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Abstract: Thanks to sensor developments, unmanned aircraft system (UAS) are the most promising 
modern technologies used to collect imagery datasets that can be utilized to develop agricultural 
applications in these days. UAS imagery datasets can grow exponentially due to the ultrafine spatial 
and high temporal resolution capabilities of UAS and sensors. One of the main obstacles to pro-
cessing UAS data is the intensive computational resource requirements. The structure from motion 
(SfM) is the most popular algorithm to generate 3D point clouds, orthomosaic images, and digital 
elevation models (DEMs) in agricultural applications. Recently, the SfM algorithm has been imple-
mented in parallel computing to process big UAS data faster for certain applications. This study 
evaluated the performance of parallel SfM processing on public cloud computing and on-premise 
cluster systems. The UAS datasets collected over cropping fields were used for performance evalu-
ation. We used multiple computing nodes and centralized network storage with different network 
environments for the SfM workflow. In single-node processing, an instance with the most compu-
ting power in the cloud computing system performed approximately 20 and 35 percent faster than 
in the most powerful machine in the on-premises cluster. The parallel processing results showed 
that the cloud-based system performed better in speed-up and efficiency metrics for scalability, alt-
hough the absolute processing time was faster in the on-premise cluster. The experimental results 
also showed that the public cloud computing system could be a good alternative computing envi-
ronment in UAS data processing for agricultural applications.  

Keywords: UAS; Structure from Motion (SfM); cloud computing 

1. Introduction
In recent days, unmanned aircraft system (UAS) have been actively utilized in agri-

cultural applications to develop a high-throughput phenotyping (HTP) system [1,2]. UAS, 
often called as drone, can collect high-spatiotemporal-resolution imagery data over agri-
cultural fields. UAS data can be processed to visualize agriculture fields and analyzed for 
developing advanced agriculture applications [3]. Once UAS data are collected in the 
field, the data need to be processed to extract phenotypic information. The structure from 
motion (SfM) algorithm is the most popular algorithm used to turn numerous UAS im-
ages with significant overlaps into measurable geospatial data products such as 3D point 
clouds, digital elevation models (DEMs), and orthomosaic images using the triangulation 
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concept in photogrammetry. The geospatial data products generated from the SfM pro-
cess are then adopted to generate georeferenced phenotypic information [4-7].    

As hundreds of images are easily taken by each UAS flight mission, UAS data collec-
tion campaigns usually result in a huge imagery dataset. Although computing power has 
rapidly increased recently, processing massive amounts of UAS data is still a challenging 
task, as the computational resource requirements grow exponentially as the number of 
UAS images increases [8,9]. The SfM process could take many hours or even days to pro-
cess big UAS data collected at a fine spatiotemporal resolution. To overcome this hurdle, 
high-performance computing (HPC) capabilities can be adopted to parallelize the SfM 
process and expedite the computation time. 

For the parallel processing of SfM, a cluster system with independent computers and 
common storage can be employed. Although cluster systems have benefits such as high 
performances, fault tolerance, and scalability, users should invest significant resources in-
cluding labor, hardware, and software to construct and maintain the system locally [10]. 
In recent years, since commercial cloud computing service have developed rapidly and 
inexpensively, cloud computing systems can serve as an effective counterplan for cluster 
computing.  

To evaluate the potential for employing cloud computing systems to process UAS 
data for agriculture fields, the performance of SfM processing must be examined. There-
fore, two UAS datasets in two different environments were tested in public cloud compu-
ting and on-premises cluster systems. The main objective of this study was to: (1) compare 
the performance of single-node processing with different computing power and storage 
options and (2) test parallel processing in public cloud-based and on-premises cluster sys-
tems. For the experiments, the high-quality RGB imagery was collected by using a UAS 
platform, and then processed with SfM software in various environments. The processing 
time was measured and used to compare the performance of the cloud-based and on-
premises cluster systems. 

