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ABTRACT 

           A mathematical model of the blood flow through an axisymmetric stenosis vessel 

was developed using the Navier-Stokes equations. A numerical approach has been used 

to analyze behavior of the blood flow because an analytical solution of such a problem is 

impossible.  

The method of finite elements was applied to find the velocity and the pressure of 

the blood flow in stenotic vessels of the cardio-vascular system. The solution of the 

Navier-Stokes equations was done using Matlab and COSMOL Multiphysics.  

The findings of the modeling demonstrated that velocity and wall shear stress 

significantly increase due to the stenosis in the part of the vessel that is blocking blood 

flow and that this increase depends on the size of the blockage. The modeling shows that 

increased velocity, vessel wall shear stress, and significant variations in blood pressure 

may lead to abnormality of the blood flow, which in turn may be a cause of the heart 

attacks or/and strokes.  

The analysis of this research has been compared with the existing results 

published in research papers. Future investigations of the effect of a more general 

boundary for a stenosis are planned. 
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CHAPTER I: INTRODUCTION 

        The major cause of death in developed countries is cardiovascular disease. The 

medical community is desperately seeking a comprehensive description for the 

cardiovascular system. That is the reason why Biomedical, Bioengineering, and 

Computer science communities have interest in finding quantitative details on 

cardiovascular diseases. According to the Center for Disease Control and Prevention 

“Overall, 11% of adults aged 18 and over had ever been told by a doctor or other health 

professional that they had heart disease, 6% had ever been told they coronary heart 

disease, 24% had been told on two or more visits that they had hypertension, and 3% had 

been told they had a stroke” [15].        

        The cardiovascular biomechanics focuses on the cardiovascular system, the heart 

and blood vessels and studies the mechanics of blood flow. Furthermore, it studies the 

mechanical factors that are essential for cardiovascular diagnosis, surgery, and 

intervention.  

In developed countries, the mortality rate is more than 40% due to cardiovascular 

disease such as congenital disease of the heart, its valves or the large arteries. Among 

those diseases, atherosclerosis leads to the cardiovascular diseases. Atherosclerosis is the 

progressive state of narrowing of the arteries due to deposition of fat and smooth muscle 

cells in the artery wall that leads to partially or fully occlusion of smaller distal vessels. 

Stenosis is another name for artherosclerosis. Unfortunately, the main parts of our body 

such as the brain (stroke) and the coronary arteries (myocardial infarction) are subjected 

to damages due to this build up. In our work, we focus on nonlinear mathematical 

analysis for blood flow in a stenotic area at a small part of the aortic artery. 
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Figure 1. Normal artery and artery with plaque built up from 
http://www.nhlbi.nih.gov/health/health-topics/topics/atherosclerosis 
 

         The effects of blood flow are considered as unsteady; the constitutive behavior of 

blood is considered as a Newtonian fluid in large arteries. Then we will compare results 

with the outcomes from other models that we reviewed. 
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CHAPTER II: CARDIOVASULAR SYSTEM (CVS) MODELLING 

         CVS model can be solved through two processes Finite Element (FE), and Finite 

differences method (FDM) approaches [16]. 

 

Finite Element Method 

         The finite element method is used when CVS breaks down in great details. The 

mathematical model related to CVS could be introduced as ordinary differential equation 

or the partial differential equation. The partial differential equations models are difficult 

to solve, due to the highly nonlinearity of the convection term of the Navier-Stokes 

equations. The analytical solution in the form of Laplace, the Fourier transform method 

or in form of power series method are practically impossible to solve the partial 

differential equation in a complex geometry. Therefore, a numerical solution is necessary. 

The Finite Element method is the best way for solving a non-linear partial differential 

method [3].   

 Finite Difference Method (FDM) 

          The FDM is based on the theory of Taylor expansion to approximate the 

differential equations. The flow field is dissected into several grids, and the velocity and 

pressure are approximated by discretizing value of these functions calculated at the grid 

points [9]. The easy way to define the finite difference method is to convert PDEs 

equation with spatial and time derivatives to the linear algebraic equations, then it will be 

solved numerically using Matlab.  



