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ABSTRACT 
 

Estimated Increase in Inundation Probability with 

Confidence Intervals for the Gulf of Mexico 

 

(March, 2013) 

 

Natalya Warner 

 

M.S., I.I.Mechnikov State University of Odessa, Ukraine 

 

Chair of Advisory Committee: Dr. P. E. Tissot 

 

 
The main objective of this research is to study the impact of sea level rise on the 

relative increase in frequency of inundation for the low-lying coastal zones of the Gulf of 

Mexico caused by storms of different sizes. The research is based on locations around the 

Gulf of Mexico that benefit from existing long term sea level records and are located near 

population centers: Galveston Pier 21, Galveston Pleasure Pier, Port Isabel, Rockport, 

Texas, Grand Isle, La, and Pensacola, Key West, and St Petersburg, Florida stations.   

The stations’ long-term water level records are divided into a long term sea level 

trend, a tidal component and a stationary surge component. Several extreme value 

distributions, such as three and four parameters Burr, Dagum, log-logistic, and 

generalized extreme value distribution (GEV), are compared using multiple statistical 

measures for the modeling of maximum annual storm surges. While differences are small 

the GEV and log logistic distributions are selected for this work based on performance, 

sensitivity to the series outliers and ease of implementation. Increases in inundation 

frequencies are computed by combining the stations’ respective annual maximum surge 
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models with two possible sea level rise scenarios, a conservative linear continuation of 

the past century trend and a scenario based on the upper limit of the sea level range in the 

IPCC (Intergovernmental Panel on Climate Change) AR4 report (Assessment Report 4), 

i.e. the A1FI scenario. Differences in oceanographic setting are discussed and affect 

vulnerability to sea level rise. To compare vulnerability to sea level rise, the ratios of 

future and present exceedance probabilities are computed for a range of water levels. The 

locations’ respective vulnerabilities to sea level rise are assessed by comparing the 

maximum ratios of future to present water level exceedance probabilities and the 

corresponding water levels. Water levels at maximum ratios have a strong correlation 

with most common moment- and quantile - based statistics of surges, except the 

maximum annual surges.  This indicates that the results of this study are not overly 

sensitive to the most extreme values or largest surge on the record provided that the 

record includes at least one large surge.  

Statistical bootstrap methods are used to estimate 90% and 95% confidence intervals 

for increases in inundation probability. For most cases the confidence intervals show a 

substantial decrease in interval width for stations with lengths of datasets of 50 years or 

longer indicating a preferred data length provided that a large surge event is included. For 

all locations the lower bounds of the confidence intervals imply significant increase in 

exceedance probabilities for both sea level rise scenarios.  

While expected increases in inundation frequencies are substantial for all stations, the 

results show considerable variation depending on the sizes of the surges, the station 

locations and the sea level rise scenarios. Annual maximum water levels resulting from 

small storms/surges will have higher frequencies, typically by a factor of 3 or more, than 
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the historical frequency of water levels resulting from large hurricanes. As a result more 

frequent, smaller storm surges may have a larger impact on coastal communities than the 

effects of the less frequent, larger storm surges.  

Ratios of the exceedance probabilities depend mostly on sea level trends and the shape 

of the curves of the exceedance probabilities. The relative importance of these parameters 

depends on the sea level rise scenario. For a continued linear sea level rise maximum 

ratios are strongly correlated to the sea level trends or vertical land motion. For the 

conservative sea level rise scenario the study’s highest increase in water level exceedance 

probability of 17 times is computed for a water level of 1.23m above present mean sea 

level for Grande Isle, Louisiana.  For higher rates of global sea level rise local subsidence 

becomes less important and the dominant factor becomes the range of the locations’ 

surges.  For the study’s A1FI based sea level rise scenario, the highest increase in water 

level exceedance probability is over 100 times for a water level of 0.83m above present 

mean sea level for Key West, Florida.  

The results of this research provide coastal decision makers quantitative estimates of 

future inundation risks for two sea level rise scenarios and a calibrated method to 

compute such risks for more sea level rise scenarios. This research is relevant for 

engineers, planners, insurance executives, and others to take into account the increasing 

impacts of storm surges of various sizes as sea level rises. The results will help develop 

better insurance rates, plan structures, land-use zoning, and others as the century 

progresses. The models, methodology and estimates developed as part of this research 

may be used to estimate the time before specific locations may become economically 

uninhabitable due to surge inflicted damages as sea level rises. Particularly, it is expected 
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that this work will allow better to quantify coastal vulnerability to sea level rise along the 

Gulf of Mexico. 
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CHAPTER 1 

 

 

Storm Flooding Sensitivity to Sea Level Rise for  

Galveston Bay, Texas 

 
 

ABSTRACT 
 

    The combination of sea level rise and population growth in coastal regions makes it 

essential to continue improving flood management strategies. Flooding estimates must 

take into account both local vertical land motion and estimated rates of sea level rise 

linked to global climate change. Several extreme value distributions are compared using 

multiple statistical measures for the modeling of maximum annual storm surges based on 

the 105-year record of Galveston Pier 21, Texas. Increases in inundation frequencies are 

computed based on two possible sea level rise scenarios, a conservative linear 

continuation of the past century trend and a scenario based on the upper limit of the sea 

level range in the IPCC AR4 report, i.e. the A1FI scenario. The research shows that by 

year 2100 exceedance probabilities may double for the impact of the largest storms such 

as Hurricane Ike, but may increase by 6-7 times for the smaller surges associated locally 

with the impact of storms such as Hurricanes Cindy, Alicia and Rita. While individually 

not as devastating or costly as large hurricanes, the cumulative and regular cost of smaller 

surge events could well be a bigger threat to coastal communities as sea level rises. 
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INTRODUCTION 
 

 

     Floods are the most common natural disasters that affect the United States. 

