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ABSTRACT

The world today is increasingly relying on data science and statistics to analyze various types of
directional data, such as text data, health studies, image processing, wireless sensor networks,
environmental monitoring, robotics, and materials science. In many cases, these data exhibit
positive orientation and require probability distributions that are confined to positive regions, such
as the positive quarter of the unit circle. These facts highlight the main objective of this thesis,
which is to propose a new transformation of the von Mises distribution specifically tailored for the
positive quarter of the unit circle. Currently, no such distribution exists. The newly introduced
distribution, referred to as the Quarter von Mises Distribution, has been thoroughly investigated in
this work. The research includes characterizing the distribution through moments and developing its
main properties. Additionally, methods for estimating the distribution parameters using maximum
likelihood estimation are presented, along with a hypothesis testing approach using the likelihood
ratio test. Furthermore, practical data applications are demonstrated to showcase the effectiveness
of these methods. Overall, this thesis contributes to the field of data science and statistics by
providing a novel distribution that can accurately model directional data restricted to the positive

quarter of the unit circle.
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CHAPTER 1: INTRODUCTION

The world today is looking towards data science and statistics for identifying trends within
topics involving directional data such as text data, health studies, image processing, wireless sensor
networks, environmental monitoring, robotics, materials science, and more. This field of statistics
is referred to as circular statistics, which is similar to the commonly known regular statistics.
Circular statistics parallel the regular theory of statistics including distributions having summary
statistics, characterizing functions, moments, inferential methods such as maximum likelihood, and
also to perform statistical tests. Examples of circular statistics problems can be found at Fisher
(1993). There are some new concepts like dispersion which is equivalent to variance but is a
measure of concentration. Probably the most recognized distribution within regular statistics is
the normal distribution, and in circular statistics, there is an equivalent distribution called the von
Mises distribution. This distribution is essentially the normal distribution wrapped around the unit
circle and it is the maximum entropy distribution. Since it also serves as a foundational distribution
for circular statistics it has properties that are useful for data analysis. One major feature is that
it is able to handle real-world angular data which cannot be analyzed through regular methods of
analysis. For instance, some of these types of data are positively oriented and require distributions
that are restricted on the positive portions of spaces like the positive quarter of the unit circle, or
in the positive orthant of the hypersphere such as the on the one proposed by |Guardiola (2020).
This brings us to the focus and importance of this thesis. The focus is to develop a new version of
the von Mises distribution restricted to the positive quarter of the unit circle called here after the
Quarter von Mises Distribution (QVMD). Currently, there does not exists any distribution for the
quarter-circle. The new distribution properties will be developed to find the main characteristics of
this distribution such as the moments. Inference of the distribution using methods for estimating
the concentration and mean direction parameters using maximum likelihood estimation will be
included, as well as developing tests to perform hypothesis testing using the likelihood ratio test.
Data collected from baseball statistics, which has substantial amounts of zero components when

considering a ball’s trajectory on the field after a batter hits it, is used alongside some simulated



data to assess the modeling capabilities of this proposed distribution. Finally, there will be some
discussion concerning future research for this new distribution and a summary of the distribution

findings and its potential.



CHAPTER 2: THE QUARTER VON MISES DISTRIBUTION
2.1 Section 1: Definition

Let us begin by transforming the original von Mises Distribution by halving the angle to obtain
an axial von Mises Distribution. Below in 2.1, the probability density function for the von Mises

Distribution is defined.

kcos(x—u)
f(x|u, k) = =———for u e R ; ¥ > 0; x is any interval of length 27 2.1)
27TI()(K)
where
1 g +zcos(0)
Ip(z) =— e dg, (2.2)
T Jo
1 T
I,(z) = —/ e cos(nd) do, (2.3)
T Jo

and x is the random variable, « is a concentration parameter, u is the mean direction, and /, is the
modified Bessel function of the first order as seen in 2.2.
The transformation technique for one variable of a continuous distribution described in |Miller

(2004) is used to transform the direction parameter.

Ify=u(x), x=w(y), and u’(x) #0
dx 2.4)
then g(y) = f(w(y) W (¥)| = f(w(y)) ‘d—y'

Starting with (2.1) and using (2.4) to transform the angle x to one-half of its interval length the

transformation can be calculated as follows.
Lety= %C such that y €[0, ) when x € [0, 27),
taking the derivative for the transformation results in
x =2y, and dx = 2dvy, or ;l—:/ =2,

now, inserting this back into the original distribution we have

ekcos(Z(y—w))

fn = 2reXly(k)

|2| fork >0, ye [0, n),



which results in
eKcus(Z(y—w))

meXly(k)

f(y) = fork >0, ye [0, n). (2.5)

Or, using some trigonometric identities to simplify the previous expression,

2
€2/<c05 (y—w)

meXIy(k)

fly) = fork >0, ye[0, n), (2.6)

which is similar to the axial distribution developed by |Guardiola et al.| (2006). From the axial

distribution (2.6), a new distribution is derived by halving the angle parameter interval again
Suppose 6 = % such that 6 €[0, n/2) wheny € [0, 7),

taking the derivative for the transformation results in

dy
dy =2d6, or == =2,
4 s

now, inserting the derivative into the axial distribution (2.6)) we have

eZKC082(2(6—w))

f(6) = |2| fork >0, 6 € [0, n/2),

ekl (k)

which results in
262KCOS2(2(5—(1)))

f(o)=

fork >0,6€[0, n/2), 2.7)
mekly(k)

is anew probability density function (PDF) with location parameter w and dispersion parameter
k that from now on we will refer to it as the Quarter von Mises Distribution or QVMD.

In Figures [2.T]and 2.2 we show several plots of the PDF for the QVMD using different values
for the dispersion parameter « fixed at 2 and the location parameter w varying with the values
shown. Graphs are developed using the library in Pewsey et al.| (2013). It is clear that the w
parameter is the mode as it adjusts the location of the maximum and centers the plot at 71/4, which
is why this parameter will be referred as the mode or location parameter, which is not necessarily
the mean of the distribution except when the distribution is symmetric. In Figures and[2.4] the
dispersion parameter « which adjusts the height of the curve is varied while the location parameter

w keeps fixed at nr/4. It is apparent that as k goes to infinity, the maximum values of the QVMD

4



Figure 2.1

QVMD PDF with varying location parameter w=(0, /6, 7/4, n/3), fixed dispersion parameter
k=1, and 50 equally-spaced directions ¢ from O to 7 /4.

rapidly go to infinity as well and the distribution narrows. Another important feature is that when

k equals zero the distribution becomes the uniform distribution as can be seen in the first plot in

Figure 2.3
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Figure 2.2
QVMD PDF with varying location parameter w=(0, /6, 7/4, n/3), fixed dispersion parameter
k=1, and 50 equally-spaced directions ¢ from O to 7 /4.

