∗ = x
L

• v∗ = v
|vm|

• τ = t|vm|
L

• p∗ = p
|pm|

• ∇∗ = L∇

• ∆∗ = L2∆

• ρ∗ = ρ

ρm

• f ∗ = L f
|vm|

4



• Re = ρmL|vm|
ν

• λ = |pm|
ρm|vm|2

• c∗ = ρmc
L2|vm|2

where |vm|, L, |pm|, and ρm is the average velocity, length, pressure, and density respectively, and

Re is the Reynold’s number. Now applying these to equations (3.5) and (3.6) and simplifying

yields:

|vm|2

L
∂v∗

∂τ
+
|vm|2

L
v∗ ·∇∗v∗+ |pm|

ρmL
d p∗

dρ∗
(ρmρ

∗)
∇∗ρ∗

ρ∗

=
|vm|
ρmL2

ν

ρ∗
∆
∗v∗+

|vm|
ρmL2

γ

ρ∗
∇
∗(∇∗ ·v∗)+ ρm

L3 c∇
∗
∆
∗
ρ
∗ (3.11)

|vm|
L

∇
∗ · (v∗) = |vm|

L
f ∗ (3.12)

By plugging in the Re and λ we obtain the standard equations:

v∗τ +v∗ ·∇∗v∗+ λ

ρ∗
d p∗

dρ∗
(ρmρ

∗)∇∗ρ∗ =
1

Reρ∗
(∆∗v∗+

γ

ν
∇
∗
∇
∗ ·v∗)+ c∗∇∗∆∗ρ∗ (3.13)

∇
∗ ·v∗ = f ∗ (3.14)

Equations (3.13) and (3.14) represent the non-dimensionalized equations. For notational conve-

nience we will write equations (3.13) and (3.14) as follows:

vt +v ·∇v+
λ

ρ
p′(ρ)∇ρ =

1
Reρ

(∆v+
γ

ν
∇∇ ·v)+ c∇∆ρ (3.15)

∇ ·v = f (3.16)

The purpose of this thesis is to prove the existence of a unique solution to (3.15)-(3.16) under

periodic boundary conditions with initial velocity data v0(x) and with density data ρ(x0, t) = ρ0(t).

The format of the proof follows one used by Embid [11] to prove the existence of a solution to

equations for zero Mach number combustion. The format of the proof is separated into three steps.

First, we prove the boundedness of the approximating sequence of solutions in a high Sobolev

norm. Second, we prove contraction of the sequence in a low Sobolev norm. Finally, we prove

convergence of the sequence to a unique solution of the nonlinear equations.

5



CHAPTER IV: MAIN THEOREM

The main theorem is as follows:

Main Theorem:

Let the spatial domain be Ω = T2, the two-dimensional torus. Let p be a given smooth positive

function of ρ and let d p
dρ

be a positive function. Let ρ0 be a given positive smooth function of t, and

let x0 be a given point in T2. Let f be a smooth function of t and x such that
∫

Ω
f dx = 0. Then for a

time interval 0≤ t ≤ T , equations (3.15) and (3.16), subject to the condition that ρ(x0, t) = ρ0(t)

and the initial condition v(x,0) = v0(x) ∈ Hs(T2) where s > N
2 + 4 and N = 2 have a unique

solution ρ and v where ρ is a positive function, provided that:

T ≤ δ

1
Re2 ≤ δ

2

1
λ 2 ≤ δ

2

where 0 < δ < 1, and δ is sufficiently small. The regularity of the solution is

v ∈C([0,T ],C4(T2))∩L∞([0,T ],Hs(T2)∩L2([0,T ],Hs+1(T2))

ρ ∈C([0,T ],C5(T2))∩L∞([0,T ],Hs+1(T2))

∂v
∂ t ∈C([0,T ],C2(T2))∩L∞([0,T ],Hs−2(T2))

Proof:

First, we apply the Helmholtz Decomposition to equations (3.15) and (3.16). Helmholtz Decom-

position is a way of uniquely writing a vector field as the sum of a solenoidal vector and a gradient

vector. A solenoidal vector is a vector w such that ∇ ·w = 0. To perform the Helmholtz Decompo-

sition we must let v = w+∇φ where ∇ ·w = 0. Applying this to equations (3.15) and (3.16) we

6



get:

(w+∇φ)t +(w+∇φ) · (w+∇φ)+λ
p
′
(ρ)

ρ
∇ρ

=
1

Reρ
(∆(w+∇φ)+

γ

ν
∇(∇ · (w+∇φ)))+ c∇∆ρ (4.1)

∇ · (w+∇φ) = f (4.2)

Further simplification gives:

wt +∇φt +(w+∇φ) ·∇(w+∇φ)+
λ p

′
(ρ)∇ρ

ρ
=

1
Reρ

(∆w+(1+
γ

ν
)∇∆φ)+ c∇∆ρ (4.3)

∇ ·w = 0 (4.4)

∆φ = f (4.5)

We will construct the solution using the following iteration scheme:

wk+1
t +∇φt +(wk +∇φ) ·∇(wk+1 +∇φ)+λ

p
′
(ρk)∇ρk+1

ρk

=
1

Reρk (∆wk+1 +(1+
γ

ν
)∇∆φ)+ c∇∆ρ

k+1 (4.6)

∇ ·wk+1 = 0 (4.7)

∆φ = f (4.8)

ρ
k+1(x0, t) = ρ0(t) (4.9)

wk+1(x,0) = w0(x) (4.10)

From the initial velocity condition we let the initial solenodial velocity iterate w0 = w0(x), and

from the density condition ρ(x0, t) = ρ0(t) at a spatial point x0 we let the initial density iterate be

ρ0 = ρ0(t).

Equations (4.6)-(4.8) linearizes the system given by (4.3)-(4.5). The next step to proving the

existence of a unique solution to the nonlinear system is to prove the existence of a solution to

the linear system for each fixed k. The proof of the existence of a solution to the linear equations

appears in Appendix A. Now, we proceed to prove convergence of the sequence of approximate

solutions to a solution of the nonlinear system (4.3)-(4.5).

7



CHAPTER V: Proof of the Theorem

5.1 High Sobolev Norm Bounds

To prove the convergence of the sequence of solutions to the system of equations (4.6)-(4.8), we

start by determining a high norm Sobolev space bound. We proceed with the proof by mathematical

induction. For this we assume:

‖wk‖2
s +

c2

Re

∫ t

0
‖∇wk‖2

s dτ ≤ L2
1

‖∇ρ
k‖2

s−1 ≤ δ
2L2

2

‖∆ρ
k‖2

s−1 ≤
1
c

L2
2

‖ρk‖2
s+1 ≤ L2

3

|ρk−ρ0|L∞,T < R

where p′(ρk)
ρk > c1 > 0 and 1

ρk > c2 > 0, and ρ0−R > 0 for |ρk−ρ0|L∞,T < R. We will prove that

‖wk+1‖2
s +

c2

Re

∫ t

0
‖∇wk+1‖2

s dτ ≤ L2
1

‖∇ρ
k+1‖2

s−1 ≤ δ
2L2

2

‖∆ρ
k+1‖2

s−1 ≤
1
c

L2
2

‖ρk+1‖2
s+1 ≤ L2

3

|ρk+1−ρ0|L∞,T < R

where wk+1 is the solution to

wk+1
t +∇φt +(wk +∇φ) ·∇(wk+1 +∇φ)+λ

p
′
(ρk)

ρk ∇ρ
k+1

=
1

Reρk (∆wk+1 +(1+
γ

ν
)∇∆φ)+ c∇∆ρ

k+1 (5.1)

8



Applying Lemma B.3 to equation (5.1) with

a(ρk) =
p′(ρk)

ρk

b(ρk) =
1

ρk

vk = wk +∇φ

F =
1

Reρk (1+
γ

ν
)∇∆φ −∇φt−vk ·∇∇φ

and using Lemma B.1 gives us

‖wk+1‖2
s +

c2

Re

∫ t

0
‖Dwk+1‖2

s dτ ≤C[‖w0‖2
s +

∫ T

0
‖F‖2

s dτ]

≤C[‖w0‖2
s +

∫ t

0
‖ 1

Reρk (1+
γ

ν
)∇∆φ −∇φt−vk ·∇∇φ‖2

s dτ]

≤C‖w0‖2
s +C

∫ t

0
(‖ 1

Reρk ‖
2
s‖∇∆φ‖2

s +‖∇φt‖2
s

+‖wk +∇φ‖2
s‖∇φ‖2

s+1)dτ

≤C‖w0‖2
s +C

∫ t

0
(

C1

Re2‖∇∆φ‖2
s +‖∇φt‖2

s

+‖wk‖2
s‖∇φ‖2

s+1 +‖∇φ‖4
s+1)dτ

≤C‖w0‖2
s +C

∫ t

0
(

C1

Re2‖∇ f‖2
s +‖ ft‖2

s−1

+L2
1‖ f‖2

s +‖ f‖4
s )dτ

≤C‖w0‖2
s +CT [

C1

Re2‖ f‖2
s+1,T +‖ ft‖2

s−1,T

+L2
1‖ f‖2

s,T +‖ f‖4
s,T ]

≤C‖w0‖2
s +C2

= L2
1 (5.2)

where T L2
1 ≤ 1, C depends on s, C1 depends on s, ρ0, R, c1, and C1

Re2 ≤ 1, and C2 depends on s,

‖ ft‖s−1,T , ‖ f‖s+1,T and where L1 depends on s, ‖ ft‖s−1,T , ‖ f‖s+1,T , and ‖w0‖2
s .