According to the United States Federal Emergency Management Agency (FEMA) almost 

2.03 million properties were affected by floods from January 1978 to November 2012 in 

the United States with total monetary loss of approximately 42 billion dollars (NFIP, 

2013).  Floods have two major sources. River floods develop slowly and primarily impact 

communities in the vicinity of the streams, while floods generated by storm surges 

happen less frequently, more rapidly, and impact only coastal areas.  Storm surge 

flooding can have a devastating impact on coastal locations, in some cases threatening the 

overall economic viability of coastal regions.  Examples include the human and economic 

losses caused by recent events such as the Louisiana Flood in 1995, Hurricane Floyd in 

1999, tropical storm Allison in 2001, Hurricanes Ivan in 2004, Katrina and Rita in 2005, 

Ike in 2008, and Irene in 2011. 

     Significant storms also generate large numbers of insurance claims placing 

unprepared insurance companies at risk. For example at least 11 insurance companies 

became insolvent after the passage of Hurricane Andrew in 1992 (Teugels and Sundt, 

2004). More recently the landfall of Hurricane Ike in Galveston and other recent storms 

in Texas prompted the Texas legislature to update the state’s windstorm insurance 

program (Ramsey, 2011). In addition, estimates for the rate of occurrence of storm surges 

and for the impact of storm surge flooding are important input in the establishment of 

governmental policies.  For example, the policies of the US National Flood Insurance 

Program are based on the occurrence rate and impact of future floods: “households with 
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two flood-related claims are now required to be elevated by 2.5 cm above the 100-year 

flood level, or to relocate” (Bates et al., 2008).  It is therefore of great interest to estimate 

as accurately as possible the rate at which storm surge flood events can be expected to 

occur and their likely impact (Beirlant et al., 2005).  

     Sea level rise, whether caused by downward vertical land motion or global sea 

level rise, will cause storm surge floods to progress further inland, thereby increasing 

flood damage and reducing the recurrence interval of present 20- or 100-year floods.  

Recent research results indicate that effects of sea level rise on storm surge impact and 

occurrence rate estimates may not be adequately accounted for.  Research by Purvis et al. 

(2008) examined the probability of future coastal flooding in the United Kingdom, given 

the uncertainty over possible sea level rise. They concluded that focusing only on most 

the plausible sea level rise may significantly underestimate monetary losses as it fails to 

account for the impact of low probability, high consequence events.  Another study by 

Frazier et al. (2010) concludes that the impact of storm surges in Sarasota County, 

Florida, caused by small hurricanes will increase due to sea level rise. 

  A number of studies have been conducted to model flood resulting from river 

flooding and storm surges using a variety of extreme value distributions. The generalized 

extreme value (GEV) distribution is recommended by FEMA (FEMA, 2007) and is the 

most widely used distribution in the field (Kotz and Nadarajah, 2000; Nadarajah and 

Shiau, 2005; ÖnÖz and Bayazit, 1995).  However Huang et al. (2008) suggested caution 

when applying the GEV after studying its application to locations along the East and 

Southeast Atlantic coast of the US and the Gulf of Mexico. Substantial differences 

between model and measurements were observed when comparing 100-year annual 
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maximum water levels with historical data for these locations.  While the modeled return 

periods exhibited less than 5% difference with observed data for locations along the 

Pacific and North East Coastal areas, a difference of over 21% was computed for 

Galveston Pier 21, Texas. Letetrel et al. (2010) used the generalized Pareto distribution to 

analyze the return periods of the sea level extremes in Marseille, France. Other 

distributions that have been used by prior researchers include the logistic and the log-

logistic distribution (Ahmad et al., 1988; Rao and Hamed, 2000).  

       Ahmad et al. (1988) compared the log-logistic, GEV, three parameter log-normal 

and three parameter Pearson distributions. Datasets for their study were obtained for sites 

in Scotland with annual flood series varying in length from 5 to 66 years. The authors 

recommended “that the ideal distribution for flood frequency analysis should (a) 

reproduce at least as much variability in flood characteristics as observed in the empirical 

data sets; (b) be insensitive to extreme outliers especially in the upper tail; (c) must have 

a distribution function and an inverse distribution function that can be explicitly 

expressed in closed form; and (d) must not be computationally complex nor involve the 

estimation of a large number of parameters”. For their study, the log-logistic distribution 

satisfied the above requirements better than other evaluated distributions. The goal of this 

study was to (1) identify the best performing distribution(s) for modeling extreme surges 

along the northern part of the Gulf of Mexico and (2) use the identified distribution to 

determine sensitivity of storm surge impact to sea level rise estimates.   To this end, the 

study first compares performance of several distributions for the modeling of extreme 

surges at the US National Ocean Service station of Galveston Pier 21, Texas. This station 

was chosen because it has the longest water level record in the Gulf of Mexico starting in 
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1904 and because it is located in the economically important greater Houston area.   The 

distribution that best models this data is then used to model future impact of storm surges 

for a broad range of storm sizes and for two distinct sea level rise scenarios. 
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DATA AND METHODS 
 

    Study site and data 

 

    The study site, the station of Galveston Pier 21 (Latitude 29° 18.6' N, Longitude 94° 

47.6' W), is part of the US National Water Level Observation Network and is located on 

the north-east side of Galveston Island, Texas (Figure 1.1).  

    

Figure 1.1. Map of the study area, the entrance of Galveston Bay, Texas. 

 

    The station is positioned on a ship channel about 4 km away from the main 

Galveston Ship Channel and the mouth of Galveston Bay. The station’s records are 

available starting in January 1904 and include water levels measured hourly with only a 

few interruptions. This high quality 105 year time series is well suited for the comparison 
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of statistical distributions of extreme events, and has been used for prior similar studies 

(Huang et al., 2008; Turner, 1991).  

      The 105 years of verified hourly water levels were obtained from NOAA’s Tides 

and Currents data repository (NOAA, 2011a), and were further processed as follows. 

Monthly maximum water levels were obtained from the same site and compared to the 

maxima identified in the hourly time series. Most differences were within a range of 0.31 

m, the station’s Mean Range of Tide (NOAA, 2011b). Substantial differences of 0.45 m 

and 1.22 m were found for Hurricane #6 of August 1909 and Hurricane #2 of September 

1919. For these two storms NOAA maximum water level records are based on water 

marks such as marks on buildings. The monthly tide gauge records during these two 

storms are different likely because of unidentified equipment malfunction during these 

storms (personal communications with Chris Zervas, NOAA CO-OPS). As the hourly 

water levels are inconsistent with building marks and the damage caused by the storms, 

the maximum water levels taken from building marks were retained for this study, i.e. 