                                                
  
   

4 
 

The Finite difference method is used to find blood behavior for a healthy vessel, and the 

finite element method is used to find blood behavior through a stenotic vessel in my 

thesis. 
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CHAPTER III:  REVIEW OF THE LITERATURE  

          The CVS blood flow is unsteady in small arteries such as capillaries. The 

understanding of the behavior of blood flow in the blood vessels provides knowledge 

about the connection between flow and the development of diseases such as 

atherosclerosis. Although blood flow is complex, its dynamics can be described through 

the Poiseuille’s model for steady flow and Bernoulli’s equation for constricted vessel [4].  

Poiseuille’s equation is: the volume flow Q = ∫ 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 =  𝜋𝜋𝑅𝑅4𝑅𝑅
0

(𝑃𝑃1−𝑃𝑃2)
8𝜇𝜇𝜇𝜇

, the volume 

flow increases exponentially with inner radius of vessel increases. The Bernoulli’s 

equation is P+ρgx+0.5ρ𝑣𝑣2= constant, where P is pressure, ρ=density. 

           Verma et al have shown that the viscosity increases as the height of stenosis 

increases. They concluded that the blood viscosity in a normal blood vessel is lower than 

the blood viscosity in a stenotic blood vessel. The wall shear stress is high in a stenotic 

blood vessel with catheterization. However, the wall shear stress decreases sharply with 

increasing the slip velocity. They have shown velocity profile where the axial velocity 

increases with the increase of stenotic height [14].  

Husain et al have investigated the magnitude of wall shear stress with respect to severity 

of flow rate. The wall shear stress increases with increasing flow rate. The highest value 

of wall shear stress reached just before the throat of the stenosis [5]. 

         Sousa et al investigated the qualitative numerical behavior of the blood flow. They 

have presented graphs of axial flow velocity profile in three different cross-sections 

around mild stenosis. The axial velocity reached the maximum in the core of the stenosis, 

but flow stagnation has occurred after the peak of the stenosis core. The low shear stress 
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has occurred after the peak of the stenosis. The low shear stress could cause a possible 

formation of atherosclerotic plaques [13]. 
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CHAPTER IV: DISCUSSION OF FINDINGS IN THE LITERATURE REVIEW 

              The blood flow will be disrupted from normal status with the presence of the 

arterial stenosis [14]. The study of pulsatile flow is very important to understand the 

impact of blood flow on atherosclerosis and stroke [14].  Some researchers have found 

the pulsatile flow of blood through an arterial segment with dependent stenosis was 

researched. Those researchers used an appropriate nonlinear blood flow model and solved 

numerically to find blood behavior with influence of periodic body acceleration through a 

multiple stenosed artery [1]. Mustapha et Al [7] studied the characteristics of blood flow 

through multi-irregular arterial stenosis. They used MAC method to simulate numerically 

with using finite element method. The normalized pressure drop is higher for cosine 

model over irregular model of multiple stenosis. Many researchers investigated the blood 

flow through the stenosis as a Newtonian fluid, however; experiments have shown a non-

Newtonian behavior due to the low shear rate of blood [6].  Recently Chaudhary K. has 

done researched on blood flow behavior for 20, 50, and 80% blockage of a blood vessel. 

He has shown wall shear stress and velocity field for 20%, 50% and 80% blockage.  

According to the simulation results of Chaudhary K.’s work for project work on his 

Master of Science, the 20% blockage would not harm to our human circulatory system, 

however 50% blockage would need attention [2].   

          The computational fluid dynamics is able to describe the flow through stenosed 

vessels that will be an invasive tool to find earlier diseased state of blood flow system [9]. 

My thesis uses the Navier-Stokes and continuity equations to find the velocity field, 

pressure drop and wall shear stress. Treating the blood flow as unsteady flow will be 

appropriate for my thesis research of the blood flow via stenotic blood vessel. 
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         The unsteady Navier-Stokes equations for two-dimensional blood flow through an 

axisymmetric stenotic vessel are solved numerically. The process of finding velocity 

field, pressure, and wall shear stress are divided into three parts to solve numerically. 
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CHAPTER V: METHODOLOGY/RESULTS 

Two-dimensional Flow Solution for a Healthy vessel 

Mathematical Model 

               The finite difference method is used to find velocity along x and y direction with 

given initial velocities, boundary velocities condition, and constant pressure for rectangular 

domain [0,1] x [0,1] through a vessel without stenosis as shown in Figure 2. Since the blood 

initial at rest, the initial condition of velocities at t=0 are zero. With constant pressure, 

boundary velocities conditions (5), and initial conditions (4), the velocities profiles along 

x and y direction are found using momentum equations (1), (2), and continuity equation 