9



Next we take the divergence of equation (5.1) to obtain:

ft +∇ · (vk ·∇(wk+1 +∇φ))+∇ · (λ p
′
(ρk)

ρk ∇ρ
k+1)

= ∇ · (∆wk+1

Reρk )+∇ · (
(1+ γ

ν
)∇ f

Reρk )+ c∆
2
ρ

k+1

Then using Lemma B.1 and B.2 we obtain

c‖∆ρ
k+1‖2

s−1 +λc1‖∇ρ
k+1‖2

s−1 ≤
C

λc1
[‖D 1

Reρk ‖
2
s−1‖∆wk+1‖2

s−2 +‖vk ·∇wk+1‖2
s−1 +‖F‖2

s−1]

≤ C
λc1

[‖D 1
Reρk ‖

2
s−1‖wk+1‖2

s +C‖vk‖2
s−1‖wk+1‖2

s +‖F‖2
s−1]

≤ C
λc1

1
Re2‖D(

1
ρk )‖

2
s−1‖wk+1‖2

s

+
C

λc1
[(‖wk‖s−1 +‖∇φ‖s−1)

2‖wk+1‖2
s +‖F‖2

s−1]

≤ C
λc1

C3

Re2‖∇ρ
k‖2

s−1‖wk+1‖2
s

+
C

λc1
[(L2

1 +‖ f‖2
s−2)‖wk+1‖2

s +‖F‖2
s−1]

where C depends on s and C3 depends on s, ρ0, R. We can now plug in the estimate from (5.2) to

get

‖∆ρ
k+1‖2

s−1 ≤
C

λc1c
[(

C3

Re2 δ
2L2

2 +L2
1 +‖ f‖2

s−2,T )L
2
1 +

C1

Re2‖ f‖2
s,T

+‖ ft‖2
s−2,T +L2

1‖ f‖2
s−1,T +‖ f‖4

s−1,T ]

≤ 1
c

L2
2

‖∇ρ
k+1‖2

s−1 ≤
C

λ 2c2
1
[(

C3

Re2 δ
2L2

2 +L2
1 +‖ f‖2

s−2,T )L
2
1 +

C1

Re2‖ f‖2
s,T

+‖ ft‖2
s−2,T +L2

1‖ f‖2
s−1,T +‖ f‖4

s−1,T ]

≤ δ
2L2

2

and by Lemma A.1

‖∇ρ
k+1‖2

s ≤C(c‖∆ρ
k+1‖2

s−1 +λc1‖∇ρ
k+1‖2

s−1)≤CL2
2 +Cλc1δ

2L2
2

10



where 1
λ
≤ δ , 1

Re2 ≤ δ 2, and δ 2 is sufficiently small so that δ 2L2
2

Re2 ≤ 1. Here L2 depends on c1, s,

‖ f‖s+1,T , ‖ ft‖s−1,T , ρ0, R and ‖w0‖s.

Since ρk+1(x0, t) = ρ0(t) at a single point and ρ0(x, t) = ρ0(t), then by Lemma B.1

‖ρk+1‖2
0 ≤C‖ρ0‖2

0 +C‖∇ρ
0‖2

1 +C‖∇ρ
k+1‖2

1

≤C max
0≤t≤T

|ρ0(t)|2|T2|+Cδ
2L2

2

By Denny [8], the following estimate is obtained

‖ρk+1‖2
s+1 ≤ ‖ρk+1‖2

0 +C‖∇ρ
k+1‖2

s

≤C max
0≤t≤T

|ρ0(t)|2|T2|+CL2
2 +Cδ

2L2
2(1+λc1)

= L2
3

where L3 depends on s, c1, ρ0, R, ‖ ft‖s−1,T , ‖ f‖s+1,T , and ‖w0‖s. Next by Lemma B.1,

|ρk+1−ρ
0|L∞,T ≤C‖∇(ρk+1−ρ

0)‖1,T

≤C‖∇ρ
k+1‖s−1,T

≤CδL2

< R

and ρ0−R > 0 for δ sufficiently small.

By definition |ρk+1−ρ0|L∞,T < R implies ρk+1 ∈ Ḡ1 for x ∈ Tn and 0 ≤ t ≤ T which completes

the proof.

5.2 Contraction in Low Norm

We will now prove that the sequences are contractive. We start with equation (4.6)

wk+1
t +∇φt +(wk +∇φ) ·∇(wk+1 +∇φ)+

λ p
′
(ρk)

ρk ∇ρ
k+1

=
1

Reρk (∆wk+1 +(1+
γ

ν
)∇∆φ)+ c∇∆ρ

k+1

11



where ∇ ·wk+1 = 0, ρk+1(x0, t) = ρ0(t) where ρ0(t) is a strictly positive function, and wk+1(x,0) =

w0(x) and where p is a smooth function. We subtract successive iterations to obtain

(wk+1−wk)t +(wk +∇φ) ·∇(wk+1−wk)+
λ p

′
(ρk)

ρk ∇(ρk+1−ρ
k)

=
1

Reρk ∆(wk+1−wk)+ c∇∆(ρk+1−ρ
k)+h (5.3)

where

h = (wk−1−wk) ·∇wk +(
λ p

′
(ρk−1)

ρk−1 − λ p
′
(ρk)

ρk )∇ρ
k +(

1
Reρk −

1
Reρk−1 )∆wk

− (wk−wk−1) ·∇∇φ +(
1

Reρk −
1

Reρk−1 )(1+
γ

ν
)∇∆φ

We will now prove

‖wk+1−wk‖2
3,T +

c2

Re

∫ T

0
‖D(wk+1−wk)‖3dτ → 0 as k→ ∞

‖ρk+1−ρ
k‖2

4,T → 0 as k→ ∞

Proof:

Taking the divergence of equation (5.3) gives

c∆
2(ρk+1−ρ

k)−∇ · [λ p
′
(ρk)

ρk ∇(ρk+1−ρ
k)]

= ∇ · ((wk +∇φ) ·∇(wk+1−wk))−∇ · [ 1
Reρk ∆(wk+1−wk)]−∇ ·h

and by Lemma B.1 and Lemma B.2 for r=2

c‖∆(ρk+1−ρ
k)‖2

2 +λc1‖∇(ρk+1−ρ
k)‖2

2 ≤
C

λc1
[‖D(

1
Reρk )‖

2
3‖∆(wk+1−wk)‖2

1

+‖(wk +∇φ) ·∇(wk+1−wk)‖2
2 +‖h‖2

2]

≤ C
λc1

[‖D(
1

Reρk )‖
2
3‖wk+1−wk‖2

3

+‖wk +∇φ‖2
2‖wk+1−wk‖2

3 +‖h‖2
2] (5.4)

12



Inequality (5.4) can be rewritten as

c‖∆(ρk+1−ρ
k)‖2

2 +λc1‖∇(ρk+1−ρ
k)‖2

2

≤ C
λc1

[(
δ 2L2

2C3

Re2 +L2
1 +‖ f‖2

1)‖wk+1−wk‖2
3 +‖h‖2

2]

≤C4‖wk+1−wk‖2
3 +

C
λc1
‖h‖2

2

where C4 depends on c1, s, ‖ ft‖s−1,T , ‖ f‖s+1,T , ‖w0‖s. Next, we estimate ‖h‖2
2. By Lemma B.1,

we have

‖h‖2
2 = ‖(wk−1−wk) ·∇wk +(

λ p
′
(ρk−1)

ρk−1 − λ p
′
(ρk)

ρk )∇ρ
k +(

1
Reρk −

1
Reρk−1 )∆wk

− (wk−wk−1) ·∇∇φ +(
1

Reρk −
1

Reρk−1 )(1+
γ

ν
) ·∇∇φ‖2

2

≤C‖wk−wk−1‖2
2‖∇wk‖2

2 +C‖λ p
′
(ρk)

ρk − λ p
′
(ρk−1)

ρk−1 ‖2
2‖∇ρ

k‖2
2

+
C

Re2‖
1

ρk −
1

ρk−1‖
2
2‖∇wk‖2

3 +C‖∇∇φ‖2
2‖wk−wk−1‖2

2

+
C

Re2 (1+
γ

ν
)2‖∇∆φ‖2

2‖
1

ρk −
1

ρk−1‖
2
2

Applying the high norm estimates gives

‖h‖2
2 ≤C‖wk−wk−1‖2

2L2
1 +λ

2C5‖ρk−ρ
k−1‖2

2δ
2L2

2

+
C5

Re2‖ρ
k−ρ

k−1‖2
2L2

1 +C6‖wk−wk−1‖2
2

+
C7

Re2‖ρ
k−ρ

k−1‖2
2

≤ (CL2
1 +C6)‖wk−wk−1‖2

2 +δ
2C(λ 2C5L2

2 +C5L2
1 +C7)‖∇(ρk−ρ

k−1)‖2
1

where C5 depends on R, ρ0, c1, ‖ ft‖s−1,T , ‖ f‖s+1,T , ‖w0‖s, C6 depends on ‖ f‖2,T , C7 depends on

γ , ν , R, ρ0, c1, ‖ ft‖s−1,T , ‖ f‖s+1,T , ‖w0‖s, and 1
Re2 ≤ δ 2, and we used the inequalities in Lemma

B.1. Therefore,

c‖∆(ρk+1−ρ
k)‖2

2 +λc1‖∇(ρk+1−ρ
k)‖2

2

≤C4‖wk+1−wk‖2
3 +

C
λc1

(L2
1 +C6)‖wk−wk−1‖2

3

+
C

λc1
δ

2(λ 2C5L2
2 +C5L2

1 +C7)‖∇(ρk−ρ
k−1)‖2

2 (5.5)

