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ABSTRACT 

Advancements in the miniaturization of sensors and their integration in light-weight, small-scale 

unmanned aerial systems (UAS) have resulted in an explosion of uses for inexpensive and easily obtained 

remotely sensed data.  This study examines the capabilities of a small-scale UAS equipped with a 

consumer grade RGB camera for 2D and 3D mapping of a sandy bay shoreline using Structure from 

Motion (SfM) photogrammetry.  Several key components are analyzed in order to assess the utility of 

UAS-based SfM photogrammetry for beach and boundary surveying of the littoral zone.  First, the 

accuracy of the 3D point cloud produced by the SfM densification process over the beach is compared to 

high accuracy RTK GPS transects.  Results show a mean agreement of approximately 7.9 cm over the 

sub-aerial beach with increased error in shallow water.  Minimal effects of beach slope on vertical 

accuracy were observed.  Secondly, bathymetric measurements extracted from the UAS/SfM point cloud 

are examined, and an optical inversion approach is implemented where the SfM method fails.  Results 

show that a hybrid elevation model of the beach and littoral zone consisting of automatic SfM products, 

post-processed SfM products, and optical inversion provide the most accurate results when mapping over 

turbid water.  Finally, SfM-derived shoreline elevation contour (boundary) is compared to a shoreline 

elevation contour derived using the currently accepted RTK GPS method for conducting legal littoral 

boundary surveys in the state of Texas.  Results show mean planimetric offsets < 25 cm demonstrating 

the potential of UAS-based SfM photogrammetry for conducting littoral boundary surveys along non-

occluded, sandy shorelines.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 Methods of remote sensing are emerging that deliver hyper-resolution aerial photography that can 

be processed using Structure from Motion (SfM) photogrammetric methods to produce high-accuracy, 

dense point clouds, digital surface models (DSMs) and orthophotos.  Unmanned aerial systems (UAS) are 

more frequently being used as a platform for high-resolution photography because they are cheap to 

manufacture and operate.  SfM algorithms are easily implemented into user-friendly software that 

requires minimal training and expertise; however, ensuring high geospatial accuracy of derived products 

and characterizing uncertainty can be non-trivial.  This study tested the utility of using Structure from 

Motion (SfM) photogrammetry to map littoral boundaries using imagery acquired by a small-scale, light-

weight unmanned aerial system (UAS).  Modern small-scale and electric powered fixed-wing UAS 

equipped with a high resolution (>12 megapixels) digital camera are capable of autonomously capturing 

high resolution imagery over several square kilometers (ex. 12 km2) on a single flight though the total 

area covered will depend on battery endurance, flying height, wind, and other factors (Sensefly, 2014).  

Ground sample distance (GSD), or resolution on the ground, for imagery captured by low altitude (<130 

meters) aerial photography is typically centimeter or an order of magnitude higher.  Advances in 

navigational sensors and inertial measurement units (IMU) have led to the development of micro-

electronic mechanical systems (MEMS) which comprise the miniaturized 3-axes accelerometers, rate-

gyros, and electronic compasses (Jiang et al., 2012; Ma et al., 2012).  The components coupled with 

onboard GPS all provide real-time data enabling autonomous flight, and providing attitude and 

georeferencing data for simultaneous storage with imagery.  Miniature electronics and high resolution 

consumer digital cameras are merged in the UAS to provide an ultra-light and portable means to collect 

remotely sensed data.  Automatically executed flight plans including the triggering of the camera shutter 

enables the user to quickly mobilize the UAS and collect imagery.  From this imagery it is possible to 
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produce 3-dimensional point clouds and digital elevation model (DEM) as well as orthophotos via the 

SfM pipeline. 

 SfM is a computer vision-based workflow in which sets of high resolution overlapping images 

can be processed in order to solve for camera orientation and pixel coordinates in real coordinate space by 

using image-to-image registration methods called feature detection and correlation.  Images from non-

metric cameras are suitable for processing using a SfM approach, which gives this workflow a distinct 

advantage over traditional photogrammetric routines (Mancini et al., 2013).  The calculated relationships 

are used to create 3-dimensional models that are subsequently used to orthorectify the imagery and create 

orthomosaics with color attributes.  SfM utilizes techniques in digital image processing to identify and 

track patterns of pixels, or features, in multiple images.  Using autonomous GPS positions and inertial 

measurement unit (IMU) data for initial camera orientation values, a system of highly over-determined 

equations can be produced using constraints imposed by matched features and camera model attributes.  

Final processing involves determining interior and exterior camera orientation as well as the position of 

each common pixel identified in overlapping photos (densification).  The final products are typically a 3-

dimensional point cloud, digital surface model (DSM), and orthomosaic.  

1.2 Motivation 

  The littoral boundary is the complex interface between the sea and land; it typically refers to a 

beach system with shoreline and a fluctuating tidal level that exposes or covers part of the beach.   

Various water levels, represented by contours, are of legal importance in the United States because they 

often times represent a cadastral boundary or the limit of jurisdiction for a governmental agency.  For 

example, in Texas, Spanish and Mexican law govern that the upper limit of public land from the sea as 

"all that place [which] is called shore of the sea insomuch as it is covered by the water of the latter, 

however most it grows in all the year, be it in time of winter or of summer…" as defined in ‘Las Sietes 

Partidas’ or the Seven Parts Code - laws from the monarchy of 13th century Spain (McFarland, 2013).  In 

the Texas Supreme Court case Luttes versus State of Texas, it was decided that a scientific approach 

would be used to determine this location, and would be defined as "the line of mean higher high tide 



 

3 

(MHHW).  The use of a tide gauge would be used for determining boundary locations in Texas.  One of 

the primary goals of this research was to experiment with remotely sensed data captured using a portable 

and inexpensive UAS for mapping specific contours such as MHHW.  MHHW contours are currently 

found in the field using traditional leveling techniques, total station, or more recently with GNSS 

observations.   

 UAS are providing a suitable vehicle by which low-altitude spectral data can be obtained, but the 

use of UAS in the United States is currently restricted.  According to the Federal Aviation Administration 

(FAA) website, civil operations of UAS are limited to research and development, crew training, and 

market surveys.  Aircraft require an airworthiness certificate (FAA, 2015).   Carrying persons or property 

for compensation or hire is currently prohibited, which effectively blocks most organizations from 

pursuing UAS utilization in the United States.  Despite impeding regulation on UAS usage in the United 

States, proposed rules providing for the integration of UAS into the U.S. airspace were released February 

15, 2015.  Highlights from FAA proposed rules include a maximum flying altitude of 500ft, a maximum 

weight of 55 pounds, the passing of aeronautical knowledge exam by operators, and the exclusion of an 

airworthiness certificate.  Commercial operations under these proposed rules are on the horizon.  Current 

UAS use in the United States under ‘public/governmental’ use and sanctioned civil operation include law 

enforcement, search and rescue, forensic photography, border security, weather research, and scientific 

data collection.  The potential for commercial use is virtually unlimited, but includes activities such as 

land surveying, pipeline/utility right of way mapping, agricultural/farm inspections, vehicular traffic 

monitoring; real-estate and construction-site photography, telecommunication signals relaying, film 

industry production, fishery protection and monitoring, and many other geological/environmental 

monitoring activities.  Forecasts for the eventual growth of UAS industry expect growth exceeding $89 

billion over the next decade (USGOA, 2015).   

UAS-derived data could potentially be utilized to map littoral boundaries for taxation purposes or 

for planning and decision-making purposes regarding expanses of inaccessible land.  In Italy, Mancini et 

al., (2013) have used UAS and SfM combinations have been shown to be effective in high resolution 
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monitoring of beach and dune systems with an average vertical residual between SfM point clouds and 

terrestrial laser scanning (TLS) point clouds of approximately 5 centimeters (cm).  Accurate and 

inexpensive mapping of the littoral zone along the Texas coast has implications in land management, 

erosion protection/prevention, and habitat or environmental monitoring.  UAS photogrammetry could 

provide for a cost-effective method to obtain accurate elevation and spectral data in areas difficult to 

access such as deltaic marshes, remote beaches, and islands.  The technology and workflow presented 

here offer an alternative to field intensive GNSS and TLS surveys, or expensive airborne lidar coverage.  

GNSS surveys currently utilized for monitoring purposes are cost-prohibitive, and UAS-derived spatial 

data may provide a means to survey areas where available budget cannot provide for base and rover 

survey.  For example, recent communications with Texas General Land Office (Pers. Comm. TXGLO 

Survey Div.) indicate that the survey division would be interested in implementing a UAS-derived 

photogrammetry workflow that could produce an accurate elevation model and orthomosaic.  Usage 

discussed included the delineation and quantification of artificial fill/buildup as part of the requirements 

for state-funded erosion protection programs (Texas Administrative Code 33.136).   

The utility of 3-dimensional SfM data was examined by applying it to a survey environment 

along a littoral zone where a portion of the scene was underwater.  For this study, the effectiveness and 

accuracy of image-matching and modeling along a sandy, low gradient beach, and through shallow, turbid 

water was assessed and quantified.   Accuracy was assessed by comparing SfM point cloud data and 

planimetric location of SfM-derived MHHW contour to GNSS survey data.  It was hypothesized that SfM 

would fail over portions of the water surface where turbid water inhibits feature matching and correlation 

from the seafloor and effects of the dynamic water surface, specular reflection, and changes in view and 

lighting conditions from image to image impose a quasi-random element that cannot be appropriately 

matched and tracked between correlated photos.  Results show that with careful survey design and post-

processing, reliable information can be extracted from the sub-aerial beach and submerged zone to derive 

accurate shoreline boundaries and elevation models. 
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The study is outlined as follows.  First, a side by side comparison is made between 3-dimensional 

point cloud measurements derived from UAS acquired imagery using SfM photogrammetry and in-situ 

RTK GPS survey data.  Next, a method of band ratio optimization, or optical (bathymetric) inversion, is 

tested for use in obtaining bathymetric data from 3-band RGB imagery where the water surface occludes 

and disrupts the SfM feature matching process.  Post-processing and classification methods are 

implemented on the SfM derived values to fuse different model outputs and derive a seamless topo-

bathymetric map. Finally, MHHW shoreline extracted from the SfM-derived digital elevation model is 

compared to in-situ RTK GPS shoreline observations representing the currently accepted method used in 

legal littoral boundary surveys.  The ultimate goal of this study is to assess the appropriateness of using a 

SfM workflow in littoral boundary surveying, and also to identify best practices as well as potential 

problems with using UAS photogrammetric techniques in these environments. 

 Chapter 2 details background material and literature on SfM photogrammetry.  Chapter 3 presents 

measurement methods including detailing the study area and the UAS utilized in the research.  Chapter 4 

presents results and a discussion on the findings.  Chapter 5 provides concluding remarks, and Chapter 6 

outlines future work. 
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CHAPTER 2 

BACKGROUND 

2.1 Structure from Motion 

 

SfM refers to the workflow and set of algorithms used to determine 3-dimensional coordinates of 

an object space from a series of overlapping photographs (Jebara et al., 2001).  Any camera or scanner 

measures the intensity of light at a particular location.  The SfM goal is to derive 3-dimensional 

information from these measurements and their origins.   Interior and exterior camera orientation are 

solved by placing geometric restraints on the images by identifying and tracking features in multiple 

photographs.   The SfM pipeline is a combination of modules where output from one is fed into another 

(Graham, 2005).   

Camera model: 

 

The camera model is crucial because the SfM process is based on the theory of adjusting or solving 

for rays of light passively traveling from the reflective surface of the earth/object through an orifice and 

lens to a particular position on a CCD sensor.  The camera model is the nexus for three crucial 

transformations (Graham, 2005): 

1. A coordinate transformation relates real-world points to a position on the camera sensor 

2. A projection occurs when rays being received from a 3-dimensional world intersect a 2-

dimensional sensor plane. 

3. Transformations between series of photographs. 

Initial values for interior and exterior camera orientation during initial processing is supplemented by 

the information stored in exif (exchangeable image file format) data.  Most modern digital cameras embed 

useful information about each photograph into the image file.  These data contain information such as 

GPS location (if equipped), compass heading, exposure time, focus, aperture, and focal length.  Focal 

length is crucial in solving the constrained equations used in the SfM pipeline (Snavely, 2008). A network 

of system constraints allows for the automated calculation of intrinsic camera properties for a particular 

project during the SfM process including the calibrated focal point, principle point, lens distortions, 

skewness, and pixel ratio which is why non-metric cameras are acceptable for use.  
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Figure 2.1: Camera Model: Field of 

view of a camera showing components 

to exterior orientation such as yaw, 

pitch, and roll angles (ϕ, θ, ψ) (Fu et al 

2014).  Also shown is a visualization of 

the projection from 3-dimensional real-

world coordinates to the 2-dimensional 

coordinate plane of the camera’s sensor 

or film. 

 

 

 

 

 

Because no a priori knowledge is necessary in SfM, the process relies on matching multiple features in 

multiple overlapping images.  The overdetermined system of equations and relationships eventually 

allows for triangulation of individual rays and the solving of camera orientations (Figure 2.1).  The need 

for constraint in solving a highly overdetermined system translates to high image overlap when 

developing a dataset for use with SfM.  Typical SfM flight plan recommendations call for approximately 

70% sidelap and 80% frontlap of photography (Pix4D, 2015). 

SfM software:  

The SfM process has been automated and bundled in a variety of commercial software packages 

exist for SfM processing of imagery acquired from most any camera model. One of the most well-known 

SfM photogrammetry software suites is called Pix4D, which forms the engine behind the SfM post-

processing software packaged with the UAS system used in this study (see Chapter 3 for details on the 

software and UAS system used in this study). Image matching and camera orientation in the Pix4D 

workflow are completely automated; however, the program does offer the user a variety of processing 

options and variable parameters. Open source SfM packages exist as individual modules to the SfM 

pipeline; they are mostly collections of software written by academia for doctoral thesis projects including 

VisualSFM: A Visual Structure from Motion System (Changchang Wu), PMVS-SfM: Patch-based Multi-
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view Stereo Software-PMVS – Version 2 (Furukawa and Ponce, 2010), Sparse Bundle Adjustment 

(Lourakis and Argyros), and Bundler: SfM for Unordered Image Collections (Snavely, 2006).  These 

tools are finding wide scale utility.  