2.07 m for September 1919 and 0.39 m for August 1909. The mean sea level trend of 

6.39 mm/year (NOAA, 2011c) was removed from the hourly time series with the zero 

mean sea levels set for year 1999 to match tidal predictions (NOAA, 2011d). The 

harmonically predicted water levels were also obtained from (NOAA, 2011a). They were 

subtracted from water level series to remove tidal variability and to compute surges. The 

tidal component for the two cases described above (August 1909 & September 1919) was 

not removed as the timing of the maximum water levels could not be reliably identified. 

Overall missing data accounted for 2.35% of the hourly time series. Two gaps 

represented a significant portion of the missing data: 178 days from March through 
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October 1984 and 120 days from February through May 1916. Neither of these periods 

was affected by significant storms. For months that did not include any data, data was 

imputed by the means of the maximum surges for the corresponding months. The 

maximum annual surges were then identified using the imputed data. The timing of the 

missing data did not coincide with hurricanes or tropical storms impacting the Texas 

coast with two exceptions, the category 4 Hurricane #2 of August 1915 and the category 

1 Hurricane #1 of July 1943. Reliable water level data was not found for these two 

events. The extreme event distribution sensitivity to the absence of these two events will 

be addressed in a later section by computing the variability in the distribution parameters 

for a range of likely surges.   

     The resulting surge time series is presented in Figure 1.2a and compared to the 

water level maxima time series (Figure 1.2b) where the sea level rise is clearly 

discernable. The surge time series is the basis for the statistical analysis of this research. 

  

    

Figure 1.2. (a) Annual maximum surge time series (b) Annual maximum water level 

time series. 
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    Extreme Value Statistical Distributions 

 

    The extreme value distributions selected for this study included the GEV 

recommended by (FEMA, 2007), the log-logistic recommended by (Ahmad et al., 1988), 

the Dagum, and  the three and four-parameter Burr models recommended by (Kleiber and 

Kotz, 2003; Reiss and Thomas, 2007). While results are presented for these distributions, 

a number of other distributions available within the EasyFit Professional Software 

(EasyFit, 2004-2010) were compared, including the Pearson, Wakeby, lognormal, Pareto, 

and other distributions. The selected distributions were both among the best performing 

based on the statistics below and were previously used to model riverine floods or storm 

surges. 

EasyFit was used to fit all models for this study.  EasyFit uses maximum likelihood 

estimation of model parameters. 

    Two goodness-of-fit tests were used to evaluate the suitability of the five selected 

probability distributions: the Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD) 

tests. The statistic Dn of the KS test computes the maximum absolute value of the 

difference between the empirical and theoretical cumulative distribution functions over 

the relevant range of inputs. A smaller value of this statistic implies a better fit between 

the distributions (Rao and Hamed, 2000): 

                                                                                           (1)               

     One of the AD tests is the An statistic. It is defined as the integral of the squared 

difference between the empirical and theoretical distribution functions multiplied by a 

weight function that emphasizes discrepancies in the tails. It is considered one of the 
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most powerful tests for this type of distribution and can provide better discrimination 

between distributions and particularly their ability to model extreme events (ÖnÖz and 

Bayazit, 1995; Sinclair et al., 1990): 

                                                                                      (2) 

    In the above expression n is the sample size, Fn(x) is the empirical cumulative 

distribution function and F(x) is the theoretical cumulative distribution function. Sinclair 

et al. (1990) proposed a modified form of this test to emphasize the difference between 

the empirical distribution and theoretical distribution in one specific tail. One of the 

modifications of the test presented in their work, the AUn statistic, gives a larger weight 

to the upper tail and is therefore well suited for our flood frequency analysis as the largest 

events have the biggest impact:  

 

                                                                                     (3) 

 

    The following equivalent expression obtained after integration and simplification 

(Sinclair et al., (1990) was used for the AUn statistic: 

 

    

                                   (4) 

 

Again, a smaller value of this statistic implies a better fit between the distributions. 
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    Rates of the sea level rise 

 

    Various studies (Bindoff et al., 2007; Domingues et al., 2008; Edwards, 2007; 

Gregory, 2008; Vermeer and Rahmstorf, 2009) indicate a large uncertainty in projections 

of the sea level rise by the end of the century. The difficulties in accurate estimation of 

sea level rise are due to uncertainty related to future changes in global atmospheric 

temperatures and still ongoing research on all possible contributions of melting ice sheets 

from Greenland and Antarctica (Gregory, 2008; Hansen, 2007; Meehl et al., 2007; Shum 

et al., 2008). For example the latest IPCC Fourth Assessment Report (AR4) (Meehl et al., 

2007) projections do not include likely acceleration of future glacial contributions (Shum 

et al., 2008). While the higher end of the IPCC AR4 sea level rise estimates are used for 

this work, substantially higher sea level rise predictions can be found in recent work, e.g. 

in (Vermeer and Rahmstorf, 2009). Note that for the Gulf of Mexico only small regional 

deviations due to ocean density and circulation change relative to the global average sea 

level rise have been observed or predicted (Meehl et al., 2007) and such potential 

regional variability is not considered in this work. 

    For the purpose of this study, two sea level rise scenarios were selected:  

 A very conservative continued linear sea level rise of 6.39 mm/year, based 

on the 20
th

 century trend for Galveston Pier 21 station (NOAA, 2011c), resulting 

in a 0.65 m increase in sea level by year 2100 as compared to 1999 mean sea 

level;  

 A quadratic sea level rise rate, resulting in a total 1.08 m increase in sea 

level by year 2100 as compared to 1999 mean sea level. For this second scenario 

the local vertical land motion of 4.69 mm/year was estimated by comparing last 
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century’s local sea level rise rate (6.39 mm/year) with a global sea level rise rate 

of 1.7 mm/year (Bindoff et al., 2007).  A quadratic sea level rise rate was then 

added to the vertical land motion rate to bridge the years between the last water 

level measurements and the global increase in sea levels as estimated for the A1FI 

2090-2099 upper bound level (Meehl et al., 2007).   