2.2 Section 2: Cumulative Distribution Function

There is no explicit cumulative distribution function for this distribution, but it can be numeri-

cally computed for any angle as follows.

o 282/<cos2(2(6—a)))
F(6) = / dsfork>0,8€[0, n/2) (2.8)
o  me¥lp(k)
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Figure 2.3

QVMD PDF with varying dispersion parameter k=(0, 0.5, 1, 2), location parameter w=r/4, and

50 equally-spaced directions § from O to /4.

2.3 Section 3: Trigonometric Moments

Trigonometric moments characterize the distribution as detailed in Mardia & Jupp| (2000). In

contrast to distributions from regular statistics, any distribution on the circle is determined by its

moments. The p’* trigonometric moment about the mean direction is

ap+if,
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QVMD PDF with varying dispersion parameter k=(0, 0.5, 1, 2), location parameter w=r/4, and
50 equally-spaced directions § from O to /4.

where each component can be calculated as

@, = E[cos(p(0-w))] . By = Elsin(p(6-w))] (2.10)
/2 262Kc052(2(6—w))
ap:/ cos(p(6—w)) dofork>0;06¢€¢[0, n/2) (2.11)
0 meX - Io(k)
/2 262KC0S2(2((5—UJ))
ﬁp:/ sin(p(0 —w)) dofork>0;6¢€[0, n/2) (2.12)
0 me¥lo()



2.3.1 Subsection 1: Mean and Variance

Using the trigonometric moment equation, for p=1 the mean resultant length and circular

variance can be derived as follows:

a; =E[cos(0)], B1=E|[sin()] (2.13)
/2 eZKcos2(26)
01=/ cos(0)————ddfork>0; 6 € [0, n/2) (2.14)
0 me - 1o(«)
n/2 e2kc0s2(25)
Bi :/ sin(6)————ddéfork >0; 6 € [0, n/2) (2.15)
0 meXlo(k)

No explicit solution can be found for (2.14) and (2.15]), but they can be computed numerically. The

mean resultant length p is calculated using these two moment components and determines how
tightly clustered (p closer to 1) or dispersed (p closer to 0) the directions are within a data set,

which is why p is also considered a concentration parameter.
p=jai+p] (2.16)

0<p<l (2.17)

The circular variance can be calculated using p, but regardless of the similar name to the homony-
mous term in regular statistics, it is a different parameter with unique characteristics.
The circular variance defined as

v=1-p, (2.18)

measures the dispersion from the mean direction of the data set.

2.3.2 Subsection 2: Skewness and Kurtosis

Asymmetry of the distribution can be measured by the skewness s as follows

_ B
§ = m, (219)
where
_ /2 2621<c0s2(2(6—w))
B2 = / sin(2(6 —w)) dé. (2.20)
0 me<Io(k)



Peakedness of the distribution can be measured by kurtosis K as follows

- 4
=27 2.21)
(1-p)
where
/2 2621<c052(2(6—w))
d2=/ cos(2(6 —w)) dé. (2.22)
0 meX - Io(«)

There is no explicit solution but both previous expressions (2.19) and (2.21) can be computed

numerically.

2.4 Section 4: Examples

Now that the characterization of the distribution is complete, it is time to see how it can be used
in practice. For this purpose, we will discuss one example from a simulated data set and another
example using a data set from a real application.

2.4.1 Subsection 1: Simulated Data

The simulated data was created from randomly generated angles from the QVMD using x=3
and w=n/3. A plot of the data on the unit circle can be seen in Figure Utilizing the expressions
above, we compute the first moment components for the simulated data using for @ and
for By, we get @1=0.4967 and 3,=0.8515. Using we obtain p=0.9857, and using
the circular variance is v=0.0143. Also, using a skewness s=-3.5031 which is in agreement
with a left-skewed distribution, and finally using we obtain the kurtosis K=5.4447. The

results are shown in Table

Table 2.1
Simulated data summary statistics

a1 B Jo, v S K
0.4967 | 0.8515 | 0.9857 | 0.0143 | -3.5031 | 5.4447

2.4.2 Subsection 2: Real Data

Data from the site Savant| (2023), which compiles and analyzes data from Major League
Baseball, is utilized for the real data section. This data is from 2023 and contains the direction at

which the ball travel vertically after being hit by the batter as can be seen in Figure 2.6/ and how

10



Simulated Data on the Unit Circle

0.00 0.25 0.50 075 1.00
cos(a)

giillfleatzeg data generated from the QVMD function made in R using a location parameter w = 7/3
and dispersion parameter k = 3 has its direction values ¢ plotted on the unit circle. Most of the
directions appear to be centered around the location parameter w = /3.

many total hits are at each angle. The data ranges from negative ninety degrees to positive ninety
degrees. For the purpose of this thesis, the data has been reduced down from zero to ninety degrees
as the number of negative values is relatively small. In Figure [2.7|the directional data is displayed
on the unit circle.

The MLE method shown in the next chapter was used to estimate k. The location parameter
represented by w of the distribution will be estimated. Utilizing the expressions above and
(2.15), the simulated data has first moment components @1=0.9042 and 3;=0.3328, using (2.16)
0=0.9567, using a circular variance of 0.0365 is obtained, using a skewness of 8.5076
which is in line with how the distribution has a right-sided tail, and finally using a kurtosis

value of 15.2136 is obtained. Results are shown in Table 2.2]

11



Table 2.2
Real data summary statistics

] B 0 v s K
0.9042 | 0.3328 | 0.9635 | 0.0365 | 8.5076 | 15.2136

The “sweet spot”

(2
\\\“ -

Figure 2.6
An example of how the launch angle of a baseball upon impact with a bat can be modeled in two

dimensions with positive directional data. The “sweet spot” is likely where the directions of the
ball are concentrated indicating the location parameter value would be around /6.