2. Materials and Methods 
2.1. UAS Datasets 

In this study, two UAS missions were designed to collect small (2.3 GB over 4 acre) 
and large (12.5 GB over 220 acre) datasets to conduct performance comparison tests. A 
field for a small dataset was located in the research farm managed by Texas A&M AgriLife 
Research and Extension Center at Corpus Christi. Corn crops were planted in this field. 
The large dataset covered cotton and sorghum plants in a commercial field in Driscoll, TX. 
RGB images were collected with a DJI Phantom 4 RTK (DJI, Shenzhen, China) for both 
fields. The onboard camera (FC6310R) was equipped with a 20 megapixel CMOS sensor, a 
resolution of 5,472 × 3,648, an 8.8-mm focal length, and an 84° field of view (FOV). The 
flight parameters, such as the flight altitude and overlap, were determined by the field size 
and flight time (Table 1). One and four UAS flights were conducted to collect 293 and 1,557 
images for small and large datasets, respectively. As we used the same UAS platform and 
sensor, the total volume of raw images was directly proportional to the number of images. 

Table 1. Details of small and large datasets. 

 Small Dataset Large Dataset 
Acquisition date 2020/05/19 2020/04/30 
Field size (acre) 4 220 

Flight altitude (m) 25 90 
Overlap (%) 85 70 
# of Images 293 1557 

Total data size (GB) 2.3 12.5 
GSD (cm) 0.7 2.5 
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2.2. Cluster Systems for Processing 
Two cluster systems were adopted to test performance of processing UAS images 

with the SfM algorithm. The AgriLife Local Cluster (ALC) is an isolated on-premises clus-
ter constructed in the Texas A&M AgriLife Research & Extension Center at Corpus 
Christi. The ALC consists of 5 workstations (nodes) and network-attached storage (NAS). 
All nodes and the NAS are interconnected through a network switch with gigabit ethernet 
ports (Figure 1a). NAS was connected to the network switch with four gigabit LAN ports 
to increase the bandwidth by aggregating multiple network interfaces and preventing 
traffic failover to maintain network connections. All nodes and NAS could communicate 
internally regardless of public internet connections. Each machine has different hardware 
such as CPU, RAM, and graphic card, which are equipped for each node in the ALC (Table 
2). The details of the CPU and GPU specifications are shown in Appendix A (Tables A1 
and A2). 

An oracle cloud cluster (OCC) was built with various combinations of four compute 
shapes and two storage options in the oracle cloud infrastructure (OCI) (Table 2). Alt-
hough all shapes employ the same CPU, the numbers of CPUs, CPU/GPU memory, and 
network bandwidth are different for each shape (Table A3) [11]. Two storage options, file 
storage and block volume, were tested in this study. The block volume was used as the 
local storage of the node, while file storage worked as a network drive in OCC [12,13]. For 
a multi-nodes cluster system, nodes and network storage were set up in the OCI and con-
nected through the public internet (Figure 1b). The OCC was simple and easy to build in 
the OCI for parallel processing, but the network speed through the public internet mainly 
affected the processing time.  

  
(a) (b) 

Figure 1. Cluster architecture of (a) the ALC and (b) the OCC. Nodes and network storage can be communicated through 
network switching internally without the internet in ALC. All components in the OCC had their own IP address (IPv4) to 
use the public internet for communication.  

Table 2. Summary of Hardware Specification of nodes in AgriLife Cluster and OCI. 

System Node OS Processor RAM GPU (#) 

AgriLife 
Cluster 

M1 

Windows 10 
(Build 20H2) 

Intel(R) Core(TM)  
i7–8700K 32 GB 

GeForce GTX 
1070 Ti 

M2 Intel(R) Core(TM)  
i7–4790K 

32 GB GeForce GTX 
980 

M3 Intel(R) Xeon(R)  
E5–2680 64 GB GeForce GTX 

1050 Ti 

M4 
Intel(R) Xeon(R)  

E5–1650 32 GB 
GeForce GTX 

1050 Ti 

M5 Intel(R) Xeon(R)  
E5–1650 

32 GB GeForce GTX 
1050 Ti 
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Oracle 
Cloud 

VM.GPU2.1 

Windows 
Server 2019 

Intel(R) Xeon(R)  
Platinum 8167 M 

72 GB NVIDIA Tesla 
P100 (×1) 

VM.GPU3.1 
Intel(R) Xeon(R)  
Platinum 8167 M 90 GB 

NVIDIA Tesla 
V100 (×1) 