13



Using Lemma B.3 with r=3, we get

‖wk+1−wk‖2
3 +

c2

Re

∫ T

0
‖D(wk+1−wk)‖2

3dτ

≤C
∫ T

0
‖h‖2

3dτ

≤C
∫ T

0
((L2

1 +C6)‖wk−wk−1‖2
3

+δ
2(λ 2C5L2

2 +C5L2
1 +C7)‖∇(ρk−ρ

k−1)‖2
2)dτ (5.6)

Now, we add (5.5) and (5.6) to get

‖wk+1−wk‖2
3,T +

c2

Re

∫ T

0
‖D(wk+1−wk)‖2

3dτ +β (c‖∆(ρk+1−ρ
k)‖2

2,T +λc1‖∇(ρk+1−ρ
k)‖2

2,T )

≤CT (L2
1 +C6)‖wk−wk−1‖2

3,T +T δ
2C(λ 2C5L2

2 +C5L2
1 +C7)‖∇(ρk−ρ

k−1)‖2
2,T

+βC4‖wk+1−wk‖2
3,T +β

C
λc1

(L2
1 +C6)‖wk−wk−1‖2

3,T

+β
C

λc1
δ

2(λ 2C5L2
2 +C5L2

1 +C7)‖∇(ρk−ρ
k−1)‖2

2,T

If βC4 ≤ 1
2 the above inequality becomes

‖wk+1−wk‖2
3 +

c2

Re

∫ T

0
‖D(wk+1−wk)‖2

3dτ +2β (c‖∆(ρk+1−ρ
k)‖2

2,T +λc1‖∇(ρk+1−ρ
k)‖2

2,T )

≤ 2CT (L2
1 +C6)‖wk−wk−1‖2

3,T +2T δ
2C(λ 2C5L2

2 +C5L2
1 +C7)‖∇(ρk−ρ

k−1)‖2
2,T

+2β
C

λc1
(L2

1 +C6)‖wk−wk−1‖2
3,T +2β

C
λc1

δ
2(λ 2C5L2

2 +C5L2
1 +C7)‖∇(ρk−ρ

k−1)‖2
2,T

≤ 2(L2
1 +C6)(TC+β

C
λc1

)[‖wk−wk−1‖2
3,T +

c2

Re

∫ T

0
‖D(wk−wk−1)‖3dτ]

+2(λ 2C5L2
2 +C5L2

1 +C7)(CT δ
2 +

C
λc1

βδ
2)[c‖∆(ρk−ρ

k−1)‖2
2,T

+λc1‖∇(ρk−ρ
k−1)‖2

2,T ]

If T , β , and δ 2 are sufficiently small then 2(L2
1 +C6)(TC+β

C
λc1

)< ξ and

2(C5λ 2L2
2 +C5L2

1 +C7)(T δ 2C+ C
λc1

βδ 2)< ξ (2β ) where ξ < 1. This gives us the contraction

‖wk+1−wk‖2
3,T +

c2

Re

∫ T

0
‖D(wk+1−wk)‖2

3dτ +2β [c‖∆(ρk+1−ρ
k)‖2

2,T +λc1‖∇(ρk+1−ρ
k)‖2

2,T ]

≤ ξ [‖wk−wk−1‖2
3,T +

c2

Re

∫ T

0
‖D(wk−wk−1)‖2

3dτ

+2β [c‖∆(ρk−ρ
k−1)‖2

2,T +λc1‖∇(ρk−ρ
k−1)‖2

2,T ]]
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Therefore,

‖wk+1−wk‖2
3,T +

c2

Re

∫ T

0
‖D(wk+1−wk)‖2

3dτ → 0 as k→ ∞ (5.7)

and

c‖∆(ρk+1−ρ
k)‖2

2,T +λc1‖∇(ρk+1−ρ
k)‖2

2,T → 0 as k→ ∞ (5.8)

Therefore by (5.8) and by the inequality

‖∇(ρk+1−ρ
k)‖2

3,T ≤C(c‖∆(ρk+1−ρ
k)‖2

2,T +λc1‖∇(ρk+1−ρ
k)‖2

2,T )

it follows that

‖∇(ρk+1−ρ
k)‖2

3,T → 0 as k→ ∞

By Lemma B.1

‖ρk+1−ρ
k‖2

4,T → 0 as k→ ∞

which completes the proof.

5.3 Convergence to Solution of Nonlinear Equations

We will now prove the convergence of the sequence of solutions {wk}, {ρk} to a unique solution

of the nonlinear system. From (5.7) and (5.8) we conclude that ‖wk+1−wk‖2
3,T → 0 and

‖ρk+1−ρk‖2
4,T → 0 as k→ ∞. Therefore, there exist w ∈C([0,T ],H3(T2)) and

ρ ∈C([0,T ],H4(T2)) such that ‖wk−w‖2
3,T → 0 and ‖ρk−ρ‖2

4,T → 0 as k→ ∞. Using the stan-

dard interpolation inequality ‖ f‖s′ ≤C‖ f‖α
3 ‖ f‖1−α

s , with α = s−s′
s−3 , and ‖g‖s′+1 ≤C‖g‖β

4 ‖g‖
1−β

s+1 ,

with β = s−s′
s−3 , with s′ < s, we conclude that ‖wk−w‖s′,T → 0 and ‖ρk−ρ‖s′+1,T → 0 as k→ ∞

for any s′ < s. For s′ > N
2 +4 = 5 Sobolev’s lemma implies that wk→ w ∈C([0,T ],C4(T2)) and

ρk → ρ ∈ C([0,T ],C5(T2)). Since ρk(x0, t) = ρ0(t) for all k, ρ(x0, t) = ρ0(t). From the linear

system of equations (4.6) it follows that
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‖wk
t −wt‖s′−2,T → 0 as k→∞, so that wk

t →wt ∈C([0,T ],C2(T2)). Since ρk+1, wk+1 is a solution

of (4.6)-(4.8) for k ≥ 0, it follows that ρ , w is a classical solution of (4.3)-(4.5).

We will now prove uniqueness of a solution by examining two solutions to equations (4.3),

(4.4). We will denote the solutions as w1, w2, ρ1, and ρ2. The solutions have the regularity

outlined above and satisfy

w1(x,0) = w2(x,0) = w0(x)

ρ1(x0, t) = ρ2(x0, t) = ρ0(t)

To prove uniqueness we must show that ρ1 = ρ2 and w1 = w2. We start by determining the

differences of equation (4.3)

(w1−w2)t +(w1 +∇φ) ·∇(w1−w2)+
λ p

′
(ρ1)∇(ρ1−ρ2)

ρ1

=
1

ρ1Re
∆(w1−w2)+ c∇∆(ρ1−ρ2)+F

where

F = (w2−w1) ·∇w2 +(w2−w1) ·∇∇φ +(
λ p

′
(ρ2)

ρ2
− λ p

′
(ρ1)

ρ1
)∇ρ2

+(
1

ρ1Re
− 1

ρ2Re
)∆w2 +(

1
(ρ1Re

− 1
ρ2Re

)(1+
γ

ν
)∇∆φ

By using the contraction estimate, it follows that

‖w1−w2‖2
3,T +

c2

Re

∫ T

0
‖D(w1−w2)‖2

3dτ +2β [λc1‖∇(ρ1−ρ2)‖2
2,T + c‖∆(ρ1−ρ2)‖2

2,T ] = 0

and ‖ρ1−ρ2‖2
4,T = 0 by Lemma B.1. This completes the proof of the main theorem.
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CHAPTER VI: CONCLUSION

In conclusion, we have proved the existence of a unique solution to the system of equations (3.15)

and (3.16) under periodic boundary conditions for the time interval 0≤ t ≤ T . The data for the sys-

tem consists of an initial velocity, density data at a point in the spatial domain, and the divergence

of velocity. This system of equations models a compressible barotropic fluid. The equations are

modified versions of the compressible Navier-Stokes equations with the inclusion of a capillary

stress term. Specifically, the main new result of this thesis is the use of density data at a given

point in the spatial domain instead of using initial density. The methodology utilized in this thesis

is the method of successive approximations. We defined an iteration scheme based on solving a

linearized version of the equations, then proved convergence of the sequence of approximate so-

lutions to a unique solution of the nonlinear system. This methodology can be applied to future

research problems, such as fluid flow problems where the data such as the concentration of a solute

(such as a pollutant) in a fluid or the temperature of the fluid is known at a given point. Other

possible future research could use boundary conditions which are not periodic.
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APPENDIX A: PROOF OF LINEAR EXISTENCE

We now prove the existence of a solution to the linear system of equations (4.6)-(4.10) for each

fixed k. The proof of the following lemma appears in Denny [8].

Lemma A.1

Given a ∈C([0,T ],H0(Ω))∩L∞([0,T ],Hs−1(Ω)) and f ∈C([0,T ],H0(Ω))∩L∞([0,T ],Hs−2(Ω)),

where s > N
2 + 4, a(x, t) ≥ c1, with c1 > 0 for x ∈ Ω, Ω = TN , 0 ≤ t ≤ T , there is a classical

solution θ ∈C([0,T ],C5(Ω))∩L∞([0,T ],Hs+1(Ω)) of

c∆
2
θ −λ∇ · (a∇θ) = ∇ · f

Here c is a positive constant.

The next lemma proves the existence of a solution to the linear system of equations.