Real Data on the Unit Circle

1.00 -
0.75-
=
T 050-
@
0.25-
0.00-
0.00 0.25 0.50 0.75 1.00
cos(a)

Figure 2.7
Vertical trajectories ¢ of a baseball after being hit are plotted on the unit circle. Most of the

directions appear to be spread between 0 and /3, which includes the ”sweet spot” of around 7 /6.
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CHAPTER 3: INFERENCE
3.1 Section 1: Method of Moments

Method of Moments could be considered the simplest yet sometimes least accurate method of
estimation for parameters depending on the distribution it is working with. The idea is to consider
the moments of the distribution as a sort of building blocks to find estimates for parameters. For
instance, the first moment can give the estimate for the mean of a distribution. The second moment
would give an estimate of the variance utilizing the previous estimate for the mean. This can
continue to build up to find each parameter you need to estimate. The following is how the methods

could be utilized for estimating the parameters w and «.

1 n /2 282/(0052(2(5—0)))
r_zzi:ws(dj) =FE [cos(8)] = ./0 cos(d) e T do (3.1
1 n ‘ ‘ /2 ‘ 2€2Kcos2(2(6—w))

- Zsm(éj) =E [sin(9)] = </0 sin(0) e Io(8) do (3.2)

The previous expressions need to be simultaneously solved to obtain the MOM estimators of w and
k. It is not a practical method in this case and will not be attempted as the next section provides
better estimators.

3.2 Section 2: Maximum Likelihood Estimation

Maximum likelihood estimation finds the estimated values of the parameters that maximize the
likelihood of observing the current data set. In this case, there are two parameters to estimate, the
location w and the dispersion parameter k. Suppose that we have data that after visual inspection
is determined that it can be fitted using the QVMD. The maximum likelihood estimation method
provides an efficient method for fitting data sets to the QVMD. First, we need to write the likelihood
function as described in|Casella & Berger (2002]).

Likelihood function:

Let L(6]x) = f(x|6), where L(8]x) = ]—[ F(x:10), (3.3)
i=1

13



the likelihood function for the sample assuming the data is distributed as a QVMD can be expressed

as follows
n n 2kcos?(2(8;-w))
2e
L(w,k|0) =1 | f(6i|lw,k) = , (3.4)
g l g meXly(k)
as it is customary, it is easier to work with the Log-Likelihood function
o T 208 26-0)
Ln(L(0))=Ln|—-—— KeosTe0ime 3.5
ML) = Ln | s [ e (3.5)

i=1
=nlLn(2)—nLn(x) —nk—nLn(ly(k))+ Z 2kcos*(2(8; — w)).

Eliminating unnecessary constants that do not influence the optimization process we get
n
LnL(6) =—-nk—nLn(Ily(k))+ Z 2kcos>(2(8; — w)).
i

Maximizing the previous expression for finding the MLE for w and « is equivalent to minimizing

the negative of the log-likelihood function as follows
n
—LnL(8) = nk+nLn(Iy(k)) - Z 2kcos (2(5; - w)). (3.6)
i

In the following sections we will be using (3.6)) to perform the inference for both the simulated data
and real data.

3.2.1 Subsection 1: Simulated Data

We start with the simulated data to perform the estimation procedure. Let us set up the values
w and « as 7r/3 and 3 respectively. The expectation is that the MLE procedure will find values that
are close enough to the true values. Plotting the negative log-likelihood function for the simulated
data that can be seen in Figure 3.1, it appears visually that the minimum value is located around
1 for w (represented here as /mv) and around 3 for « (represented here as kv in the plot). Initial
values of w=2 and k=2 are used to start with the optimization process in MATLAB. The resulting
MLE values that are found for w and « are 1.0185 and 2.7094 respectively, which both are close
enough to their true parameter values of n/3 and 3. It can be seen that the MLE method works
reasonably well for estimating the parameters of the QVMD. Plots of the QVMD with the estimated

parameters can be seen in Figures [3.2] and

14
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Z -76.0667

200 —

15 0 kappa

omega

Figure 3.1
The simulated data is inserted into the negative log-likelihood function from before and plotted.
The minimum of the function appears to be at approximately w = 1 and « = 3.

Table 3.1
True vs estimated parameter values for the simulated data

True w | Est. w | % Error | True « | Est. k | % Error
1.0472 | 1.0186 | 2.73% 3 2.7094 | 9.69%

3.2.2 Subsection 2: Real Data

Now, the parameters for the real data will be estimated using the MLE procedure described
before. Plotting the negative log-likelihood function we may visually locate approximately where
the minimum point occurs in Figure 3.2 and how it matches our estimation. The minimum can
be seen approximately around 0.3 for the w value, and about 3 for the x value. Using the same
optimization method in MATLAB and starting with an initial guess of w=0.5 and k=2, the maximum
likelihood estimators for the parameters are 0.295 for w and 2.77 for «. Plots of the QVMD using

these results is shown in Figures [3.5]and [3.6]

15



Simulated Data PDF

f(3)

0.0 05 1.0 15

Figure 3.2
QVMD PDF plot for the simulated data using the estimated parameters w = 1.0185 and

k =2.7094.

Table 3.2
Estimated parameter values for the real data

Est. w | Est. «
0.2950 | 2.77

3.3 Section 3: Likelihood Ratio Test

From|Hogg R.[(2019), the Likelihood Ratio Test (LRT) is defined as

_ L(folx)

3.7
L(8|x) el

A(x)

where @ is from the unrestricted maximization of the likelihood function and 6, is from the
restricted maximization of the likelithood function on a subset of the parameter space. This ratio
is usually difficult to assess as the exact distribution of the LRT is unknown, and in some cases it

can be approximated using the asymptotic behavior suggested in (Casella & Berger (2002). This

16



Simulated Data PDF on the Unit Circle

2]

=]

sin(3)

0.0 0.5 1.0 15 2.0
cos(3)

Figure 3.3
QVMD PDF plot on the unit circle for the simulated data using the estimated parameters
w =1.0185 and « = 2.7094.

approximation seen in (3.8]), requires the LRT to be under certain regularity conditions so that it can
be approximately distributed as a Chi-Square distribution with v degrees of freedom (the number
of parameters to be estimated). In the three upcoming tests there is only one parameter that is being

estimated, so the LRT approximation is to a chi-square distribution with one degree of freedom.