Feature Detection: 

Image matching is the first problem in SfM workflows (2D correspondence problem)(Graham, 

2005). SfM depends on image matching to identify and describe relationships between images.  Feature 

detection in subsequent photographs is what enables the SfM algorithm to constrain camera orientation 

with collinearity equations.  It is thus one of the most important modules in the SfM pipeline.  Most 

algorithms assume that features from different photos will appear similar (Snavely, 2008).  A multitude of 

image edge and corner detecting algorithms exist; most function by employing a moving array with 

varying attributes.  Examples include Harris detector, ORB, FAST, and SURF.  The Harris Corner 

Detector is one of the earliest feature detectors, and functions by applying a matrix computed over a 

window region of an image that compares computed values within that window to a user-defined 

threshold.  Edges are found by identifying patterns in values within the array.  If the windows exceeds the 

threshold, the feature is identified as a point feature.  Edges, however, are difficult to track because they 

fragment differently within a series of photos and are thus untrackable (Harris and Stephens, 1988).  More 

recent developments in feature detection include the most popular feature detector - scale-invariant 

feature transform (SIFT), that locates features in image coordinates by applying the differences between 

Gaussian filters of a pair of images to find all local minima and maxima.  Differences of Gaussian filters 

are used to locate the image coordinate (x,y) center of patches, as well as corners where lines meet 

(Snavely, 2008).  Histograms are computed for local areas of each image and gradient vectors are created 

for 8 directions so that higher order patterns can be identified (Teeravech, 2015).   The algorithm is thus 

able to recognize features regardless of scale and orientation/perspective that the image is taken so that 

multiple photos from different cameras can theoretically be used to construct a model.  This is a beneficial 

feature for UAS acquired imagery. The SIFT algorithm excels in situations where high resolution imagery 

is used that yields the most features with a more accurate point set.  Regularization constraints are also 
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part of the image matching process, which remove transient objects such as helicopter landing skids, kite 

tether, tourists, etc. The use of consumer grade cameras and low-flying or hand-held photography makes 

possible low cost topographic surveys which are suitable in certain scenarios (Fonstad et al 2012).   

Instead of relying on a simple image cross-correlation, which relies heavily on a constant scale, SfM 

matching algorithms also rely on color gradient matching at multiple scales.  These algorithms also 

function regardless of resolution miss-matches.   

Dense matching:   

Dense matching is the populating of individual pixel locations using the model properties 

calculated during computation of camera orientations/positions and sparse model.  A theoretical ray is 

computed for individual pixel pairs after orientation is established.  3-dimensional location is triangulated 

through parallax of the image sets (Tola et al., 2010).  Various methods exist for dense matching although 

generally all incorporate a moving window which is located in image space using the pre-established 

matches described in initial processing.  Since camera calibration data have already been determined in 

initial processing, initial values for expected location of correspondence is estimated.  In this manner 

features are found at a much higher resolution; optimally, each pixel is co-located.  Computational 

resources are used efficiently by dense matching after initial camera orientations are computed in groups 

or bundles.  If the moving array can identify common pixels in two photographs with orientation 

information then a 3-dimensional point can be extracted (Megyesi, 2009).  Algorithms for dense matching 

include previously mentioned patch-based multi-view stereo (PMVS), semi-global matching, and 

MICMAC (Dall’Asta and Roncella, 2014).  The methods allow for the use of stereo information in the 

automatic filtering of matching errors by using the sparse model as absolute reference measurements 

(Wohlfeil et al., 2013).  The resultant point cloud can be used in the same manner as a lidar point set.  For 

example, the point cloud can be used in a GIS for deriving digital terrain models or in a CAD 

environment for creating a surface and rendering profiles or volume calculations.  

The orthomosaic product is produced similarly to the point cloud with the key difference being 

that individual pixels are projected from real coordinate space to a grid coordinate system to remove relief 
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distortion; pixels of a particular resolution, color, and location are projected from the 3-dimensional 

model on a 2-dimensional surface.  Orthomosaics produced using SfM are not the result of the stitching 

together of imagery, but rather the projection of individual pixels from the original imagery.  A DEM, or 

terrain mesh is used as the base surface from which pixels are projected so that oblique perspective is 

removed.  Multiple overlapping images contribute to the final orthomosaic.  The relative contribution of 

each photo is dependent on a defined system of weights relative to the proximity of each camera principal 

point to the pixel (Pix4D, 2015).  The finished product is a complete orthophoto whose color properties 

are defined by individual pixel combination according to these weights. Transformation from arbitrary 

model coordinates to 3D real world coordinates is the last process in the SfM workflow.  The final 

coordinate transformation process is described in the methods (Chapter 3).  

 

2.2 SfM Uses 

Researched uses of UAS SfM photogrammetry include forestry, river bed topography, river bank 

morphology, glaciology, rock slope stability analysis, and coastal dune system analysis.  SfM has been 

used to map microscale topography and geology such as fault breaks and associated features.  Johnson et 

al., (2014) demonstrate that imagery captured from low altitudes between 50 and 60 m can be used in 

SfM to produce DEMs of fault zones with reported average vertical residuals less than 6 cm when 

compared to TLS, and point cloud densities between 530 points/meter2 and 700 points/meter2.  Similar 

research by Vasuki et al., (2014) compares SfM results to manual digital image interpretation of 3-

dimensional orientations of mapped geological structures.  Slopes derived from SfM models showed a 

mean standard error of 1.9° +/- 2.2° and 4.4° +/- 2.6°.   Another geological use of UAS SfM modeling is 

the monitoring of micro-scale landslides in southern Tasmania where an octo-rotor UAS was used to 

acquire aerial photography at 1 cm resolution.  A horizontal RMSE of 7.4 cm and vertical RMSE of 6.2 

cm was reported.  Features such as scarps, toes, and patches of vegetation were tracked and semi-

automatically mapped using an image matching algorithm (Lucieer et al., 2013).  
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2.3 SfM versus Softcopy Photogrammetry 

The basic concept of all methods of aerial photogrammetry is the correlation of two-dimensional 

coordinates from a developed camera film (or digital equivalent) to 3-dimensional object space 

coordinates by solving for collinearity equations (describing the orientation of the camera, camera model, 

and individual ray) (Wolf et al., 2014). Exterior orientation is the determination of camera location and 

direction in 3-dimensional space by solving collinearity equations using known ground control points or 

from the measured coordinates and orientation of the camera focal point. Traditional softcopy 

photogrammetry requires knowledge of initial orientation of camera position or location of 3-dimensional 

control within the project.  If 3-dimensional point locations are known in real coordinates (or fudicial 

marker locations) the position of the camera can be backsolved via a process called space resection 

(Snavely, 2008).  In softcopy photogrammetry, point densification is accomplished via moving window 

techniques, which are used to match image features and locate pairs of two dimensional image 

coordinates from stereo pair photos in 3-dimensional space via triangulation (Woodget et al., 2014).    

Instead of traditional feature collection practices, developments in computer vision software have enabled 

the use of automatic image matching, which can simultaneously and systematically scan photographs in a 

stereo pair and match individual pixels (Linder, 2009).   Recent image matching algorithms assess the 

quality of the matched pixels and assign them an ordinal value based on the quality of the surrounding 

pixel’s correlation.  Areas with non-matches are interpolated using neighboring values (Westaway, 2009).  

The process seeks to minimize a geometric cost function by jointly optimizing both the camera and point 

parameters using non-linear least squares (Snavely, 2008).  According to Butler et al., (1998) (from 

Westaway, 2009), the quality of the DSM created using photogrammetric methods is directly dependent 

on how well the collinearity equations describe the relationship between derived coordinate values and 

actual object space coordinates.  The critical divergence from traditional photogrammetry is that the SfM 

algorithm is suited for matching photographs taken from random locations assuming that coverage of a 

surface is present in at least two photographs (Snavely et al., 2009).  Progresses in image matching like 

the SIFT algorithm enables the use of imagery from a wide range of perspectives.  These approaches 
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contrast from traditional airborne photogrammetry, which assumes parallel flight lines with overlapping 

photos and expensive well-calibrated metric cameras (Fonstad et al., 2012). 

Image matching is the technology that drives softcopy photogrammetry and recent progresses in 

this field are the core of SfM.  SfM is a set of iterative algorithm pipelines that can solve simultaneously 

both unknowns with no a priori knowledge of either.  Bundle adjustment is the term used to describe the 

solving of collinearity equations for multiple pixels simultaneously. Traditional photogrammetry requires 

that the position and orientation of the camera be precisely known and/or as well as ground control points 

(resectioning).  Triangulation can be used in conjunction with 3D control points when camera orientation 

is unknown.  On the other hand, SfM photogrammetry systematically solves for camera position as well 

as interior and exterior camera orientation via bundle adjustment based on feature matching from a series 

of overlapping photos and requires neither camera orientation nor 3D control points (Westoby, 2012).  

Features are tracked through various overlapping photos and initial estimates of interior/exterior 

orientation are refined using least squares.  One advantage of using a SfM approach to produce final 

models include the suitability of images from non-metric cameras for processing.   

 Another crucial difference between SfM and traditional photogrammetry is that collinearity 

equations are solved using image matches before introducing a transformation using GCPs.  Models 

(point clouds) are created independently of the real coordinate space 3-dimensional control.  The model is 

later transformed from an arbitrary coordinate system based on photo coordinates to the coordinate 

system of introduced ground control.  Similar to traditional photogrammetry, a minimum of three ground 

control points with known XYZ coordinates must be identified in each stereo pair, or the six camera 

parameters at the time of each photograph exposure (XYZ position of camera principal point and attitude 

or three rotation angles).  The drawback is that inaccuracies introduced during the conjugate pair 

matching before GCP transformation can introduce uncorrectable errors that propagate when the model is 

located using real world ground control.  The other disadvantage is that the transformations are purely 

linear and non-linear introduction of error such as lens distortion cannot be removed (Fonstad et al., 

2012).  Ground control must be located within the project site and visible on multiple images from the 
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acquired photography in order for georeferencing of the post-processed images and subsequent models 

(Woodget et al., 2014).  Two solutions exist to tie the SfM point cloud to a ground coordinate reference 

system; the classical rigid 7-parameters Helmert transformation and the bundle adjustment procedure 

(Mancini, 2013).   

 

2.4 SfM versus Lidar 

 

The most comprehensive alternative to photogrammetry for 3D imaging and elevation modeling 

is airborne light detecting and ranging (lidar).  A lidar point set can contain millions of laser returns that 

are ranged using time of flight measurement of the returned backscattered laser pulse.  Lidar does produce 

near 100% coverage, unlike typical GNSS surveys, which are primarily sampled along transects.  Lidar 

missions, however, are extremely costly, requiring an airplane to carry the equipment payload.  

Additionally, the final point set does not match the vertical accuracy of a survey-grade GNSS survey or 

total station topographic survey. Terrestrial Laser Scanning (TLS) is the terrestrial version of airborne 

lidar by mounting a lidar scanner on a static tripod and typically operates by emitting and receiving an 

oscillating pulse from a rotating head giving the instrument 360 degrees of view.  TLS has been used 

along coastal areas to produce DEMs with vertical accuracies of 3 cm or better (Mancini, 2013).  Much 

research has been done comparing results from these three survey methods (Skarlatos and Kiparissi, 

2012; Beraldin et al, 2004).  For the most part, research shows that under ideal conditions (little 

vegetation, low flying altitude), SfM derived UAS products are comparable to TLS or airborne lidar.  

Lidar/TLS have become the standard for production of dense point clouds because of the accuracy and 

automation built into these systems. Furthermore, airborne lidar systems provide multi-return capabilities 

enabling measurement below vegetation canopy. Photogrammetry is a single return system meaning we 

get one potential 3D measurement per an overlapped pixel. In cases where measurement of bare-earth 

surface occluded by vegetation is desired, lidar is the clear winner.  

It has been predicted that scanning may completely replace photogrammetry practices in the near 

future (Boehler and Marbs, 2004).  However, both the remote sensing and computer vision community 
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have taken a renewed interest in automated image matching and feature tracking using cameras. 

Advances in these fields have led to the development of inexpensive methods to collect and process 

spectral data as well as produce high resolution point clouds comparable to laser scanning at a fraction of 

the cost (e.g. $150 handheld digital camera vs $100,000 laser scanner).  The biggest drawbacks of laser 

scanning still include the high cost of equipment, portability, time consuming data acquisition, noise from 

non-target objects, and low quality color information (Skarlatos and Kiparissi, 2012).  Comparisons of the 

two technologies suggest that instead of being in competition, laser scanning and photogrammetry may be 

complementary technologies.  For example, the Pix4D software is capable of processing datasets from 

any scale level as long as the entire dataset is captured at a similar scale (i.e. Pix4D can be used in micro-

scale terrestrial reconstruction of a single building or used with satellite imagery for reconstruction of a 

mountain).  A single SfM package has the ability to automatically solve for camera orientations and scale 

based on control points.  Conversely, laser scanning demands suitable equipment for multiple scale levels 

(i.e. airborne lidar system versus various TLS equipment). Experiments show that SfM outperforms TLS 

in some aspects under certain condition such as the better preservation of texture while still producing an 

equally dense and accurate point cloud (Skarlatos and Kiparissi, 2012).  Stockpile volume analysis using 

Pix4D and Sensefly Swinglet UAS have produced volumes comparable to volumes calculated using 

GNSS survey methods.  In fact, Draeyer and Strecha (2014) show that bare stockpile surfaces can be 

located to within 3X ground sample distance (GSD).  In the case presented, 95% of surface locations 

between GPS and Pix4D SfM varied by approximately 15 cm or 3X the 5 cm GSD.  Another advantage 

of SfM is that data is sampled at approximately equal ground sampling distance unlike TLS which 

samples at a denser rate near the scanner and becomes sparser as distance increases.   

Lidar is a proven technology, though some of the same problems are encountered in an aqueous 

medium such as the refraction of light through the air-water interface.  However, blue-green wavelength 

(532 nm) bathymetric airborne lidar systems such as the Optech Aquarius and Leica AHAB Chiroptera 

are capable of successfully penetrating the water column of up to 12 m and 10 m, respectively dependent 

on clarity. Higher energy bathymetric lidar systems, such as USACE’s CZMIL, can penetrate to depths of 
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30 to 40 meters or greater in clear water. Bathymetric lidar accuracies depend on the refraction correction 

and bottom surface reflectivity as well as sensor characteristics among other factors. For example, the 

reported vertical RMSE of an airborne bathymetric lidar survey of a shallow water bay in Aransas Pass, 

Texas conducted using the Optech Aquarius system was 0.175 m (Fernandez-Diaz et al., 2014).   

