
”VOICE AND GESTURE DEVELOPMENT ENVIRONMENT:

KEYBOARD FREE PROGRAMMING”

A Thesis

by

LEANA MORGAN BOUSE

BS, Texas A&M University - Corpus Christi, 2014

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Texas A&M University-Corpus Christi
Corpus Christi, Texas

August 2017

c©LEANA MORGAN BOUSE

All Rights Reserved

August 2017

”VOICE AND GESTURE DEVELOPMENT ENVIRONMENT:

KEYBOARD FREE PROGRAMMING”

A Thesis

by

LEANA MORGAN BOUSE

This thesis meets the standards for scope and quality of
Texas A&M University-Corpus Christi and is hereby approved.

SCOTT A. KING, PhD MARYAM RAHNEMOONFAR, PhD
Chair Committee Member

MIKAELA BOHAM, PhD
Committee Member

August 2017

ABSTRACT

Computer interaction is essential for computer science professionals. Traditional input devices,

such as a keyboard and mouse, can be difficult obstacles for professionals with pre-existing manual

impairments or may develop future manual impairments as a result of extensive computer use. To

address the needs of these professionals, we developed the Voice and Gesture Development En-

vironment (VGDE), allowing users to create Java programs through the use of voice and gesture,

by using Microsoft Speech for speech recognition engine and the Leap Motion device and Appli-

cation Program Interface (API) for gesture recognition. This software allows users to dictate Java

code naturally through voice commands, as well as edit and navigate the user’s code with voice

and gestures. The purpose of the VGDE is to reduce the amount of keyboard and mouse usage

while programming and interacting with a development environment.

v

TABLE OF CONTENTS

CONTENTS PAGE

ABSTRACT . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . vii

LIST OF TABLES . viii

CHAPTER I: INTRODUCTION . 1

1.1 Prior Works . 2

1.2 Problem Description . 3

1.3 Contributions . 4

1.4 Thesis Overview . 4

CHAPTER II: SYSTEM DESIGN . 6

2.1 Command System . 6

2.2 Software Structure . 17

CHAPTER III: EVALUATION AND RESULTS . 28

3.1 Evaluation of the Accuracy of Voice Commands 28

3.2 Evaluation of the Accuracy of Gesture Commands 30

3.3 Results of the Evaluations . 31

CHAPTER IV: FUTURE WORK . 33

CHAPTER V: CONCLUSION . 35

REFERENCES . 37

APPENDIX A: SEQUENCE DIAGRAMS . 39

vi

LIST OF FIGURES

FIGURES PAGE

2.1 Sequence Diagram of Voice Programming Command “ONE” 8

2.2 Sequence Diagram of Voice Environment Command “Open File” 13

2.3 Environment Voice Command: Pause Microphone . 14

2.4 Sequence Diagram of Voice Environment Command “Pause Microphone” 14

2.5 Sequence Diagram of Gesture Navigation Command “Move Cursor Down” 16

2.6 Component Interaction Overview Diagram . 17

2.7 Voice Component Interaction Overview Diagram . 19

2.8 Gesture Component Interaction Overview Diagram 23

2.9 Parser Component Interaction Overview Diagram . 25

2.10 Image of VGDE user interface, with components labeled 1-8. 27

3.11 Voice Command Test 1: Convert Integer to Binary . 29

3.12 Full Test Code - Including headers and template . 30

6.13 Sequence Diagram of Voice Programming Command “ONE” 39

6.14 Sequence Diagram of Voice Environment Command “Open File” 40

6.15 Sequence Diagram of Voice Environment Command “Pause Microphone” 41

6.16 Sequence Diagram of Gesture Navigation Command “Move Cursor Down” 42

vii

LIST OF TABLES

TABLES PAGE

2.1 General Command Categories and Subcagetories . 6

2.2 A list of Voice Coding Commands. Subcategories: Data type, Operators, Assignment,

and Comparison. 9

2.3 A list of Voice Coding Commands. Subcategories: Selection and Iteration. 9

2.4 A list of Voice Coding Commands. Subcategories: New Line and InputOutput. 9

2.5 A list of Voice Coding Commands. Subcategories: Digits. 10

2.6 A list of Voice Editing Commands. Subcategories: Select and Undo. 10

2.7 A list of Voice Editing Commands. Subcategories: Delete and Clipboard. 11

2.8 A list of Voice Navigation Commands. Subcategories: Move cursor. 12

2.9 A list of Voice Environment Commands. Subcategories: Software and File. 14

2.10 A list of Voice Environment Commands. Subcategories: Microphone and Gesture. . . . 15

2.11 A list of Gesture Editing Commands. Subcategories: Select and Delete 16

2.12 A list of Gesture Navigation Commands. Subcategories: Move cursor. 16

2.13 UML Class Diagram of the Keyword Class . 20

2.14 UML Class Diagram of the Grammar Class . 20

3.15 A list of voice commands spoken for evaluation test. 29

3.16 A list of gesture commands executed for evaluation test. 31

3.17 Results of the Voice Command evaluation on microphone and timing accuracy. 32

3.18 The results of the Gesture Command evaluation on accuracy. 32

viii

CHAPTER I: INTRODUCTION

The professional career of a programmer is reliant on his or her ability to manage physical and

mental tasks. Programming, in and of itself, is often a sedentary job; the act of using traditional

input devices, such as a keyboard and mouse, to create programs can cause pain or discomfort in

manually impaired programmers. Manually impaired programmers are individuals with medical

conditions affecting their ability to efficiently or extensively use traditional input devices. Whether

a manually impaired programmer has a pre-existing condition, or has developed their condition as

a result of their profession, the repetitive task of typing can limit career access for these individuals.

While there are commercially available software packages to help these individuals use a computer

through speech recognition or simple gestures, there are still severe limitations for programmers

falling within this category. In order to provide an aid to programmers with manual impairments,

we have developed the Voice and Gesture Development Environment (VGDE), a code editor that

eliminates or minimizes the use of the keyboard and mouse.