—2Ln(A(x)) =-2Ln [M] ~x?

- 3.8
L) Xy (3.8)

3.3.1 Subsection 1: Hypothesis test for the location parameter

We want to test the location parameter using the LRT asymptotic approximation to the chi-square

which can be seen in (3.8)

Hy : w = wo (null hypothesis)
(3.9
Hi : w # wg or w = @ (alternative hypothesis)

17
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X 0.300299
Y 2.91176
Z -11786.5

omega

Figure 3.4
The real data is inserted into the negative log-likelihood function from before and plotted. The
minimum of the function appears to be at approximately w = 0.3 and « = 3.

L(wo,k|6;)
L(®,«|6;)

n 2e2kcosz (2(6;-wq))
i=1 meX Iy (k)

n 2e2kcos2(2(8;-@))
i=1 ek Iy (k)

A(6) = (3.10)

n o 2kcos?(2(8;—wyp))

- Hl’_lzl p2xcos?(2(6i-d))

i=1

_2Ln(/l(6)) =-2Ln H?=1 eZKCOSZ(2(5i—¢Z)))

n eZKcosz(Z((Si—wg)) ]

—2Ln(A(6)) = 4k (Z cos2(2(6; - &) —Zcosz(Z(éi —wo))) (3.11)

i=1 i=1
After some trials, we determine that the regularity conditions are not necessarily met and the chi-

square approximation does not hold for extreme values, but it can still perform well under certain

conditions.

18



Real Data PDF

]
n

f(3)

0.0-

0.0 05 1.0

Figure 3.5
QVMD PDF plot for the real data using the estimated parameters w = 0.2950 and k =2.77.

3.3.2 Subsection 2: Hypothesis test for the dispersion parameter

We want to test the dispersion x parameter using the theory for the LRT and the corresponding

chi-square approximation (3.8])

Hy : k = ko (null hypothesis)

(3.12)
H, : k # ko or (k = k) (alternative hypothesis)
L(w, ko|0;)
A6) = ——— 3.13
)= w100 G139

n 2ezk(,cos2(z(5i—w)>
i=1 e 0 1y (ko)

n o 2e2kcos?(2(si-w))
=1 gefly(R)

eZko Z?:l cos2(2(6i—w))
€*01o(ko)
- e2kzl'.1:lc0s2(2(6i—w))

e®Io(R)
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Real Data PDF on the Unit Circle

0.0-

Figure 3.6

QVMD PDF plot on the unit circle for the real data using the estimated parameters w = 1.0185
and « = 2.7094.

(Io(x0))

DR

—2Ln(A) =2(ko+K) n—22c0s2(2(5,~—w)) +2nLn(

i=1

that can be computed numerically.

3.3.3 Subsection 3: Uniformity test

This is a particular case of the hypothesis testing for the dispersion parameter k when x=0, in

this case the QVMD is uniform. We can develop a hypothesis test for uniformity.

Hy : k =0 (null hypothesis, the distribution is uniform)

(3.15)
Hi : k #0 or (k = k) (alternative hypothesis, the distribution is not uniform)
n 20200cos?(25))
_ =l 1eb1(0)
A(k]6) = n 2e2kcos2(25;)
i=1 ne’Qlo(/?)
1 . >
_ 2kcos”(26;)
=———————| |e
e (To(R))" H
now using (3.8)
n
—“2Ln(A(x)) = =21k — 2nLn(Io(R)) +4Z kcos(6:)? ~ x2, (3.16)
1

again, the previous expression can be tested numerically.

20



3.3.4 Subsection 4: Examples

Each of the previous hypothesis tests (3.11)), (3.14)), and will now be applied to the data.
The statistical conclusions for these tests will be drawn based on the following decision rules.
Sample size n affects the strength of our results, if a sample size is large enough the resulting
test statistic will be large and thus the conclusions drawn from the hypothesis test will be strong.
Positive results greater than the one degree-of-freedom chi-square critical value of 3.841 indicate
that there is sufficient evidence to reject the alternative hypothesis. Results less than the critical
value including negative values indicate that there is not sufficient evidence to reject the null
hypothesis.

3.3.4.1 Simulated Data

For the first test, the true location parameter value of w=rn/3 is tested against a second value of
w=n/4 to determine if the null hypothesis can be rejected suggesting that the true location parameter

value is not /3.

Hy : w = /3 (null hypothesis)
(3.17)

Hi:w # /3 (w=mn/4) (alternative hypothesis)

—2Ln(A(8)) = —187.42 < 3.841 (3.18)

The LRT approximation was less than the critical value, so we fail to reject the null hypothesis.
There is not enough evidence to support the claim that the location parameter w is different from
7t/3 (true value) which is the correct conclusion.

For the second test, the true dispersion parameter value of k=3 is tested against a second value of
k=2 to determine if the null hypothesis can be rejected suggesting that the true dispersion parameter

value is not 3.
Hj : k =3 (null hypothesis)
(3.19)
H, : k #3 (k =2) (alternative hypothesis)

—2Ln(A(8)) = -3.90 < 3.841 (3.20)
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The LRT approximation was less than the critical value, so we fail to reject the null hypothesis.
There is not enough evidence to support the claim that the dispersion parameter « is different from
3 (true value) which is the correct conclusion.

For the third test, the dispersion parameter value of «=0 is tested against a second value of
k=3 to determine if the null hypothesis can be rejected suggesting that the simulated data is not

distributed uniformly.

Hy : k =0 (null hypothesis)
(3.21)

Hi : k #0 (x = 3) (alternative hypothesis)

—2Ln(A(8)) = 151.41 > 3.841 (3.22)

The LRT approximation was greater than the critical value, so we reject the null hypothesis. There
is enough evidence to support the claim that the dispersion parameter « is different from O which
suggests the simulated data is not distributed uniformly which is the correct conclusion.

3.3.4.2 Real Data

For the first test, the estimated location parameter value of w=0.3 is tested against a second value
of w=1 to determine if the null hypothesis can be rejected suggesting that the estimated location

parameter value is not 0.3.