 

2.5 Challenges along the Beach 

SfM approaches are appealing for modeling vast expanses of terrain quickly and efficiently.  

Application of UAS imagery and SfM modeling in support of coastal projects includes 2D (horizontal) 

positioning of features such as contour lines as well as production of 3D terrain models along the 

shoreline.  The challenges of using visible light for remote sensing around shorelines include the 

occlusion of ground points by vegetation and rapid attenuation of light through the water column where 

present if desiring to map the bathymetry.  In a bathymetric setting, addition obstacles to accurate 

modeling are encountered such as the refraction of light propagating across mediums and the 

unintentional modeling of the water’s surface when sufficient disruption (surface waves/white water) are 

present during survey. Westaway et al., (2001) showed that digital photogrammetric derivation of DEMs 

can be achieved for submerged topography within a clear water, shallow, gravel-bed river system of New 

Zealand.  Westaway implements a corrective regression for refraction of light through the clear water 

column.  The research reports a mean error of 0.188 m for corrected depths realized via SfM 

photogrammetry.  Research along a sandy shoreline by Mancini et al., (2013) showed that although the 

majority of elevations extracted using SfM photogrammetry were comparable in accuracy to GNSS 

solutions, the method is prone to failure along flat portions of beach where the surface is very 

homogenous.  Smooth surfaces are difficult for pixel by pixel image matching, and can result in a less 

dense point cloud.   

Refraction of visible light through water: 

The refraction of light occurs when light passes through mediums of different physical properties.  

The change in direction of the entering and returning light waves complicates bathymetric 



 

16 

photogrammetry.  Effects of refraction generally cause the subsequent models to overestimate elevation 

(underestimate water depth).  Water depths less than 0.2 meters show negligible degradation from 

refraction (Woodget et al., 2013). 

These basic laws are described by Snell’s laws:  

sin i = n sin r 
r = arcsin((sin i)/n)  

 

where i = angle of incident of the light ray above the water’s surface; r is angle of refracted ray below the 

water’s surface; and n = the refractive index for both the mediums.  This refractive index, n is equal to 

approximately 1.34 in clear water.  Fernandez-Diaz et al., (2014) use a refractive index of 1.333 for lidar 

measurements across Redfish Bay near Aransas, Texas. Methods have been established to adjust rays that 

pass through water by applying a refraction correction procedure (Westaway et al., 2000).  The method 

involves mapping and modeling the surface of the water by extracting elevations along the edge of the 

water and interpolating the whole water surface.  Two other models are created for the subaqueous 

bottom: a non-corrected determination and a corrected model using an appropriate refractive index.  By 

finding the difference between the corrected and uncorrected bathymetric models and subtracting that 

difference from the water surface triangulated irregular network (TIN), depths can be calculated for points 

through the water.  Westaway concludes that correctly solving collinearity equations given the refraction 

of light between two mediums is the key to more accurate bathymetric photogrammetry.  Since average 

water depth for the university beach project area was 42.7 cm (1.4 ft) and 77.4 cm (2.5 ft) for August 24 

and October 5, the errors introduced as a result of refraction were ignored. 

 

2.6 GNSS Surveying 

In the late 21st century the Real Time Kinematic (RTK) GPS has become the survey standard for 

measuring horizontal and vertical positions.  Analysis of SfM products in this research effort were 

directly compared to GNSS observations based on RTK corrections from Trimble’s VRS network.  

Corrections are transmitted over the internet and received via GSM cellular phone connection. 
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Conventional GPS topography surveys are field intensive and can be difficult in terrain where substrate is 

soft or access impeded by water, mud, etc.  Most topographic surveys extending into an area covered in 

water are conducted using GNSS with RTK corrections via range poles and a technician.  The US Army 

Corps of Engineers hydrographic survey manual specifies that most shoreline topographic surveys can be 

performed using an established baseline with stationing perpendicular to grade (USACE, 2013).  RTK 

GPS surveys are intensive, and require field personnel, equipment, and time.  Bathymetric RTK surveys 

are effective, but rely on range rods that can be extended to the intended depth to be surveyed.  At greater 

depths, acoustic hydrographic methods are commonly used including single beam and multibeam sonar.  

All of these survey techniques require a great amount of equipment as well as field personnel.  The data 

must also undergo post processing techniques.  Bathymetric data must be adjusted for variable speed of 

sound in water.  Another weakness is that all modeling between stationing will be primarily interpolated 

unless a grid or other survey sampling setup is utilized.  Both of these modifications add to the time and 

cost of the survey.  GNSS-based survey methods are time and cost intensive, and the ultimate goal of 

utilizing UASs and advanced SfM algorithms for photogrammetric derivation of DSMs is to replace or 

supplement traditional methods for certain types of surveys.  Positional accuracies for typical 

differentially corrected RTK are 1cm + 1ppm horizontal and 2cm +1ppm vertical.  Photogrammetric 

methods of obtaining DSMs have the potential to minimize some of the time and expense that might 

otherwise be spent on conducting a standard topographic survey using GPS or total station methods; 

however, the achievable accuracy is generally lower (Westaway, 2001). 

 

2.7 Optical Inversion 

It was hypothesized that supplemental sub-surface point elevation data might be extracted from 

the georeferenced orthomosaic reflectance map output from SfM using an optical inversion approach 

based on a specific band ratio.  Optical inversion calculations for depth were tested using the obtained 

spectral imagery and optimized band ratio analysis (OBRA) method (Legleiter, 2011).  OBRA 

methodology involves the comparison of the natural logarithm of a ratio of recorded wavelengths of light 
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to known depth values in order to find the optimal ratio for measuring depth (Eq. 1).  Previous works use 

a regression matrix to calculate the most probable relationship of the ratio compared to in-situ observed 

depths as follows:   

 

Depth = mo
ln(𝑅𝜆1)

ln(𝑅𝜆2)
  + m1   (Eq. 1) 

where R = reflectance measured in two spectral frequencies centered at wavelengths λ1 and λ2, and λ2 
 = 

max; mo and m1 are regression constants that have to be derived using in-situ observations. 

Both Legleiter (2011) and Pan et al., (2014) found a particular yellow wavelength over red 

wavelength - 591nm/648nm and 585.9nm/633.6nm respectively to be the optimal wavelength ratio for 

deriving a depth/reflectance relationship.  Several combinations of smoothed bands log(band1)/log(band2) 

were used in order to derive some depth information from IXUS Canon camera band reflectance values.  

Since the water in along the Texas coast is so turbid, other methods of deriving depths from spectral 

imagery including image matching coupled with refraction corrections are not being considered in this 

study.    
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CHAPTER 3 

RESEARCH METHODOLOGIES AND CONCEPTS 

3.1 Study Area and Survey Methods 

The study area was the university beach at Texas A&M University Corpus Christi 

(TAMUCC)(Figure 3.0).  University beach lies adjacent to the TAMUCC campus on the south shore of 

Corpus Christi Bay on Ward Island where previous shoreline existed before the occupation of the Encinal 

Peninsula.   The original shoreline was lost, and the beach today was constructed in 2001 from imported 

materials (Williams, 2002).  The beach is actively monitored by the Conrad Blucher Institute.  

Topography from south to north features the slope and toe of Ocean Drive (an improved 4-lane paved 

road), a gently sloping sand beach, shoreline, seafloor with sand bottom and seagrass bottom, as well as 

two rock jetties and three breakwaters.   

GNSS Survey  

The objective of this research was to quantify the accuracy of various SfM products including 

point cloud data and isolines derived from SfM elevation data as well as a DEM created by optical 

inversion.  These products and combinations of these products were compared to an RTK GPS 

topography survey. GPS observations were recorded along parallel transects on August 22, 2014.  

Transects ran perpendicular to Ocean Drive, and were spaced 30.48m (100 ft) apart; some transects on the 

peripheral edges of the study zone were spaced 45.72m (150 ft) (Figure 3.1).  This network of RTK GPS 

observations served as control for analysis of remotely sensed data (SfM point cloud and optical inversion 

DEM).  GPS observations were tied to a National Geodetic Survey (NGS) benchmark that was checked 

against an OPUS solution (PID: AC8481, Designation: B010).  GPS observations were recorded using 

RTK corrections from Western Data Systems’ VRS network.  Coordinates were stored in North American 

Datum of 1983 (NAD83), Texas State Plane South Zone, and elevations were recorded in North 

American Vertical Datum of 1988 (NAVD88).  Spacing between GPS observations along transects varied 

in order to capture all present topography within the project area.  On average, GPS observations were 

spaced approximately 1.45m (4.75ft) (1,365 GPS points/6480 ft total transect length).  
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Figure 3.1: Survey setup: transects ran perpendicular to Ocean Drive and general shoreline orientation. 

 

UAS Survey  

The UAS used in this study was the Sensefly eBee, which is an ultra-light foam fixed-wing 

platform, with a wingspan of 96 cm (Figure 3.2).  Weight with sensor payload is 0.69 kg.  The eBee is 

propelled by a rear push propeller and powered by a lithium ion battery which provides approximately 50 

minutes of flight.  12 km2 can be covered with one flight (Sensefly, 2014).  Onboard sensors include a 

GPS receiver, altitude sensor, inertial measurement unit (IMU), magnetometer, wind speed sensor, and a 

radio transmitter to receive and transmit 

data during flight navigation.   

 

Figure 3.2: eBee launch and 

scale. Former student launching eBee 

UAS at TAMUCC campus.   

 

 

 

file:///C:/Users/Radiator/Documents/GSEN_Thesis/Report/Starek SOT.mp4
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The eBee can be loaded with a flight plan, and also receives navigation data and commands via 

radio link.  The eBee is capable of autonomous flight.  A computer transmits the flight plan via radio link 

and the eBee navigates along the flight lines at a specified altitude using multiple sensor input and GPS 

location (Figure 3.3).  Imagery was recorded using a Canon IXUS 127 HS with 16.1 megapixel CCD 

6.16mm x 4.62mm, and a focal length between 4.3mm-21.5 mm (Cannon, 2013).  The Canon IXUS 

127HS is a smoothed and filtered 3 band sensor: red, green, and blue. 

 Figure 3.3: Miniature GPS chipset: the miniaturization 

of GPS chipsets (shown) and inertial micro-

electromechanical systems (MEMS) allow for a lighter 

platform for aerial photography.  The chipset used in 

antecedent Sensefly models including the CAM 

Swinglet utilize an Arduino u-BLOX GPS chipset.  

Trajectory and position is processed and recorded at 

1Hz.  This geospatial information also allows the UAS 

to fly autonomously using input data to calculate and 

adjust navigation (Vallet et al 2011). 

 

The TAMUCC Sensefly eBee drone was flown on August 24 and October 5, 2014 for the 

purpose of collecting multispectral imagery to be used in the production of 3D point cloud data, a digital 

surface model (DSM), as well as an orthomosaic using the SfM workflow.  Table 3.1 presents a summary 

of flight parameters including meteorological conditions.  Average water depth over project area was 33.5 

cm (1.1 ft) + 13.7 cm tide August 24th flight and + 43.9 cm tide for October 5th flight or 42.7 cm (1.4 ft) 

and 77.4 cm (2.5 ft) respectively.  Maximum depth in study area was 151.5 cm (4.97 ft) +/- tide values.  

The August 24th flight altitude was 24.97 m (81.92ft) less than the October 5th. (21.6%).   The August 
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24th flight experienced 3 knots less wind at 7 knots versus 10 knots. Tidal level for August 24 was 0.30 m 

(1.0 ft) lower than tide level on October 5. Aerial targets were manually identified along said transects for 

use as manual ground control points (GCPs) in model coordinate transformation. The imagery was post-

processed with Postflight Terra3D software which operates using embedded Pix4D software.  

Table 3.1: Description of flight parameters and meteorological conditions. 

Flight Parameters - August 24, 2014   

Tide level (NAVD 88) 0.136 m (0.446 ft) 

Temperature 84° f 

Wind Speed 07 knots SSE 

Visibility  16.1 km 

Flight Time 8:15 

Flight Duration 11 min 

Altitude 90.53 m (297 ft) 

Project  tamuccbeach_flight1_24aug2014 

Processed 2014-Sep-29 22:35:01 

Average Ground Sampling Distance (GSD) 2.92 cm / 1.15 in 

Area Covered 0.25 km2 / 25.0019 ha / 0.0966 sq. mi. / 61.8129 acres 

Ground Control Point (GCP) Coordinate System NAD83 / Texas South (ftUS) 

  Flight Parameters - October 5, 2014   

Tide level (NAVD 88) 0.439 m (1.442 ft) 

Temperature 70° f 

Wind Speed 10 knot SE 

Visibility  16.1 km 

Flight Time 8:30 

Flight Duration 25 min 

Altitude 115.5 m (379 ft) 

Project  flight1_5oct2014 

Processed 2014-Nov-01 22:52:39 

Average Ground Sampling Distance (GSD) 3.56 cm / 1.4 in 

Area Covered 0.8411 km2 / 84.1088 ha / 0.3249 sq. mi. / 207.945 acres 

Ground Control Point (GCP) Coordinate System NAD83 / Texas South (ftUS) 

  

 

3.2 SfM Processing Workflow  
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The SfM workflow using the PostFlight Terra 3D software (i.e. Pix4D) is broken into 3 main 

steps: initial processing, point cloud densification, and DSM and orthomosaic generation. Refer back to 

Chapter 2 for more details on the SfM approach.  

 (Step 1) Initial processing of the photos extracts the interior and exterior camera orientation and 

develops a sparse model using features tracked across multiple photos.  Initial processing sorts all of the 

photos using the GPS positions (though they are not a prerequisite), and then computes key points.  

Keypoints are prominent features that provide for efficient tracking across photos, such as measured using 

the SIFT algorithm.  The sets of keypoints are correspondences identified using image coordinates in as 

many photos as they appear.  An automatic aerial triangulation and bundle block adjustment are used to 

create the first projective reconstruction or ‘sparse model.’   