     Analysis of the surge distribution for Galveston Pier 21 

 

Water levels are driven by high frequency forcing, tidal and meteorological, and by 

longer term factors such as local subsidence and global sea level rise (CCSP, 2009). For 

the study location these events are driven by meteorological forcing such as tropical and 

extra tropical storms with possible impact from precipitation and riverine input. While 

recent studies (Bender et al., 2010) suggest that climate change will modify both the 

overall frequency of tropical storms and the intensity distribution of storms in the 

Atlantic basin, records of past storm activity including recent events are yet to indicate 

any significant trend for the Atlantic Basin (Landsea, 2007) and Gulf of Mexico in 

particular (Levinson et al., 2010). Also, storm surge is not well correlated with the 

intensity of tropical storms. Estimates of changes in other storm characteristics such as 

size (Irish et al., 2008) and forward speed (Rego and Li, 2009) would have to be 

combined with possible changes in storm frequency to attempt estimates of changes in 

future storm surges. The meteorological forces driving storm surges, including the 

frequency and life cycle of tropical storms as well as the distribution of storm 

characteristics, are assumed stationary throughout the study period. To assess the validity 

of this assumption the parameters of each of the selected distributions were computed for 
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a succession of 15 periods each 7 years long using the EasyFit Professional Software 

(EasyFit, 2004-2010). Monthly surge maxima rather than annual maxima were used for 

this test. While switching to monthly maxima increases the relative importance of smaller 

events the size of the data set is increased by an order of magnitude allowing for a more 

statistically robust assessment. The results of this fit are presented in results section for 

the case of the log-logistic distribution.  
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RESULTS 
 

 

    Stationarity of the surge distribution for station Galveston Pier 21, Texas 

 

 

    The stationarity of the surge time series was verified based on the monthly water 

level time series as described in section 2.4. The parameters of the log-logistic 

distributions fitted for each of the 15 periods are presented in Figure 1.3. The absence of 

significant trends supports the assumption of the stationarity of the surge distribution for 

the past century. For the past 105 years the only substantial difference in parameters is 

found for the 4
th

 period (1925-1931).  This discrepancy can be explained by the smallest 

mean of the surge levels and the absence of hurricanes during that period. The results of 

this stationarity test were equivalent for the other distributions. The lack of trend for the 

distributions parameters also addresses the potential importance of increased mean water 

levels at the study location. Higher water levels in shallow bays should eventually lead to 

larger storm induced surges in the bays. The absence of impact from the mean sea level 

rise of 0.67 m from 1904 to 2008 is likely due in part to the proximity of the Pier 21 

station to the Gulf of Mexico. The station is located on a ship channel about four 

kilometers away from the main Galveston ship channel and near the mouth of Galveston 

Bay, a location for which sea level rise relative to water depth is much smaller than for 

the inland side or back bay of Galveston Bay.  
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Figure 1.3. Log-logistic distribution parameters computed on a series of monthly 

maxima (shape parameter is divided by 2). 

 

 

    Comparison of five extreme value distributions 

 

 

    The parameters for the five selected extreme value distributions were estimated and 

their cumulative distribution functions (CDF) compared against the empirical distribution 

using the 105 years maximum surge time series. The fitted values of the parameters for 

each distribution are presented in Table 1.1. Their goodness of fit as estimated by the KS 

statistic and the AD statistics with weights on both tails as well as the upper and lower 

tails alone are presented in Table 1.2. Comparisons of models using the same statistic are 

valid, but comparisons between two different statistics are not. 

    

 



16 

 

 

    

 

Table 1.1. Parameters for each of the 5 selected distributions. 

 

 

    

 

 

Table 1.2. Statistics of the KS test, AD test and modified AD test for upper tail and 

lower tail. 

 

    Comparing the results in Table 1.2, the three-parameter Burr distribution has the 

lowest statistics, i.e. the best performance for all measures, followed by the log-logistic, 

the GEV, the four-parameter Burr, and Dagum distributions. The performance of the 

respective distributions is further evaluated graphically in Figure 1.4 for the KS statistics, 

i.e. the absolute differences between the empirical and theoretical CDFs for surges above 

0.7 m. The largest discrepancy for this range of surge is observed around 0.85 m surges 

with differences in exceedance probabilities ranging from just below 0.03 for the three-

parameter Burr to just below 0.04 for the four-parameter Burr distribution. For surges 

above 0.9 m the three-parameter Burr and log-logistic distributions perform slightly 

better than the other distributions.  
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Figure 1.4. Differences between the modeled and empirical CDFs as functions of 

surge for (a) 0.73-1.01 m surges and (b) 1.18-2.85 m surges. 

 

 

     To further compare the distributions, the related return periods are computed for 

surges of increasing size and the results compared to the return periods computed directly 

from the observed data, similar to the method used by Huang et al. (2008). The results are 

illustrated in Figure 1.5. The observational return periods are computed by tallying the 

number of events up to a given surge without any smoothing contributing to the higher 

variability for long return period events. The difference between empirical and estimated 

return periods for the largest event in the data set, the surge generated by 2008 Hurricane 

Ike, are 1.2% for the log-logistic distribution, 2.5% for the three-parameter Burr, 5.4% 

for the four-parameter Burr, 7.6% for the Dagum Model, and 9.0% for GEV model 

 

                                                                                                                                                                                                                                

. 
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Figure 1.5. Comparison of estimated return periods computed based on the observed 

data. 

 

      To test the robustness of the respective models the parameters of the distributions 

were recomputed for the first 104 years of the time series, omitting the 2008 surge 

generated by Ike (resulting parameters are not shown in this publication). Return periods 

of 128, 146, 201, 176, and 212 years are obtained for the log-logistic, three-parameter 

Burr, four-parameter Burr, Dagum and GEV distributions respectively. The return period 

of 128 years estimated by the log-logistic distribution shows the best agreement with the 

105 year return period from the historical time series. 