The VGDE reduces or eliminates repetitive physical tasks associated with typing and mouse

usage by instead allowing the user to create Java programs by voice and gesture recognition. This

software allows users to speak in a natural manner to create their program, rather than dictating

exact source code. The primary use of the gesture recognition component is to navigate and edit

the user’s source code, as well as control the softwares interface. Gestures are an optional fea-

ture, to ensure they do not limit the usability of the system. For each gesture command, there is a

corresponding voice command, so users are able to use the command method aligning with their

needs. The primary motivation for developing this code editor is to provide accessibility to man-

ually impaired programmers and to reduce strain or injury. However, the goal is for this solution

to appeal to all programmers, not only those who are manually impaired. Providing options and

customization allows programmers to find a balance between voice and gesture commands that are

best suited for their work patterns.

1

1.1 Prior Works

There have been various approaches to developing alternative means for programming. A num-

ber of these solutions include using voice recognition to create programs. While the approaches

these systems take may vary, there is always one agreeing factor: expanding the accessibility of

programming.

Wichita State University worked on integrating Natural User Interfaces (NUIs) with Integrated

Development Environments (IDEs) [5]. Their work uses gesture and voice commands for inter-

acting with the interface for Microsoft Visual Studio, an IDE. The authors’ program operates as

an independent program from Visual Studio that is executed and run at the same time as working

with the IDE. The Microsoft Kinect is used for speech and gesture recognition. The primary goal

for the NUI software was not to code a program, but to interact with the IDE interface. While this

lessened the use of keyboard and mouse in the programming process, the project faced issues with

correctly recognizing speech and gestures. It took an average of two voice command attempts for

the system to recognize the correct voice command, and four to five gesture command attempts.

Arnold, Mark, and Goldthwaite designed a system for programming by voice by which a com-

mercially available speech-to-text software, Dragon Naturally Speaking, used in combination with

syntax-directed editor generators, to create programs by voice [2]. The main obstacle this system

faced was determining what verbal syntax for programming should be used. The designs for this

project focused on the combination of the speech recognition software and the syntax-directed

editor generators. While there are many potential benefits to this system, it was not ultimately

implemented.

Another type of voice programming system was researched by Kumar, Agarwal, and Manwani

of IBM’s research and software groups [7]. The system allows for creating programs verbally

through the use of a telephone, which connects to a program which executes when the call is

connected and then terminated when the call is ended. Rather than dictating code, the user is

offered various options of components to add to the program they are building. While this may not

2

allow the freedom that traditionally constructed programming offers, it is a good tool for novice

programmers.

The Voice-Activated Syntax-Directed Editor (VASDE), developed by Langan, Hain, Hubbell,

and Frseth, provides another voice-based program editing system [6]. The framework for VASDE

is based on the Eclipse Integrated Development Environment (IDE). This system relies heavily

on a graphic user interface for helping the user create a program. The user verbally or manually

navigates through menus in the user interface to construct their code. Features of a user’s source

code, such as identifiers, methods, and statements, are displayed in a list format, rather than the

blocks of code seen in traditional source code. Navigation through the source code is accomplished

through voice commands, or may be done manually.

Ordonez-Franco, et al., proposed vocabulary and grammar which was outlined for a possible

open-source speech recognition programming platform [10]. This research was focused entirely

on how the verbal commands should be structured, but suggested future work for a full system for

recognizing and parsing commands with this basic vocabulary.

1.2 Problem Description

Although the related work has addressed some problems faced by manually impaired program-

mers, there is still room for improvement. Computer science is a demanding field, not only men-

tally, but physically. It requires many hours spent typing on a keyboard and navigating code with a

mouse. This provides a barrier to people that may be interested in computer science, but are unable

to pursue it due to these manual impairments. Long hours of constant use can also cause conditions

to develop in those already in the computer science field. A prevailing issue among programmers

is carpal tunnel syndrome, especially for those who have used computers for work for over eight

years [1].

Navigating and editing code, especially of very large source code files, can cause pain or dis-

comfort to manually impaired programmers. In order to eliminate or greatly reduce the usage of a

keyboard and mouse when programming, the gesture recognition portion of the proposed editor is

3

used primarily for navigation and editing purposes. However, as previously mentioned, the editor

is designed so that it appeals to all programmers, regardless of whether they are impaired or not. It

is not only a tool for accessibility, but for efficiency.

1.3 Contributions

We have developed the Voice and Gesture Development Environment (VGDE). This software has

been developed as a Java code editor, which expands on the capabilities of prior works aimed at

assisting manually impaired programmers. This editor combines speech and gesture recognition to

allow the user to program and edit their source code. The voice commands for generating source

code should feel natural, but also should make efficient use of the number of spoken words for

each line of source code.

The primary contribution of the Voice and Gesture Development Environment is combining

voice and gesture to limit the use of keyboard and mouse while programming. The user can

program through natural voice commands, rather than strictly dictating the code. The use of filler

words while giving voice commands does not interfere with the correct parsing of these commands,

provided filler words do not conflict with any existing keywords. Each voice command also has

variations of the command, so the user has more flexibility in speaking naturally. Code generated

by voice commands can be navigated and edited in the code editor. Navigating and editing can be

accomplished by voice commands, gesture commands, or manually with a keyboard and mouse.

The user may use any combination of these methods to suit their physical programming needs.

Each gesture command also has a voice command alternative to allow the user to use whichever

method of navigating and editing code that suits them best. Voice and gesture commands may also

be used to interact with the code editor software itself.

1.4 Thesis Overview

This thesis will cover four main topics regarding to the development of the Voice and Gesture

Development Environment. Chapter two will discuss in depth the system design of the software.

4

This chapter is broken into two main sections: the Command System and the Software Structure.

The Command System section outlines each of the voice and gesture commands that are available

in this software. In the second section of chapter two, the Software Structure, it is separated

into five subsections: an overview, and each component of the software. The first component

covered is the Voice Component, which processes words spoken by the user, and then determines

which commands the user is issuing. The next component covered is the Gesture Component. This

component is similar to the first, in that it processes gestures made by the user, and then determines

which commands the user is issuing. The third component is the Parser Component, which takes

the commands interpreted from the previous two components and determines how to execute them.

Most commands are executed in the last component, the Development Environment Component.

This component consists of the user interface, where the results of most commands can be viewed.