 The projective reconstruction does not have a native coordinate system.  The user must manually 

adjust to a coordinate system by introducing known real world coordinates.  This is typically done in the 

software by identifying control targets within imagery (Figure 3.6).  Prior to each flight, square black and 

white targets (0.61 m2, 2.0 ft2) were set out in a staggered orientation along said transects in order to use 

manual ground control points (GCPs) in model coordinate transformation (Figure 3.5).  In addition, 

underwater control was used in order to facilitate model transformation in submerged areas shown to be 

problematic for automated matching algorithms (Figure 3.4).  Targets were located and positions recorded 

using RTK GPS.   
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Figure 3.4: Target placement: 15 black and white aerial targets were placed in staggered orientation along 

3 transects for use in the transformation between model and real-world coordinates. 

 

PostFlight Terra 3D contains a tie point/manual GCP editor which allows the user to import the 

coordinates of the targets and identify them in photos for model reoptimization and transformation to real 

world coordinates.  Initial processing creates the base model so that the densification process can be 

completed via projective reconstruction which takes groups of individual pixel correspondences as input 

and generates 3-dimensional location as output.  RMSE was calculated for reprojection error of the 

manual ground control using the following methodology found in Pix4D Online Support website (Eq. 2). 
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Figure 3.5: Aerial target setup (signalized control) for October 5, 2014 aerial survey. 

 

 
Figure 3.6: Submerged targets located in image coordinates 

 

3-dimensional error estimation from tie points is the calculated residuals estimated to still exist 

between measured tie point location in imagery and projected tie point location.  Projection 

errors exist after SfM model has been adjusted by least squares and transformed to a coordinate 

system given the constraints imposed by matched features (or manually introduced features such 
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as targeted control).  The difference between measured (manually identified) tie points is 

weighted by the 2-dimensional covariance Σi, and projection error for a particular image is:  

 ei = (mi − xi )⊤ Σi
−1 (mi − xi) (Eq. 2) 

 Where e = reprojection error vector of 3-dimensional coordinate in image i, xi and yi = 2-

dimensional coordinate of measured control point, and mi = the 2-dimensional coordinate of the projected 

control point (Strecha, 2014). 

 (Step 2) Point cloud densification is the next step in the SfM process.  The densification process 

is typically performed by a process known as dense matching and uses the sparse model and initial 

estimates of camera orientation to reproject individual pixels in real coordinate space.  The 3D point 

cloud that is produced is the primary objective of SfM.  Point cloud densification was performed using 

default parameters including the use of a minimum of 3 match points for each solved 3-dimensional pixel 

location and the densification of 1/2 scale images.  Higher match point constraints increase positional 

integrity at the cost of reduced point density.  Image scale defines the scale at which 3-dimensional point 

cloud locations are computed for the returned point cloud.  Default 1/2 scale is recommended for use in 

project areas that do not exhibit very high contrast with many sharp features such as cityscapes.  

Ultimately, final point cloud density is defined both by sampled image scale and by the point density 

parameter within Pix4D.  The optimal default value was used for processing both datasets which 

computes a 3-dimensional point for every 4/image scale.  Since 1/2 scale was selected, then a point was 

computed for every 16 pixels which optimizes processing, and imparts further constraint on final pixel 

locations by increasing the sample size.  Default data output of LAS format was retained which enabled 

easy integration into LAStools and ArcGIS for further processing and filtering.  The point cloud was 

analyzed by comparing RTK GPS observations along survey transects to individual constituents of the 

densified point cloud.  Comparisons were analyzed of multiple point cloud outputs from Pix4D 

densification from the August 24 and October 5 flight dates.   

 Two densified point clouds were output per flight: a densified unfiltered point cloud and a 

radially filtered point cloud using built-in Pix4D noise filter, which is strictly a smoothing radius-based 
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filter.   Smoothing determines outliers by identifying the median value within a user-defined radius 

distance.  It is designed to remove noise, but will not identify badly matched areas, nor is it a ground point 

filter.  Radial filters can remove more or less dependent on the radius, but over water where there were 

spurious returns, it performed poorly.  The radius used as default within Pix4D is 10XGSD; for August 24 

and October 5 flights the radial distance used was 0.292m and 0.356m respectively.   

 (Step 3) The final step in the Pix4D SfM workflow is the production of orthorectified rasters 

which can be produced from the 3-dimensional sparse model (initial processing) by populating a DEM 

with colors from pixels of the photographs covering that area (Figure 3.0 and 3.4).  Images are projected 

using the estimated camera orientations.  Colors are developed in Pix4D by blending calculated with 

weights given to photos based on distance from pixel to camera focal point (Pix4D, 2015).  These 

orthomosaic and DEM SfM products were used later to export reflectance indices to be used in the optical 

inversion approach described on page 31. 

 

3.3 SfM Point Cloud Post-Processing and Analysis 

 The acquired images are at very high spatial resolution with the resultant final orthomosaics 

featuring a GSD of 2.92cm and 3.56cm for the August 24 and October 5 surveys respectively.  The 

produced point clouds for both flights were high density with average point spacing of 12.5cm (0.41ft) 

and 11.60cm (0.38ft) for unfiltered point clouds.  Point spacing for the two flights averaged 3.8XGSD 

due to the 1/2 image scale constraints selected for the low contrast project area and the optimal default 

point density parameter.  These parameters decrease the potential coverage of full resolution SfM 3-

dimensional point calculation, but also significantly decrease time for processing and point analysis, and 

allow for further constraints in areas with little contrast (low texture) without sacrificing accuracy. 

Average horizontal RMS error from observed targets (RTK GPS) and SfM derived target x,y positional 

values was 2.2cm (0.075ft).  LAS files and subsets were observed in LASview (rapidlasso GmbH, 2015) 

in order to quickly display entire point sets and assess visual inspection.   Areas over water were 

scrutinized, and it was evident from visual analysis that the October 5 data was excessively noisy with 
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some patches being reported at more than -20 m (-65 ft) NAVD88 which is far deeper than any of the 

recorded GPS observations. This stems from disparity in the pixel matching process over the dynamic 

water surface and mismatching due to specular reflection. The resultant mismatch causes spurious 

projective 3D coordinates (spurious elevations). 

 Spatial analysis was performed in ArcGIS 10.1 by comparing the RTK GPS observed elevations 

to the z-value of the nearest point produced in the SfM point cloud densification process.  LAStools, a 

lidar data processing software suite composed of different command line modules was used for point 

cloud processing and DEM production from LAS point cloud files (Rapidlasso GmbH, 2015).  In order to 

perform a robust 3-dimensional point analysis, three point groups from each flight were isolated for 

separate analysis including two sets of bathymetric points over or within the water surface, as well as the 

remaining terrestrial points.  Bathymetric points were isolated using different methods.  The first group of 

bathymetric points were all 3-dimensional points over and/or underneath the water surface.  This point 

group was derived by using a 2-dimensional clip function with a ‘water surface’ polygon derived using 

the red-band threshold value between terrestrial and water reflectance values to delineate water level 

boundary.  The ‘water surface’ polygon represented the area of survey inundated with tidal seawater at 

the time of survey.  The water level contour was digitized by analyzing the isolated red band of the 

orthorectified reflectance map.   The threshold reflectance value was determined to be 145 between 

terrestrial points and water surface returns using 3D Analyst (3-dimensional line interpolation) in 

ArcMap.  The ‘Set Null’ tool was used to eliminate raster values greater than the threshold value leaving 

the majority of data over water, and allowing for the indiscriminate delineation of a ‘water surface’ 

polygon for the project area.  Both August 24th and October 5th orthomosaics were also visually inspected 

and checked against water level GPS observations along the survey transects in order to verify reflectance 

map ‘water surface’ results.  Clipping LAS files with the ‘water surface’ polygon was performed via 

‘LASclip’ and called ‘Sub-surface_Clip’.  

 The second bathymetric point set for each flight was derived by isolating all points from the final 

point cloud with elevations equal to or less than the recorded water level at the time of flight. This method 



 

29 

was performed using a Python script which read in lines from the LAS-derived XYZ ASCII data, isolated 

those points with z-value less than water level at the time of aerial survey, and then recorded those XYZ 

positions to a new file.  LAS coordinates which were of elevation less than water level at time of flights 

13.72cm (0.45ft) NAVD88 (Aug 24) and 43.89cm (1.44ft) NAVD88 (Oct 5) respectively were selected 

and recorded.  The points were labeled ‘Sub-surface’.  

 Terrestrial points were separated using a reciprocal and adjacent polygon to the respective water 

surface polygons.  Terrestrial points were labeled ‘Terrestrial’. 

SfM Vertical Accuracy Assessment: 

 

 Initially, spatial statistics for LAS point clouds were computed using LASinfo (a LAStools 

module), which produces a text file of some basic spatial parameters of the point cloud such as point 

density and average point spacing.  The relationship was then analyzed between RTK GPS observations 

and nearest LAS point for all three described datasets.  A spatial join was performed in ArcMap on the 

original RTK GPS observations in order to join data from ‘Terrestrial’, ‘Sub-surface_Clip’, and ‘Sub-

surface’ point sets.  The spatial join was accomplished using a search radius of 0.914 m (3.0 ft) to find the 

closest LAS point.  Since point spacing for both flight dates averaged 12 cm, the search radius of 3.0 ft 

was only needed where a GPS observation was appropriate for comparison to the nearest patch of data 

over water.  The search radius was not required over sub-aerial beach which had nearly complete 

coverage.  Next, the resultant data sets had to be manually cleaned because the radial search for 

bathymetric points included some fringe terrestrial RTK GPS observations and vice versa.  To calculate 

statistics, each attribute table was exported and manipulated in Microsoft Excel.  Residuals were 

calculated by taking the difference of SfM LAS point z-value from the RTK GPS observed elevation.   

Statistical information on residual error versus depth of water cover was calculated and reported in 

Appendix B. 

 Slope of the terrestrial beach surface was extracted to analyze its effect on SfM-derived vertical 

elevation measurements (i.e. due more sloped parts of the beach exhibit more error in the vertical 

component of the point measurement). First a 0.61m2 DEM was created from the RTK GPS observations 
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by using the “Topo to Raster” geoprocessing tool.  The “Surface Slope” tool was then used with the 

0.61m2 DEM as input and degrees slope for raster value of the output.  Slope raster values were appended 

to the terrestrial point dataset using the ArcGIS tool “Extract Values to Points” tool.  

Vertical error of SfM points over water: 

 

 Many point cloud z-values derived from water surface correspondences were prone to error.  

Many, if not most, of the match points appear to have been created from ripples on top of the shallow 

water or white light reflected off the crests of wavelets (glint), and are not produced from light reflecting 

off of the sub-surface bottom.  As a result, some of the data produced using SfM workflows contained 

areas of inaccurate data (Figure 3.7).  One of the goals of this research was to address problems 

encountered with using SfM over water.  Erroneous matching during initial processing as well as the 

dense matching process were commonly observed over water.  The filtering methods below were aimed at 

trying to mitigate for these effects on the October 5 dataset.   

 The bulk of inaccuracies were clustered so that the radial Pix4D outlier filter was not effective.  

Since neighboring values were often incorrect as well, the clustered noise did not produce outlier 

characteristics which could be identified by a 2D moving window or radial filter.   

 

Figure 3.7: The October 5 unfiltered point cloud contains z-values as low as -21.44m (-70.33ft) and as 

high as 10.34m (33.92ft) 

  

 

 The strategy used to filter and rectify the October 5 dataset was based on a method called 

“Removal of Cloud Returns with a Coarse DTM” (Isenburg, 2014).  The method was developed to filter 
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airborne lidar point cloud data. It utilizes a coarser resolution surface, such as those produced by NASA’s 

Shuttle Radar Topography Mission (SRTM), as an initial reference surface in order to trim maximum and 

minimum values from the airborne point cloud of interest in order to eliminate false lidar returns, such as 

cloud hits.  For this research, a reference surface was temporarily created from the same eBee UAS/SfM 

derived point cloud dataset.  In order to create a relatively accurate surface from the data already 

collected, an alternative processing technique was employed whereby different parameters were chosen 

for the point cloud densification step of the Pix4D SfM workflow.  Instead of using a 3-match minimum 

per pixel coordinate identification, densification was performed using 4 and 5 minimum matches per pixel 

(two datasets) (Figure 3.8).  This resulted in a less dense set of points, but typically the remaining points 

were less prone to error.  Though the 4-match point cloud contained less error than the unfiltered dataset, 

large areas of erroneous data persisted.  A patch of excessively low elevation existed between the sub-

aerial beach and the center separated breakwater for 3-match and 4-match dense matching constraints.  

The 5-match point minimum parameter mitigated the remaining inhibiting error clusters.  ‘LASnoise’ 

routine from RapidLasso (described below) was run on both of the alternatively processed and filtered 

point clouds.   
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Figure 3.8: Overview of University Beach Coverage: The above results show various outputs from the 

August 24 and October 5 datasets.  Top left: August 24, 3-match default densification radially filtered, top 

right: October 5, default densification radially filtered dataset.  Bottom left: 4-match minimum 

densification; bottom right: 5-match minimum densification.  Area is severely reduced as a result of 

imposing additional match point constraints. 

 

 
Figure 3.9: The TIN surface used as a clip reference surface interpolated from October 5 flight using a 5-

point minimum match constraint.  Note the patch of low elevations in dark red near the offshore center of 

the model that persists throughout all October 5 datasets - though mitigated for in this 5-match minimum. 

 

 

 ‘LASheight’ from the LAStools processing suite was used to isolate and discard heights above 

0.61m (2.0ft) and below -0.61m (-2.0ft) of a TIN surface of the 5-match minimum alternative processing 

technique.  LASheight computes height above a reference surface and gives the user the option to discard 
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any point data outside of the given thresholds.  A surface distance of 0.61 m (2 ft) was chosen based on an 

iterative visual analysis using LASview to observe effects of various surface distance parameter clips and 

based on the average water depth of the project site during the October 5 flight of 0.774 m (2.5 ft).   

LASheight builds a temporary TIN surface from a user defined point cloud set (Figure 3.9).  The output 

from LASheight was fed through LASnoise which enables the user to build a 3-dimensional moving 

window that identifies isolated values by applying user-defined parameters.  The window is composed of 

the 27 surrounding cells along a 3-dimensional grid; each cell of specification given by the user.  Since 

the goal was to try and remove clusters of outliers, a relatively small volume window was used which 

measured 0.61m horizontally (xy) and only 0.30m (1ft) vertically (z).  LASnoise was run twice 

consecutively on the October 5 unfiltered point cloud.  LASground was run on the LASnoise output 

which classified 1,585,104 points out of 5,237,184 as ground points.  The final classified model was 

labeled ‘Denoised’(Figure 3.10). 