(3).  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 + 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = -𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕

+ 1
𝑅𝑅𝑅𝑅

 ( 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑥𝑥2 + 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑦𝑦2 )                         (1)           

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 + 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = -𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑅𝑅𝑅𝑅

 ( 𝜕𝜕
2𝑣𝑣

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2 )                          (2) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = 0                                                                        (3) 

Initial conditions: 

u (y, x, t) = 0,     where u = x-directional velocity 

v(y,x,t) = 0,                       v= y-directional velocity                                                     (4) 

P(y,x,t) = 0    

 Boundary conditions: 
 u=v=0    no slip condition @ y = 1 
 u*n=0, v=0 @ r=0 or as slip condition                                                                               
 u = 1, v = 0 @ boundary when x=0 and x=1                                          (5) 
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Figure 2:  Geometry of blood vessel without stenosis 

 

               The flow field is dissected on a staggered grid. The position of the variables such 

as velocity field and the pressure are calculated as placing those variables at different 

location as shown in Figure 3. The numerical solution is derived using Matlab code 

[appendix A], [11]. 

 

            Figure 3: Position of Pressure and Velocities 

 Numerical solution and analysis 
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                The velocities fields provide a precise explanation of the blood flow, so we are 

including several axial and y-direction velocity profiles for the healthy vessel. Axial 

velocity profile has shown in table 1 that represent for Re = 100 and t = 4. 

Table 1: Axial velocity profile 

      x-
axis       

  0.03 0.1 0.3 0.38 0.5 0.6 0.70 0.76 .83 .93 0.97 
 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 0.

03 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 

 .1 0.99 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.99 0.99 
 .2 0.99 0.97 0.96 0.95 0.95 0.95 0.95 0.96 0.96 0.98 0.99 
 .3 0.99 0.95 0.94 0.93 0.93 0.93 0.93 0.94 0.95 0.97 0.99 
 .3

8 0.97 0.91 0.89 0.88 0.87 0.87 0.87 0.88 0.90 0.95 0.97 

 .4
4 0.96 0.88 0.85 0.84 0.83 0.83 0.83 0.84 0.86 0.93 0.96 

 0.
51 0.92 0.78 0.75 0.73 0.73 0.72 0.73 0.74 0.76 0.86 0.92 

-a
xi

s 0.
51 0.68 0.54 0.53 0.53 0.52 0.52 0.52 0.53 0.53 0.59 0.68 

y 0.
55 0.31 0.44 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.40 0.31 

 0.
58 0.17 0.34 0.37 0.38 0.38 0.38 0.38 0.37 0.36 0.27 0.17 

 0.
62 0.11 0.26 0.30 0.31 0.31 0.31 0.31 0.30 0.28 0.18 0.11 

 0.
65 0.05 0.15 0.17 0.19 0.20 0.20 0.19 0.18 0.16 0.09 0.05 

 .6
9 0.03 0.10 0.13 0.14 0.15 0.15 0.15 0.14 0.12 0.06 0.03 

 .7
2 0.02 0.07 0.09 0.10 0.11 0.11 0.11 0.10 0.08 0.04 0.02 

 .7
6 0.01 0.05 0.06 0.07 0.07 0.08 0.07 0.07 0.06 0.03 0.01 

 .7
9 0.01 0.03 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.02 0.01 

 .8
3 0.00 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.01 0.00 

 .8
6 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.00 0.00 

 .8
9 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

 .9
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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              Figure 4: Axial velocity @ x=0.3 

 

 

Figure 5: Axial Velocity @ x = 0.5 
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Figure 6: Axial Velocities at different x- axis 

 

      Figures 4, 5 and 6 are axial velocity profiles for the healthy blood vessel.   The 

highest velocity reached at 1.0 m/s as we described the velocity for boundary condition 

@ x=0 and x=1. We can conclude that there is no disruption on blood flow however it 

reached velocity at 1.0 m/s because there is same pattern of parabolic flow along all the 

vessel. 