     An additional criterion for the selection of a distribution is its robustness to missing 

or potentially erroneous data. To estimate the sensitivity of the distributions to changes in 

the surges of large storms, the parameters of the distributions were recomputed for 15 

alternate cases and compared to the original results. To create realistic alternate cases 

maximum water levels were replaced for one or more of the records for years 1909, 1915, 
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1919 and 1943. These four years were selected because their annual maxima were either 

based on building marks rather than water level measurements (1909 and 1919) or 

measurements during a hurricane were missing (1915 and 1943). For 1909 the second 

largest water level of 0.85 m was selected as an alternate value to 0.97 m. For year 1919 

the alternate value of 1.13 m was computed based on the historical hourly records instead 

of using the more realistic NOS monthly records and replaces 0.67m. For years 1915 and 

1943 the timing of the missing data coincides with the passage of major hurricanes, the 

category 4 Hurricane #2 of August 1915 and the category 1 Hurricane #1 of July 1943. 

For these years imputed data was used in the base line data set as described in section 2.1. 

Alternate values for these two years were selected by computing the means of the surges 

for category 1 Hurricanes, 1.12 m, and for category 4 hurricanes, 1.78 m. These two 

water levels were used as alternate values for 2.35 m and 0.59 m in the baseline dataset. 

    Thus, the 15 alternate time series correspond to the 15 different ways of selecting 

one or more of the four alternate surges. For each distribution fitted to these alternate 

time series, exceedance probabilities were computed. The standard deviations of the 15 

exceedance probabilities are compared graphically in Figure 1.6. A lower standard 

deviation indicates a lower sensitivity to changes in single event values and is viewed as 

a positive characteristic of the distribution. For all distributions maximum sensitivity to 

changes in the data set is reached for surges just below 1 m. For maximum annual storm 

surges below 1.1 m the three-parameter Burr distribution shows the lowest standard 

deviation while for surges larger than 1 m the GEV shows the lowest standard deviation.  
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Figure 1.6. Standard deviations of the exceedance probabilities of increasing surge 

levels when considering 16 cases to estimate the parameters of each model. 

 

 

    In Table 1.3 the performance of the respective distributions is evaluated by 

comparing modeled and observed surge exceedance probabilities for a wide range of 

significant events with surges above 0.9 m that impacted Galveston.  All the distributions 

show a good agreement for surges up to one meter. For the larger surges representing 

10% or less of the record, a detailed comparison becomes more difficult due to the small 

number of large storms on record. In particular no events producing annual maximum 

surges between 1.69 m (1932 Hurricane #2) and 2.35 m (1919 Hurricane #2) have been 

recorded resulting in a step in the historical surge distribution. The five selected 

distributions have CDFs below the historical distribution for 1.2 m to 1.4 m surges, then 

above the empirical distribution for surges between 1.6 m and 2.2 m. Agreement is good 

for the largest surges but the empirical distribution is based on only three storms for 

surges above 2 m: 2.35 m for 1919 Hurricane #2, 2.38 m for 1961 Hurricane Carla and 
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2.85 m for 2008 Hurricane Ike. Overall the performance of the selected distributions for 

estimating return periods is quite similar with the largest discrepancies driven by the 

characteristics of the data set rather than by the features of the distributions. 

 

 

 

Table 1.3. Comparison of modeled and observed surge exceedance probabilities 

listed in order of increasing maximum surge. 

 

 

 

    Overall the small differences in performance between the five selected distributions 

do not lead to the outright exclusion of one or more of the distributions as a realistic 

description of the surge maxima. For the larger surges the performance of the log-logistic 

distribution is better than the other three distributions based on the AD test focused on the 

upper end of the distribution and the best for surges above 1.6 m based on the differences 

in CDF. While the three-parameter Burr had the best performance by some measures, we 
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chose not to use it, because its performance was better for the lower surge events. Also, it 

is missing a location parameter that could make it more difficult to apply to other 

locations. When considering the robustness of the distributions the GEV distribution has 

the best performance for the larger surges although the differences are small. Because of 

the above results, the comparison of the KS and AD statistics, and for its ability to better 

model the return period of the large events, including the largest event in the data set, 

Hurricane Ike, the log-logistic distribution was selected for the rest of this study. The 

equation and parameters of the log-logistic CDF for this study are listed below following 

the convention by Kleiber and Kotz (2003): 

                                                 (5) 

 

   Impact of sea level rise by 2100 for Galveston Pier 21, Texas 

 

    We use the fitted log-logistic maximum annual surge distribution to project 

inundation exceedance probabilities for future years while considering the two sea level 

rise scenarios described in section 2.3. Exceedance probabilities are computed for both 

scenarios and compared in Figure 1.7 for years 2025, 2050, 2075 and 2100. While all 

exceedance probabilities are rising, as expected, the changes are considerably more 

pronounced for small surge events. As an example, the sea level rise impact on the 

frequency of 1 meter water level maximum, the local impact of 2005 Hurricane Rita, is 

considered. For the second sea level rise scenario the annual frequency of this event will 

increase from presently about 16% to 26% in 2025 and 62% in 2050. After year 2070 this 
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type of event is predicted to take place every year. Even for the more conservative 

scenario, 1 meter water level maximum surges are expected annually by year 2100. 

    

 

Figure 1.7. Comparison of the projected water level exceedance probabilities for 

present water levels and including impact of two sea level rise scenarios (a) local sea 

level rise of 6.39 mm/year (b) a quadratic increase of the rate of sea level rise rate 

based on IPCC AR4 scenario A1FI. 

 

    The change of water level exceedance probability is further compared in Figure 1.8 

for the local impact of four storms: 2005 Rita (1.01 m surge), 1983 Alicia (1.28 m surge), 

1957 Audrey (1.44 m surge) and 1942 Hurricane #2 (1.59 m surge). The frequency of the 

maximum annual water levels generated by Rita (1.01 m surge) increases much faster 

than that of the larger storms from 16% in 2008 to annually by 2100, more than a six fold 

increase, while for the 1.59 m surge case the frequency rises from about 4.5% to about 

16%, more than a threefold increase. The faster rate of sea level rise of scenario 2 leads to 

substantially larger increases in water level exceedance frequency (Figure 1.8b). For 

example, while for the 6.39 mm/year sea level rise case the exceedance probability of a 
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surge of the size generated by1983 Alicia is predicted to be 45% in 2100, such an event is 

projected to take place annually for the faster rate of sea level rise case.  