 
Figure 3.10: ‘Denoised’ workflow 

 

 

The same three point group delineation was performed on the alternately processed 4-match and 5-match 

minimum point clouds for further analysis.  Finally, a DEM of the ‘Denoised’ point cloud was 

interpolated using LAS2DEM which populates a raster from a temporary TIN of the ‘Denoised’ ground 

point data.  A resolution of 0.30 m (1 ft) was chosen for final DEM in order to introduce some smoothing.    
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3.4 Optical Inversion for Water Depth 

 An optical inversion approach was analyzed in this research in order to assess a potential 

alternative method to extract the water depth as opposed to the SfM point cloud, which experienced issues 

with sparse matching of high fidelity bottom returns.  A variation of the OBRA methodology as described 

in GEBCO (2014) was generally followed using reflectance maps produced from SfM workflow on RGB 

eBee imagery.  The orthomosaics produced using Pix4D utilize an algorithm that derives color for each 

pixel of the final output using dense-matching rules in combination with a DEM of the surface.  The 

DEM is used in order to calculate whether or not a pixel (ray) from a photograph contributing to the 

model in that particular area is in fact completely visible from a particular location.  If a particular pixel is 

providing information for the color of the final model, then a system of weights is used which blends 

multiple values from different photographs depending on distance from pixels to camera focal point.  In 

this research imagery from the August 24th flight was used for optical inversion because of the superior 

radiometric qualities encountered as a result of calmer meteorological conditions.  The August 24th optical 

inversion dataset was carried forward for use in the hybrid model because the lower tidal level allowed 

for the population of wet beach boundary by filtered SfM point cloud data which was found to be of 

higher accuracy along this zone.  

 In this study, the Canon IXUS camera used in image acquisition only recorded data in smoothed 

and filtered Red, Green, and Blue channels (RGB).  Several ratios using these recorded color bands (i.e. 

Green/Blue) were assessed and tested for use with OBRA methodologies.  Reflectance maps for each 

color band were produced using Pix4D Index Calculator which uses a combination of the weighted 

average and the multi-band blending algorithms (Table 3.2) (Pix4D, 2015).  The index calculator loads 

point cloud data and generates DSM tiles with RGB reflectance information.  The intention of the 

reflectance values are to derive the physical properties of the surface at a particular location.   
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Table 3.2: Reflectance Map - August 24, 2014 

Resolution: 2.93 cm  

Band  Min Avg. Max. Std Dev. Var 

Red 6.00 131.760 255 41.97 1761.2 

Green 6.85 133.230 255 38.01 1444.88 

Blue  2.00 122.250 255 40.76 1661.04 

 

 

 Index mosaics were created in Pix4D by computing each pixel using a formula which combines 

the bands from the reflectance map produced earlier.  Various combinations of bands can be used when 

computing indices.  Since most of the post-processing was completed using ArcMap, only the single band 

indices were calculated in Pix4D index calculator.  The individual color band (RGB) indices from the 

August 24 flight were used to attempt the optical inversion approach discussed in Section 2.4 because 

calmer meteorological conditions resulted in a smoother water surface with less suspended solids 

throughout the water column.  The wind speed was minimal at only 7 knots and the photos were taken at 

a lower altitude and thus had more resolution (2.92 cm GSD).   It is hypothesized and assumed for this 

research that more light would pass through the water and be returned to the camera sensor on days with 

less wind due to less scattering from capillary waves on the water surface.  Orthorectified reflectance 

indices were exported directly from Pix4D reflectance index calculator.  Since the Canon IXUS 127HS 

produces imagery in 3 bands, one index of each band was produced and exported in TIF format.    

Guidelines from NOAA’s GEBCO manual were followed in order to process combinations of 

reflective indices for optical bathymetric inversion (GEBCO, 2014). The optical inversion approach uses 

the OBRA equation (Eq. 1) discussed in Section 2.7.  ArcMap 10.1 was used primarily with the 

geoprocessing tool raster calculator to apply map algebra operations to perform the bathymetric inversion 

equation using raster division and calculation of the natural log.   

The first step in the optical inversion process was to isolate points that were recorded 

over/through the water surface.  For this process, the red band was relied upon as an indicator of the 

presence or absence of water.  Because red light is more readily absorbed when passing through water, it 

was assumed that red band energy registered at the camera sensor would be a result primarily of reflection 
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from the surface of the water and not transmission from sub-surface substrate.  As such, the ‘3D analyst’ 

toolbar within ArcMap 10.1 was used in order to interpolate the reflectance values of the red band index 

raster along a line drawn from the sandy beach, across the shoreline, and terminating in water cover 

approximately 1.25m in depth.  The reflectance values were graphed along the profile and the threshold 

value of 145 was identified as a suitable value representing the sudden transition of high reflectance over 

terrestrial returns (>180) and the lower reflectance values returned from the water’s surface (<140) 

(Figure 3.9). The “Set Null” tool within ArcMap 10.1 was used in order to nullify terrestrial values (non-

water surface returns) (Figure 3.11). 

 

 
Figure 3.11: Optical inversion data analysis: clip water surface points by using 3D analyst and 

interpolating a line drawn from water to land.  The abrupt value changes represent transition from water 

to land. 

 

Figure 3.12: The resultant raster 

represents water only surface for the red 

band which was used in other “set null” 

operations as the clipping raster for the 

remaining Blue and Green rasters.  

Rasters that represented reflectance 

values over water were required in order 

to implement the optical inversion 

algorithm as well as other 3D point 

analysis.  The thin rectangular polygon 

between the middle and right 

breakwaters was used to extract RBG 

reflectance values for use in the 

normalization of the blue and green 

bands. 

  

  

Red Band Reflectance Profile

Profile Graph - Water surface to beach
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The red band index was also used to normalize the other bands and attempt to reduce interference from 

reflections off the water surface due to clouds and other factors.  The red band was chosen for filtering 

since red wavelengths of light are more heavily absorbed while passing through water relative to the 

alternative green and blue wavelength bands.  To implement the red band filter, first a polygon 60.40m 

(208ft) X 5.70m (18.69ft) was drawn over a thin strip of area that extended over the water from 47.5m off 

the shoreline at 0.30 m of water cover out to approximately 1.25m of water cover.  The particular area 

was chosen because the substrate was visibly observed as sand bottom so that clay/seagrass substrate 

anomalies within the survey area wouldn’t affect reflectance values.  A linear regression was used by 

comparing graphic plots of blue and green values versus red values.  A linear best fit equation was 

calculated for the plot (Figure 3.13).  Calculations produced normalized values for each band by 

implementing the regression equations.   

 
Figure 3.13:  A linear regression is used to normalize blue and green bands by graphing plots of blue and 

green values versus red values.   

 

 

‘Normalized’ rasters were output using ‘raster calculator’ in ArcMap to apply red band linear regressions.   

Rasters were then clipped using the ‘set null’ red band raster for water surface threshold and ‘raster 

calculator’ was then used in order to combine color bands.    
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 Because it was unknown if inversion techniques were effective using smoothed bands captured 

by non-metric consumer cameras, the entire network of GPS observations were used as training data in 

order to obtain the most accurate regression fit between depth of water and substrate reflectance using the 

different band combinations (Eq. 2).   Since GPS coordinates were already stored using the orthometric 

height above Geoid 2012a, the direct relationship was sought between band ratios and elevation in 

NAVD88.    

Depth (Elevation NAVD88) = mo
ln(𝑅𝜆1)

ln(𝑅𝜆2)
  + m1   (Eq. 2) 

The goal was to identify the best-fit relationship between band ratios and depth of water.  Additionally, 

individual band reflectances as well as a raster of the average of all three bands were analyzed against 

elevations in order to identify any potential correlations.  These ratios of color bands as well as single 

color band rasters were analyzed against GPS observations using ‘extract value to point’.  Microsoft 

Excel was used in order to analyze the exported attribute tables.  Raster values were plotted over observed 

NAVD88 elevation in order to identify correlation between reflectance properties stored within smoothed 

bands of the camera and depth.  The natural log ratio 
ln(𝐵𝑙𝑢𝑒−450𝑛𝑚 )

ln(𝐺𝑟𝑒𝑒𝑛−520𝑛𝑚)
 was found to exhibit the highest 

degree of correlation between reflectance ratios and observed elevation data.   

 
 

 Figure 3.14: Graph of Bathymetric correlation between natural log band ratio 
ln(𝐵𝑙𝑢𝑒−450𝑛𝑚 )

ln(𝐺𝑟𝑒𝑒𝑛−520𝑛𝑚)
. 

 

This ratio is recommended in GEBCO when manipulating Landsat imagery over water.  Results of each 

analysis and graph can be found in Results (Section 4.1).  Finally, a simple linear regression was 
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performed via ArcGIS ‘raster calculator’ in order to convert raster values to depth values based on a best-

fit equation (Figure 3.14). 

 

3.5 Hybrid Surface Model 

 The final topo-bathymetric model of the sub-aerial beach and submerged topography created was 

a hybrid DEM fused together based on a combination of the SfM non-filtered terrestrial point cloud, 

filtered (‘Denoised’) water bottom surface point cloud, and optical inversion bathymetric measurements.  

Components were chosen based on RMSE analysis as well as the relationship between residual errors and 

depth of water which were used as an indication of accuracy.  The October 5 filtered (Pix4D radial filter) 

‘terrestrial’ point cloud was used to interpolate a DEM for use in the hybrid model with reported RMSE 

value of 0.215m (0.70ft) and average residual value of 0.089m (0.29ft).  Portions of the model over water 

were split out of two different sources.  The ‘Denoised’ LAS point cloud provided lower residuals (<1σ 

depth of water = 0.328m (1.08ft)) in depth of water cover less than 0.30 m than results from optical 

inversion derived from the August 24th data.  Although the optical inversion algorithm utilized the entire 

network of GPS observations for calibration, the result was smooth and hydrologically correct. Average 

residuals were less than those reported from the ‘Denoised’ filtered October 5 point cloud at water depth 

cover greater than 0.30 m – 0.80 m.  The final hybrid model integrates the October 5 ‘Denoised’ SfM 

LAS point cloud data along the shore where shallow water does allow for some accurate sub-surface 

densification (Figure 3.15).  LASClip tool was used to drop points from the ‘Denoised’ pointset with z-

values below the 0.30m water cover threshold which coincided with the August 24th tide level.  The 

hybrid model is a culmination of the work presented in this thesis.  One weakness of this model is that 

SfM point cloud from October 5 flight is merged with bathymetric optical inversion data from August 24 th 

flight.  This is because hydrological and meteorological conditions during August 24th flight were more 

conducive to optical inversion (less wave action, less turbidity, less wind).  The October 5 dataset was 

chosen for the source of SfM point cloud data because although the dataset exhibited more noise, the 

point cloud for October 5 covered more sub-surface bathymetry than the August 24th flight.  A time 
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window of approximately 44 days occurred between these two aerial surveys; however, no significant 

change to bathymetry was expected below the tidal range.  Historical data from TAMUCC Division of 

Nearshore Research Station ‘Naval Air Station’ (decommissioned in 2004) shows that the water level for 

Mean Lower Low Water (MLLW) is 0.036 m (0.12 ft) NAVD88.  See section 3.6 for details on how 

water level datums are derived according to NOAA methodology.  Since the tidal elevation was 0.134 m 

(0.44 ft) for the August 24th flight (approximately 10 cm above the lowest average of tides for 19 years), it 

was assumed that minimal change due to wave and wind action would have occurred below the August 

24th tidal level. 

 
Figure 3.15: ‘Denoised’ and Optical Inversion Error versus depth: The October 5 - ‘Denoised’ LAS point 

cloud elevation data was used in the hybrid model from the edge of the ‘terrestrial’ point cloud dataset out 

to a water cover depth of 0.30 m (1.0 ft). The optical inversion DEM was used in the hybrid model from 

0.30 m of depth of water cover out to the edge of reflectance map coverage. Left – October 5, ‘Denoised’ 

- Absolute value of residuals (m) versus depth of water cover. Right – same relationship shown for the 

optical inversion raster.    

 

3.6 Shoreline Contour Comparison 

 A portion of this research sought to quantify the accuracy of a MHHW contour extracted from the 

SfM point cloud data.  The MHHW tidal level is found by averaging the highest of the diurnal tides from 

an epoch of 19 years of recorded tidal cycles (NOAA, 2003).  The current National Tidal Datum Epoch is 

1983 through 2001 (NOAA, 2015).  A contour elevation of 0.50m (1.6ft) NAVD88 was used to represent 

the MHHW line along the project site.  This elevation value is outdated, and is based on a tidal level from 
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a decommissioned TAMUCC Division of Nearshore Research Tide Station 001: Naval Air Station tide 

gauge (1992-2004) (Deidre Williams, Pers. Comm., 2015).  The elevation was used in this study because 

this elevation is the currently accepted MHHW in a historical monitoring regime managed by the Conrad 

Blucher Institute monitoring project known as Coastal Habitat Restoration GIS (CHGIS) (Williams, 

2005).  This MHHW contour line was mapped on site using RTK GPS methodology (Section 3.1).   145 

RTK GPS observations were recorded along the MHHW contour of the sub-aerial sandy beach as well as 

along the rock breakwaters at an average distance of 5.5 m (18 ft).  ArcGIS was used to compare MHHW 

points observed using RTK GPS methods to the MHHW contour generated from the various SfM point 

clouds via temporary TIN in LAS2iso.     

The field points were used to create a 3-dimensional polyline.  Four MHHW contours were derived from 

DEMs created from the densified point clouds for each survey (Table 3.3).  MHHW contours were 

created from the August 24th flight radially filtered point cloud and three point clouds from October 5 

flight including ‘denoised’ point cloud from Pix4D unfiltered point cloud, and filtered 4-match point and 

5-match point minimum densification process options.  Finally, a LAS point cloud was derived from the 

final hybrid composite DEM using ‘LAS2LAS’ tool and the MHHW contour was interpolated from this 

DEM as well.  The ‘LAS2ISO’ tool was used to quickly render a shapefile of the contour at a specific 

elevation.  Because some of the point cloud data contained noise, contours with lengths less than 152.4 m 

(500ft) were ignored.   