Two-dimensional Flow Solution for a Stenotic Vessel in two-dimensional View 

    Mathematical Model 

            We used the COSMOL Multiphysics to analyze blood flow through the stenotic 

blood vessel as geometry given on equation (6) as [10]. This COSMOL Multiphysics is 
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set up with given the Navier-Stokes (7) and continuity (8) equations. The blood flow is 

considered as flow through a stenotic circular pipe. 

𝑓𝑓(𝑥𝑥)= � 1 − 𝑠𝑠
2

 �1 + cos �𝜋𝜋
𝑒𝑒

� �𝑥𝑥 − 𝐿𝐿
2
��      𝑖𝑖𝑖𝑖  𝐿𝐿

2
− 𝑒𝑒 ≤  x ≤  𝐿𝐿

2
+ 𝑒𝑒  

    1                                                                                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
     (6) 

 

 
Figure 7. Geometry of an axially symmetrical stenosis 

Governing Navier-Stokes equation: 

ρ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 + ρ (U . ∇ )U = ∇ . [PI + µ (∇ + (∇𝑈𝑈)𝑇𝑇] + F                                                  (7) 

Governing continuity equation: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 + ρ∇ . (U) = 0                                                                                                           (8) 
 
Where        ρ is density as 1000 kg/m^3  
                     µ is fluid viscosity as 0.1 Pa*s   
                     F is gravitational force as 0 
                     P is as pressure 
                     U is velocity vector of u and v 

Initial conditions: 

u (r, x, t) = 0,       where u = axial velocity 

v(r,x,t) = 0,                       v= radial velocity                                                       (9) 

P(r,x,t) = 0    
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 Boundary conditions: 
 u=v=0    no slip condition @ r = f(x) 
 u*n = 0, v = 0 @ r = 0 or as slip condition                                     (10) 
 u = 1, v = 0 @ boundary when x=0 and x=4 
 
          We set up the good approximation of mesh size to obtain good convergence. The 

figure 8 has shown mesh with triangular element (14305), and edge elements (595), vertex 

elements (6). Geometry of a stenotic has been constructed in COSMOL Multiphysics as 

described in equation (4). 

           With appropriate boundary conditions, initial condition, Navier-Stokes and 

continuity equations, we found the result of velocity fields and pressure. 

 

 Numerical Solutions and Analysis 

 

Figure 8: Mesh 
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Figure 9: Velocity field at t=0.5 s 
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            Figure 10: Velocity field at t=1.0 s 

 

       It is obvious that the stenosis size has a great influence on the flow field in a stenotic 

vessel. In my thesis, we are finding the maximum height of stenosis that could harmful to 

our body system. So we have analyzed for blood flow through the 20% stenotic vessel. 

The Figures 9 and 10 have shown velocity field for blood flow through a stenotic blood 

vessel. In Figure 9, the velocity field along the 20% stenotic blood vessel remained as 

parabolic flow as shown in the Figures 4,5 and 6 before and after the constriction zone. 

However, the Figure 10 has shown velocity field, and the velocity reached high of 1.8 

m/s at the throat of the stenosis vessel which is in good agreement with those results 

achieved by Pontrelli G., who researched on steady flow through arterial stenosis [9]. For 
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validation, we took results from [9] as shown in Figure 11 where the dotted line 

represents for Non-Newtonian, and the continuous line represent for Newtonian.  

 

Figure 11: Velocity profile downstream and at stenotic zone. 

                               from (http://www.iac.rm.cnr.it/~pontrell/pub/steno.pdf) 

 

           Figure 12 has shown pressure isobar. The same line represents same pressure 

value. The isobar is equally spaced means it has considerably same pressure. In Figure 

12, it has clearly shown that the pressure measures along the constriction zone are lower 

than pressure upstream the constriction zone. We compare this results to those results 

done by Willie S. as shown in Figure 13 [ 12]. He presented the Navier-Stokes equations 

and analyzed by the finite element method for stenosis with various degrees of 

constriction.  The Figure 13 represents the isobar pressure for 50% constriction vessel. 

The pressure at the constriction zone is low than the pressure before the constriction. It 

has clearly explained that the pressure drop will occurred at the constriction zone. 