Lemma A.2

Given f ∈C([0,T ],C5(Ω))∩L∞([0,T ],Hs+1(Ω)), ft ∈ L∞([0,T ],Hs−1(Ω)),
∫

Ω
f dx = 0,

r∈C([0,T ],C5(Ω))∩L∞([0,T ],Hs+1(Ω)), and q∈C([0,T ],C4(Ω))∩L∞([0,T ],Hs(Ω)), and given

s > N
2 +4, a(x, t)≥ c1, with c1 > 0 for x ∈Ω, Ω = TN , 0≤ t ≤ T , there is a solution

u ∈C([0,T ],C4(Ω))∩L∞([0,T ],Hs(Ω))∩L2([0,T ],Hs+1(Ω)),

h ∈C([0,T ],C5(Ω))∩L∞([0,T ],Hs+1(Ω)) of

ut +∇φt +(q+∇φ) ·∇(u+∇φ)+
λ p′(r)

r
∇h

=
1

rRe
(∆u+(1+

γ

ν
)∇∆φ)+ c∇∆h (A.2)
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∇ ·u = 0 (A.3)

∆φ = f (A.4)

h(x0, t) = ρ0(t) (A.5)

u(x,0) = w0(x) (A.6)

Here, c is a positive constant.

Proof : We will now apply the operators P and Q which perform the orthogonal projection of

L2(T2) onto the solenoidal vector field and the gradient vector field [4]. Equation (A.2) becomes

after projection by P

ut +(q+∇φ) ·∇(u+∇φ)−Q[(q+∇φ) ·∇(Pu+∇φ)]+P[λ
p
′
(r)∇h

r
]

=
1

rRe
∆u−Q[

1
rRe

∆Pu]+P[
1

rRe
(1+

γ

ν
)∇∆φ)] (A.7)

and under projection by Q

Q[ut +∇φt +Q((q+∇φ) ·∇(Pu+∇φ))+λ
p
′
(r)∇h

r

−Q(
1

rRe
∆Pu)− 1

rRe
(1+

γ

ν
)∇∆φ − c∇∆h] = 0

which is equivalent to

∇ · [ut +∇φt +Q((q+∇φ) ·∇(Pu+∇φ))+λ
p
′
(r)∇h

r

−Q(
1

rRe
∆Pu)− 1

rRe
(1+

γ

ν
)∇∆φ − c∇∆h] = 0

Since ∇ ·u = 0, the previous equation can be rewritten as

∆φt +∇ · [Q((q+∇φ) ·∇(Pu+∇φ))]+∇ · [λ p
′
(r)∇h

r
]

−∇ · [Q(
1

rRe
∆Pu)]−∇ · [ 1

rRe
(1+

γ

ν
)∇∆φ ]− c∆

2h = 0

Now rearranging the terms yields

c∆
2h−∇ · [λ p

′
(r)∇h

r
] = ft +∇ · [Q((q+∇φ) ·∇(Pu+∇φ))]

−∇ · [Q(
1

rRe
∆Pu)]−∇ · [ 1

rRe
(1+

γ

ν
)∇ f ] (A.8)
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where ∆φ = f . We will next prove the existence of a solution u and h to equations (A.7) and (A.8).

In order to prove the existence of a solution, we will use a sequence of approximate solutions for

u and h. Let u0 = w0 and h0 = ρ0 be the initial iterates of uk and hk respectively. We will use the

following iteration scheme

uk+1
t +(q+∇φ) ·∇(uk+1+∇φ)− 1

rRe
∆uk+1

= Q[(q+∇φ) ·∇(Puk +∇φ)]−P[λ
p
′
(r)∇hk+1

r
]

−Q[
1

rRe
∆Puk]+P[

1
rRe

(1+
γ

ν
)∇ f )] (A.9)

c∆
2hk+1−∇ · [λ p

′
(r)∇hk+1

r
] = ft +∇ · [Q((q+∇φ) ·∇(Puk +∇φ))]

−∇ · [Q(
1

rRe
∆Puk)]−∇ · [ 1

rRe
(1+

γ

ν
)∇ f ] (A.10)

The proof of the existence of a solution hk+1 to equation (A.10) appears in Lemma A.1 where we

take

f = ∇φt +Q((q+∇φ) ·∇(Puk +∇φ))−Q(
1

rRe
∆Puk)− 1

rRe
(1+

γ

ν
)∇ f

θ = hk+1

a =
p′(r)

r

where a ∈C([0,T ],H0)∩L∞([0,T ],Hs+1(Ω)).
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And f ∈C([0,T ],H0)∩L∞([0,T ],Hs−1(Ω)) because

‖f‖s−1 = ‖∇φt +Q((q+∇φ) ·∇(Puk +∇φ))−Q(
1

rRe
∆Puk)− 1

rRe
(1+

γ

ν
)∇ f‖s−1

≤C‖∇φt‖s−1 +C‖Q((q+∇φ) ·∇(Puk +∇φ))‖s−1

+C‖Q(
1

rRe
∆Puk)‖s−1 +C‖ 1

rRe
(1+

γ

ν
)∇ f‖s−1

≤C‖∇φt‖s−1 +C‖q+∇φ‖s−1‖∇(Puk +∇φ))‖s−1

+C‖D(
1

rRe
)‖s−2‖Puk‖s +C‖ 1

rRe
(1+

γ

ν
)‖s−1‖∇ f‖s−1

≤C‖∇φt‖s−1 +C(‖q‖s−1 +‖∇φ‖s−1)(‖∇(Puk)‖s−1 +‖∇∇φ‖s−1)

+C‖D(
1

rRe
)‖s−2‖uk‖s +C‖ 1

rRe
(1+

γ

ν
)‖s−1‖∇ f‖s−1

≤C‖∇φt‖s−1 +C(‖q‖s−1 +‖∇φ‖s−1)(‖uk‖s +‖∇φ‖s)

+C‖ 1
rRe
‖s−1‖uk‖s +C‖ 1

rRe
(1+

γ

ν
)‖s−1‖ f‖s (A.11)

where ‖∇φt‖s−1 ≤C‖ ft‖s−2 and ‖∇φ‖s−1 ≤C‖ f‖s−2 by Lemma B.1. It follows that

‖∇hk+1‖2
s−1 ≤

C
λ 2c2

1
[‖ ft‖2

s−2 +(‖q‖2
s−1 +‖ f‖2

s−2)(‖uk‖2
s +‖ f‖2

s−1)

+‖ 1
rRe
‖2

s−1‖uk‖2
s +‖

1
rRe

(1+
γ

ν
)‖2

s−1‖ f‖2
s ] (A.12)

by Lemma B.2. We will begin the proof that equation (A.9) has a solution for each fixed k by the

Galerkin method. We begin this method by letting g = uk+1. We choose an orthonormal basis

Φi(x,y), for i = 1,2,3, ... for L2(T2) and define the projection operator Pm so that it approximates

any function with a linear combination of the first m components in the chosen basis. Using this

basis we approximate g with

Pmg = gm

= Σ
m
i=1~αi(t)Φi(x,y) (A.13)

We use a linear system of differential equations to find each gm. We start with equation (A.9)

uk+1
t +(q+∇φ) ·∇(uk+1+∇φ)− 1

rRe
∆uk+1 = Fk (A.14)
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where Fk = Q[(q+∇φ) ·∇(Puk +∇φ)]−P[λ p
′
(r)∇hk+1

r ]−Q[ 1
rRe∆Puk]+P[ 1

rRe(1+
γ

ν
)∇ f )]. Since

g = uk+1 equation (A.14) becomes

gt +(q+∇φ) ·∇(g+∇φ)− 1
rRe

∆g = G

where G = Fk. Applying the operator Pm yields

gm
t +Pm((q+∇φ) ·∇(gm +∇φ))−Pm(

1
rRe

∆gm) = PmG (A.15)

Plugging in equation (A.13) into (A.15) gives

Σ
m
i=1~̇αi(t)Φi +Pm((q+∇φ) ·∇(Σm

i=1~αi(t)Φi +∇φ))−Pm(
1

rRe
Σ

m
i=1~αi(t)∆Φi)

= PmG

We take the L2 inner product with Φ j, where 1≤ j ≤ m, to get

(Σm
i=1~̇αi(t)Φi +Pm((q+∇φ) ·∇(Σm

i=1~αi(t)Φi +∇φ))−Pm(
1

rRe
Σ

m
i=1~αi(t)∆Φi),Φ j)

= (PmG,Φ j) (A.16)

Simplifying equation (A.16) gives

~̇α j =
1

Re
Σ

m
i=1~αi(Pm(

1
r

∆Φi),Φ j)− (Pm((q+∇φ) ·∇(Σm
i=1~αi(t)Φi +∇φ)),Φ j)+(PmG,Φ j)

Each ~α j can be determined by solving the above system of ordinary differential equations. We

will now prove the convergence of gm = Σm
i=1~αi(t)Φi(x,y) as m→ ∞. The first fact utilized is

that because αi(t)
m
i=1 ∈ C1([0,T ]), gm ∈ C1([0,T ],Hr) for any r ≥ 0 (see, e.g., Embid [11]). We
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estimate ‖G‖s as follows

‖G‖s = ‖Q[(q+∇φ) ·∇(Puk +∇φ)]−P[λ
p
′
(r)∇hk+1

r
]