  

 

Figure 1.8. Comparison of the increase in water level exceedance probabilities over 

the coming years for two sea level rise scenarios (a) local sea level rise of 6.39 mm/year 

(b) a quadratic increase of the rate based on IPCC AR4 scenario A1FI. 

 

     Figure 1.9 displays the ratio of the water level exceedance probability in 2100 

versus the present exceedance probability in 2009 for the conservative scenario. For 

relatively small events around 1 m, the ratio increases very rapidly due to the shape of the 

surge probability distribution. For events leading to smaller maximum water levels the 

increase is limited by a rapid rise to a 100% probability, i.e. the events are predicted to 

take place every year. The largest proportional increase is computed for a 1.1 m water 

level, which is predicted to occur 6.5 times as often in 2100. For events leading to larger 

surges, the relative exceedance probability ratio decreases progressively to about a factor 

1.85 for the maximum water levels generated by 2008 Hurricane Ike. While a 1.85 times 

increase for such a large event is important given the damage caused by Ike (Report, 
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2008), this relative increase is considerably smaller than the 6.5 time increase for events 

generating a 1.1 m water level. This much larger projected increase in the frequency of 

the small to medium inundation events must be accounted for when projecting damage 

costs and insurance rates. 

   

 

Figure 1.9. Ratios of increase of projected exceedance probabilities in 2100 and 

2008 for all water levels. 

 

 

    Finally, projected changes in return periods are computed up to year 2100 for a 

variety of storms that have impacted Galveston and for both scenarios. The results are 

presented in Table 4. Return periods directly based on observations are listed under year 

2008 while results for 2025, 2050 and 2100 are model based estimates.  Differences in 

methodologies (more variability from the observational method) lead to the smaller 

estimated return periods for 2008 than for the 2025 and 2050  model estimates for two of 

the three largest surge events and for surges around 1.25m. For the faster sea level rise 
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scenario, the maximum surge expected every year in Galveston is greater than the surge 

of all but four hurricanes from the historical record, while the return period of an event of 

the magnitude of Hurricane Ike is predicted to decrease to 29 years from presently 105 

years. 

 

 

 

Table 1.4. Projected return periods for inundation levels that have been generated 

by a range of historical storms for the study’s two sea level rise scenarios. 
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CONCLUSION 
 

 

    This study focused on quantifying the changing risks of flooding as the century 

progresses. The study started by comparing several extreme value distributions for 

estimating the probability of annual surge maxima for the station of Galveston Pier 21 in 

Galveston Bay, Texas. The comparison focused on five frequently used distributions: 

GEV, log-logistic, three-parameter and four-parameter Burr, and Dagum. A comparative 

analysis of the distributions does not reveal significant differences in performance. The 

log-logistic distribution was selected to evaluate the probability of future flooding 

because of its good performance for the largest surges.  

    The study then uses the fitted log-logistic model to examine the effects of two 

forecasts of future sea level rises, a conservative scenario that continues the linear 

increase of the 20
th

 century, and a scenario based on the upper end of the IPCC AR4 

A1FI. Both scenarios show continuously increasing risks of flooding as the century 

progresses. By the end of the century, for the conservative scenario, inundations caused 

by the recent impact of Hurricane Rita are expected to take place annually, as compared 

to the current return period of 6.6 years. For the IPCC A1FI based scenario a Rita like 

flooding is expected to take place annually shortly after year 2050. The research shows 

differences in the relative increase in frequency of inundation caused by events of 

different sizes, and in particular a much larger proportional increase of flooding caused 

by smaller size storms. By year 2100 water level exceedance probabilities are expected to 

about double for the impact of the largest storms such as Hurricane Ike, but increase by a 

factor over six times for the impact of smaller storm surges associated locally with the 

impact of storms such as Hurricanes Cindy, Alicia, and Rita for the conservative 
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scenario. These results should be taken into account while estimating future insurance 

rates to cover the growing flooding damages as the century progresses. 
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CHAPTER 2 

 

Estimated Increase in Inundation Probability with 

Confidence Intervals for Galveston Bay, Texas 
 

ABSTRACT 
 

This study uses bootstrap methods to estimate confidence intervals for increases in 

inundation probability at the Pier 21 tide gauge in Galveston, Texas. The local surge is 

modeled using the generalized extreme value (GEV) distribution. Resamples of the 

historical record are created, and a GEV model is fit to each resample.  This ensemble of 

models is then used to estimate future water level exceedance probabilities under two 

possible sea level rise scenarios, a conservative linear continuation of the past century’s 

trend and a scenario based on the upper limit of the sea level range in the IPCC AR4 

report, i.e. the A1FI scenario. The distribution of future exceedance probabilities is 

trimmed to estimate 90% and 95% confidence intervals around the estimated proportional 

change in annual water level exceedance probabilities by 2100. The study shows that 

even under the conservative scenario and using the wider 95% intervals, the frequency of 

surges of height 1.1 m (current return period of 16 years) becomes at least 4 times as 

common by the end of the century. 
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INTRODUCTION 
 

    One of the most frequent and costly natural disasters that affect societies around the 

world is flooding. According to the United States Federal Emergency Management 

Agency (FEMA), 2.03 million properties were affected by floods from January 1978 to 

November 2012 in the United States with total monetary loss approximately 42 billion 

dollars (NFIP, 2013). The confluence of sea level rise and population growth in coastal 

regions makes it essential to continue improving flood management strategies.  Relative 

sea level rise occurs where there is a local increase in the level of the ocean relative to the 

land, which may be due to rising ocean levels and/or subsiding land levels (Bates et al., 

2008) The required investments to protect such areas will be very large, and as sea levels 

rise, available resources will likely not be sufficient to protect all areas. For efficient 

planning of coastal investments, it is therefore essential to develop accurate flooding 

estimates that take into account both local effects such as land subsidence and global 

effects such as estimated rates of sea level rise linked to climate change (IPCC, 2007).  

    Effective flood management strategies significantly reduce the vulnerability of 

people to the risks of property damage. Research for the UK by Purvis (2008) focused on 

the methodology to estimate the probability of future coastal flooding given uncertainty 

over possible sea level rise. The authors conclude that undertaking a risk assessment 

using the most plausible sea level rise value may significantly underestimate monetary 

loss as it fails to account for the impact of low probability, high consequence events. This 

paper focuses on evaluating the impact of sea-level rise on the historical range of surge 
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events in Galveston Bay, Texas and estimates the 90% and 95% confidence intervals for 

the relative increases in the probability of inundation in the study area.   