Mustapha et al has displayed the result with pressure drop along the constriction zone [7]. 

http://www.iac.rm.cnr.it/%7Epontrell/pub/steno.pdf


                                                
  
   

19 
 

               

 Figure 12: Isobar Pressure along center axis 

 

Figure 13:  Isobar and Pressure variation along center axis for 50 % constriction 

 from http://www.sciencedirect.com/science/article/pii/0307904X80901845 

 

 

http://www.sciencedirect.com/science/article/pii/0307904X80901845
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Figure 14: Velocity Field for time steps 0.001 

                 We tooks small time steps as 0.01, and 0.001 to get results for velocity field, 

the solution is almost same. The Figure 14 has shown  results for time steps 0.001. There 

is threshold for time step because we must check for stability issue.  So we could not take 

too small time steps.  We could not take large time step, it is tied to spatial mesh size. The 

results with time steps 0.001 from Figure 14 is comparatively same velocity results from 

Figure 9.  
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 Two-dimensional Flow Solution for a Stenotic Vessel in 3-D View 

Mathematical Model 

            Under the assumption that no gravitational forces act on blood flow, blood 

density is constant, blood flow is unsteady in x and r direction with cylindrical 

coordinate (r, x), blood flow is Newtonian viscous incompressible through an 

axially symmetric stenosis, and the artery is a rigid circular tube, the geometry of 

stenosis will be described as Figure 15 [10].   

𝑓𝑓(𝑥𝑥)= � 1 − 𝑠𝑠
2

 �1 + cos �𝜋𝜋
𝑒𝑒

� �𝑥𝑥 − 𝐿𝐿
2
��      𝑖𝑖𝑖𝑖  𝐿𝐿

2
− 𝑒𝑒 ≤  x ≤  𝐿𝐿

2
+ 𝑒𝑒  

    1                                                                                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
     (6) 

 

  

 

Figure 15. Geometry of an axially symmetrical stenosis 
                    
Where        f (x)-  Tube radius with stenosis 

                   f (0)- Tube radius without stenosis 

                  𝑠𝑠 -  The maximum height of the stenosis 
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                   According to the above assumption, the non-dimensional incompressible Navier-

Stokes equation can be written as continuity equation (11) and momentum equations 

(12), (13). 

The fluid flow is governed by the Continuity equation 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝑣𝑣
𝑟𝑟
 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 = 0          (11) 

The momentum equation in the radial direction 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑅𝑅𝑅𝑅

 (𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2 + 1

𝑟𝑟
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 + 𝜕𝜕
2𝑣𝑣

𝜕𝜕𝜕𝜕2 - 𝑣𝑣
𝑟𝑟2)           (12) 

The momentum equation in the axial direction 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑅𝑅𝑅𝑅

 (𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2 + 1

𝑟𝑟
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 + 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝜕𝜕2 )                (13) 

Where P = the pressure is described as homogenous Neumann 
boundary condition, that implies as the pressure is described as a 
constant. 
 

u (x, r) = the component of velocity in x- direction 

v (x, r) = the component of velocity in r- direction 

Boundary condition: 

     u=v=0    no slip condition @ r = f(x) 
      u*n=0, v=0 @ r=0 or as slip condition                                 (14) 
     u = c1 @ boundary when x=0 and x=L 
 
The initial velocities:  
 u(x,r,t) = 0           at t = 0                                                              (15) 
 v(x,r,t) = 0           at t = 0 

 
 Numerical Solutions and Analysis 

    Wall shear stress and velocity fields are analyzed for two-dimensional blood flow 

through a stenotic vessel with given Navier-Stokes and continuity equations (11), (12), (13) 
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in cylindrical coordinate. The geometry of a blood vessel is created with the software 

(Solidworks) as equation (6). Then, it is exported to computational software (ICEM 

ANSYS). The numerical simulation is done computer software(Fluent) with considering 

following physical parameters. 

  ρ is density as 1000 kg/m^3  

  µ is fluid viscosity as 0.1 Pa*s    
   
           With given boundary and initial condition for velocity described on equations (16), 

(17), and Pressure as constant, we analyzed velocity field and wall shear force for blood 

flow through 30% and 80% blockage. 

 

Figure 16: Wall Shear Stress for 30% blockage 



                                                
  
   

24 
 

 

Figure 17: Wall Shear Stress for 80% blockage 

 

Figure 18: Velocity Field for 30% blockage 
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Figure 19: Velocity Field for 80% Blockage 

         Figure 16 and 17 have shown wall shear stress (WSS) within a range of 16.24 - 

77.80 Pa for 30% blockage and 3,64 - 784 Pa for 80% blockage. The highest wall shear 

stress is 784 Pa which is very critical to our human body. Figures 18 and 19 have shown 

the maximum velocity at .87 m/s for 30% blockage, and 9.8 m/s for 80% blockage. 
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CHAPTER VI: CONCLUSION 

            In my work, a two-dimensional axisymmetric mathematical model is presented to 

study for blood flow through the healthy and an axisymmetric modeled arterial stenosis.  