−Q[
1

rRe
∆Puk]+P[

1
rRe

(1+
γ

ν
)∇ f )]‖s

≤C‖Q[(q+∇φ) ·∇(Puk +∇φ)]‖s +C‖P[λ p
′
(r)∇hk+1

r
]‖s

+C‖Q[
1

rRe
∆Puk‖s +C‖P[ 1

rRe
(1+

γ

ν
)∇ f )]‖s

≤C‖q+∇φ‖s(‖uk‖s +‖∇φ‖s+1)+C‖D(
λ p′(r)

r
)‖s‖∇hk+1‖s−1

+C‖D(
1

rRe
)‖s−1‖uk‖s+1 +‖D(

1
rRe

(1+
γ

ν
))‖s‖∇ f‖s−1

≤C(‖q‖s +‖∇φ‖s)(‖uk‖s +‖∇φ‖s+1)+C‖D(
λ p′(r)

r
)‖s‖∇hk+1‖s−1

+C‖D(
1

rRe
)‖s−1(‖uk‖0 +‖Duk‖s)+‖D(

1
rRe

(1+
γ

ν
))‖s‖ f‖s

≤C(‖q‖s +‖∇φ‖s)(‖uk‖s +‖∇φ‖s+1)+C‖D(
λ p′(r)

r
)‖s‖∇hk+1‖s−1

+C‖D(
1

rRe
)‖s−1(‖uk‖s +‖Duk‖s)+‖D(

1
rRe

(1+
γ

ν
))‖s‖ f‖s

where ∇hk+1 ∈ L∞([0,T ],Hs−1(Ω) by (A.12). Next we will derive a Sobolev space estimate for

gm and use this to prove convergence to g. By applying Lemma B.3 to equation (A.15), we derive

the estimate

‖gm‖2
s +

c2

Re

∫ t

0
‖Dgm‖2

s dτ ≤C[‖w0‖2
s +

∫ t

0
‖G‖2

s dτ] (A.17)

where C is a constant and G ∈ L∞([0,T ],Hs(Ω)) ∩ L2([0,T ],Hs+1(Ω)). Since the right-hand

side of inequality (A.17) does not depend on m, and we can take ‖w0‖2
s to be bounded, we

have from inequality (A.17) that ‖gm‖2
s,T + c2

Re
∫ T

0 ‖Dgm‖2
s dτ is bounded. This gives a bound in

L∞([0,T ],Hs(Ω))∩L2([0,T ],Hs+1(Ω)). We will now show equicontinuity. From equation (A.15),

we may derive

‖gm
t ‖2

0 = ‖PmG−Pm((q+∇φ) ·∇(gm +∇φ))+Pm(
1

rRe
∆gm)‖2

0

≤C[‖PmG‖2
0 +‖Pm((q+∇φ) ·∇(gm +∇φ))‖2

0 +‖Pm(
1

rRe
∆gm)‖2

0]

≤C[‖G‖2
0 + |q+∇φ |2L∞‖∇(gm +∇φ)‖2

0 + |
1

rRe
|2L∞‖∆gm‖2

0]
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This establishes equicontinuity (see, e.g., Embid [11]). Now we use Arzelá -Ascoli theorem

and the weak−∗ compactness of bounded sets in L∞([0,T ],Hs(Ω)), to conclude that there is a

subsequence {gm′} of {gm} such that gm′ → g, with g ∈ C([0,T ],H0(Ω))∩ L∞([0,T ],Hs(Ω))∩

L2([0,T ],Hs+1(Ω)). Moreover, since every gm′ satisfies equation (A.17), we can deduce

‖g‖2
s +

c2

Re

∫ t

0
‖Dg‖2

s dτ ≤C[‖w0‖2
s +

∫ t

0
‖G‖2

s dτ]

using the method of Embid [11]. Each gm′ satisfies

gm′ = Pm′w0 +
∫ t

0
Pm′(G− (q+∇φ) ·∇(gm′+∇φ)+

1
rRe

∆gm′)dτ (A.18)

Since gm′ → g and Pm′G−Pm′((q+∇φ) ·∇(gm′ +∇φ))+Pm′( 1
rRe∆gm′)) is uniformly bounded,

Pm′(G− (q +∇φ) ·∇(gm′ +∇φ) + 1
rRe∆gm′)→ G− (q +∇φ) ·∇(~g +∇φ) + 1

rRe∆~g as m′ → ∞

pointwise. By the Lebesgue’s dominated convergence theorem, we can therefore conclude from

equation (A.18) that

g = w0 +
∫ t

0
(G− (q+∇φ) ·∇(g+∇φ)+

1
rRe

∆g)dτ

This equation means that g satisfies equation (A.14). Therefore a solution uk+1 ∈C([0,T ],C4(Ω))∩

L∞([0,T ],Hs(Ω))∩L2([0,T ],Hs+1(Ω)) to equation (A.14) exists. We will now prove the conver-

gence of the sequences {uk+1}, {hk+1} to a solution u, h of the linear system of equations. We

begin by subtracting the subsequent iterations of equations (A.9) and (A.10)

(uk+1−uk)t +(q+∇φ) ·∇(uk+1−uk)− 1
rRe

∆(uk+1−uk)

= Q[(q+∇φ) ·∇(P(uk−uk−1))]−P[λ
p
′
(r)∇(hk+1−hk)

r
]

−Q[
1

rRe
∆P(uk−uk−1)] (A.19)

c∆
2(hk+1−hk)−∇ · [λ p

′
(r)∇(hk+1−hk)

r
]

= ∇ · [Q((q+∇φ) ·∇(P(uk−uk−1))]−∇ · [ 1
rRe

∆P(uk−uk−1)] (A.20)
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Applying Lemma B.2 to equation (A.20) yields

‖∇(hk+1−hk)‖2
s ≤C(c‖∆(hk+1−hk)‖2

s−1 +λc1‖∇(hk+1−hk)‖2
s−1)

≤ C
λc1

[
1

Re2‖D(
1
r
)‖2

s1+1‖∆P(uk−uk−1)‖2
s−2

+‖Q((q+∇φ) ·∇P(uk−uk−1))‖2
s−1]

≤ C
λc1

[
1

Re2‖D(
1
r
)‖2

s1+1‖uk−uk−1‖2
s +‖q+∇φ‖2

s−1‖uk−uk−1‖2
s ]

≤ K1

λc1
‖uk−uk−1‖2

s (A.21)

where s1 = max{s−2,2} and K1 depends on ‖q‖s−1,T , ‖ f‖s−2,T , ‖r‖s,T , Re, and s. Next we will

apply Lemma B.3 to equation (A.19) to derive an estimate for uk. We start by letting

h = r

a(h) =
p′(h)

h

b(h) =
1
h

F = Q[(q+∇φ) ·∇(P(uk−uk−1))]−Q[
1

rRe
∆P(uk−uk−1)]

We will now show the regularity for each.

‖Q(q+∇φ) ·∇P(uk−uk−1)‖2
s ≤C‖q+∇φ‖2

s‖uk−uk−1‖2
s

and by Lemma B.1

‖Q(
1

rRe
∆P(uk−uk−1))‖2

s ≤C‖ 1
rRe
‖2

s‖uk−uk−1‖2
s+1
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Applying Lemma B.3 yields

‖uk+1−uk‖2
s +

c2

Re

∫ t

0
‖D(uk+1−uk)‖2

s dτ

≤C[
∫ T

0
‖Q[(q+∇φ) ·∇(P(uk−uk−1))]−Q[

1
rRe

∆P(uk−uk−1)]‖2
s dτ]

≤CT [‖q+∇φ‖2
s,T‖uk−uk−1‖2

s,T +‖ 1
rRe
‖2

s,T‖uk−uk−1‖2
s,T ]

+C‖ 1
rRe
‖2

s,T

∫ t

0
‖D(uk−uk−1)‖2

s dτ

≤CT (‖q+∇φ‖2
s,T +‖ 1

rRe
‖2

s,T )‖uk−uk−1‖2
s,T

+
C

Re2‖
1
r
‖2

s,T

∫ T

0
‖D(uk−uk−1)‖2

s dτ

≤ T K2‖uk−uk−1‖2
s,T +

1
Re2 K2

∫ T

0
‖D(uk−uk−1)‖2

s dτ

where K2 depends on ‖q‖s,T , ‖ f‖s−1,T , ‖r‖s,T , c1, and s. For a small enough time interval T ≤ δ

and 1
Re ≤ δ

‖uk+1−uk‖2
s,T +

c2

Re

∫ T

0
‖D(uk+1−uk)‖2

s dτ ≤ K3[‖uk−uk−1‖2
s,T +

c2

Re

∫ T

0
‖D(uk−uk−1)‖2

s dτ]

where 0 < K3 < 1. It follows that ‖uk+1− uk‖2
s,T + c2

Re
∫ T

0 ‖D(uk+1− uk)‖2
s dτ → 0 as k → ∞.

Inequality (A.21) implies that ‖∇(hk+1−hk)‖2
s,T → 0 as k→∞. Then Lemma B.1 implies ‖hk+1−

hk‖2
s+1,T → 0 as k → ∞. Therefore, there exist h ∈ C([0,T ],C5(Ω))∩ L∞([0,T ],Hs+1(Ω)) and

u ∈C([0,T ],C4(Ω))∩L∞([0,T ],Hs(Ω))∩L2([0,T ],Hs+1(Ω)) such that

‖uk−u‖2
s,T + c2

Re
∫ T

0 ‖D(uk−u)‖2
s dτ → 0 as k→ ∞ and ‖hk−h‖2

s+1,T → 0 as k→ ∞. Since hk+1,

uk+1 is a solution of (A.9), (A.10) for k ≥ 0, it follows that h, u is a solution of (A.7), (A.8).
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APPENDIX B: SUPPORTING LEMMAS

Lemma B.1 Standard Sobolev Space Inequalities

(a) If f ∈ Hn(Ω), where Ω⊂ RN , and r = βm+(1−β )n, with 0≤ β ≤ 1 and m≤ n, then

‖ f‖r ≤C‖ f‖β
m‖ f‖1−β

n

Here C is a constant which depends on m, n, N, and Ω.

(b) Let g(u) be a smooth function on G, where u(x) is a continuous function and where u(x) ∈ G1

for x ∈Ω and G1 ⊂ G and u ∈ Hr(Ω)∩L∞(Ω). Then for r ≥ 1,

‖Dr(g(u))‖0 ≤C|dg
du
|r−1,Ḡ1

(1+ |u|L∞)r−1‖Du‖r−1

where |h|r,Ḡ1
= max{|d jh

du j (u∗)| : u∗ ∈ Ḡ1,0≤ j ≤ r}, and where C depends on r and Ω.