Hy : w = 0.3 (null hypothesis)
(3.23)

H;:w #0.3 (w=1) (alternative hypothesis)

—2Ln(A(8)) = —127,450 < 3.841 (3.24)

The LRT approximation was less than the critical value, so we fail to reject the null hypothesis.
There is not enough evidence to support the claim that the location parameter w is different from
0.3 (estimated value) which is the correct conclusion.

For the second test, the estimated dispersion parameter value of x=2.77 is tested against a

second value of k=2 to determine if the null hypothesis can be rejected suggesting that the estimated
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dispersion parameter value is not 2.77.

Hy : k =2.77 (null hypothesis)
(3.25)

H, : k #0 (k =2) (alternative hypothesis)

—2Ln(A(8)) = —969.04 < 3.841 (3.26)

The LRT approximation was less than the critical value, so we fail to reject the null hypothesis.
There is not enough evidence to support the claim that the dispersion parameter « is different from
2.77 (estimated value) which is the correct conclusion.

For the third test, the dispersion parameter value of k=0 is tested against a second value of k=3
to determine if the null hypothesis can be rejected suggesting that the real data is not distributed

uniformly.

Hy : k =0 (null hypothesis)
(3.27)
H : k #0 (k =2.77) (alternative hypothesis)

—2Ln(A(5)) =23,613 > 3.841 (3.28)

The LRT approximation was greater than the critical value, so we reject the null hypothesis. There is
enough evidence to support the claim that the dispersion parameter « is different from 0 suggesting
the real data is not distributed uniformly which is the correct conclusion.

3.4 Section 4: Discussion of Results

From the simulated data inference, it was shown that the proposed method of estimation
produces acceptable results for the values of the parameters with the percentage of errors of about
2.73% for the location parameter w and about 9.69% for the dispersion parameter k. Even though no
closed-form solution exists for this estimation procedure, it can be programmed in a mathematical
or statistical package to obtain a fast and reliable solution. We have demonstrated that the estimation
process yields accurate estimation of the true values of the parameter through the simulated data
example, and that the QVMD is a reasonable model to fit circular data located on the positive
quadrant of the unit circle. Moreover, the statistical tests developed from the LRT approximation of

the Chi-square distribution produced reasonable results. The LRT approximation for the location
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parameter w for the examples shown above reached the correct conclusion. The LRT approximation
for the dispersion parameter « and the tests for uniformity behaved well and yielded the correct

conclusions.
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CHAPTER 4: CONCLUSION AND FUTURE RESEARCH

Overall, the work done in this thesis contributes to develop a new and useful distribution in
the field of circular statistics which can model data pertaining to the positive quarter of the unit
circle as can be seen in previous examples. In chapter two, we characterized the distribution
yielding summary statistics such as the mean, variance, skewness, and kurtosis which described
numerically the main characteristics of the data set. The simulated data showed a distribution
that was skewed to the left and the real data set showed a distribution that was skewed to the
right. There were also interesting features inherited from the full circle von Mises distribution
such as displaying a uniform distribution when « equals zero. We can also see when the QVMD
parameter values change it exhibits a rich variety of shapes. Moreover, even though the parent
full circle von Mises distribution is strictly symmetric, the QVMD allows us to fit skewed data.
Using the methods for maximum likelihood estimation described in chapter three, a procedure was
developed for estimating parameters for real data. Further uses for the QVMD will include the
eventual transformation of the univariate QVMD into a multivariate version suitable to be used
in the hypersphere, allowing the modeling of complex data sets in the form of unit vectors in the
hyperspace such as data found in gene expressions and text mining, which provides an outlook on

future research prospects.
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APPENDIX A:
MATLAB CODE

% Quarter von Mises distribution moments

% and properties numeric computations

% Constants of directional data
clear vars

9% Simulated data parameter values:
% kappa = 3

% omega = pi/3

% n = 100

% Real data parameter values:
kappa = 2.77

0.295

omega

n = 14910

% Reciprocal of integration constant

Cr = pixbesselj (0,kappaxli)xexp(kappa)/2

9% Probability density function of the QVMD

fn=@(delta ,kappa,omega) exp(2xkappa:...
((cos(2.%(delta—omega)))."2))/Cr;

% Simple plot of distribution

plot(y, fn(y,kappa,omega))

9 Integration over 0 to pi/2 should equal 1

CDF = integral (@(delta) fn(delta ,kappa,omega),0,pi/2)
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9% 1st moment alpha component function
alphal = @(delta ,kappa,omega) cos(delta).x*...
exp (2xkappa*((cos(2.%(delta—omega)))."2))/Cr;
% Numeric integration of the Ist moment alpha component

al = integral (@(y) alphal (y,kappa,omega),0,pi/2)

% 1st moment beta component function
betal=@(delta ,kappa,omega) sin(delta).=x...
exp (2xkappa*x((cos(2.x(delta—omega)))."2))/Cr;
9% Numeric integration of the the [st moment beta component

bl =integral (@(y) betal (y,kappa,omega),0,pi/2)

9% Mean Resultant Length calculation

rho = sqrt(al”2+bl"2)

% Circular Variance calculation

cv = 1 — rho

% Skewness

% 2nd moment beta component function

beta2 = @(delta ,kappa,omega) sin(2%x(delta—omega)).*...
exp (2xkappa*x((cos(2.x(delta—omega)))."2))/Cr;

9% Numeric integration of the 2nd moment beta component

b2 = integral (@(y) beta2(y,kappa,omega),0,pi/2)

% Skewness calculation

s = b2/((1 —tho )" (3/2))
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% Kurtosis

% 2nd moment alpha component function

alpha2=@(delta ,kappa,omega) cos(2:%(delta—omega)).=*...
exp (2xkappa*x((cos(2.x(delta—omega)))."2))/Cr;

9% Numeric integration of the 2nd moment alpha component

a2 =integral (@(y) alpha2(y,kappa,omega),0,pi/2)

% Kurtosis calculation

K = (a2-rho"4)/((1 —tho)"2)

% Quarter von Mises distribution MLE and Likelihood Ratio Tests

clear vars

9% Simulated angles from QVMD distribution in R
% with omega=pi/3 and kappa=3

x=csvread (" simdata.csv”);

% Baseball data

y=csvread (" baseballdata.csv”)%xpi/180;

9o
% MAXIMUM LIKELIHOOD ESTIMATION

% Plot the negative log likelihood function
% for the simulated data and replace n with the
% sample size of the real data and x with y for real data

n=14910 % n=14910
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z = @(omega,kappa) n.xkappa +n.xlog(besselj (0,kappa.xli)) —...
2.xkappa.*sum((cos(2.x%x(y—omega))."2), all”’)

fsurf(z,[0 pi/2 0 6])

xlabel omega

ylabel kappa

9% Define the function z

z = @(omega, kappa) n.xkkappa + n.xlog(besselj (0, kappa.xli)) —...