The numerical simulation used the finite difference method for the healthy vessel and the 

finite element method for a stenotic vessel. The blood flow through a 20% percent 

stenosis are analyzed with finite element method using COSMOL Multiphysics. The 

velocity reached at 1.8 m/s at the throat of a stenotic vessel which are risk for aortic blood 

vessel.   The pressure along the constriction zone is lower than pressure before the 

constriction zone that conclude that there is pressure drop along the constriction zone. 

            For more accuracy, we used the finite element method with ANSYS-Fluent to 

analyze blood behavior for 30% and 80% blockage. The wall shear stress reached at 784 

Pa for 80% of blockage, and 77.8 Pa for 30% blockage. The velocity reached at 9.8 m/s 

for 80% blockage and .87 m/s for 30% blockage.  The normal velocity range for aortic 

blood vessel is 0.2 to 0.98m/s.   From this work, we can recommend to the medical field 

that even 20% of stenosis could increase the velocity at the throat of stenosis that is 

harmful the blood circulation in our body. The decreasing of pressure as the stenosis zone 

starts could be considered as initiation of compromising body ability. To maintain 

sufficient blood flow to the organ, the velocity increases to compensate lower body 

pressure.  As the result, we have seen the maximum velocity 1.8 m/s at the throat of 

stenotic vessel that are critical to our body. As the flow rate increases the wall shear 

stress increases. In my thesis, we have seen reaching the highest wall shear stress where 

the maximum velocity reached. 
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APPENDICES 

function Maha_navierstokes 
%Maha_NAVIERSTOKES 
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%----------------------------------------------------------------------
- 
Re = 1e2;    % Reynolds number 
dt = 1e-2;    % time step 
tf = 4e-0;    % final time 
lex = 1;       % width of box 
ley = 1;       % height of box 
nx = 90;      % number of x-gridpoints 
ny = 90;      % number of y-gridpoints 
nsteps = 10;  % number of steps with graphic output 
%----------------------------------------------------------------------
- 
nt = ceil(tf/dt); dt = tf/nt; 
x = linspace(0,lex,nx+1); hx = lex/nx; 
y = linspace(0,ley,ny+1); hy = ley/ny; 
[X,Y] = meshgrid(y,x); 
%----------------------------------------------------------------------
- 
% initial conditions 
U = zeros(nx-1,ny); V = zeros(nx,ny-1); 
  
% boundary conditions 
u1 = 0;    v1 = 0;      
u2 = 0;      v2 = 0; 
u3 = 1; v3 = 0; 
u4 = 1; v4 = 0;  
  
  
%----------------------------------------------------------------------
- 
Ubc = dt/Re*([2*u2(2:end-1)' zeros(nx-1,ny-2) 2*u1(2:end-1)']/hx^2+... 
      [u3;zeros(nx-3,ny);u4]/hy^2); 
Vbc = dt/Re*([v2' zeros(nx,ny-3) v1']/hx^2+... 
      [2*v3(2:end-1);zeros(nx-2,ny-1);2*v4(2:end-1)]/hy^2); 
  
fprintf('initialization') 
Lp = kron(speye(ny),K1(nx,hx,1))+kron(K1(ny,hy,1),speye(nx)); 
Lp(1,1) = 3/2*Lp(1,1); 
perp = symamd(Lp); Rp = chol(Lp(perp,perp)); Rpt = Rp'; 
Lu = speye((nx-1)*ny)+dt/Re*(kron(speye(ny),K1(nx-1,hx,2))+... 
     kron(K1(ny,hy,3),speye(nx-1))); 
peru = symamd(Lu); Ru = chol(Lu(peru,peru)); Rut = Ru'; 
Lv = speye(nx*(ny-1))+dt/Re*(kron(speye(ny-1),K1(nx,hx,3))+... 
     kron(K1(ny-1,hy,2),speye(nx))); 
perv = symamd(Lv); Rv = chol(Lv(perv,perv)); Rvt = Rv'; 
Lq = kron(speye(ny-1),K1(nx-1,hx,2))+kron(K1(ny-1,hy,2),speye(nx-1)); 
perq = symamd(Lq); Rq = chol(Lq(perq,perq)); Rqt = Rq'; 
  