VM.GPU3.2 
Intel(R) Xeon(R)  
Platinum 8167 M 180 GB 

NVIDIA Tesla 
V100 (×2) 

VM.GPU3.4 Intel(R) Xeon(R) P 
latinum 8167 M 

360 GB NVIDIA Tesla 
V100 (×4) 

2.3. Structure from Motion (SfM) Processing 
Although there are various available SfM software programs, such as Agisoft 

Metashape, Pix4D, and OpenDroneMap, and image mosaicking services by DroneDeploy, 
Agisoft Metashape software (1.6.3.10732, 64 bit) is used to process UAS raw images. 
Agisoft Metashape also provides network (parallel) processing using multiple nodes as 
well as stand-alone processing. In this study, Agisoft Metashape was selected to process 
UAS data through batch processing to avoid manual work in the processing pipeline (Ta-
ble 3). Although Metashape provides many parameters that the user can adjust, default 
or recommended options were used for all of the experiments.  

In the align photos, Metashape estimated the camera position at the time of image 
capture defined by the interior and exterior orientation parameters [14]. Interior orienta-
tion (IO) parameters included the camera focal length, coordinates of the image principal 
point and lens distortion coefficients. Exterior orientation (EO) parameters defined the 
position and orientation of the images. EO consisted of 3 translation components (X, Y, 
and Z) and 3 Euler rotation angles (yaw, role, and pitch). The UAS platform used in this 
study is equipped with RTK GPS systems for measuring initial EO parameters in image 
capture. IO and EO parameters can be calculated by Metashpae using aerotriangulation 
with tie points and bundle block adjustment based on collinearity equations [15]. After 
this processing, estimated IO and EO with sparse point cloud containing triangulated po-
sitions of matched image points were resulted.  

A depth map calculated using dense stereo image matching is constructed for the 
overlapping image pairs considering the updated IO and EO parameters from the previ-
ous process. In Metashape, the depth map is transformed into partial dense point clouds, 
and then it is merged into a final dense point cloud. For every point in the final dense 
point cloud, a confidence value, which means the number of contributing depth maps, 
and color information sampled from the images are stored.  

In this study, the DEM is rasterized from a dense point cloud with height values 
stored per every cell on the regular grid, and then used to build the orthomosaic. A com-
bined image created by the seamless merging of the raw images was projected on the 
ground surface with the selected projection. As file saving is conducted by a single-node, 
DEM and orthomosaic images are also exported to compare the performance of different 
storage options.  

Table 3. SfM processing pipeline and options. 

Procedure Default Values 

Align Photos Accuracy: High, Key point limit: 40,000, tie point limit: 4000, 
Adaptive camera model fitting: Yes 

Build Dense Cloud Quality: High, Filtering mode: Mild, Calculate point cloud: Yes 

Build DEM Source data: Dense cloud, Interpolation: Enabled 

Build Orthomosaic Blending mode: Mosaic, Surface: DEM, Enable hole filling: Yes 
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Export DEM 
File format: GeoTIFF, Pixel size: Default, Write tiled TIFF: Yes, 
Write BigTIFF file: Yes, Generate TIFF overview: Yes 

Export Orthomosaic 
File format: GeoTIFF, Pixel size: Default, Write tiled TIFF: Yes, 
Write BigTIFF file: Yes, Generate TIFF overview: Yes,  
Write alpha channel: Yes 

2.4. Performance Testing 
The performance experiments were sconducted using single and multiple nodes for 

the small and large datasets. In single-node processing, two different storage environ-
ments were tested in the different cluster environment. For local and network storage op-
tions, all UAS data and processing products were stored in the local hard drive and net-
work drive in both cluster systems. Due to the speed of the disk I/O (input and output) 
and network, local storage could be expected to process faster. Three workstations (M1, 
M2, and M3) in the ALC and four VMs (2.1, 3.1, 3.2, and 3.4) in the OCC were selected for 
single-node processing to compare the performance with different computing powers in 
a single-node. For multi-nodes processing, the datasets were processed using the network 
processing mode in Metashape. The processing began with one node, and then additional 
nodes were used, up to five and six nodes in the ALC and OCC, respectively. 