2.xkappa.xsum((cos(2.x(y—omega))."2), ’“all’);

% Define initial values for Imv and kv
initial _omega = 1;

initial _kappa = 2;

9% Define the objective function to be minimized

objective = @(params) z(params (1), params(2));

% Minimize the objective function using fminsearch
A=[];
b=[1;
Aeq=[];
beq=[];
Ib=[0,0];
ub=[pi/2,inf];
optimal_params =...
fmincon(objective ,[ initial _omega , initial _kappal,...

A,b,Aeq,beq,lb,ub)
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9% Retrieve the optimal values for omega and kappa

optimal _omega = optimal_params (1);

optimal _kappa optimal _params (2);
9% Display the optimal values
fprintf (> Optimal _omega: %f\n’, optimal_omega);

fprintf (> Optimal _kappa: _%f\n’, optimal_kappa);

9o
% HYPOTHESIS TESTING

% TEST FOR THE LOCATION PARAMETER

% Test HO omega = pi/3 vs HI omega not = pi/3 (omega = pi/4) and

% HO omega = 0.295 vs HI omega not = 0.295 (omega = 1)

9% LRT approximation function —2Ln(lambda)
LRTAL = @(omega0,omegahat ,kappa,delta) —4.xkappa.=*x...
sum((cos (2.x(delta—omega0)))."2 —...

((cos(2.%(delta—omegahat))).”2),  all’)

% Simulated data result:
LRTAL(pi/3,pi/4,3,x)
% Real data result:

LRTAL(0.295,1,2.77,y)
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9% Reject in both cases, but it is noted that
9 the approximation is sensitive

% to large differences between the values

% TEST FOR DISPERSION PARAMETER KAPPA

% Test HO kappa = 3 vs HI kappa not = 3 (kappa = 2) and

% HO kappa

2.77 vs HI kappa not = 2.77 (kappa = 2)

9% LRT approximation function —2Ln(lambda)
LRTAD = @(omega, kappaO, kappahat, delta, n)...

2.xn.xlog(besselj (0, kappaO.%x1i)/besselj(0,kappahat.x11i))+...

2.%(kappa0—kappahat).*x...

(n—2.%xsum (((cos(2.%(delta—omega)))."2), ’all’))

% Simulated data result:
LRTAD(pi/3,3,2,x,100)

% Real data result:
LRTAD(0.295.,2.77,2,y, 14910)

9% We should fail to reject in both cases

% TEST FOR UNIFORMLY DISTRIBUTED DATA

9% Test HO kappa = 0 vs HI kappa not = 0 (kappa = 3) and

9% HO kappa = 0 vs HI kappa not = 0 (kappa = 2.77)
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9 LRT approximation function —2Ln(lambda)

LRTAU = @(omega, kappa,delta ,n) —2.xn.xkappa —...
2.x%n.xlog(besselj (0, kappa.x11)) +...
4. xkappa.ssum(((cos(2.x(delta—omega)))."2), ’all’)

% Simulated data result:
LRTAU(pi/3.,3,x,100)
% Real data result:
LRTAU(0.295,2.77 ,y,14910)

9% We should reject in both cases
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APPENDIX B:
R CODE

library (circular)
library (dplyr)
library (tidyr)
library (ggplot2)

library (gridExtra)

# Probability density function for the QVMD
dgvmd <— function (delta ,omega,kappa){
gvmpdf <— 2:x(exp(2xkappa%((cos(2:%(delta — omega)))~2)))/
(pi % exp(kappa) =
bessell (x = kappa, nu = 0, expon.scaled =F))

return (data.frame(delta ,qvmpdf))

# Unit circle function for ggplots
circleFun <— function(center = ¢(0,0),
diameter = 1, npoints = 10000){
r = diameter / 2
tt <— seq(0,pi/2,length.out = npoints)

XX <— center[1l] + r % cos(tt)

*

yy <— center[2] + r sin(tt)

return (data . frame(x

}

dat <— circleFun (diameter=2)

XX, y = Yyy))
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# QVMD PDF with varying omega

n=50

delta=seq (from=0,to=pi/2,length.out=n)
omegac=c(’0’, pi/6’, pil/4’, pil3’)
omega=c(0,pi/6,pi/4,pi/3)

kappa=1

n=length (omega)

gqvmpdo=data . frame (delta ,0,0,0,0)

for (i in 1:n){
gvmpdo[,i+1]=dqvmd(delta ,omega[i],kappa)[,2]
colnames (qvmpdo)[i+1] <— pasteO(”pd”, i)

i=i+1

# QVMD PDF with varying omega plotted on rectangular coords
oll=ggplot(qvmpdo, aes(x = delta,y = pdl)) +
geom_point(col="black”, fill=NA, shape=21,size=2) +
xlab (expression(delta))+
ylab (expression(f(delta)))+
ggtitle (expression (omega==0)) +
geom _path (data=qvmpdo, aes(x = delta ,y = pdl))+
coord _fixed (xlim=c(0,pi/2),ylim=¢(0,1.5))
ol2=ggplot(qvmpdo, aes(x = delta,y = pd2)) +
geom_point(col="black”, fill=NA, shape=21,size=2) +
xlab (expression(delta))+

ylab(expression(f(delta)))+
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ggtitle (expression (omega==pi/6)) +

geom _path (data=qvmpdo, aes (x = delta ,y = pd2))+

coord _fixed (xlim=c(0,pi/2),ylim=c(0,1.5))
ol3=ggplot(qvmpdo, aes(x = delta,y = pd3)) +

geom _point(col="black”, fill=NA, shape=21,size=2) +

xlab (expression(delta))+

ylab (expression (f(delta)))+

xlim (0, pi/2)+ylim(0,1.5)+

ggtitle (expression (omega==pi/4)) +

geom _path (data=qvmpdo, aes (x = delta ,y = pd3))+

coord _fixed (xlim=c(0,pi/2),ylim=c(0,1.5))
old=ggplot (qvmpdo, aes(x = delta,y = pd4)) +

geom_point(col="black”, fill=NA, shape=21,size=2) +

xlab (expression(delta))+

ylab (expression(f(delta)))+

ggtitle (expression (omega==pi/3)) +

geom _path (data=qvmpdo,aes(x = delta,y = pd4))+
coord _fixed (xlim=c(0,pi/2),ylim=¢(0,1.5))

grid . arrange (oll ,0l2,013 ,014 ,ncol=2,nrow=2)