The third chapter of the thesis will cover the evaluation and result of the Voice and Gesture

Development Environment. This chapter is separated into two main sections: the Evaluation, and

the Results. The first section discusses the methods that were used in the evaluation of this soft-

ware. There are two subsections: the Accuracy of Voice Commands and the Accuracy of Gesture

Commands. The Results section of this chapter review the aforementioned evaluations and discuss

the results.

The fourth chapter discusses the opportunity for future work involving this thesis, and the fifth

chapter discusses what conclusions have been made regarding this work.

5

CHAPTER II: SYSTEM DESIGN

The Voice and Gesture Development Environment (VGDE) is written in the C# programming lan-

guage with the Microsoft Speech Platform [9] and Leap Motion v. 2.3 [8]. The VGDE system

contains three main components. The first component is Voice, which manages voice input from

a microphone and determines what actions to take based on the user’s commands. The Voice

component allows the user to speak in a manner which is relatively natural while dictating code,

controlling the software, or navigating through code.

The second component is Gesture, which manages the gesture recognition portion of the soft-

ware. This component uses gesture recognition to reduce keyboard and mouse use when editing

and navigating through code. Each gesture command has a voice counterpart, so the user can freely

use whichever is most comfortable or convenient.

The last component is the Development Environment, which provides the groundwork sup-

porting the other two components. The Development Environment is the user interface for the

software. It contains the code editor, where spoken coding commands are printed to the screen as

code, and the basic controls for microphone, Leap Motion device, and other editing features.

2.1 Command System

The Command System allows users to execute actions in the VGDE software by voice and gesture,

without having to manually click with a mouse or type on a keyboard. Table 2.1 displays a list of

the categories of commands available that the user can execute. Whether a command is voice or

gesture, it will fall under one of these categories and subcategories.

Table 2.1: General Command Categories and Subcagetories

Category Subcategories
Code Data Type, Operators, Assignment, Comparison, Selection, Iteration
Edit Delete, Clipboard
Navigation Move cursor
Environment Program, File, Microphone, Leap Motion

6

Voice Commands

The user can use voice commands to control many aspects of the system. Four categories of voice

commands are available to users: code commands, editing commands, navigation commands, and

environment commands. Many of the commands have alternative wording to allow the user a more

natural manner of speech. Superfluous words are filtered out, so the user is able to include filler

words while speaking to the VGDE software without effecting the command recognition, provided

that the filler words are not part of any other existing command. For example, the words “um”,

“uh”, and “the” would not affect command parsing, however “then”, “one”, and “or” might.

Code Commands

The main feature of the Voice and Gesture Development Environment is the ability to create source

code through an advanced speech to text system. The user can dictate code which will appear in

the source code file. The code is generated in a textbox in the user interface, where the user can

manually edit or add to the source code as needed. Although minimizing keyboard and mouse

usage as much as possible is ideal, it is essential to allow the user to have complete control over in

which they are working with. This ensures the VGDE software is versatile. Figure 2.1 illustrates

how a code voice command is processed by the software.

7

Figure 2.1: Sequence Diagram of Voice Programming Command “ONE”

Tables 2.2, 2.3, 2.4, and 2.5 illustrate the coding commands available to the user, the voice

command variations, and the code printed by the command. Some of the code structures, such as

iterative and selection code, have particular ways in which they are parsed from command-to-code.

8

Table 2.2: A list of Voice Coding Commands. Subcategories: Data type, Operators, Assignment,
and Comparison.

Category Keyword Utterance Output
Data Type Integer Integer, int, I N T int

Character Character, char, C H A
R

char

Float Float, F L float

Operators Plus Plus, addition, added +

Minus Minus, subtracted −
Multiply Multiply, multiplied,

times
*

Divide Divde, divided by /

Assignment Equals Equals =

Comparison Equal to Is equal to, equal to ==

And And &&

Or Or ||

Table 2.3: A list of Voice Coding Commands. Subcategories: Selection and Iteration.

Category Keyword Utterance Output
Selection If If, Start if if(

Then Then){\n
EndIf End if, close if \n}\n
Else Else else {\n
ElseIf Else if, start else if else if(

EndElse End else, close else \n}\n
Iteration WhileLoop While, Start while while(

WhileDo Do){\n
EndWhile End whlie, close while \n}\n

Table 2.4: A list of Voice Coding Commands. Subcategories: New Line and InputOutput.

Category Keyword Utterance Output
New Line Semicolon Okay, ok, next, semi-

colon
;\n

NewLn Return, New line \n
InputOutput GetInt Get int, get integer S.nextInt()

GetChar Get char, get character S.next().charAt(0)

PrintLn Print line System.out.println(

Print Print line System.out.print(

EndPrint End print);\n

9

Table 2.5: A list of Voice Coding Commands. Subcategories: Digits.

Category Keyword Utterance Output
Digit Zero Zero, oh 0

One One 1

Two Two 2

Three Three 3

Four Four 4

Five Five 5

Six Six 6

Seven Seven 7

Eight Eight 8

Nine Nine 9

Ten Ten 10

Edit Commands

Although editing commands can be accomplished by three means (voice, gesture, or manually), the

primary method is by voice. There are three main editing categories of commands: selecting text,

deleting text, and clipboard commands. When selecting text, the user can specify the range of lines

to select. This selection of text can then be deleted, unselected, or have a clipboard command used

on it. The clipboard commands are cut, copy, and paste. These commands access the computer’s

clipboard, so that the user may copy text from another program and paste it into the VGDE or copy

from the VGDE and paste into another program. Tables 2.6 and 2.7 show each command available,

as well as the varied voice commands for each.

Table 2.6: A list of Voice Editing Commands. Subcategories: Select and Undo.

Category Keyword Utterances Actions
Select SelLineNum Select line, select line

number
Select line number

SelCurr Select current line, se-
lect current

Select the current line

SelAll Select all Select all text
Unselect Unselect, Deselect Unselect any selected text

Undo Undo Undo Undos the last action
Redo Redo Redos the last action

10

Table 2.7: A list of Voice Editing Commands. Subcategories: Delete and Clipboard.