All processes were conducted continuously in a batch process without manual work. 
Processing time was measured as a criterion of performance. All experiments were re-
peated three times and the average processing time was used for comparison. 

The speed-up and efficiency, the principal measurements of parallelization effi-
ciency, were calculated from the total computation time in multi-nodes processing. The 
Speed-Up (𝑆ே) was defined as the ratio of the time required to execute the computational 
workload on a single-node to the time required for the same task on N processors [16]:  𝑆ே =  భ்்ಿ, (1) 

where 𝑇ଵ is the execution time on a single processor and 𝑇ே is the execution time on N 
processors. 

Efficiency was defined as the ratio of speed-up to the number of processors (Equation 
(2)) [17]:  𝐸ே =  ௌேಿ , (2) 

where 𝐸ே is the efficiency on N processors, 𝑆ே is the speed-up on N processors, and 𝑁 
is the number of processors. Efficiency can be used to measure the fraction of time for 
which each node is usefully utilized. 

3. Results 
3.1. Computing Power of Single-Node 

To show the computation power of each node in the ALC and OCC, the benchmark 
scores were measured in different environments. In Figure 2, items on the X-axis indicate 
the abbreviations of each node. The first letter means the ALC (A) or OCC (O), and the 
third letter means local (L) or network (N) storage. Second term is showing the machine 
ID (ex. M1, M2, etc.) in the ALC or the shape (ex. 2.1, 3.1, etc.) in the OCC. Single-core and 
multi-core power indicating the overall performance of main processor was measured by 
GeekBench 5 and V-Ray. GPU performance was also tested by GeekBench 5 (OpenCL).  

In the ALC, all nodes showed different performances because each node was 
equipped with different hardware specifications. Although the single-core powers of M1 
and M2 were higher than those of the others, M3 was the highest in the multi-core test 
because it had the largest number of cores (threads). GPU power was strongly related to 
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the specification of the graphic card. M1 was the highest, while M3, M4, and M5 were 
similar in the GPU test.  

The single-core power of the nodes in OCC was lower than M1 and M2 due to the 
frequency of the CPU, but the multi-core power of OCC was higher. Though VM.GPU2.1 
consisted of more CPU/memory and faster network bandwidth, VM.GPU2.1 showed bet-
ter performance of multi-core power than VM.GPU3.1, but similar to VM.GPU3.2, which 
was equipped with the same number of OCPU. The VM.GPU3 series equipped a more 
powerful GPU than two times of VM.GPU2.1 and four times all nodes in the ALC.  

Based on the benchmark test applied to each single-node in the ALC and OCC, we 
tested which hardware parts were more influential in SfM processing and the potential of 
cloud-based clusters for UAS data processing.  

 
Figure 2. Results of the benchmark test using GeekBench 5 and V-Ray to measure the power of the 
CPU and GPU for each single-node in the ALC and OCC. The higher scores indicate better perfor-
mance. 

3.2. Single-Node Porcessing 
The performance for SfM processing in single-node was tested in experiments based 

on: (1) hardware specifications; (2) storage options; (3) and the UAS data size (Figure 3). 
In the same cluster system, the node with the more powerful GPU performed better in 
processing UAS data. For example, AWN/AWL-M1 was approximately 40 percent faster 
than AWN/AWL-M3 when using the small dataset, even though M3 resulted in a higher 
score on the multi-core benchmark. The OCC, VM.GPU3 series was also faster than 
VM.GPU2.1 when using the small dataset. Moreover, the results of large dataset pro-
cessing showed that multi-core capability is another factor of processing speed. For exam-
ple, GeekBench 5 and V-Ray showed a linear increase with the number of GPU cores for 
VM.GPU3 series shapes (Figure 2). Despite of the higher GPU performance, AWL/AWN-
M2 and OWL/OWN-3.1 were slower than the other nodes when using the large dataset 
due to the power of the CPU. This implies that GPU and multi-core factors are highly 
influential hardware specifications in single-node processing.  