# QVMD PDF with varying omega plotted on polar coords
ol=ggplot(qvmpdo, aes (x=(1+pdl)xcos(delta),
y=(1+pdl)s#sin(delta)))+
geom_point(col="black”, fill=NA, shape=21,size=2.5)+
xlab (expression (cos(delta)))+
ylab (expression(sin(delta)))+

ggtitle (expression (omega==0))+
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geom _path (data=dat ,aes(x,y),col="black”)+
geom _path (data=qvmpdo, aes (x=(1+pdl)xcos(delta),
y=(1+pdl)%sin(delta)))+
coord _fixed (xlim=c¢(0,2.5),ylim=c(0,2.5))
o2=ggplot(qvmpdo, aes (x=(1+pd2)xcos(delta),
y=(l+pd2)xsin(delta)))+
geom _point(col="black”, fill=NA, shape=21,size=2.5)+
xlab (expression(cos(delta)))+
ylab(expression(sin(delta)))+
ggtitle (expression (omega==pi/6)) +
geom _path (data=dat ,aes(x,y),col="black”)+
geom _path (data=qvmpdo, aes (x=(1+pd2)=xcos(delta),
y=(1+pd2)s#sin(delta)))+
coord _fixed (xlim=c(0,2.5),ylim=c(0,2.5))
o3=ggplot(qvmpdo, aes (x=(1+pd3)xcos(delta),
y=(1+pd3)%sin(delta)))+
geom_point(col="black”, fill=NA, shape=21,size=2.5)+
xlab (expression(cos(delta)))+
ylab(expression(sin(delta)))+
ggtitle (expression (omega==pi/4))+
geom _path (data=dat ,aes(x,y),col="black”)+
geom _path (data=qvmpdo, aes (x=(1+pd3)xcos(delta),
y=(1+pd3)s#sin(delta)))+
coord _fixed (xlim=c(0,2.5),ylim=c(0,2.5))
od=ggplot(qvmpdo, aes (x=(1+pd4)=xcos(delta),
y=(1+pd4)s#sin(delta)))+

geom_point(col="black”, fill=NA, shape=21,size=2.5)+
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xlab (expression(cos(delta)))+

ylab (expression(sin(delta)))+

ggtitle (expression (omega==pi/3))+

geom _path (data=dat ,aes(x,y),col="black”)+

geom _path (data=qvmpdo, aes (x=(1+pd4)xcos(delta),
y=(l+pd4)=xsin(delta)))+

coord _fixed (xlim=c(0,2.5),ylim=c(0,2.5))

grid . arrange (0l,02,03,04,ncol=2,nrow=2)

# QVMD PDF with varying kappa

omega=pi/4

kappa=c(0,0.5,1,2)

gvmpdk=data . frame (delta ,0,0,0,0)

n=length (kappa)

for (i in 1:n){
gvmpdk [ ,i+1]=dqvmd(delta ,omega,kappa[i])[,2]
colnames (qvmpdk )[i+1] <— pasteO(”pd”, i)

1=1+1

# QVMD PDF with varying kappa plotted on rectangular coords
kll=ggplot(qvmpdk, aes(x = delta,y = pdl)) +
geom_point(col="black”, fill=NA, shape=21,size=1.5) +
xlab (expression(delta))+
ylab (expression(f(delta)))+
xlim (0, pi/2)+ylim (0,3)+
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ggtitle (expression (kappa==0)) +
geom _path (data=qvmpdk, aes (x = delta ,y = pdl))+
coord _fixed (ratio=1,xlim=c(0,pi/2),ylim=c(0,2.25))
ki12=ggplot (qvmpdk, aes(x = delta,y = pd2)) +
geom_point(col="black”, fill=NA, shape=21,size=1.5) +
xlab (expression(delta))+
ylab (expression (f(delta)))+
xlim (0, pi/2)+ylim (0,3)+
ggtitle (expression (kappa==0.5)) +
geom _path (data=qvmpdk, aes (x = delta ,y = pd2))+
coord _fixed (ratio=1,xlim=c(0,pi/2),ylim=c(0,2.25))
ki13=ggplot (qvmpdk, aes(x = delta,y = pd3)) +
geom_point(col="black”, fill=NA, shape=21,size=1.5) +
xlab (expression(delta))+
ylab (expression(f(delta)))+
xlim (0, pi/2)+ylim (0,3)+
ggtitle (expression (kappa==1)) +
geom _path (data=qvmpdk, aes (x = delta ,y = pd3))+
coord_fixed (ratio=1,xlim=c(0,pi/2),ylim=¢c(0,2.25))
kl4d=ggplot (qvmpdk, aes(x = delta,y = pd4)) +
geom_point(col="black”, fill=NA, shape=21,size=1.5) +
xlab (expression(delta))+
ylab (expression(f(delta)))+
ggtitle (expression (kappa==2)) +
geom _path (data=qvmpdk,aes(x = delta,y = pd4))+
coord _fixed(ratio=1,xlim=c(0,pi/2),ylim=c(0,2.25))
grid . arrange (k11 ,klI2 , k13 ,kl4 ,ncol=2,nrow=2)
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# QVMD PDF with varying kappa plotted on polar coords
kl=ggplot(qvmpdk, aes (x=(1+pdl)xcos(delta),
y=(l+pdl)xsin(delta)))+
geom_point(col="black”, fill=NA, shape=21,size=2.5)+
xlab (expression(cos(delta)))+
ylab (expression(sin(delta)))+
ggtitle (expression (kappa==0))+
geom _path (data=dat ,aes(x,y),col="black”)+
geom _path (data=qvmpdk, aes (x=(1+pdl)xcos(delta),
y=(l+pdl)xsin(delta)))+
coord _fixed(ratio=1,xlim=c(0,3),ylim=¢c(0,3))
k2=ggplot (qvmpdk , aes (x=(1+pd2)xcos(delta),
y=(l+pd2)xsin(delta)))+
geom _point(col="black”, fill=NA, shape=21,size=2.5)+
xlab (expression(cos(delta)))+
ylab (expression(sin(delta)))+
ggtitle (expression (kappa==0.5))+
geom _path (data=dat ,aes(x,y),col="black”)+
geom _path (data=qvmpdk, aes (x=(1+pd2)xcos(delta),
y=(1+pd2)s#sin(delta)))+
coord _fixed (ratio=1,xlim=c(0,3),ylim=c(0,3))
k3=ggplot (qvmpdk , aes (x=(1+pd3)xcos(delta),
y=(1+pd3)xsin(delta)))+
geom _point(col="black”, fill=NA, shape=21,size=2.5)+
xlab (expression(cos(delta)))+