     Because the prediction of large floods requires knowledge of the underlying 

distribution, this study starts with the statistical modeling of extreme surges at the study 

site. A number of studies have been conducted to model the extreme value distributions 

of flood data. The generalized extreme value distribution (GEV) is recommended by 

(FEMA, 2007) for modeling floods, and has been used by previous researchers (Kotz and 

Nadarajah, 2000; Nadarajah and Shiau, 2005; ÖnÖz and Bayazit, 1995). Warner and 

Tissot (2012) determined that the GEV was one of the best distributions for modeling 

surges at Galveston Pier 21, the station with the longest record in the Gulf of Mexico.  In 

Chapter 1, we noted that GEV had some advantages over log-logistic, although we 

indicated a slight preference for log-logistic at that point. However, for computational 

efficiency when dealing with 10,000 bootstrap fits, we chose to switch from log-logistic 

to GEV distribution. The main focus of this study is to use the GEV model along with 

bootstrap methods (Efron, 1979) to estimate confidence intervals for increases in 

inundation probability at this station. Accurate estimation of confidence intervals for the 

probability of flooding is an important requirement for the development of appropriate 

flood control structures in the future.  

    The estimation of a model for a stochastic process from a historical sample is a 

classical problem in statistics.  Since a historical sample is necessarily an incomplete 

record of the entire distribution of the process, there is inevitably some uncertainty in 

estimates of model parameters, and hence in the predictions made from them. General 

methods of model fitting, such as Maximum Likelihood Estimation (MLE), provide a 
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convenient method of estimating model parameters, but not for estimating their 

uncertainty. For some models (e.g., normal distributions) there is a well-understood 

theory to guide the applied modeler; however, for other models such as the GEV, no such 

specific theory exists. For these situations, the bootstrap method (Efron, 1979) is widely 

used by statisticians to estimate uncertainty in model parameters. In this paper, we apply 

bootstrap techniques to MLE model fitting to estimate uncertainty in both the parameters 

of the GEV model as applied to Galveston Pier 21 data, and more importantly, to 

estimate uncertainty in predictions of the likelihood of future inundations of different 

sizes. The bootstrap method has been used for many statistical applications, but to our 

knowledge has not been used to estimate confidence intervals for surge distributions.  

There are several different techniques that are described by the umbrella rubric of 

“bootstrap”; we employ two of them.  The first method (“nonparametric”) uses 

resampling with replacement of the historical record to construct alternative “historical 

records”.  Then each such “historical record” is refit using MLE to generate a new 

estimate of model parameters and of future inundations.  The second method 

(“parametric”) begins with the MLE model of the single historical record, and then 

generates new “historical records” randomly from this model. Again, each new 

“historical record” is refit using MLE. Repeated use of each technique generates a large 

set of estimates for parameters and inundations, which serves as an estimate of the true 

distribution of each, and can be used to generate confidence intervals for the unknown 

quantities. Kyselý (2008) compares performance of nonparametric and parametric 

bootstraps to fit GEV models for time series of lengths 20, 40, 60 and 100 extreme 

values, and concludes that n = 60 is enough information for either technique to achieve 
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their nominal level of significance. In our research there are 105 years of records 

available for Galveston Pier 21. Annual maximum surges are computed and exceedance 

probabilities are estimated for surges ranging from 0.4 m. to 3.0 m. Two different sea 

level rise scenarios are employed to estimate the ratio between exceedance probability by 

the end of the century and present values of the probability of inundation. 90% and 95% 

confidence intervals for the ratios are estimated using the bootstrap techniques. The 

results of this study show the relative importance of the surge events of different sizes 

and predict substantial differences in the increase of the probability of inundation 

depending on the size of the surges.  
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DATA AND METHODS 
 

 

    Study site and data 

 

 

    The Galveston Pier 21, Texas station was selected for this research (Figure 2.1). 

The station is part of the US National Water Level Observation Network and is located 

on the north-east side of Galveston Island, Texas (Latitude 29° 18.6' N, Longitude 94° 

47.6' W). 

     Hourly water level records are available at this station from January 1904 until 

December 2008 from NOAA's Tides and Currents data repository (NOAA, 2011a) with 

only a few very short gaps. Previous studies (Huang et al., 2008; Turner, 1991) used the 

same data to examine statistical distributions of the water levels in the Gulf of Mexico 

and along the coast of the United States. Verified hourly water levels were used to 

calculate monthly maximum water levels, and the resulting time series were compared 

with NOAA’s monthly extremes time series (NOAA, 2011a) for quality control. The 

station’s Mean Range of Tide is 0.31 m (NOAA, 2011b) and most of the differences in 

records were within this range with two exceptions: Hurricane #6 in August 1909 and 

Hurricane #2 in September 1919. The monthly maximum water levels were retained for 

this study, 0.39 m for the 1909 storm and 2.07 m for the 1919 storm. Next the mean sea 

level trend of 6.39 mm/year (NOAA, 2011c) was removed from the hourly time series 

with the zero mean sea levels set for the year 1999 to match tidal predictions (NOAA, 

2011d). The harmonically predicted water levels were also obtained from (NOAA, 

2011a) and were subtracted from water level records to remove tidal variability and to 
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calculate surge time series. It was not possible to remove the tidal component for the two 

cases described above (August 1909 and September 1919) as the timings of the 

maximum water levels are not available. Overall missing data accounted for 2.35% of the 

time series. Missing records were imputed by the means of the maximum surges for the 

corresponding months. Then the maximum annual surges were computed and used for 

this study. The timing of the missing data did not coincide with hurricanes impacting the 

Texas coast with two exceptions, Hurricane #2 in August 1915 and   Hurricane #1 in July 

1943.  Reliable data was not found for these two events. The resulting surge time series is 

compared to the water level time series in Figure 2.2. The sea level rise is clearly 

discernable in Figure 2.2a. 