(c) And,

‖g(u)−g(v)‖r ≤C|dg
du
|r,Ḡ1

(1+ |u|L∞ + |v|L∞)(‖u‖r +‖v‖r)‖u− v‖r

where |dg
du |r,Ḡ1

= max{|d
j+1g

du j+1 (u∗)| : u∗ ∈ Ḡ1,0 ≤ j ≤ r}, where Ω = TN , the N-dimensional torus,

and where the constant C depends on r, Ω.

(d) If f ∈ Hs1(Ω), g ∈ Hs2(Ω), and s3 = min{s1,s2,s1 + s2− s0} ≥ 0, where s0 = [N
2 ] + 1, then

f g ∈ Hs3(Ω), and ‖ f g‖s3 ≤C‖ f‖s1‖g‖s2 where the constant C depends on s1,s2,Ω. We note that

s0 = 2 for N = 2 or N = 3.

(e) If D f ∈ Hr1(Ω), g ∈ Hr−1(Ω), where r1 = max{r− 1,s0}, s0 = [N
2 ] + 1, then for any r ≥ 1,

f , g satisfy the estimate ‖Dα( f g)− f Dαg‖0 ≤C‖D f‖r1‖g‖r−1, where r = |α|, and the constant C

depends on r, Ω.
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(f) Let u, w ∈ H2(Ω) be functions on a bounded, open, convex domain Ω. If u(x0) = w(x0) at

a single point x0 ∈Ω, then u−w and u satisfy the estimates

‖u−w‖2
0 ≤C‖∇(u−w)‖2

1

‖u‖2
0 ≤C‖w‖2

0 +C‖∇w‖2
1 +C‖∇u‖2

1

|u−w|L∞ ≤C‖∇(u−w)‖2
1

(g) Let η(·) be a nonnegative, absolutely continuous functions on [0,T ], which satisfies for a.e. t

the differential inequality

η
′(t)≤ φ(t)η(t)+ψ(t)

where φ(t) and ψ(t) are nonnegative, summable functions on [0,T ]. Then

η(t)≤ e
∫ t

0 φ(s)ds[η(0)+
∫ t

0
ψ(s)ds]

for all 0≤ t ≤ T .

(h) Given a ∈Hr+1(Ω), f ∈Hr(Ω), r > N
2 +3, Ω = TN , then P(a∇ f ) ∈Hr(Ω), and ‖P(a∇ f )‖r ≤

C‖Da‖r‖∇ f‖r−1, where P is the projection onto the solenoidal vector field.

(i) If r > N
2 + 1 and Ω = TN , then ‖Q(a∆Pu)‖r−1 ≤ C‖Da‖r−2‖Pu‖r. Also, ‖Q(v ·∇Pu)‖r ≤

C‖v‖r‖u‖r.

(j) If a is a sufficiently smooth function of u and u ∈ Hs(Ω) and u0 is a constant such that

|u−u0|L∞ ≤ R, then

‖D(a(u))‖2
s−1 ≤C|da

du
|2s1,Ḡ1

‖∇u‖2
s−1

where |da
du |s1,Ḡ1

= max{|d j+1a
du j+1 (u∗)| : u∗ ∈ Ḡ1,0 ≤ j ≤ s1}, where s1 = max{s− 1,2}, and where

Ω = TN , the N-dimensional torus, and C depends on s, R, u0.

30



(k) If f is sufficiently smooth and
∫

Ω
f dx = 0 where Ω = T2, the two-dimensional torus, then there

exist a unique solution ∇φ to ∆φ = f and ‖∇φ‖r ≤C‖ f‖r−1 where C depends on r.

The proofs of (a)-(k) can be found in [5], [11], and [12].

Lemma B.2: ‖∆ρ‖2
r +‖∇ρ‖2

r Estimate

If v, w, a(h), b(h), and F are sufficiently smooth in

c∆
2
ρ−∇ ·λ (a(h)∇ρ) = ∇ · (v ·∇w)−∇ · 1

Re
(b(h)∆w)+∇ ·F (B.1)

where a is a positive smooth function of h, 0 < c1 < a(h), ∇ ·w = 0, c is a positive constant, and

‖Da(h)‖r1 ≤ εc1 where r1 = max{r−1,2}, then

‖∇ρ‖2
r+1 ≤C(c‖∆ρ‖2

r +λc1‖∇ρ‖2
r )≤

C
λc1

[
1

Re2‖Db(h)‖2
r1+1‖∆w‖2

r−1 +‖v ·∇w‖2
r +‖F‖2

r ]

where C depends on r, and r ≥ 2.

Proof:

Let ρ̄ = ρ− 1
|T2|

∫
T2 ρdx. Start by taking the inner product of equation (B.1) against ρ̄ to obtain

(c∆
2
ρ, ρ̄)− (∇ ·λ (a(h)∇ρ), ρ̄) = (∇ · (v ·∇w)−∇ · 1

Re
(b(h)∆w)+∇ ·F, ρ̄)

= (∇ · (v ·∇w), ρ̄)− (∇ · 1
Re

(b(h)∆w), ρ̄)+(∇ ·F, ρ̄)

Via integration by parts we obtain

(c∆ρ,∆ρ)+λ (a(h)∇ρ,∇ρ) =−(v ·∇w,∇ρ)− 1
Re

(∇b(h) ·∆w, ρ̄)− (F,∇ρ)

from this equation and 0 < c1 < a(h) so we can say

c‖∆ρ‖2
0 +λc1‖∇ρ‖2

0 ≤ [|(v ·∇w,∇ρ)|+ | 1
Re

(∇b(h) ·∆w, ρ̄)|+ |(F,∇ρ)|] (B.2)

Using Cauchy’s inequality with ε , the first term in inequality (B.2) becomes

|(v ·∇w,∇ρ)| ≤ 1
4ελc1

‖v ·∇w‖2
0 + ελc1‖∇ρ‖2

0 (B.3)
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In the same way the second term becomes

1
Re
|(∇b(h) ·∆w), ρ̄)| ≤ 1

4εRe2λc1
‖∇b(h) ·∆w‖2

0 + ελc1‖ρ̄‖2
0

≤ 1
4εRe2λc1

|∇b(h)|2L∞‖∆w‖2
0 + ελc1‖ρ̄‖2

0 (B.4)

Similarly, the last term in inequality (B.2) becomes

|(F,∇ρ)| ≤ 1
4ελc1

‖F‖2
0 + ελc1‖∇ρ‖2

0 (B.5)

Combining and simplifying inequalities (B.2), (B.3), (B.4), and (B.5) we obtain

c‖∆ρ‖2
0 +λc1‖∇ρ‖2

0 ≤[
1

4ελc1
‖(v ·∇w)‖2

0 +
1

4ελc1

1
Re2 |∇b(h)|2L∞‖∆w‖2

0

+ ελc1‖ρ̄‖2
0 +

1
4ελc1

‖F‖2
0 +2ελc1‖∇ρ‖2

0] (B.6)

Using Poincaré’s inequality

‖ρ̄‖2
0 ≤C‖∇ρ‖2

0

we derive from inequality (B.6) where ε ≤ ( 1
2C+4).

c‖∆ρ‖2
0 +λc1‖∇ρ‖2

0 ≤
C

λc1
[‖(v ·∇w)‖2

0 +
1

Re2 |∇b(h)|2L∞‖∆w‖2
0 +‖F‖2

0] (B.7)

Applying Dα to equation (B.1) gives

c∆
2Dα

ρ−∇ ·λ (a(h)Dα(∇ρ)) = Dα(∇ · (v ·∇w))−∇ · ( 1
Re

b(h)Dα(∆w))+Dα(G) (B.8)

where

Dα(G) =− 1
Re

[Dα(∇ · (b(h)∆w))−∇ · (b(h)Dα(∆w))]

+∇ · [λDα(a(h)∇ρ)−λ (a(h)Dα(∇ρ))]+Dα(∇ ·F)

For notational purposes, we will write

Dα
ρ = ρα

Dαw = wα

DαF = Fα
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So now the equation (B.8) can be written as

c∆
2
ρα −∇ ·λ (a(h)∇ρα) = ∇ · (v ·∇w)α −∇ · 1

Re
(b(h)∆wα)+Gα

Taking the inner product of both sides of this equation with respect to ρα gives

(c∆
2
ρα ,ρα)− (∇ ·λ (a(h)∇ρα),ρα)

= (∇ · (v ·∇w)α ,ρα)− (∇ · 1
Re

(b(h)∆wα),ρα)+(Gα ,ρα)

Via integration by parts we obtain

(c∆ρα ,∆ρα)+(λa(h)∇ρα ,∇ρα) =−((v ·∇w)α ,∇ρα)−
1

Re
(∇b(h) ·∆wα ,ρα)+(Gα ,ρα)

From this equation and 0 < c1 < a(h) we can say

c‖∆ρα‖2
0 +λc1‖∇ρα‖2

0 ≤ [|((v ·∇w)α ,∇ρα)|+
1

Re
|(∇b(h) ·∆wα ,ρα)|+ |(Gα ,ρα)|] (B.9)

We can estimate the first and second term in inequality (B.9) by applying Cauchy’s inequality with

ε . The first term is as follows

|((v ·∇w)α ,∇ρα)| ≤ ‖(v ·∇w)α‖0‖∇ρα‖0

≤ 1
4ελc1

‖(v ·∇w)α‖2
0 + ελc1‖∇ρα‖2

0 (B.10)