fprintf(', time loop\n--20%%--40%%--60%%--80%%-100%%\n') 
for k = 1:nt 
   % treat nonlinear terms 
   gamma = min(1.2*dt*max(max(max(abs(U)))/hx,max(max(abs(V)))/hy),1); 
   Ue = [u3;U;u4]; Ue = [2*u2'-Ue(:,1) Ue 2*u1'-Ue(:,end)]; 
   Ve = [v2' V v1']; Ve = [2*v3-Ve(1,:);Ve;2*v4-Ve(end,:)]; 
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   Ua = avg(Ue')'; Ud = diff(Ue')'/2; 
   Va = avg(Ve);   Vd = diff(Ve)/2; 
   UVx = diff(Ua.*Va-gamma*abs(Ua).*Vd)/hx; 
   UVy = diff((Ua.*Va-gamma*Ud.*abs(Va))')'/hy; 
   Ua = avg(Ue(:,2:end-1));   Ud = diff(Ue(:,2:end-1))/2; 
   Va = avg(Ve(2:end-1,:)')'; Vd = diff(Ve(2:end-1,:)')'/2; 
   U2x = diff(Ua.^2-gamma*abs(Ua).*Ud)/hx; 
   V2y = diff((Va.^2-gamma*abs(Va).*Vd)')'/hy; 
   U = U-dt*(UVy(2:end-1,:)+U2x); 
   V = V-dt*(UVx(:,2:end-1)+V2y); 
    
   % implicit viscosity 
   rhs = reshape(U+Ubc,[],1); 
   u(peru) = Ru\(Rut\rhs(peru)); 
   U = reshape(u,nx-1,ny); 
   rhs = reshape(V+Vbc,[],1); 
   v(perv) = Rv\(Rvt\rhs(perv)); 
   V = reshape(v,nx,ny-1); 
    
   % pressure correction 
   rhs = reshape(diff([u3;U;u4])/hx+diff([v2' V v1']')'/hy,[],1); 
   p(perp) = -Rp\(Rpt\rhs(perp)); 
   P = reshape(p,nx,ny); 
   U = U-diff(P)/hx; 
   V = V-diff(P')'/hy; 
    
    

    
    

   % visualization 
   if floor(25*k/nt)>floor(25*(k-1)/nt), fprintf('.'), end 
   if k==1|floor(nsteps*k/nt)>floor(nsteps*(k-1)/nt) 
      % stream function 
      rhs = reshape(diff(U')'/hy-diff(V)/hx,[],1); 
      q(perq) = Rq\(Rqt\rhs(perq)); 
      Q = zeros(nx+1,ny+1); 
      Q(2:end-1,2:end-1) = reshape(q,nx-1,ny-1); 
      clf, contourf(avg(x),avg(y),P',20,'w-'), hold on 
      contour(x,y,Q',20,'k-'); 
      Ue = [u2' avg([u3;U;u4]')' u1']; 
      Ve = [v3;avg([v2' V v1']);v4]; 
      Len = sqrt(Ue.^2+Ve.^2+eps); 
      quiver(x,y,(Ue./Len)',(Ve./Len)',.4,'k-') 
      hold off, axis equal, axis([0 lex 0 ley]) 
      p = sort(p); caxis(p([8 end-7])) 
      title(sprintf('Re = %0.1g   t = %0.2g',Re,k*dt)) 
      drawnow 
   end 
end 
fprintf('\n') 
  
  
  
%======================================================================
= 
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function B = avg(A,k) 
if nargin<2, k = 1; end 
if size(A,1)==1, A = A'; end 
if k<2, B = (A(2:end,:)+A(1:end-1,:))/2; else, B = avg(A,k-1); end 
if size(A,2)==1, B = B'; end 
end 
  
function A = K1(n,h,a11) 
% a11: Neumann=1, Dirichlet=2, Dirichlet mid=3; 
A = spdiags([-1 a11 0;ones(n-2,1)*[-1 2 -1];0 a11 -1],-1:1,n,n)'/h^2; 
end 
save('parameters') 
end 
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