ylab(expression(sin(delta)))+
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ggtitle (expression (kappa==1))+
geom _path (data=dat ,aes(x,y),col="black”)+
geom _path (data=qvmpdk, aes (x=(1+pd3)=xcos(delta),
y=(1+pd3)xsin(delta)))+
coord _fixed(ratio=1,xlim=c(0,3),ylim=c(0,3))
kd=ggplot (qvmpdk , aes (x=(1+pd4)xcos(delta),
y=(1+pd4)s#sin(delta)))+
geom_point(col="black”, fill=NA, shape=21,size=2.5)+
xlab (expression (cos(delta)))+
ylab (expression(sin(delta)))+
ggtitle (expression (kappa==3))+
geom _path (data=dat ,aes(x,y),col="black”)+
geom _path (data=qvmpdk, aes(x = (1+pd4)=xcos(delta),
y = (l+pd4)%sin(delta)))+
coord fixed(ratio=1,xlim=c(0,3),ylim=c(0,3))
grid . arrange (kl1, k2, k3, kd4,ncol = 2, nrow = 2)

# Simulated data

simdat=dqvmd(read.csv(”simdat2.csv”)[,2],pi/3,3)

# Simulated data plotted on polar coordinates
ggplot(simdat, aes(x = cos(delta), y = sin(delta))) +
geom_point(col="black”, fill=NA, shape=21,size=2.5) +
xlab (expression(cos(delta)))+
ylab (expression(sin(delta)))+
ggtitle (”Simulated _Data_on_the _Unit_Circle”) +

geom _path (data=dat ,aes(x,y),col="black”) +
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coord _fixed ()

# Simulated data plotted on rectangular coordinates
ggplot(simdat , aes (x=delta ,y=qvmpdf)) +
geom_point(col="black”, fill=NA, shape=21,size=2.5) +
xlab (expression(delta))+
ylab (expression (f(delta)))+
ggtitle (”Simulated _Data_PDF”) +
geom _path (data=simdat ,aes (x=delta ,y=qvmpdf), col="black”) +

coord _fixed(ratio=1,xlim=c(0,pi/2),ylim=c(0,2.75))

# Simulated Data PDF plotted on polar coordinates
ggplot(simdat ,aes (x=(l+qvmpdf)xcos(delta),
y=(l+qvmpdf)sxsin(delta))) +
geom_point(col="black”, fill=NA, shape=21,size=2.5) +
xlab (expression(cos(delta)))+
ylab (expression(sin(delta)))+
ggtitle (”Simulated _Data_PDF_on_the _Unit_Circle”) +
geom _path (data=dat ,aes(x,y),col="black”) +

geom _path (data=simdat ,

aes (x (1+qvmpdf)xcos(delta),

y (1+qvmpdf)=xsin(delta)),

col="black”) +

coord _fixed(ratio=1,xlim=¢(0,2),ylim=¢(0,3.25))

# Real data
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rqvmd=read . csv(’baseballdata.csv”)
rqvmd=rqvmd [2:91 ,1:2]

colnames (rqvmd)=c(”delta” ,” hits”)
rqvmd=uncount (data=rqvmd , weights=hits )%pi/ 180
rqvmpdf=dqvmd (rqvmd ,0.295,2.77)
rqvmpdf=arrange (rqvmpdf ,rqvmpdf$delta)

colnames (rqvmpdf)=c(”delta”,”qvmpdf”)

# Real data plotted on polar coordinates
ggplot(rqvmpdf, aes(x = cos(delta), y = sin(delta))) +

geom_point(size=2.5,shape=21,fill=NA) +

xlab (expression (cos(delta)))+

ylab (expression (sin(delta)))+

ggtitle ("Real_Data_on_the _Unit_Circle”) +

geom _path (data=dat ,aes(x,y)) +

coord _fixed ()

# Real data PDF plotted on rectangular coordinates
ggplot(rqvmpdf, aes(x = delta, y = qvmpdf)) +

geom _point(size=2.5,shape=21,fill=NA) +

xlab (expression(delta))+

ylab(expression(f(delta)))+

ggtitle ("Real._Data_PDF”) +

geom_path (data=rqvmpdf , aes(x = delta, y = qvmpdf)) +

coord _fixed ()

# Real data PDF plotted on polar coordinates
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ggplot(rqvmpdf, aes(x=(l+qvmpdf)xcos(delta),

y=(1+qvmpdf)s%sin(delta)))+

geom _point(size=2,shape=21,fill=NA)+

xlab (expression (cos(delta)))+

ylab (expression (sin(delta)))+

ggtitle ("Real _Data_PDF_on._the _Unit_Circle”)+

geom _path (data=dat ,aes(x,y))+

geom _path (data=rqvmpdf, aes (x=(1+qvmpdf)#cos(delta),

y=(l+qvmpdf)=xsin(delta)))+
coord _fixed(ratio=1,xlim=¢(0,3.5),ylim=c(0,1.25))
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