The second term in inequality (B.9) is estimated as follows

1
Re
|(∇b(h) ·∆wα ,ρα)| ≤

1
Re
|(∇b(h) ·∆wα−β ,ρα+β )|+

1
Re
|(∇b(h)β ·∆wα−β ,ρα)|

≤ 1
Re
‖∇b(h) ·∆wα−β‖0‖ρα+β‖0 +

1
Re
‖∇b(h)β ·∆wα−β‖0‖ρα‖0

≤ 1
Re
|Db(h)|L∞‖∆wα−β‖0‖ρα+β‖0 +

1
Re
|Db(h)β |L∞‖∆wα−β‖0‖ρα‖0

≤ 1
4εRe2λc1

|Db(h)|2L∞‖∆wα−β‖2
0 +

1
4εRe2λc1

|Db(h)β |2L∞‖∆wα−β‖2
0

+ ελc1‖ρα+β‖2
0 + ελc1‖ρα‖2

0 (B.11)

33



where |β | = 1 and 1 ≤ |α|. The last term in inequality (B.9) is estimated as follows. Start by

integrating by parts to obtain

|(Gα ,ρα)| ≤ λ |(∇ · [(a(h)∇ρ)α −a(h)∇ρα ],ρα)|

+
1

Re
|(∇ · [(b(h)∆w)α −b(h)∆wα ],ρα)|+ |(∇ ·Fα ,ρα)|

≤ λ |([(a(h)∇ρ)α −a(h)∇ρα ],∇ρα)|

+
1

Re
|([(b(h)∆w)α −b(h)∆wα ],∇ρα)|+ |(Fα ,∇ρα)|

From this we obtain the following inequality

|(Gα ,ρα)| ≤ λ‖(a(h)∇ρ)α −a(h)∇ρα‖0‖∇ρα‖0

+
1

Re
‖(b(h)∆w)α −b(h)∆wα‖0‖∇ρα‖0 +‖Fα‖0‖∇ρα‖0 (B.12)

Applying the commutator estimate from Lemma B.1, the first and second part of inequality

(B.12) becomes

‖(a(h)∇ρ)α −a(h)∇ρα‖0 ≤C‖Da(h)‖k1‖∇ρ‖k−1

‖(b(h)∆w)α −b(h)∆wα)‖0 ≤C‖Db(h)‖k1‖∆w‖k−1 (B.13)

where k1 = max{k−1,2} and k = |α|.

Combining inequalities (B.13) with (B.12) gives

|(Gα ,ρα)| ≤Cλ‖Da(h)‖k1‖∇ρ‖k−1‖∇ρα‖0

+
C
Re
‖Db(h)‖k1‖∆w‖k−1‖∇ρα‖0 +‖Fα‖0‖∇ρα‖0 (B.14)

Now applying Cauchy’s inequality with ε to (B.14) gives

|(Gα ,ρα)| ≤Cλ‖Da(h)‖k1‖∇ρ‖k−1‖∇ρα‖0 +
C

4εRe2λc1
‖Db(h)‖2

k1
‖∆w‖2

k−1

+
1

4ελc1
‖Fα‖2

0 +Cελc1‖∇ρα‖2
0 (B.15)
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Combining inequalities (B.9), (B.10), (B.11), and (B.15) we obtain

c‖∆ρα‖2
0 + c1λ‖∇ρα‖2

0

≤ [
1

4ελc1
‖(v ·∇w)α‖2

0 +
1

4ελc1
(

1
Re2 |Db(h)|2L∞ +

1
Re2 |Db(h)β |2L∞)‖∆wα−β‖2

0

+Cλ‖Da(h)‖k1‖∇ρ‖k−1‖∇ρα‖0 +
C
4ε

1
Re2λc1

‖Db(h)‖2
k1
‖∆w‖2

k−1

+
1

4ελc1
‖Fα‖2

0 +Cελc1‖∇ρα‖2
0 + ελc1‖ρα+β‖2

0 + ελc1‖ρα‖2
0] (B.16)

Summing inequality (B.16) over 1 ≤ |α| ≤ r and over |β | = 1 as well as adding the L2 estimate

inequality (B.7),we get

c‖∆ρ‖2
r + c1λ‖∇ρ‖2

r ≤C[
1

4ελc1
‖v ·∇w‖2

r +
1

4ελc1
(

1
Re2 |Db(h)|2L∞ +

1
Re2 |D

2b(h)|2L∞)‖∆w‖2
r−1

+λ‖Da(h)‖r1‖∇ρ‖2
r +

1
4εRe2λc1

‖Db(h)‖2
r1
‖∆w‖2

r−1

+
1

4ελc1
‖F‖2

r ]+Cελc1‖∇ρ‖2
r +Cελc1‖∇ρ‖2

r−1 (B.17)

where C depends on r.

We are given that

‖Da(h)‖r1 ≤ εc1

From Lemma B.1 we have:

|Db(h)|2L∞ + |D2b(h)|2L∞ +‖Db(h)‖2
r1
≤C‖Db(h)‖2

r1+1

Combining like terms in inequality (B.17) gives us

c‖∆ρ‖2
r + c1λ‖∇ρ‖2

r ≤
C

4ελc1
[

1
Re2‖Db(h)‖2

r1+1‖∆w‖2
r−1 +‖v ·∇w‖2

r +‖F‖2
r ]+Cελc1‖∇ρ‖2

r

where ε ≤ 1
2C and where C depends on r. Combining like terms one more time gives

‖∇ρ‖2
r+1 ≤C(c‖∆ρ‖2

r +λc1‖∇ρ‖2
r )≤

C
λc1

[
1

Re2‖Db(h)‖2
r1+1‖∆w‖2

r−1 +‖v ·∇w‖2
r +‖F‖2

r ]

(B.18)

where C depends on r which completes the proof.
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Lemma B.3: ‖w‖2
r +

c2
Re

∫ t
0 ‖∇w‖2

r dτ Estimate

If v ∈ Hr(Ω), a(h) ∈ Hr+1(Ω), b(h) ∈ Hr+1(Ω), f ∈ Hr(Ω), and F ∈ Hr(Ω), Ω = T2,

‖D(a(h))‖r1 ≤ εc1, in

wt +v ·∇w =
1

Re
b(h)∆w−λa(h)∇ρ + c∇∆ρ +F (B.19)

where w(x,0) = w0(x), w0 ∈ Hr(T2), ∇ ·w = 0, ∇ · v = f , b(h) > c2 > 0, a(h) > c1 > 0, and

t ∈ [0,T ] then

‖w‖2
r +

c2

Re

∫ T

0
‖Dw‖2

r dτ ≤C[‖w0‖2
r +

∫ T

0
‖F‖2

r dτ]

where C depends on r, and r ≥ 3.

Proof:

We will start by determining an L2 estimate for w. Let ρ̄ = ρ− 1
|T2|

∫
T2 ρdx. We start by taking the

inner product of (B.19) against w

(wt ,w) =−(v ·∇w,w)+
1

Re
(b(h)∆w,w)−λ (a(h)∇ρ,w)+(c∇∆ρ,w)+(F,w) (B.20)

The term on the left becomes

(wt ,w) =
1
2

d
dt
‖w‖2

0 (B.21)

Because ∇ ·v = f the first term on the right becomes

−(v ·∇w,w)≤ |(v ·∇w,w)|

≤ 1
2
|∇ ·v|L∞‖w‖2

0

=
1
2
| f |L∞‖w‖2

0 (B.22)

The second term on the right is

1
Re

(b(h)∆w,w) =
1

Re

∫
T2

b(h)∆w ·wdx
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Via integration by parts we obtain

1
Re

∫
T2

b(h)∆w ·wdx =− 1
Re

∫
T2

b(h)|Dw|2dx− 1
Re

∫
T2
((∇b(h))T ·∇w) ·wdx

Therefore, we have

1
Re

(b(h)∆w,w)≤− c2

Re
‖Dw‖2

0 +
C
Re
|Db(h)|L∞‖Dw‖0‖w‖0 (B.23)

where c2 ≤ b(h). The third term of the right side of (B.20) becomes

−λ (a(h)∇ρ,w) =−λ

∫
T2

a(h)∇ρ ·wdx =−λ

∫
T2

∇ρ · (a(h)w)dx

Via integration by parts we obtain

−λ (a(h)∇ρ,w) = λ

∫
T2

ρ̄∇ · (a(h)w)dx

= λ

∫
T2
(ρ̄∇a(h)) ·wdx+λ

∫
T2

a(h)ρ̄(∇ ·w)dx

Since ∇ ·w = 0 we get

−λ (a(h)∇ρ,w) = λ (ρ̄∇a(h),w)

and by Poincaré’s inequality

−λ (a(h)∇ρ,w)≤ λ |(a(h)∇ρ,w)|

≤Cλ‖ρ̄‖0|Da(h)|L∞‖w‖0

≤Cλ‖∇ρ‖0|Da(h)|L∞‖w‖0 (B.24)

Since ∇ ·w = 0, the fourth term in (B.20) becomes

(c∇∆ρ,w) =−(c∆ρ,∇ ·w) = 0 (B.25)

The final term in (B.20) is bounded by

(F,w)≤ |(F,w)|

≤ ‖F‖0‖w‖0 (B.26)
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Combining inequalities, applying Cauchy’s inequality with ε , and applying the Sobolev inequali-

ties from Lemma B.1 to (B.20), (B.21), (B.22), (B.23), (B.24), (B.25), and (B.26) gives

d
dt
‖w‖2

0 +
2c2

Re
‖∇w‖2

0 ≤ | f |L∞‖w‖2
0 +

C
Re
|Db(h)|L∞‖Dw‖0‖w‖0

+Cλ‖∇ρ‖0|Da(h)|L∞‖w‖0 +2‖F‖0‖w‖0

≤ | f |L∞‖w‖2
0 +

2εc2

Re
‖Dw‖2

0 + ε‖∇ρ‖2
0 + ε‖F‖2

0

+
C
ε
(1+

1
c2Re

‖Db(h)‖2
r1
+λ

2‖Da(h)‖2
r1
)‖w‖2

0

where r1 = max{r−1,2} and 0 < ε < 1. Rearranging terms yields

d
dt
‖w‖2

0 +
2c2(1− ε)

Re
‖∇w‖2

0

≤ ε‖∇ρ‖2
0 + ε‖F‖2

0 +(| f |L∞ +
C
ε
(1+

1
c2Re

‖Db(h)‖2
r1
+λ

2‖Da(h)‖2
r1
))‖w‖2

0 (B.27)

where C depends on r.