 To calculate residuals for the various MHHW contour renditions the 'Near' function was used 

within ArcMap 10.1.  Each in-situ MHHW GPS observation was written a distance value from each 

MHHW contour from the various point clouds.  Each output table was stored as a CSV file.  To 

differentiate near table results that were seaward of GPS observations for MHHW, a polygon was drawn 

incorporating MHHW lines from various processes.  Selection by location was used to select features 

which were within this polygon; thus all features selected were "below" actual values and a negative 

attribute was assigned to near value.  A true average could then be calculated and position relative to the 
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MHHW truth line could be taken into consideration during analysis.  An average of 127 locations were 

sampled for each SfM contour line. 

Table 3.3: MHHW contour sources for each of the contour lines analyzed against a control 

contour defined in-situ using RTK GPS. 
 

Date/Source Filter/Processing Notes 

August 24 Radially filtered  (10XGSD radial filter = 0.292 m) 

October 5 ‘Denoised' (Figure 4.3) LASnoise, LASheight, LASground 

October 5 
Alternate Processing 1  

(4-match minimum point cloud 

densification) 

October 5 
Alternate Processing 2  

(5-match minimum point cloud 

densification) 

Hybrid Model 
Model at MHHW line is similar to 'Denoised' 

pointset 

slight changes due to raster 

transformation 
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CHAPTER 4 

RESULTS 

4.1 GNSS versus SfM Point Cloud 

Statistical analysis was performed on the August 24th flight (radial filter) and multiple point 

clouds generated from October 5th flight including a radially filtered point cloud, ‘Denoised’ point cloud 

using various LAStools approaches (see Section 3.3), as well as two sets of October 5 data using the 4-

match and 5-match minimum dense matching parameters (Table 4.1).  Results indicate that despite 

imposing additional restraints, such as match point minimums and various filters to the final point cloud 

output, the general function of the Pix4D SfM workflow along the littoral boundary is a rigid process and 

external filtering does not remove all erroneous data.  Analysis of SfM products were directly compared 

to GPS observations based on RTK corrections from Trimble’s VRS network (Eq. 3).  Five point SfM 

point clouds were assessed in comparative analysis including radially filtered point set for The GPS 

observational errors are introduced into all comparative analysis including the computation of residuals 

(Table 4.2).  A vertical positional error of σ z = +/- 2.0 cm was assumed for RTK GPS observations and 

this error, σuncertainty, represents the propagated uncertainty in our ability to compare SfM z-values to GPS 

z-values. The term ‘residual’,ε, as used in these results refers to the difference between the RTK GPS z-

value and the SfM-derived z-value.  

Residual = GPSz - SfMz (Eq. 3) 

Table 4.1: Total SfM points by dataset 

Data set Total Points Water Surface  Terrestrial 

August 24 - Radial Filter 7,547,058 578,681 6,968,377 

October 5 - Radial Filter 4,232,744 1,017,246 3,215,498 

October 5 - 'Denoised' 5,237,184 683,728 4,553,456 

                  -Ground Only 1,585,104   

October 5 - 4-match min. 3,230,080 564,906 2,665,174 

October 5 - 5-match min. 2,988,999 467,752 2,521,247 
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The horizontal RMSE from observed aerial targets for the August 24 flight was 1.7 cm.  The 

horizontal RMSE from aerial targets for the October 5 flight was 2.7 cm for average of 2.2 cm.   

Sub-Aerial Beach – ‘Terrestrial’ SfM point clouds:  

Table: 4.2: Accuracy assessment over sub-area beach was represented by ‘terrestrial’ point clouds.   

Sub-Aerial SfM Point Cloud Residual (ε) Comparison (cm) 

Date Processing Average(ε) σ 

August 24 Radial Filter 5.6 15.5 

October 5 Radial Filter 8.9 19.5 

October 5 ‘Denoised' 10.1 22 

October 5 4-match constraint 7.1 19.9 

October 5 5-match constraint 6.9 19.9 

 Accuracy was shown to slightly degrade with increased slope which ranged from 0 to 

approximately 20 degrees within the project area.  

 
Figure 4.1: Accuracy versus slope for terrestrial SfM.  Accuracy does degrade for some locations as 

slope increases; however, this can be attributed to an abundance of unmaintained vegetation.  

 

The October 5 flight produced the noisiest unfiltered dataset with a standard deviation 

exceeding 3.36m (12 ft) for residuals between SfM 3-dimensional location and the network of 

RTK GPS observations (Figure 4.1).  
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Figure 4.2: Typical section plot along transect showing radially filtered point data from August 24th and 

October 5th flights.  The SfM profiles start to diverge from GPS trothing data below the water surface.  

October 5th flight data shows diversion approximately 1 ft (0.30) meters below water surface.  This 

information to decide which datasets were compiled in the hybrid model. 

 

Interest was shown in attempting to filter the October 5th dataset because although exhibiting relatively 

large areas of noise, the area of coverage over water was more extensive compared to August 24th point 

cloud (Table 4.3).  Figure 4.2 is a cross sectional profile showing the effects of the water’s surface on a 

TIN surface rendered from a SfM point cloud in CAD. 

Table 4.3: Comparison of areal coverage for 5 SfM point cloud datasets.    

Areal Comparison of SfM Point Clouds 

 
Dataset Meters Squared 

August 24 - Radial Filter 63,817 

October 5 - Radial Filter 73,218 

October 5 - 'Denoised' 67,302 

October 5 - 4-match constraint 61,429 

October 5 - 5-match constraint 58,663 
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Bathymetric SfM Point Cloud Analysis: 

Table 4.4 summarizes results of SfM solutions over water.  The average depth of water cover in the area 

of SfM point cloud generation was 0.47m (1.54ft) and 0.91m (2.98ft) for August 24 and October 5, 

respectively.   The overall average of residuals over water is -0.07m (-0.23ft).  Average of overall 

standard deviations over water was 1.0 m (3.26ft). Generally, the points over water were spurious returns 

from the surface; however, the slightly negative trend reported (-0.23 m) is the result of some extremely 

low values found in the October 5th unfiltered dataset where clusters of severely erroneous data exhibited 

values as low as -21.44 m (Figure 4.3).  The overall standard deviation of 1.0 m over water illustrates the 

extreme variance and imprecision of the SfM point clouds over water.  Without the addition of processing 

constraints or filtering the SfM z-values over water are almost useless information.   

 

 
Figure 4.3: Top: October 5 - Unfiltered LAS point cloud.  Glint and wavelets from increased wind, 

higher flight altitude, and a 0.30 m (1.0 ft) tide level increase relative to August 24 flight produced a 

much noisier point cloud over water.  Bottom: October 5 - LAS point cloud after filtering using reference 

surface and moving window.  Filtering was accomplished using LAS tools (LAS height, LAS noise) and 

classified using LASground. 
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Table 4.4: Sub-surface SfM Point cloud comparison 

Sub-Surface SfM Point Cloud Residual (ε) Comparison (cm)  

 Date Processing Average(ε) σ  Average Water Depth 

August 24 Radial Filter 5.6 28.2  11 

October 5 Radial Filter -129.9 354.8  56 

October 5 'Denoised' -31.0 28.4  47 

October 5 4-match constraint 9.4 28.8  40 

October 5 5-match constraint 9.4 28.2  37 

 

 

 Appendix A shows a breakdown of the average water level where residuals were less than 

(0.03m) 0.2’ which is generally accepted survey-grade error. Water depth within this survey-grade range 

averages 0.16 m (0.52’).   Appendix B features a table of water depths and residuals broken down in 

classes by standard deviation of residuals.  

 

4.2 Optical Inversion 

 

 The optical inversion gave promising results.  A simple linear regression of the final natural log 

ratio 
ln(𝐵𝑙𝑢𝑒−450𝑛𝑚 )

ln(𝐺𝑟𝑒𝑒𝑛−520𝑛𝑚)
  raster values to entire network of 735 GPS observations resulted in an average 

absolute value of residual of 0.082 m (0.27 ft); however, standard deviation of 0.354 m (1.16 ft) indicate 

relatively high variance in accuracy of bathymetry from optical inversion (Figure 4.4).  Of course, such an 

extensive network negates the goal of the optical inversion algorithm, but it does shows that the algorithm 

can provide information through relationships between the reflectance values determined from weighted 

smoothed bands and actual depth of water cover.  The surface is smooth with clear transition from 

shoreline to depth of extinction (approximately 0.8m (2.62ft)).  For noisy datasets optical inversion might 

provide an alternative for complete coverage of bathymetry. See Figure 3.15 in Methods for plot of error 

over water depth of coverage. 
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Figure 4.4: Final 

DEM created from 

bathymetric optical 

inversion.  Best fit 

model was the red 

band normalized 

natural logarithm 

ratio of blue and 

green bands.  The 

depth of extinction 

was approximately 

0.8 m (2.62 ft). 

 

 

 

 

 

4.3  Seamless Hybrid Topo-Bathymetric Model 

 The hybrid model (see Section 3.5) of the exposed beach and littoral zone (shallow water 

submerged part of the beach) combines the clipped areas of elevation data where processing produced 

relatively accurate results using the October 5 point cloud datasets and optical inversion results from 

August 24th flight.  The purpose was to design a final model from SfM point data derived from submerged 

areas of interest.  The October 5th dataset was chosen in order to propose a solution for merging multiple 

UAS derived products including an optical inversion bathymetry raster.  The motivation was a focus on 

attempting to extract useful information from the October 5th dataset that covered more area.   

For the sub-aerial beach, the radially filtered terrestrial points were used from upland to the 

shoreline on October 5th (elevation 0.439m (1.44ft) NAVD88).  Carrying the model seaward through zero 

depth of water cover to approximately 0.30 m (1.0 ft) of depth of coverage, the October 5 ‘Denoised’ 

dataset was used in the DEM using the 5-match reference surface (Figure 4.6).  The hybrid model had an 

overall  vertical RMSE value of 0.215m (0.70ft) and average residual value of 0.089m (0.29ft) for the 

entire area (Figure 4.5).  Although the filters were very successful in reducing variation and bringing the 

average residual closer to zero, the filtered point set still trended +0.293m (+0.96ft) which lends to the 
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hypothesis that despite aggressive filtering techniques, most SfM coordinates over water are the result of 

incorrect water surface image matching. 

 
Figure 4.5: Hybrid model rendered in ArcScene - final hybrid model was composed of radially filtered 

‘terrestrial’ points, ‘Denoised’ sub-surface points, and optical inversion DEM for seafloor bathymetry.   

 

 
Figure 4.6: Hybrid model (natural color) plus October 5 ‘Denoised’ LAS dataset overlayed.  Both 

datasets are shown with a 3:1 exaggeration of height.  Figure gives a visualization of the effects of poor 

image matching over water.  Most of the SfM coordinate solutions over turbid water are water surface 

returns. 

    

4.4 MHHW Contour Analysis  

 Contours were analyzed by using the ‘Near’ geoprocessing tool in ArcMap to write lengths 

between the GPS observation along the real MHHW contour and the derived SfM contour from DEM 

(Table 4.5).  Locations where the SfM contour lay bayward of the control line were considered ‘below’ 

control line and given a negative value.  MHHW contour derived from August 24 radially filtered 

produced the closest line to the control contour with an average residual of 0.240 m (0.79 ft) (Figure 4.7). 
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Table 4.5: MHHW Contours 

MHWH Contour from SfM Point Cloud Residual (ε) Comparison (m) 

Date Processing Average(ε) σ 

August 24 Radial Filter -0.24 0.483 

October 5  'Denoised' 0.515 1.879 

October 5 4-match constraint 0.446 1.919 

October 5 5-match constraint 0.561 1.860 

  

 

Figure 4.7: 3-dimensional model of August 24 – Radially filtered.  The August 24 ‘Terrestrial’ point set 

exhibited the highest accuracy (0.240 m (0.79 ft)) in MHHW contouring due to low flight altitude (90.53 

m (297.0 ft) and low tide level (+ 13 cm NAVD88).  Results shown in ArcScene. 

 

Figure 4.8 and 4.9 show planimetric maps of the MHHW contour as rendered from August 24 th radially 

filtered point set and October 5th ‘Denoised’ point set.  
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Figure 4.8: August 24 - Contour results from radially filtered ‘Terrestrial’ point cloud.  The August 24th 

dataset exhibited the most accuracy in MHHW contour mapping. 

Figure 4.9: October 5 – Contour results from ‘Denoised’ point cloud.  Point cloud was filtered using 

LASnoise, LASheight, and classified with LASground. Addition research is needed to examine the 

potential for micro-scale coastal monitoring using UAS imagery and SfM processing.  
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4.5 Known limitations: 

Only one complete topographic RTK GPS survey was able to be completed from which all SfM 

data products were compared.  A time gap of 44 days lapsed between the initial GPS survey on August 

22, 2014 and the final eBee flight on October 5, 2014.  Two cold front systems with winds up to 29 mph 

and 22 mph on September 13th and 25th respectively blew along Corpus Christi Bay between the August 

22 GNSS survey and October 5, 2014 eBee flight.  Despite these conditions, university beach has not 

required renourishment since the completion of construction in 2001 and is generally a low energy 

shoreline (Pers. Comm. Deidre Williams).  The shoreline is protected from southeast winds by the land 

mass of Ward Island and the Encinal Peninsula.  Breakwaters protect the beach from wave action driven 

by north winds.  Though excessive change was not expected, shoreline position at the tidal interface may 

have changed significantly enough to shift the horizontal position of the MHHW contour during the 44 

day time interval.  It is not expected that any significant statistical deviation would be present in SfM 

point cloud comparisons. The vast majority of topographic GPS observations over water were on stable 

sea floor.  Approximately, 37/814 GPS observations with water cover on October 5 (higher tide) were 

between the high waterline of October 5 and low waterline of August 24.  These 37 comparisons were 

within the active high energy shoreline and may have been subject to minor morphological change.  For 

this reason, it cannot be stated whether the higher and further landward MHHW contour positions 

reported from October 5 are artifacts of mismatched water surface locations due to turbid water and 

surface disturbance, or a correct representation of minute shoreline change since August 24.   

4.6 Discussion 

SfM through water is a very complex proposition.  The entire workflow in both August 24th and 

October 5th flight scenarios are based on the correct matching of features with resolution < 3.6cm.  