In single-node processing, performance time was critically affected by different stor-
age options, especially, in the OCC. Local storage, which is a block storage, is generally 
faster than network storage. In the ALC, there was less than a 10 percent difference be-
tween local and network storage, since the network speed through the router was as fast 
as local disk I/O. However, the network storage (file storage option) in OCC made SfM 
processing twice as slow. As Metashape must communicate with the storage through the 
entire processing, the disk I/O speed mainly affected the processing time of each step. The 
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disk I/O-intensive works, such as Build Dem, Build Orthomosaic, and Export DEM/Or-
thomosaic took significantly longer time with network storage in OCC. These processes 
occupied approximately 45~55% of the entire processing time.  

The results of the comparison between the ALC and OCC in single-node processing 
demonstrated that a cloud computing system could provide more performance gain with 
the appropriate virtual machine shape and storage architecture. For example, OWL-3.4 
performed approximately 20 and 35 percent faster than AWL-M1, which is the fastest ma-
chine in the ALC, for the large and small datasets, respectively. 

 

(a) 

 

(b) 

Figure 3. Processing time of SfM procedures using a single-node in the ALC and OCC with differ-
ent environments for (a) small and (b) large datasets. Lower is better. 

3.3. Performance of Parallel Processing in Cluster Systems 
Multi-nodes processing was tested by increasing the number of nodes from a single-

node. As the number of GPU was limited up to six in the OCC, the shape with a single 
GPU, VM.GPU2.1 and VM.GPU3.1, were selected, and the performance of multi-node 
processing was compared with the ALC. SfM processing was conducted by Metashape in 
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exactly the same way as single-node processing, but Align Photos, Build Dense Cloud, 
Build DEM, and Build Orthomosaic were considered in comparison because Export 
DEM/Orthomosaic were still processed in a single-node. Figure 4 shows the absolute pro-
cessing time with different cluster environments. As the nodes of the ALC were connected 
internally through the router in the isolated network, the ALC performed faster than the 
clusters of OCC. The network speed of the OCC could affect the disk I/O and communi-
cation between nodes for parallel processing. Nevertheless, the processing time with mul-
tiple nodes in the OCC decreased more rapidly when another node was added. The de-
creasing slope of both cluster systems converged with 5 nodes. As mentioned in Section 
3.2, the multi-nodes with VM.GPU2.1 performed faster than VM.GPU3.1 for a large da-
taset. Although OCC took a longer processing time by more than two times in multi-nodes 
processing due to network speed, the results showed that cloud-based clusters could pro-
cess UAS data using SfM software more efficiently.   

 

  
(a) (b) 

Figure 4. Processing time with the number of multi-nodes in the ALC and OCI for (a) small and (b) large datasets. 

To compare how efficient the ALC and OCC were in multi-nodes processing, speed-
up and efficiency were calculated using the processing time (Figures 5 and 6). Speed-up 
is defined as the ratio of the time taken to process data on a single-node to the time re-
quired to perform the same work on multiple nodes. In an ideal case, parallel processing 
could have a liner speed-up, 1-to-1 line, which means that the speed of execution increases 
with the number of nodes. Generally, the real speed-up is lower than the number of nodes, 
which means the slope should be lower than 1, and closer to 1-to-1 line is better. In this 
study, cloud-based clusters showed approximately 15~25 percent better performance of 
the speed-up algorithm in SfM processing for both small and large datasets. Since the 
nodes in the ALC were not uniform, speed-up was fluctuated more, while the speed-up 
values of the clusters in the OCC increased gradually. Regardless of the datasets, the clus-
ters with VM.GPU2.1 and 3.1 had almost the same speed-up value (Figure 5).  

Efficiency is a performance metric estimating how well-utilized the nodes are pro-
cessing data, compared to how much effort is wasted in communication and synchroni-
zation. Some nodes and the time in tasks can usually be wasted in either idling or com-
municating. Therefore, efficiency is lower than 1 in a real case and decreases with more 
nodes. Figure 6 shows the efficiency with the number of multi-nodes for small and large 
datasets. Similar to the speed-up results, the clusters in OCC showed better performance 
than the ALC and more stable efficiency with additional nodes. In particular, higher 
speed-up and efficiency were measured in the multi-nodes processing for the large da-
taset. These results imply that the cloud-based cluster could provide a better and more 
stable system for SfM processing when using the UAS data. If users would adopt the 
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appropriate number of nodes and shapes in the OCC, they could construct a more efficient 
and stable cluster system than an on-premise cluster.  