We now apply the Dα operator to (B.19) and obtain

(Dαw)t =−v ·∇(Dαw)+
1

Re
b(h)∆(Dαw)−λa(h)∇(Dα

ρ)+Dα(c∇∆ρ)+Hα (B.28)

where

Hα =
1

Re
[Dα(b(h)∆w)−b(h)∆(Dαw)]−λ [Dα(a(h)∇ρ)−a(h)∇(Dα

ρ)]

− [Dα(v ·∇w)−v ·∇(Dαw)]+DαF

For notational purposes, we will write

Dα
ρ = ρα

Dαw = wα

DαF = Fα

We now take the inner product of both sides of equation (B.28) with wα to obtain

1
2

d
dt
‖wα‖2

0 = ((wα)t ,wα)

=−(v ·∇wα ,wα)+
1

Re
(b(h)∆wα ,wα)−λ (a(h)∇ρα ,wα)

+(c∇∆ρα ,wα)+(Hα ,wα) (B.29)
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We will now estimate each term on the right side of equation (B.29). Because ∇ · v = f the first

term on the right becomes

−(v ·∇wα ,wα)≤ |(v ·∇wα ,wα)|

≤ 1
2
|∇ ·v|L∞‖wα‖2

0

=
1
2
| f |L∞‖wα‖2

0 (B.30)

Via integration by parts the second term in inequality (B.29) becomes

1
Re

(b(h)∆wα ,wα) =
1

Re

∫
T2

b(h)∆wα ·wαdx

=− 1
Re

∫
T2

b(h)|Dwα |2dx− 1
Re

∫
T2
((∇b(h))T ·∇wα) ·wαdx

We can use Cauchy’s inequality with ε , Sobolev inequalities and c2 ≤ b(h) to obtain

1
Re

(b(h)∆wα ,wα)≤−
c2

Re
‖Dwα‖2

0 +
C
Re
|Db(h)|L∞‖Dwα‖0‖wα‖0

≤− c2

Re
‖Dwα‖2

0 +
εc2

Re
‖Dwα‖2

0 +
C

εc2Re
‖Db(h)‖2

r1
‖wα‖2

0 (B.31)

Via Sobolev inequalities and Cauchy’s inequality with ε , and since ∇ ·w = 0, the third term be-

comes

−λ (a(h)∇ρα ,wα)≤Cλ‖ρ̄α‖0|Da(h)|L∞‖wα‖0

≤ ε‖ρ̄α‖2
0 +

Cλ 2

ε
‖Da(h)‖2

r1
‖wα‖2

0 (B.32)

Since ∇ ·w = 0, the fourth term in (B.20) becomes

(c∇∆ρα ,wα) =−(c∆ρα ,∇ ·wα) = 0 (B.33)

The final term in inequality (B.29) becomes

(Hα ,wα) =
1

Re
((b(h)∆w)α −b(h)∆wα ,wα)−λ ((a(h)∇ρ)α −a(h)∇ρα ,wα)

− ((v ·∇w)α −v ·∇wα ,wα)+(Fα ,wα)
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where |β |= 1. This equation is bounded by

(Hα ,wα)≤
1

Re
‖(b(h)∆w)α −b(h)∆wα‖0‖wα‖0 +λ‖(a(h)∇ρ)α −a(h)∇ρα‖0‖wα‖0

+‖(v ·∇w)α −v ·∇wα‖0‖wα‖0 +‖Fα‖0‖wα‖0 (B.34)

Now applying the low-norm commutator estimate from Lemma B.1 gives

‖(b(h)∆w)α −b(h)∆wα‖0 ≤C‖Db(h)‖k1‖∆w‖k−1

‖(a(h)∇ρ)α −a(h)∇ρα‖0 ≤C‖Da(h)‖k1‖∇ρ‖k−1

‖(v ·∇w)α −v ·∇wα‖0 ≤C‖Dv‖k1‖∇w‖k−1

where k = |α| and k1 = max{k− 1,2}. Now applying the low-norm commutator estimates and

Cauchy’s inequality with ε to inequality (B.34) we obtain

(Hα ,wα)≤
C
Re
‖Db(h)‖k1‖∆w‖k−1‖wα‖0 +Cλ‖Da(h)‖k1‖∇ρ‖k−1‖wα‖0

+C‖Dv‖k1‖∇w‖k−1‖wα‖0 +‖Fα‖0‖wα‖0

≤ εc2

Re
‖∆w‖2

k−1 + ε‖∇ρ‖2
k−1 +C‖Dv‖k1‖∇w‖k−1‖wα‖0 +

1
2
‖Fα‖2

0

+
C
ε
(

1
c2Re

‖Db(h)‖2
k1
+λ

2‖Da(h)‖2
k1
)‖wα‖2

0 +
1
2
‖wα‖2

0 (B.35)

Combining inequalities (B.30), (B.31), (B.32), (B.33), and (B.35) with (B.29) gives

d
dt
‖wα‖2

0 +
2c2

Re
‖∇wα‖2

0 ≤
2εc2

Re
‖Dwα‖2

0 +2ε‖ρ̄α‖2
0 +

2εc2

Re
‖∆w‖2

k−1 +2ε‖∇ρ‖2
k−1

+C‖Dv‖k1‖∇w‖k−1‖wα‖0 +‖Fα‖2
0

+C(1+ | f |L∞ +
1
ε
(

1
c2Re

‖Db(h)‖2
k1
+λ

2‖Da(h)‖2
k1
))‖wα‖2

0 (B.36)

Summing inequality (B.27) and (B.36) over 0≤ |α| ≤ r and applying Poincaré’s inequality gives

d
dt
‖w‖2

r +
2c2(1− ε−Cε)

Re
‖∇w‖2

r

≤Cε‖∇ρ‖2
r−1 +C(ε +1)‖F‖2

r

+C(1+ | f |L∞ +‖Dv‖r1 +
1
ε
(1+

1
c2Re

‖Db(h)‖2
r1
+λ

2‖Da(h)‖2
r1
))‖w‖2

r
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Substituting the estimate for ‖∇ρ‖2
r−1 from Lemma B.2 yields

d
dt
‖w‖2

r +
2c2(1− ε−Cε)

Re
‖∇w‖2

r

≤ Cε

λ 2c2
1
[

1
Re2‖Db(h)‖2

r1
‖∆w‖2

r−2 +‖v ·∇w‖2
r−1 +‖F‖2

r−1]

+C(ε +1)‖F‖2
r +C[1+ | f |L∞ +‖Dv‖r1

+
1
ε
(1+

1
c2Re

‖Db(h)‖2
r1
+λ

2‖Da(h)‖2
r1
)]‖w‖2

r

≤ Cε

λ 2c2
1Re2‖Db(h)‖2

r1
‖w‖2

r +
Cε

λ 2c2
1
‖v‖2

r−1‖w‖2
r

+
Cε

λ 2c2
1
‖F‖2

r−1 +C(ε +1)‖F‖2
r

+C[1+ | f |L∞ +‖Dv‖r1 +
1
ε
(1+

1
c2Re

‖Db(h)‖2
r1
+λ

2
ε

2c2
1)]‖w‖2

r

≤C(ε +1)‖F‖2
r +C[1+ | f |L∞ +‖Dv‖r1 +

ε

λ 2c2
1
‖v‖2

r−1

+
1
ε
(1+(

ε2

λ 2c2
1Re2 +

1
c2Re

)‖Db(h)‖2
r1
)+λ

2
εc2

1]‖w‖2
r

where C depends on r.

Using Gronwall’s inequality gives

‖w‖2
r +

c2

Re

∫ T

0
‖Dw‖2

r dτ

≤ e
∫ T

0 C(1+| f |L∞+‖Dv‖r1+
ε

λ2c2
1
‖v‖2

r−1+
1
ε
+( ε

λ2c2
1Re2 +

1
εc2Re )‖Db(h)‖2

r1
+λ 2εc2

1)dτ

[‖w0‖2
r

+
∫ T

0
C(ε +1)‖F‖2

r dτ]

where ε is sufficiently small so that 2c2(1−ε−Cε)
Re ≥ c2

Re . We used the facts that

( 1
Re)‖Db(h)‖2

r1,T ≤ ε and ‖Da(h)‖r1,T ≤ εc1. We remark that ε

δ
= O(1). And T is sufficiently

small so that

CT (1+ | f |L∞,T + ‖Dv‖r1,T + ε

λ 2c2
1
‖v‖2

r−1,T + 1
ε
+( ε

λ 2c2
1Re2 +

1
εc2Re)‖Db(h)‖2

r1,T + λ 2εc2
1) = O(1).

We obtain

‖w‖2
r +

c2

Re

∫ T

0
‖Dw‖2

r dτ ≤C[‖w0‖2
r +

∫ T

0
‖F‖2

r dτ]

where C depends on r which completes the proof.
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