Surface reflectance and wave interference will always play a role in coastal SfM datasets.  The best 

solution for extracting 3-dimensional data along a turbid coastline is to find the depth of failure of a 

constrained (4 and 5-match minimum) dataset and employ a bathymetric inversion algorithm to seafloor 

bathymetry beyond this threshold.  
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All datasets except the October 5 unfiltered and October 5 radially filtered datasets have positive 

average residuals; joined SfM point cloud data was biased above actual seafloor surface.  It is 

hypothesized that the positive average residual bias from ‘clean’ datasets is the result of SfM feature 

detector algorithms falsely identifying transient features such as glint and other radiometric anomalies on 

the water surface.  The collected data suggests that the reason for the negative bias (-1.30 m (-4.26 ft)) for 

October 5 - radially filtered dataset was the extreme errors incurred during dense matching due to false 

image matching on the water surface.  Although SfM may not be the ultimate solution in sub-surface 

aerial mapping, this research suggests that a combination of data and outputs from the SfM workflow may 

be pieced together in order to achieve better results underwater.  The success in this research was the 

ability to map low-texture, low relief, sparsely vegetated shoreline and accurately place a MHHW contour 

in horizontal plane using 3-dimensional SfM point cloud and DEM.  It is hypothesized that the optical 

inversion approach from low-altitude imagery may work using a sensor capable of recording multiple 

bands from the EM spectrum.  Optical inversion by regression of reflectance values from smoothed RGB 

band ratios does show some significant correlation between reflectance and depth, although the depth of 

extinctions appears to be relatively shallow 0.5 m (~1.7 ft) - at least for low-altitude photography.  Optical 

inversion did provide for complete coverage over water.   

The impediment of water surface irregularities seemed to distort the correct calculation of 3-

dimensional pixel locations. Introducing stringent match minimum constraints during the dense matching 

process severely restricted the extent of SfM bathymetry, having a negative impact on areal coverage.  On 

the contrary, if the original unfiltered densified point cloud is processed with the presented filtering 

algorithm and classification techniques, coordinate locations from the seafloor can be found and areal 

coverage preserved.  The correlation between increased residual of sub-surface GPS observations versus 

SfM z-values with increased water depth coverage suggests that SfM values sampled in this research may 

contain random noise.  Figure 4.2 illustrates where SfM and GPS elevation correspondence deteriorates 

along a typical transect with relation to water level at time of survey.  This correlation also indicates that 

z-values degraded with increased water depth as expected.  A common pattern is observed for both flights 
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where correlation between SfM and GPS is relatively correspondent up to a depth of approximately 15 to 

30 cm (0.5 ft to 1.0 ft).  Figure 4.2 also shows the greater amplitude of noise seen in the October 5 SfM 

derivative elevation surface versus August 24.  The difference in amplitudes of noise is attributed to the 

increased wind velocity as well as increased flying height for the October 5th mission.  A combination of 

filtered point sets and ground classifying algorithms eliminated much of the noise, and functioned to 

properly map the true bottom.   
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CHAPTER 5 

CONCLUSIONS 

UAS systems utilizing high resolution consumer grade digital cameras show great promise in the 

ability to provide suitable imagery for SfM mapping applications in coastal scenarios.  The utility of SfM 

comes from the ability to process images from a non-metric camera in conjunction with inexpensive 

MEMS sensor input.  This study provided an opportunity to assess the accuracy of UAS-SfM 

photogrammetry for mapping a low-energy littoral zone in Corpus Christi Bay, Texas.  Results showed 

that accurate mapping can be accomplished along a low-texture, low relief, sparsely vegetated sandy 

shoreline.  The radially filtered SfM point cloud matched within 6 cm of RTK GPS observation.  The 

results also showed that a MHHW shoreline could be accurately located (+/- 0.24 m (0.79ft)) relative to 

GPS observation, demonstrating the potential of UAS for boundary surveying in coastal zones and hard to 

access regions.  Impediment in deriving 3-dimensional data (and 2-dimensional vector derivatives) of the 

littoral zone stems from the failure of SfM algorithms when matching image features that contain the 

surface of turbid water; however, research suggests that SfM dense matching is possible along portions of 

the shoreline with shallow water cover (<0.304 m).  The identification of the exact water clarity threshold 

was not determined.  Band ratio optical inversion demonstrated that bathymetric information can be 

extracted from imagery obtained over turbid water in situations where light reflectance off the seafloor is 

minimal and feature detection is severely inhibited or prevented.   

The best approach to generate a seamless topo-bathymetric DEM within the submerged zone 

coupled filtered SfM point cloud data with band ratio optical inversion along with integrated survey 

control.  The seamless topo-bathymetric DEM produced in this research demonstrated that a complete 3-

dimensional model can derived from UAS imagery and a network of RTK GPS observations.  Although 

an extensive GNSS survey was used in this study for accuracy comparison and band ratio analysis for 

extraction of depth, future application of these methods for extraction of the seamless topo-bathy DEM 

should not require as many observations.  It is hypothesized that proper quantity and application of targets 

might suffice for both final SfM model coordinate system transformation as well as for regression fitting 
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of band ratio optical inversion values to depths.  Total hours spent on data acquisition would be kept to a 

minimum by implementing the least number of required GPS observations for quality assurance and 

targeting.   

Accurate and inexpensive surveying of the littoral zone along the Texas coast has implications in 

land management, cadastral mapping, and erosion and habitat monitoring.  UAS photogrammetry can 

provide a cost-effective and efficient method to obtain accurate elevation and spectral data at high spatial 

and temporal resolution. Traditional GPS surveys utilized for monitoring purposes are cost-prohibitive 

and require physically traversing the terrain with base and rover.  The application of lidar and terrestrial 

scanning require significant cost investments in equipment and application.  UAS-derived spatial data 

may provide a means to remotely survey areas where available budget cannot provide for intensive base 

and rover survey or laser scanning.  For example, government agencies might implement a UAS-derived 

photogrammetry workflow that could produce a high volume, accurate elevation model at low cost for use 

in environmental monitoring, planning erosion response work, etc.  UAS/SfM data could also be used to 

supplement other survey methods where accuracy of bathymetric SfM or optical inversion do not meet 

project specifications, but a high temporal frequency is desired (ex. monitoring applications).  In Texas, 

SfM DEMs might be used for the delineation and quantification of artificial fill/buildup as part of the 

requirements for state-funded erosion protection programs (Texas Administrative Code 33.136).   

In summary, results from this study suggest that dense and accurate 3-dimensional mapping of a 

littoral zone could be realized from imagery acquired with a low-cost consumer grade digital camera 

operated on an easy to fly, ultra-light UAS plus GPS observations used for quality assurance and 

targeting.  The equivalent aerial survey comparison would be executed with manned aircraft equipped 

with a costly lidar system or via stereo photogrammetry employing a metric camera. It is apparent that the 

ease of acquisition and flexibility of UAS-based SfM photogrammetry represents a new paradigm in 

coastal mapping.  As high resolution sensors and platforms continue to rapidly evolve, so too will the 

benefits and potential applications of the UAS/SfM approach.  

 



 

57 



 

58 

CHAPTER 6 

FUTURE WORK 

Remote sensing along the shoreline with UAS is in the infancy stage.  Robust software packages 

incorporate high logic image processing techniques and complex algorithms that enable the UAS operator 

to produce high quality elevation data and orthophotos.  Numerous challenges along the beach; however, 

remain unsolved.  For example, SfM will fail where a surface of water exists because the same robust 

feature identification algorithms that enable automation impede or prohibit this process over water.  The 

research does suggest that automated processes can be used along a littoral zone with some additional 

processing and the implementation of a patchwork of SfM products.   

Future research is needed in order to compare SfM models across the beach surface and 

examining more rigorous effects of terrain variability on point measurements, such as by comparing to 

TLS.  Full coverage becomes necessary for analysis because clusters of elevation samples must be more 

accurately analyzed along the shallow beach (<0.30 m water coverage) in order to identify exactly where 

image matching begins to deteriorate and alternative methods for deriving elevations becomes necessary.  

Turbidity/water clarity measurements may be a necessary component in decision making regarding the 

dissection of various elevation data for the purpose of shoreline mapping as this threshold is hypothesized 

to change with varying levels of turbidity.   

Given the portability of modern UAS like the eBee and advances in meteorological forecasting 

such as tidal levels- a sufficient workflow could be to mobilize UAS operations during time of extreme 

low tide.  If planning were carefully executed, low tide level as well as low wind and thus higher water 

clarity/less surface turbulence would be encountered allowing for more thorough image matching during 

SfM post-processing.  

SfM efficiency around or through water might be increased with the use of a multi-band 

hyperspectral sensor from which imagery composed of only certain bands would be used in the SfM 

pipeline.  According to Altena et al., most current SfM software suites transform imagery into grayscale, 

but the reflection of a specific type of substrate might be more in a certain band.   Results from SfM 
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research along a shoreline in Belgium show a small benefit using the green band (Altena et al, 2014).  

Legleiter et al. (2011) have success using particular color bands from an Airborne Imaging Spectrometer 

for Applications which records data from 63 spectral bands between 401 and 982 nm.  

 Bathymetric optical inversion could be improved by utilizing a near infrared (NIR) sensor.  

Reflectance values in the NIR band could be used to effectively normalize other bands’ reflectance over 

water (Figure 6.0).  The band ratio method implemented in this research albeit regression was driven by 

an extensive network of GPS observations instead of a sparse network.  A sparse network of GNSS 

control might enable a dataset recorded using a NIR sensor to be more accurately used in optical 

inversion resulting in the extraction of more accurate depth information with less hours and equipment 

time spent.  

Another area of future work is the assessment of the accuracy of contouring a line interpolated 

from the optical inversion DEM.  This becomes important when tidal levels reach above a threshold 

where another dataset may be present and data derived from optical inversion must be clipped at a 

particular contour.  The accuracy of other water level contours would be an important assessment of the 

quality of optical inversion DEM.  For example, if imagery is captured at a moment of tidal levels at 

MHHW, can a suitable contour be interpolated at mean sea level?  Can the SfM point cloud be accurately 

clipped using this information in order to use more accurate shallow water point cloud data in lieu of 

optical inversion DEM? A simulation method would provide more accurate data on the proper methods 

for the merging of Sfm datasets and 

optical inversion rasters.  

 

Figure 6.1: Example of potential NIR 

sensor for use with UAS.  Tetracam’s 

Agricultural Digital Camera (ADC) 

contains a sensor capable of recording 

Red, Green, and NIR (Tetracam, 2015). 
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Another source of the error found along the terrestrial point sets for both flights were the effect of 

shoreline vegetation.  One drawback of SfM point clouds versus TLS is the incorporation of vegetative 

canopies in the final point set.  Additional research is needed in the area of littoral boundary surveying 

and the removal or filtering of surface returns that include flat vegetation of a relatively homogenous 

height that is typical of littoral areas along the Gulf of Mexico.  Successful aerial mapping of the coast 

line and production of accurate DEMs will require the filtering out of species such as smooth cordgrass 

(Spartina alterniflora), black mangrove (Avicennia germinans) and other typical marsh species (i.e. 

Spartina spp.).  RapidLasso has some ground point filters that were used in this research, but were not 

implemented for terrestrial points.  The bulk majority of the beach was unvegetated where little residual 

was seen. 

Another area of potential research is the use of light filters or lens polarization in order to perform 

post-processing on photographs with specific properties (Figure 6.1).  A linear polarizing filter correctly 

placed in front of the camera lens might be able to effectively suppress glare and reflection from the water 

surface by filtering out scattered unorganized light (Matsuyama et al, 2004).  

 

 

 

 

 

Figure 6.2: Polarizing light before it enters the lens during image acquisition may facilitate better SfM 

results through water.  
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SfM processing along a littoral zone is not a straight forward process.  Success will depend on 

flight planning accordingly to meteorological/marine conditions so that ideal radiometric qualities are 

obtained in the initial imagery. This thesis has identified and quantified inherent areas of weakness of 

processing UAS imagery with SfM along the littoral zone, and proposed methods to utilize the same 

imagery in areas where SfM fails.   
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APPENDICES 

 

Appendix A: Average depth of water cover where survey-grade accuracy was achieved sub-surface. 

Average Depth of Water Cover Overall (residual error < 0.03 m/0.2 ft) 

     

  
No. Pnts Average (ft) (m) 

August 24 - Radially 

filtered 7,547,058 Overall: 0.54 0.165 

   Residual<0.03 m  

 

Sub-surface-clip 261 0.14 0.043 

  Sub-surface 222 0.15 0.046 

October 5 - Radially 

filtered 4,232,744 Overall: 1.83 0.558 

   Residual<0.03 m  

 

Sub-surface-clip 516 0.77 0.235 

  Sub-surface 449 0.92 0.280 

October 5 - 'Denoised' 5,237,184 1.54 0.469 

  Sub-surface 393 1.04 0.317 

October 5 - 4 match point 3,230,080 Overall: 1.33 0.405 

   Residual<0.03 m  

 

Sub-surface-clip 268 1.06 0.323 

  Sub-surface 216 1.16 0.354 

October 5 - 5 match point 2,988,999 Overall: 1.21 0.370 

   Residual<0.03 m  

 

Sub-surface-clip 222 1.00 0.305 

 

Sub-surface 180 1.62 0.494 

 

 

Appendix B:  Analysis of SfM using RTK GPS survey as control. 