Category Keyword Utterances Actions
Delete Delete all Delete all, Delete ev-

erything, clear
Delete all text

DelSel delete selection, delete
selected

Delete the selected text

DelLine Delete line, delete cur-
rent

Delete the current line

Clipboard Copy Copy, Copy selection Copies selected text to clip-
board

Cut Cut, Cut selection Cuts selected text to clipboard
Paste Paste, Paste text Pastes text from clipboard to

cursor location

Navigation Commands

The navigation commands are primarily intended to be executed through gesture, however, there

are also voice commands available to ensure users are able to use whichever means are most suited

to them. There is one main type of navigation commands: moving the cursor in the code pane. This

command has several specifications so that the user can state where the cursor should be moved to.

Table 2.8 displays the voice commands for moving the cursor.

11

Table 2.8: A list of Voice Navigation Commands. Subcategories: Move cursor.

Category Keyword Utterances Actions
Move Cursor MovCurUpLn move cursor up, move

cursor up line, move
cursor up lines

Move cursor up line(s)

MovCurDwnLn move cursor down,
move cursor down
line, move cursor down

lines

Move cursor down line(s)

MovCurHead move cursor to front
of line, move cursor to
front of line move cur-
sor to front, move cur-
sor to head

Move cursor to front of the
current line

MovCurEnd move cursor to end of
line

Move cursor to end of the cur-
rent line

MovCurTop move cursor to top,
move cursor to begin-
ing

Move cursor to the begining
of the document

MoveCurBottom move cursor to bottom Move cursor to the end of the
document

Environment Commands

The environment commands for the VGDE are for controlling the development environment. The

user may open, close, and save the source code file they are currently working on. Tables 2.9 and

2.10 list the environment voice commands available to the user. Only one file may be open at a

time in the program, however future versions may support multiple files opened in different tabs.

The current version of the program supports Java file types, as well as plain text files. Figure 2.2

illustrates the process of opening a file by voice command.

12

Figure 2.2: Sequence Diagram of Voice Environment Command “Open File”

The user may also use voice commands to control the voice or gesture recognition. The user

can choose to pause or mute the microphone for a period of time, which disables any processing of

sound from the microphone until it is resumed or unmuted. Likewise, the user can pause gesture

recognition through the Leap Motion device. Figure 2.4 demonstrates the process for pausing the

microphone by voice command.

13

Figure 2.4: Sequence Diagram of Voice Environment Command “Pause Microphone”

Table 2.9: A list of Voice Environment Commands. Subcategories: Software and File.

Category Keyword Utterances Actions
Software Exit exit program, close pro-

gram
Exits the VGDE Software

File NewFile new file, create new
file, open new file

Creates a new, blank file

OpenFile open file Opens the file browser so the
user can open a new file

SaveFile save file Saves currently opened file
SaveFileAs save file as, save copy

of file
Saves the current document
as a new file

CloseFile close file, close docu-
ment

Closes current document

14

Table 2.10: A list of Voice Environment Commands. Subcategories: Microphone and Gesture.

Category Keyword Utterances Actions
Microphone PauseVoice pause microphone,

microphone off, pause
mic, pause voice, mute
microphone, mute
voice

Sets voice to OFF

ResumeVoice resume microphone,
microphone on, resume
mic, mic on, resume
voice, voice on, unmute
micrphone, unmute
voice

Sets voice to ON

Gesture PauseGesture pause gesture, pause
leap motion, gesture off

Sets gesture to OFF

ResumeGesture resume gesture, resume
leap motion, gesture on

Sets gesture to ON

Gesture Commands

Another important feature of the VGDE software is the Gesture Component. There are several

editing and navigation commands executable through gestures. Although the primary focus of

gestures is to reduce mouse usage when navigating through user-generated source code, the user

may also edit the code to a limited extent. Tables 2.11 and 2.12 describes several basic edit gesture

commands. The specific details about each gesture are the primary means of determining which

command is being referenced. For example, the basic loop gesture has multiple variations based

on differences in the motion itself, such as the diameter of the loop, direction of the loop, or the

loop speed. Figure 2.5 illustrates how gesture commands are processed.

15

Table 2.11: A list of Gesture Editing Commands. Subcategories: Select and Delete

Category Keyword Gesture Actions
Select SelCurr Swipe Left-Right: 1-

Finger
Select the current line

UnSel Swipe Right-Left: 1-
Finger

Unselect text

Delete DelSel Swipe Down: 1-Finger Delete selected text
DelCurrLn Swipe Down: 3-

Fingers
Delete the current line

Table 2.12: A list of Gesture Navigation Commands. Subcategories: Move cursor.

Category Keyword Gesture Actions
Move Cursor MovCurUpLn Counter-Clockwise

Circle
Moves cursor up one line

MovCurDwnLn Clockwise Circle Moves cursor down one line
MovCurHead Swipe Right-Left: 2-

Fingers
Moves cursor to the front of the cur-
rent line

MovCurEnd Swipe Left-Right: 2-
Fingers

Moves cursor to end of the current
line

Figure 2.5: Sequence Diagram of Gesture Navigation Command “Move Cursor Down”

16

2.2 Software Structure

The software structure of the VGDE consists of several threads which operate within four main

components: Voice, Gesture, Parser, and Development Environment components. Figure 2.6 dis-

plays an overview of each of the components and how they interact with one another. Each of these

components is spawned from the Main Thread. The Voice and Gesture components are responsi-

ble for receiving data from their relative devices and interpreting that data into commands that the

user is trying to execute. Once these components have interpreted these commands, the commands

are read by the Parser Component in chronological order, regardless of whether the command is

voice or gesture. The Parser Component determines how to execute each command. The majority

of the commands executed can be seen in changes in the Development Environment Component.

The outcome of these components working together is that the user is able to give voice or gesture

commands interchangeably, which are interpreted and executed in the VGDE software.

Figure 2.6: Component Interaction Overview Diagram

17

Thread Overview

There are six main threads that run asynchronously in the VGDE system. These threads interact

with three shared Lists. There are two threads for the Voice Component, two threads for the Gesture

Component, one thread for the Parser Component, and the Main Thread.