 

  
(a) (b) 

Figure 5. Speedup with the number of multi-nodes in the ALC and OCI for (a) small and (b) large datasets. 

  
(a) (b) 

Figure 6. Efficiency with respect to the number of multi-nodes in the ALC and OCI for (a) small and (b) large datasets. 

4. Conclusions 
In this study, cloud computing- and local-cluster systems with various options were 

tested to compare the performance of SfM processing using UAS images collected in ag-
ricultural fields. Two UAS datasets were collected over the agricultural fields and pro-
cessed by SfM software, Agisoft Metashape, with different computing environments. The 
performance of local machines and clusters were compared with cloud computing sys-
tems. Although local machine and cluster processed UAS datasets faster because of the 
network speed and disk I/O, cloud-based clusters showed better speed-up and efficiency 
in parallel processing. The experiments demonstrated that cloud computing could pro-
vide more stable and efficient systems to process massive UAS images when the user 
adopts the proper number and specification of nodes. In addition, cloud computing can 
give us the flexibility to increase instances more efficiently without having to worry about 
maintaining security or increasing capability. In the future, we will apply the cloud com-
puting and cluster systems to process a huge dataset for various applications such as for-
est fire, coasting monitoring, environmental change detection, etc. in real/semi-real time. 
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Appendix A 
Specifications of the CPU and GPU equipped in each node are shown in Tables A1 

and A2. A shape is a template that determines the number of OCPUs, amount of memory, 
and other resources that are allocated to an instance in the OCI. In this study, GPU shapes 
for virtual machines were adopted. An OCPU is defined as the CPU capacity equivalent 
of one physical core of an Intel Xeon processor with hyper-threading enabled, or one phys-
ical core of an Oracle SPARC processor. The previous generation VM shape, VM.GPU2.1, 
is not currently available.  

Table A1. Specifications of CPU of the nodes in the AgriLife and OCI. 

Cluster Processor 
# of Cores 
(Thread) 

Lithography 
(nm) 

Base  
Frequency 

(GHz) 

Max Turbo 
Frequency 

(GHz) 

Cache 
(MB) 

AgriLife 

Intel(R) Core(TM)  
i7–4790K 4 (8) 22 4.0 4.4 8 

Intel(R) Core(TM)  
i7–8700K 6 (12) 14 3.7 4.7 12 

Intel(R) Xeon(R)  
E5–1650 

6 (12) 32 3.2 3.8 12 

Intel(R) Xeon(R) 
 E5–2680 

8 (16) 32 2.7 3.5 20 

OCI Intel(R) Xeon(R)  
Platinum 8167 M 

26 (52) 14 2.0 2.4 36 

Table A2. Specifications of GPU of the nodes in the AgriLife and OCI. 

Cluster Graphic Card CUDA 
Cores 

Bus Support Base Clocks 
(MHz) 

Memory 
(GB) 

AgriLife 
GeForce GTX 980 2048 PCI Express 3.0 1064 4 

GeForce GTX 1050 Ti 768 PCI Express 3.0 1290 4 
GeForce GTX 1070 Ti 2432 PCI Express 3.0 1607 8 

OCI NVIDIA Tesla P100 3584 PCI Express 3.0 1189 16 
NVIDIA Tesla V100 2150 PCI Express 3.0 1246 16 

Table A3. Specifications of compute shapes in the OCI. 

Shape OCPU 
CPU Memory 

(GB) 
GPU Memory 

(GB) 
Max Network 

Bandwidth 
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(Gbps) 
VM.GPU2.1 12 72 16 8 
VM.GPU3.1 6 90 16 4 
VM.GPU3.2 12 180 32 8 
VM.GPU3.4 24 360 64 24.6 
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