August 24:  - University Beach, 80 calibrated images  

Altitude: 90.53m (297ft)   

Wind: southeast 7 knots    

Georeferencing: 6 GCPs (6 3D), mean error = 1.9 cm (0.062 ft) 

Ground Sampling Distance: 2.92 cm   

Average water level shot (9 GPS observations) at time of flight: 13.6 cm (0.446 ft) 

NAVD88 

August 24:  - Unfiltered LAS Dataset   

Number of point records:    8,542,778 

Point density:  65.44 per m2 (6.08 per ft2)   

Point spacing:  12.50 cm (0.41 ft)   

Zmin: 3.225 m (-10.581 ft)   
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Zmax: 21.590 m (70.833 ft)   

August 24:  - Densified Radially Filtered (10XGSD) LAS DatasetA24-F 

Number of point records:   7,547,058 

Point density:  58.66 per m2 (5.45 per ft2)   

Point spacing:  13.1cm (0.43ft)   

Zmin: -3.10 m (-10.17 ft)   

Zmax: 21.51 m (70.56 ft)   

   

   

   

Terrestrial JoinedA24-F   

Total Joined Points  644 

 (ft) (m) 

Average residual 0.18 0.056 

Std Dev 0.51 0.155 

Squared Sum 188.36 57.411 

RMSE 0.54 0.165 

Sub-surface – Clipped JoinedA24-F   

Total Joined Points  261 

Average residual 0.50 0.151 

Std Dev 1.15 0.350 

Squared Sum 408.76 124.591 

RMSE 1.25 0.381 

   

Lower 95%(2σ Residuals) -1.80 -0.550 

Upper 95%(2σ Residuals) 2.79 0.852 

Std Dev(Abs(residual)) 1.15 0.350 

   

Water Depth Analysis   

Avg. Water Depth 0.54 0.165 

   

Average Water Depth (Classified by σ)   

 (ft) (m) 

Residuals<1σ 0.29 0.089 

1σ>Residuals>2σ 1.19 0.364 

2σ>Residuals>3σ 3.05 0.929 

Residuals>3σ 3.40 1.036 

Avg Water Depth    

where residual <0.2' (0.03m) 0.14 0.041 

   

Sub-Surface JoinedA24-F   
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Total Joined Points  222 

 (ft) (m) 

Average residual 0.18 0.056 

Std Dev 0.93 0.282 

Squared Sum 197.71 60.262 

RMSE 0.94 0.288 

   

Average 0.18 0.055 

Lower 95%(3σ Residuals) -1.67 -0.509 

Upper 95%(3σ Residuals) 2.03 0.619 

Std Dev(Abs(residual)) 0.93 0.283 

   

Water Depth Analysis   

Avg. Water Depth 0.36 0.110 

   

Average Water Depth (Classified by σ)   

 (ft) (m) 

Residuals<1σ 0.22 0.069 

1σ>Residuals>2σ 0.99 0.301 

2σ>Residuals>3σ 1.37 0.417 

Residuals>3σ 1.87 0.570 

Avg Water Depth    

where residual <0.2ft (0.03m) 0.15 0.050 

   

October 5:  – University Beach, 331 Calibrated images 

October 5, 2014: four comparisons are made.  First point set is filtered using 

standard Pix4D moving window (10XGSD).  Second point set is filtered using a 

reference surface and LAStools (LASheight, LASnoise, LASground).  Two 

alternate processing methods are shown, 4-match minimum and 5-match minimum 

dense matching.   

Altitude: 115.52m (379ft)   

Wind: 10 knots, 157 degrees.   

Georeferencing: 16 GCPs (16 3D), mean error = 2.7 cm (0.088 ft) (Quality Report) 

Average Ground Sampling Distance:  3.56 cm   

Average water level shot (3 shots) at time of flight: 0.439m (1.442 ft) NAVD88 

October 5:  – Densified Unfiltered LAS Pointset    

Number of point records:    5,662,517 

Point density:  75.78 per m2 (7.04 per sq ft)   

Point spacing:  (0.38 ft)   

Zmin: 21.437 m (-70.33 ft)   

ZMax: 10.339m (33.92 ft)   

October 5, Densified Radially Filtered LAS Pointset: (Pix4D Filtered)O5-F 
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Total Points:   4,232,744 

Point density:  57.800 m2 5.37 (per ft2)   

Point spacing:  13.1 cm (0.43 ft)   

Zmin: 21.071 m (-69.13 ft)   

ZMax: 10.168 m (33.36 ft)   

   

   

Terrestrial JoinedO5-F   

Total Joined Points  518 

 (ft) (m) 

Average residual 0.29 0.089 

Std Dev 0.64 0.195 

Squared Sum 256.97 78.326 

RMSE 0.70 0.215 

   

Sub-Surface – Clipped JoinedO5-F   

Total Joined Points  516 

 (ft) (m) 

Average residual -1.59 -0.484 

Std Dev 11.97 3.650 

Squared Sum 75280.36 22945.734 

RMSE 12.08 3.682 

   

Average -1.56 -0.476 

Lower 95%(3σ Residuals) -25.28 -7.707 

Upper 95%(3σ Residuals) 22.16 6.754 

Std Dev(Abs(residual)) 11.86 3.615 

   

Water Depth Analysis   

Avg. Water Depth 1.83 0.559 

   

Average Water Depth (Classified by σ)   

 (ft) (m) 

Residuals<1σ 1.67 0.508 

1σ>Residuals>2σ 2.88 0.877 

2σ>Residuals>3σ 2.35 0.715 

Residuals>3σ 3.28 0.998 

Avg Water Depth    

where residual <0.2' (0.03m) 0.77 0.234 

   

Sub-Surface JoinedO5-F   

Total Joined Points  449 
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 (ft) (m) 

Average residual -4.26 -1.299 

Std Dev 11.64 3.548 

Squared Sum 69008.42 21034.022 

RMSE 12.40 3.779 

   

Average -4.26 -1.299 

Lower 95%(3σ Residuals) -27.55 -8.391 

Upper 95%(3σ Residuals) 19.02 5.794 

Std Dev(Abs(residual) 11.64 3.546 

   

Water Depth Analysis   

Avg. Water Depth 1.77 0.540 

   

Average Water Depth (Classified by σ)   

 (ft) (m) 

Residuals<1σ 1.69 0.516 

1σ>Residuals>2σ 1.78 0.542 

2σ>Residuals>3σ 2.35 0.715 

Residuals>3σ 3.28 0.998 

Avg Water Depth    

where residual <0.2' (0.03m) 0.92 0.279 

   

October 5:  – ‘Denoised’ (LAStools)O5-DE   

Number of point records:   5,237,184 

Point density: 77.82 m 7.23 (per ft2)   

Point spacing:  11.3 cm (0.37 ft)   

Zmin: 2.335 m (-7.66 ft)    

Zmax: 9.062 m (29.73 ft)   

Final filtering and processing (see page XX for details) 

Terrestrial JoinedO5-DE   

Total Joined Points  538 

 (ft) (m) 

Average residual 0.30 0.101 

Std Dev 0.66 0.220 

Squared Sum 283.79 94.596 

RMSE 0.73 0.242 

Sub-surface Clip O5-DE   

Omitted, filtered out above surface points in filter process.  

 

Sub-surface (‘Denoised’) JoinedO5-DE 
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Total Joined Points  393 

 (ft) (m) 

Average Residual 0.96 0.292 

Std Deviation 1.61 0.489 

Squared Sum 1373.54 418.660 

RMSE 1.87 0.570 

   

Lower 95%(Residuals) -2.25 -0.687 

Upper 95%(Residuals) 4.17 1.271 

Std Dev(Abs(residual)) 1.34 0.409 

   

Water Depth Analysis   

Avg. Water Depth 1.54 0.468 

   

Average Water Depth (Classified by σ)   

 (ft) (m) 

Residuals<1σ 1.08 0.328 

1σ>Residuals>2σ 1.60 0.487 

2σ>Residuals>3σ 2.95 0.900 

Residuals>3σ 4.80 1.463 

Ave Water Depth    

where residual <0.2' (0.03m) 1.04 0.316 

   

Alternate Processing1 (4-match minimum point cloud densification)O5-AP1 

Number of point records:    3,230,080 

Point density:  52.63 per m2 (4.89 per ft2)   

Point spacing:  13.72 cm (0.45 ft)   

Zmin: -3.395 m (-11.14 ft)   

Zmax: 9.980 m (32.74 ft)   

Terrestrial Joined O5-AP1 

Total Joined Points  537 

 (ft) (m) 

Average 0.23 0.071 

Std Dev 0.65 0.199 

Squared Sum 256.97 78.324 

RMSE 0.69 0.211 

   

Sub-surface – Clipped Joined O5-AP1   

Total Joined Points  268 

 (ft) (m) 

Average Residual 0.65 0.198 

Std Deviation 1.42 0.432 

Squared Sum 652.96 199.023 
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RMSE 1.56 0.476 

   

Lower 95%(Residuals) -2.19 -0.667 

Upper 95%(Residuals) 3.49 1.063 

Std Dev(Abs(residual)) 1.21 0.368 

   

Water Depth Analysis   

Avg. Water Depth 1.33 0.405 

 

   

AvgWaterDepth  (ft) (m) 

Residuals<1σ 1.07 0.325 

1σ>Residuals>2σ 1.84 0.560 

2σ>Residuals>3σ 2.63 0.800 

Residuals>3σ 3.94 1.201 

Ave Water Depth    

where residual <0.2' (0.03m) 1.06 0.323 

   

Sub-Surface Joined O5-AP1   

Total Joined Points  216 

 (ft) (m) 

Average Residual 0.31 0.094 

Std Deviation 0.94 0.288 

Squared Sum 213.47 65.065 

RMSE 0.99 0.303 

   

Lower 95%(Residuals) -1.58 -0.482 

Upper 95%(Residuals) 2.20 0.670 

Std Dev(Abs(residual)) 0.72 0.220 

   

Water Depth Analysis O5-AP1   

Avg. Water Depth 1.36 0.415 

   

AvgWaterDepth  (ft) (m) 

Residuals<1σ 1.15 0.349 

1σ>Residuals>2σ 1.31 0.400 

2σ>Residuals>3σ 1.87 0.571 

Residuals>3σ 3.47 1.056 

Ave Water Depth    

where residual <0.2' (0.03m) 1.16 0.354 

   

October 5,  – Alternate Processing2 (5-match minimum point cloud 

densification) O5-AP2 

Number of point records:    2,988,999 
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Point density:  50.91 per m2 (4.73 per ft2)   

Point spacing:  14.02 cm (0.46 ft)   

Zmin: -2.231 m (-7.32 ft)   

Zmax: 9.412 m (30.88 ft)   

Terrestrial JoinedO5-AP2   

Total Joined Points  537 

 (ft) (m) 

Average 0.23 0.069 

Std Dev 0.65 0.200 

Squared Sum 259.50 86.500 

RMSE 0.70 0.232 

   

Sub-surface – Clipped Joined O5-AP2   

Total Joined Points  222 

 (ft) (m) 

Average Residual 0.53 0.163 

Std Deviation 1.27 0.389 

Squared Sum 424.25 129.313 

RMSE 1.38 0.421 

   

Lower 95%(Residuals) -2.01 -0.614 

Upper 95%(Residuals) 3.08 0.940 

Std Dev(Abs(residual)) 1.05 0.319 

   

Water Depth Analysis   

Avg. Water Depth 1.21 0.370 

   

AvgWaterDepth  (ft) (m) 

Residuals<1σ 0.99 0.301 

1σ>Residuals>2σ 1.52 0.462 

2σ>Residuals>3σ 2.16 0.657 

Residuals>3σ 3.14 0.957 

Ave Water Depth    

where residual <0.2' (0.03m) 1.00 0.305 

   

Sub-Surface JoinedO5-AP2   

Total Joined Points  180 

 (ft) (m) 

Average Residual 0.31 0.094 

Std Deviation 0.92 0.282 

Squared Sum 170.64 52.012 

RMSE 0.97 0.297 
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Lower 95%(Residuals) -1.54 -0.470 

Upper 95%(Residuals) 2.15 0.657 

Std Dev(Abs(residual)) 0.68 0.208 

   

Water Depth Analysis   

Avg. Water Depth 1.33 0.404 

   

 (ft) (m) 

Residuals<1σ 1.11 0.338 

1σ>Residuals>2σ 1.20 0.367 

2σ>Residuals>3σ 2.17 0.660 

Residuals>3σ 3.41 1.039 

Avg Water Depth    

where residual <0.2' (0.03m) 1.62 0.493 

   

Optical Inversion - Red band normalized ln(Blue)/ln(Green) 

Total Joined Points  728 

 (ft) (m) 

Average Residual 0.00 -0.001 

Std Deviation 1.16 0.354 

Squared Sum 981.80 299.257 

RMSE 1.16 0.354 

   

Lower 95%(Residuals) -2.33 -0.709 

Upper 95%(Residuals) 2.32 0.707 

Std Dev(Abs(residual)) 0.75 0.230 

   

Water Depth Analysis   

Avg. Water Depth 1.53 0.466 

   

Average Water Depth (Classified by σ)   

 (ft) (m) 

Residuals<1σ 1.11 0.338 

1σ>Residuals>2σ 1.94 0.592 

2σ>Residuals>3σ 4.71 1.436 

Residuals>3σ none none 

Avg. Water Depth    

where residual <0.2' (0.03m) 1.32 0.403 

   

October 5 - : Hybrid Model   

Total Joined Points  1360 
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 (ft) (m) 

Average Residual 0.18 0.054 

Std Deviation 1.04 0.316 

Squared Sum 1504.51 458.579 

RMSE 1.05 0.321 

   

Lower 95%(Residuals) -1.89 -0.577 

Upper 95%(Residuals) 2.25 0.686 

Std Dev(Abs(residual)) 0.75 0.229 

 

 

 

Appendix C: MHHW contour analysis – in-situ GPS observations versus SfM MHHW contour 

interpolated from point cloud TIN. 

 

August 24 -  (Radially Filtered) 

  MHHW Analysis - Residuals by Near 

Table 

  Negative Values are seaward of MHHW Control Line 

 

 

(ft) (m) 

Average Residual -0.79 -0.240 

Std Deviation 1.58 0.483 

Squared Sum 397.13 121.046 

RMSE 1.77 0.539 

   October 5 -  (Denoised) 

  MHHW Analysis - Residuals by Near 

Table 

  Negative Values are seaward of MHHW Control Line 

 

 

(ft) (m) 

Average Residual 1.69 0.515 

Std Deviation 6.16 1.879 

Squared Sum 4370.64 1332.187 

RMSE 6.39 1.948 

   October 5 -  (Alternate Processing - 4-match minimum) 

MHHW Analysis - Residuals by Near 

Table 

  Negative Values are seaward of MHHW Control Line 

 

 

(ft) (m) 

Average Residual 1.46 0.446 

Std Deviation 6.30 1.919 

Squared Sum 4803.57 1464.147 

RMSE 6.46 1.970 
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   October 5 -  (Alternate Processing2 - 5-match minimum) 

MHHW Analysis - Residuals by Near 

Table 

  Negative Values are seaward of MHHW Control Line 

 

 

(ft) (m) 

Average Residual 1.84 0.561 

Std Deviation 6.10 1.860 

Squared Sum 4672.84 1424.299 

RMSE 6.37 1.943 

   DEM Combo - Optical Inversion (August 24), October 5 (denoised), 

October 5 (terrestrial point cloud) 

MHHW Analysis - Residuals by Near 

Table 

  Negative Values are seaward of MHHW Control Line 

 

 

(ft) (m) 

Average Residual 2.09 0.636 

Std Deviation 6.37 1.940 

Squared Sum 5206.11 1586.843 

RMSE 6.70 2.042 
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