The basic process of the Voice Component begins with the Microphone Listener Thread. This

thread takes all spoken words recognized by Microsoft Speech and appends each to the end of a

shared Utterance List. Then, the Voice Interpreter Thread takes the first word of the Utterance List

and determines if the word is filler, or possibly part of a Keyword. If it is part of a Keyword, it adds

the word to another shared list, the Word List. If it is a filler, it ignores it. The Voice Interpreter

Thread then takes each word in the Word List, compares it to other words recently spoken and

determines what command the user is trying to execute. The interpreted command is then added to

a final shared list, the Command List. Finally, the Command Parser Thread takes each command

in the Command List and determines how to execute it.

The process of the Gesture Component works similar to the Voice Component. The Gesture

Listener waits for a valid gesture to be recognized by the Leap Motion device. The Gesture Listener

adds the gesture information to the Gesture Interpreter Thead. The Gesture Interpreter determines

what command should be executed. It adds the appropriate command to the Command List, which

is then executed by the Command Parser Thread.

Voice Component

The Voice Component controls many parts of the software. The primary function is to create

source code from the user’s spoken commands, however the user is also able to navigate and edit

their source code, as well as vocally control the software itself. The speech recognition engine

used in this project is the Microsoft Speech Platform [9]. Figure 2.7 displays an overview of how

the threads interact within this component.

18

Figure 2.7: Voice Component Interaction Overview Diagram

Keywords and Grammar Class

One of the main parts that makes the software work are Keywords. Keyword is a class that organizes

voice and gesture commands. Each step of the VGDE utilizes Keywords. The Keyword class keeps

track of the type, category, and whether the keyword is voice or gesture. This helps to organize

the processing of Keywords. Table 2.13 displays the class diagram for the Keyword class. Below

this is table 2.14, which displays the class diagram for the Grammar class. The Grammar class

organizes lists of Keywords for the VGDE to search through when interpreting commands.

19

Table 2.13: UML Class Diagram of the Keyword Class

Keyword
− commandType : String
− category : String
− type : String
− keyword : String
− utterances : String[][]
− output : String
− multiWord : bool
+ Keyword()
+ containsWord()

Table 2.14: UML Class Diagram of the Grammar Class

Grammar
+ identifierList : List<Keyword >
+ keywordList : List<Keyword >
+ Grammar()
+ loadIdentifiers()
+ loadGestureKeywords()
+ loadMuteKeywords()
+ loadKeywords()
+ findIdentifier()
+ getKeyword()
+ getKeywordAt()
+ findOccurrencesOf()
+ getNextMatch()

Keywords also store the valid Utterances for that particular Keyword. For example, to output

“>=” to the source code file, the user can say it three different ways: “greater than or equal to,”

“greater than equal to,” or “greater than or equal to.” In the utterances array, these phrases are

stored with each word a separate string.

For Keywords that output code to the code area in the User Interface, the text output for that

Keyword is stored. Additional formatting and processing may be necessary for some Keywords

when parsing the command, but for easy storage and reference of the code output, this method

proved to be the most efficient.

20

Microphone Listener Thread

The Microphone Listener Thread is the first thread in the voice command pipeline, and its role is

relatively simple. It waits until a word is spoken, then it takes the word and adds it to a list. By

ensuring each word is spoken is added to a queue as soon as it is spoken and recognized, there is

less time wasted in converting spoken words to actions in the program.

This thread is spawned by the Main Thread, and remains in an idle state until two conditions

are met: a speech recognized event occurs, or the program exits. When the user speaks, Microsoft

Speech processes the sound and determines the most likely word that was spoken. The Microphone

Listener Thread then takes this recognized word and adds it to the Utterance List. This is a list

which is shared between the Microphone Listener Thread and the Voice Interpreter Thread. After

completing this action, the thread returns to its original, idle state.

Voice Command Interpreter Thread

The next thread in the voice command pipeline is the Voice Interpreter Thread. The purpose of

this thread is to filter the spoken words from the Microphone Listener Thread and interpret what

commands are being issued by the user. This thread utilizes the Keywords class previous described,

as well as prevWords, which is a private list for keeping track of words recently spoken which do

not yet make a full command.

The Voice Interpreter Thread is spawned by the Main Thread, and begins in an idle state. The

thread waits until the Utterance List is not empty, and then removes the first item from the list and

processes it. First, the word must be filtered. Depending on whether the Voice Paused flag is true

or not, the word may be filtered differently. If the Voice Paused flag is true, in other words if voice

commands are currently paused or muted, then the word will be compared to the Voice Paused

Commands list. If the Voice Paused flag is false, then the word will be compared to all available

voice commands. Only words which are part of at least one of the possible voice commands

continue in the interpreting process.

After the recognized speech has been filtered, the Utterance List needs to be processed to de-

21

termine what commands the user is trying to execute. One of the difficulties with determining what

command is intended is the occurrence of multi-word commands which contain shorter commands.

For instance, the command ”greater than or equal to” for outputting the code “>=” includes three

shorter commands: “greater than”, “or”, and “equal to”. Incorrectly interpreted, this could incor-

rectly output “>||=” to the source code. The Voice Interpreter Thread compares previously spoken

words to the current word to determine what to output.

To begin the interpretation process, the thread takes the word that has just been filtered and first

determines if it is an existing identifier. If it is not, then it determines if the word is a one-word,

unique Keyword. These are Keywords with an utterance variation consisting of only one word,

which do not occur in any other utterance of any other Keyword. For example, the word “zero”

is a one-word, unique Keyword. There are no other occurrences of the word “zero” in any other

Keyword. If this check is true, then the command is pushed onto a stack called the addStack. After

this, the thread checks the prevWords list and determines if the combined words equal to a complete

command. If the contents of prevWordsare a complete command, then the command is pushed the

addStack. If the contents are not a complete command, then the prevWords list is cleared and the

words discarded.

If the word is not a one-word, unique Keyword, then the thread determines if the current word,

when added to the prevWords list, occurs in any existing Keyword. If the combination of utterances

is a complete command which occurs only once in the possible Keywords, it is pushed to the

addStack. If the combination occurs, but is not a complete and unique command, then the this

portion of the filtering process is complete. If a combination does not occur, and the prevWords list

without the current word is not a complete command on its own, then the prevWords list is cleared

and the current word is added alone. If the combination does not occur, but the prevWords list

without the current word is a complete command on its own, then that command is pushed onto

the addStack. The prevWords list is then cleared and the current word is added alone.

The last task that the Voice Interpreter Thread completes is to pop any entries in the addStack

(First-In, Last-Out) and to add those commands to the Command List. The cmdList is a list shared

22

among the Voice Interpreter Thread, Gesture Interpreter Thread, and the Command Parser Thread.

It stores both voice and gesture commands that need to be processed, in the order in which they are

inputted by the user. After this is complete, the Voice Interpreter Thread returns to its idle state.

Gesture Component

The gesture recognition device that is used in this project is the Leap Motion, using the 2.3 SDK.

This device is very useful for small, minute gestures at a close range. The sensor range of the

Leap Motion is two feet above and two feet on each side. The device’s small size allows it to

be placed between the user and the keyboard. It can recognize the fingers of each hand, and has

several simple, recognizable hand gestures. The Leap Motion’s API can create custom gestures and

optimize the recognition of default and custom gestures. Figure 2.8 displays an overview diagram

of how the threads within this component interact with one another.

Figure 2.8: Gesture Component Interaction Overview Diagram

23

Gesture Listener Thread

The first thread in the gesture command pipeline is the Gesture Listener Thread. It is spawned

by the Main Thread, and begins in an idle state. The thread waits until a new gesture has been

recognized by the Leap Motion API. Once a gesture has been detected, the gesture and its specifi-

cations are added to the end of the Gesture List. There is no need to filter gestures, as the gesture

recognition API does not recognize a gesture until it is valid.

Gesture Interpreter Thread

The next thread is the Gesture Interpreter Thread, which is also spawned by the Main Thread.

This thread begins in an idle state, and remains so until the Gesture List is not empty. Once there

is at least one item in the Gesture List, the Gesture Interpreter Thread removes the first item from

the list. The thread compares the gesture and gesture specifications with the available gesture

commands. The most accurate match for the gesture is determined, and the matching command is

then added to the end of the shared Command List. The process for interpreting gesture commands

is less complex than voice commands, because there are less complex possible commands.

Parser Component

The third main component of the VGDE is the Parser Component. This component consists of

only one thread and one list, which is the Command List. The purpose of this component is to

execute the commands which have been passed to it from the Voice Component and Gesture Com-

ponent. Most of the commands that are executed can be seen through changes in the Development

Environment. Figure 2.9 displays an overview diagram of the thread within this component and

how it interacts with the rest of the software.

24

Figure 2.9: Parser Component Interaction Overview Diagram

Command Parser Thread

The Command Parser Thread is, like all other threads in this system, spawned by the Main Compo-

nent. This thread waits until the Command List is not empty. All commands, regardless of whether

they are voice or gesture based, are added to the Command List. The thread then removes the first

item in the Command List to process it. This command is passed to the appropriate function for

processing, dependent on what category and type of command it is. These functions determine

how to execute the commands or whether code should be outputted to the code area in the User

25

Interface. The Keyword in the Command list keeps track of what category each command falls

under, so processing the command can be accomplished faster. For example, the parser first de-

termines if the command is code output. If it is, then the text can be immediately processed and

printed to the code area textbox.

Development Environment

The Development Environment of the VGDE encompasses all other features of the software. Fig-

ure 2.10 shows an image of the user interface for the program, with several components labeled.

The current layout of the program is designed to provide as much information as possible for de-

velopers. Item 1 is the menu bar for the program, where users may manually execute environment

commands, such as file functions and simple editting features. Item 2 shows the code area, which

is a Rich Text Area where the user is able to create, edit, and navigate their code. The user can

save this code to a file or load a text file into this area through voice commands or the menu bar,

found at Label 1. Item 3 contain buttons to mute or pause the microphone, if the user would like

to pause voice command recognition, . This can also be accomplished through voice command.

The only voice commands recognized while on mute is the command to resume voice commands.

Item 4 contains a list of available identifiers for that program - however this feature is not currently

implemented. Item 5 contains status information on the Leap Motion device and gesture listeners.

Item 6 displays the Raw Speech Input, which represents all recognized utterances from the user.

Item 7 contains the Parsed Commands List, a list of all commands recognized from the user’s Raw

Speech Input. Lastly, item 8 is the miscellaneous information output. This textbox displays other

information relevant to to VGDE software, such as the current contents of the prevWords list.

1. Menu Bar
2. Code Area
3. Voice and Gesture Controls
4. Available Identifiers (not implemented)
5. Last Gesture Device / Listener Status
6. Raw Speech Input: All recognized utterances
7. Parsed Commands List
8. Miscellaneous Information Output: Current prevWords list

26

Figure 2.10: Image of VGDE user interface, with components labeled 1-8.

27

CHAPTER III: EVALUATION AND RESULTS

The Voice and Gesture Development Environment has been evaluated in two main categories: ac-

curacy in recognizing voice commands and accuracy in recognizing gesture commands. Each of

these evaluation categories has several sets of commands that we tested, which were executed three

times for each variation of the test.

3.1 Evaluation of the Accuracy of Voice Commands

The Voice Component of this system relies on accurately recognizing what the user says. There are

a few factors that contribute to correctly recognizing words. We hypothesize microphone quality

is one of the factors. We believe lower quality microphones, such as built-in laptop microphones,

will produce more errors than higher quality microphones. We tested the VGDE on two different

microphones: the RealTek High Definition Audio microphone integrated into the ASUS Zenbook

Pro UX501VW[3] laptop, and the Blue Microphone Snowball[4]. The second factor considered in

evaluating the accuracy of voice commands is how long of a pause the user allows between each

command.

The test criteria consisted of dictating a simple java program, which was adapted from a text-

book on Java [11]. Below is listed the commands spoken to create the test code. Figure 3.11 dis-

plays the output from these spoken commands in the VGDE software, while figure 3.12 displays

the full program, including the headers and miscellaneous code loaded by the VGDE software. For

the first test, the code was dictated with a one to two second pause between each command. A

second test was attempted with a pause of less than one second; however, the test was unable to be

completed due to an excessive amount of errors. Table 3.15 displays the list of commands spoken

to generate the test program. The order of the commands read from left to right, top to bottom.

28

Table 3.15: A list of voice commands spoken for evaluation test.

Test Equals Get Int Okay
Bar Equals One Okay
Return While Bar Less than or equal to
Test Divided by Two Do
Bar Equals Bar Times
Two Okay End while Return
While Bar Greater than Zero
Do If Test Less than
Bar Then Print Zero
End print End if Else Print
One End print Test Equals
Test Minus Bar Okay
End else Return Bar Equals
Bar Divided by Two Okay
End while

test = S.nextInt ();

bar = 1;

while(bar <= test / 2){

bar = bar * 2;

}

while(bar > 0){

if(test < bar){

System.out.print(0);

}

else {

System.out.print(1);

test = test - bar;

}

bar = bar / 2;

}

Figure 3.11: Voice Command Test 1: Convert Integer to Binary

29

import java.util .*;

public class VGDE_Template {

public static void main() {

Scanner S = new Scanner(System.in);

int text , bar , input , foo , fee;

char letter;

test = S.nextInt ();

bar = 1;

while(bar <= test / 2){

bar = bar * 2;

}

while(bar > 0){

if(test < bar){

System.out.print(0);

}

else {

System.out.print(1);

test = test - bar;

}

bar = bar / 2;

}

}

}

Figure 3.12: Full Test Code - Including headers and template

3.2 Evaluation of the Accuracy of Gesture Commands

There are a few factors which contribute or negatively impact the accuracy of the Leap Motion

device. One of these factors is whether the surface of the device is clean and free of marks or

obstructions. These can include smudges, fingerprints, or liquid. An unclean surface can impact

the infrared and other light signals that the devices uses to detect objects and movement. Another

factor affecting the accuracy of gesture recognition is the distance between the Leap Motion device

and the users hands. The device has a range of two feet in all directions.

30

Another issue with correctly recognizing gesture commands is the actual hand tracking model

of the Leap Motion. Occasionally, the model will twist and become stuck in an unrecognizable

pose, which interferes with gesture recognition. A solution to this to reset the hand model. The

user does this by closing their hand into a fist while above the Leap Motion, then opening it again

with their fingers spread. After this, the hand model returns to normal and the user is able to

use it again without error for some time. Table 3.16 displays the sequence of gesture commands

performed for this test. The order of gestures read from left to right, top to bottom.

Table 3.16: A list of gesture commands executed for evaluation test.

1-Finger Clockwise Circle 1-Finger Clockwise Circle
1-Finger Clockwise Circle 1-Finger Counter-Clockwise Circle
1-Finger Counter-Clockwise Circle 2-Fingers Right to Left Swipe
1-Finger Clockwise Circle 1-Finger Right to Left Swipe
1-Finger Counter-Clockwise Circle 1-Finger Left to Right Swipe
1-Finger Clockwise Circle 2-Finger Left to Right Swipe
1-Finger Right to Left Swipe 1-Finger Downward Swipe
1-Finger Counter-Clockwise Circle 1-Finger Counter-Clockwise Circle
3-Finger Downward Swipe

3.3 Results of the Evaluations

Our evaluation of the Voice and Gesture Development Environment shows that allowing for a one

to two second pause between voice commands allows users to create programs by voice with very

few errors, compared to allowing for less than one second pause between commands. The test

consisted of dictating a simple Java program on two different microphone, at two different speeds.

The first speed consisted of a less than one second pause between each voice command, while the

second allowed for one to two pauses between each voice command. The results for these tests can

be seen in figure 3.17. Although we predicted that the Blue Snowball microphone would produce

better results than an integrated laptop microphone, both microphones have proven to perform

well, with low number of errors.

31

Table 3.17: Results of the Voice Command evaluation on microphone and timing accuracy.

Microphone <1 sec. pause 1-2 sec. pause
errors errors

Laptop
Test 1 >20 2
Test 2 >20 1
Test 3 >20 0
Average >20 1
Snowball
Test 1 >20 2
Test 2 >20 0
Test 3 >20 1
Average >20 1

To demonstrate the accuracy of gestures, we evaluated the accuracy of gesture recognition

using a series of seventeen commands. The test was conducted three times, with a one to two

second pause between each gesture. Table 3.18 displays the results of these tests. There are

three cells indicating the different results evaluated. The first, labeled Hand Resets indicates the

number of times that the hand position had to be reset. This is done by closing the hand into a fist,

then extending the fingers, then continuing on with the next gesture in the test. The next, labeled

False Positives indicates when the device incorrectly recognizes a different gesture than the user

intended. Lastly, the False Negatives indicates the device did not recognize the user’s gesture as

any valid gesture. Both False Positives and False Negatives require the user re-execute their last

command until it is correctly recognized.

Table 3.18: The results of the Gesture Command evaluation on accuracy.

Hand Resets False Positives False Negatives
Test 1 1 0 3
Test 2 5 7 6
Test 3 2 1 8
Average 2.67 2.67 5.67

For the best experience using the VGDE software, users should allow for a one to two second

pause between voice commands. The Leap Motion device should be clean and free of marks.

32

CHAPTER IV: FUTURE WORK

One area in which the VGDE could be further developed is the optimization of how voice com-

mands for the output of code are parsed. Currently, when the software parses voice commands there

is often a delay in fully recognizing code commands that also occur within longer code commands.

This could be remedied by outputting the partially recognized code, then updating or replacing the

most recently printed code if the full command is different. For example, in the current version

of VGDE, if the user uses voice commands to say “three greater than four”, the parser will not

print the “greater than” symbol until the user says “four”. This is because the parser is waiting

to determine whether the user wants to output “greater than or equal to”. This process could be

optimized by simply outputting the greater than symbol, and if the user continues with “or equal

to”, it would update the last outputted code. This optimization would improve the users experience

with the software by allowing them to see code immediately after using a voice command.

In addition to creating better parsing capabilities, improving the semantics of the Voice Com-

ponent would be beneficial. One way in which the semantics could be improved is to have a wider

variety of means to execute commands. Providing more means for the user to speak naturally and

comfortably could increase the usability of the software. Although the software as it is aims to have

a relatively natural method of speech, there is room for improvement. Creating better semantics

could also involve the software learning the users speech patterns and adapting.

Another area that could be further developed is the addition of more features supported by

the software. Creating support for more programming languages can be accomplished without

re-writing the entire software. This could be easily done through the Grammar Class and Keyword

Class. A means to change the current language could be implemented as a settings window or

menu option in the user interface. By providing support for more languages, this increases the

usability of this program. Currently, the only language supported is Java. If more programming

languages were available, users would be able to program for a wider range of programming needs.

33

In addition to providing a wider range of programming languages, increasing the amount of syntax

recognized and processed would allow for more complex programs able to be created using this

software.

Improvements are also possible through the user interface. Currently only one document at

a time can be opened in the program. By allowing users to open more documents at the same

time in different tabs, a better work experience can be provided. Source code for software is often

separated into multiple files for easier portability. The user interface is a major contributing factor

to a user’s overall satisfactory experience with software. The user’s satisfaction is as important as

the usability of the software.

Combining the VGDE with an open source integrated development environment (IDE) is an-

other aspect of improving this work. An IDE allows a user to edit source code and compile it into

an executable program. This software also contains error checking capabilities that would be very

beneficial to the user. More support for incorporating voice or gesture commands to interact with

the IDE software would also be a beneficial addition.

To further contribute to the accessibility for manually impaired programmers, the Gesture Com-

ponent could be either replaced or supplemented with an Eye Gaze Component. This new feature

could allow users to navigate the program by directing the location of the mouse cursor with their

eyes. This could reduce the need for manual operation of keyboard and mouse further.

Lastly, future work based on the VGDE system could be the development of a new program-

ming language based on voice and gestures. This could be developed based on this thesis to create

a compiler which uses voice and gesture commands as a language in and of itself. This would

replace the support for programming in Java, C#, or any other programming language. Text-based

languages were developed for traditional input devices, such as keyboards and computer mice.

While providing a means to program these languages by voice is beneficial for environments where

these languages are necessary, creating a language tailored to voice and gestures would be more

efficient.

34

CHAPTER V: CONCLUSION

A keyboard-free means of programming increases accessibility to programming for manually im-

paired programmers, as well as provides a new way for all programmers to create software. There

have been several approaches from various authors to provide a means of reducing keyboard and

mouse use were explored.

Our software improves on these past works in several different ways. Keyboard and mouse

usage is reduced through the Voice and Gesture Development Environment. By allowing users to

create Java code through voice commands, keyboard usage is reduced. Voice commands also allow

the user to edit their code, navigate through their code, and interact with the program. Users are

able to use hand gestures to execute a limited selection of commands, which reduces mouse usage

while programming. These commands include code navigation and editing. The system is situated

in a development environment, where the user can save and open their programming files to work

on. Users can open code files even if the document was not created and previously edited in the

VGDE software. The user may also manually edit their code at any time in this software, which

prevents the user from being limited by the voice and gesture commands available.

Although there are many contributions made by this thesis, there are still several issues. The

software currently has difficulties with recognizing voice and gesture commands if certain condi-

tions are not met. Best results for recognizing voice commands require the user to allow one to

two seconds between speaking voice commands. Gesture commands are typically not recognized

accurately when the surface of the Leap Motion device is not well cleaned and free of any marks.

In addition to voice and gesture recognition issues, there are limitations in regards to the complex-

ity of programs that can be created through the VGDE. The limited semantics that are recognized

by the Voice Component can cause difficulties when creating more complex programs.

These limitations can be overcome with further expansion of the coding voice commands avail-

able to the user and the optimization of accuracy for recognizing both voice and gesture commands.

35

This research has the potential to change how people work within the industry by providing ac-

cessibility, extending the length of programming careers by providing a support for the manually

impaired, and providing a fresh approach for programming for general users.

36

REFERENCES

[1] K. Mohamed Ali and B.W.C. Sathiyasekaran. Computer professionals and carpal tunnel syn-
drome (cts). International Journal of Occupational Safety and Ergonomics, 12(3):319–325,
2006. PMID: 16984790.

[2] Stephen C. Arnold, Leo Mark, and John Goldthwaite. Programming by voice, vocalprogram-
ming. In Proceedings of the Fourth International ACM Conference on Assistive Technolo-
gies, Assets ’00, pages 149–155, New York, NY, USA, 2000. ACM.

[3] ASUS. Asus zenbook pro. Website.

[4] Blue. Blue microphone - products - snowball. Website.

[5] Denis Delimarschi, George Swartzendruber, and Huzefa Kagdi. Enabling integrated develop-
ment environments with natural user interface interactions. In Proceedings of the 22Nd
International Conference on Program Comprehension, ICPC 2014, pages 126–129, New
York, NY, USA, 2014. ACM.

[6] Thomas J. Hubbell, David D. Langan, and Thomas F. Hain. A voice-activated syntax-directed
editor for manually disabled programmers. In Proceedings of the 8th International ACM
SIGACCESS Conference on Computers and Accessibility, Assets ’06, pages 205–212, New
York, NY, USA, 2006. ACM.

[7] Arun Kumar, Sheetal K. Agarwal, and Priyanka Manwani. The spoken web: Software develop-
ment and programming through voice. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pages 1371–1374, New York, NY, USA, 2010. ACM.

[8] Inc. Leap Motion. Leap motion v2 tracking. Website.

[9] Microsoft. Microsoft speech platform. Website.

[10] Jean K. Rodriguez-Cartagena, Andrea C. Claudio-Palacios, Natalia Pacheco-Tallaj, Valerie
Santiago González, and Patricia Ordonez-Franco. The implementation of a vocabulary and
grammar for an open-source speech-recognition programming platform. In Proceedings of
the 17th International ACM SIGACCESS Conference on Computers & Accessibility,
ASSETS ’15, pages 447–448, New York, NY, USA, 2015. ACM.

37

[11] Robert Sedgewick and Kevin Wayne. Introduction to programming in java. Website, January
2017.

38

APPENDIX A: SEQUENCE DIAGRAMS

Figure 6.13: Sequence Diagram of Voice Programming Command “ONE”

39

Figure 6.14: Sequence Diagram of Voice Environment Command “Open File”

40

Figure 6.15: Sequence Diagram of Voice Environment Command “Pause Microphone”

41

Figure 6.16: Sequence Diagram of Gesture Navigation Command “Move Cursor Down”

42