 

 

Figure 2.1. Map of the study area. The study station is indicated by the red dot. 
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Figure 2.2 (a) Annual maximum water level time series (b) Annual maximum surge 

time series. The black line represents the 6.39 mm/year sea level rise for the Galveston 

Pier 21, Tx station. 
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   Generalized Extreme Value Distribution 

 

    The generalized extreme value distribution (GEV) is selected for this study as 

discussed in the introduction. The equation and parameters of the cumulative distribution 

function (CDF) of the GEV for this study are listed below with parameters following the 

convention of  Kotz and Nadaraiah (2000): 

 

  

.,, parameterlocationaisandparameterscaleaisparametershapeaiswhere    

      

      

For our data time series, the GEV model was fit using Matlab’s gevfit function 

(MatLab®, 2009a), which uses MLE to estimate the model parameters. 

 

    Bootstrap methods to estimate confidence intervals  

 

 

    The bootstrap technique was introduced by Efron (1979) and is further described  in 

Efron and Tibshirani (1993) and Davison and Hinkley (1997). To investigate the 

uncertainty of the surge distribution, both nonparametric and parametric methods were 

used.  For the nonparametric method, the bootstrap samples are replicated from the 

empirical distribution.  For the parametric method, the bootstrap samples are drawn from 

the estimated parametric model. The nonparametric bootstrap is used to approximate 

parameters of a population or probability distribution when we do not know the 

,0for/,)(
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distribution. The parametric bootstrap is used to approximate parameters of a population 

or probability distribution when we think we know the distribution.  

 For the parametric bootstrap we perform the following steps: 

 Determine parameters of the GEV distribution for the historical data using 

Matlab’s (MatLab®, 2009a) gevfit function. 

 Generate 10,000 bootstrap samples by randomly sampling from this GEV fitted 

distribution. Firstly, 3,000 samples were found to be sufficient to obtain stable 

parameter distributions, the larger number of 10,000 samples was selected as 

computational efficiency was not a major issue. The generated samples have the 

same sample size as the original data, 105 annual surge values. 

 For each bootstrap sample re-estimate the parameters of the GEV distribution. 

 Calculate the CDF and exceedance probability function for each re-estimate of the 

parameters using the gevcdf function in Matlab (MatLab®, 2009a). 

      For the nonparametric bootstrap we use the following procedure: 

 Generate 10,000 bootstrap samples by assuming all Annual maximum surges as 

equally likely and randomly picking with replacement any of the values from the 

historical dataset. The stationarity of the extreme value distribution parameters 

was analyzed and confirmed by Warner and Tissot (2012) for a succession of 15 

periods of monthly maximum water levels each 7 years long. Furthermore the 

present study is interested in surge distributions over long periods, longer then 

decadal variability in hurricane activity. The drawn samples have the same sample 

size as the original data, 105 Annual surge values. 
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 For each bootstrap sample re-estimate the parameters of the GEV distribution. 

 Calculate the CDF and exceedance probability function for each re-estimate of the 

parameters using the gevcdf function in Matlab (MatLab®, 2009a). 

   Rates of sea level rise 

 

    Various studies (Bindoff et al., 2007; Domingues et al., 2008; Edwards, 2007; 

Gregory, 2008; Vermeer and Rahmstorf, 2009) indicate a large uncertainty in projections 

of the sea level rise by the end of the century. The difficulties in accurate estimation of 

sea level rise are due to uncertainty related to future changes in global atmospheric 

temperatures, as well as ongoing research on possible contributions of melting ice sheets 

from Greenland and Antarctica (Gregory, 2008; Hansen, 2007; Meehl et al., 2007; Shum 

et al., 2008). The IPCC Fourth Assessment Report (AR4) (Meehl et al., 2007) projections 

do not include the likelihood of future acceleration of glacial contributions (Shum et al., 

2008). Also substantially higher sea level rise predictions can be found in recent work, 

e.g. in (Vermeer and Rahmstorf, 2009). 

 For the purpose of this study, two scenarios of sea level rise were selected:  

 A very conservative continued linear sea level rise of 6.39 mm/year, based on the 

20
th

 century trend for Galveston Pier 21 station (NOAA, 2011c), resulting in a 

0.65 m increase in sea level by year 2100 as compared to the 1999 mean sea level;  

 A quadratic model of sea level rise, resulting in a total 1.08 m increase in sea level 

by year 2100 as compared to the 1999 mean sea level. For this second scenario 

the local vertical land motion of 4.69 mm/year was estimated by comparing last 

century’s rate of local sea level rise (6.39 mm/year) with the global rate of sea 
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level rise of 1.7 mm/year (Bindoff et al., 2007).  A quadratic model of sea level 

rise was then added to the vertical land motion rate to bridge the years between 

the last water level measurements and the global increase in sea levels as 

estimated for the A1FI 2090-2099 upper bound level (Meehl et al., 2007).  

 

Computing the ratios of increase in exceedance probability by 2100 

 

 

 

We use the previously selected GEV distribution to project water level exceedance 

probabilities for future years while considering the two possible sea level rise scenarios, 

described in section 2.3. For this research we assume the surge distribution and 

meteorological forcings that drive the surge and frequency of the tropical storms in the 

study area are unchanged for the next century. To evaluate the impact of sea level rise on 

future indundation frequencies we compute the ratio between exceedance probability in 

2100 and exceedance probability in 2008.  Then these ratios are trimmed to estimate 90% 

and 95% confidence intervals. 
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RESULTS 
 

 

    GEV model of the historical data and its parameters 

 

 

    The parameters of the GEV distribution based on the historical surge record were 

estimated: shape parameter ξ=0.35, scale parameter  = 0.17 and location parameter 

μ=0.60.  

  

   GEV models of the bootstrap ensemble members and the ranges of their 

parameters  

 

    Both bootstrap techniques involve the generation of 10,000 alternate time series of 

annual maximum surges and refitting the surges with the GEV model. Each bootstrap 

technique results in a range of values for each of the three parameters.  The ranges of the 

GEV parameters are the same for the ensemble members computed using parametric and 

nonparametric methods. The distributions of all the GEV parameters from both bootstrap 

methods are nearly symmetrical and centered on the values of the historical GEV 

parameters. As an example, the range of values for the shape parameter in the 

nonparametric method is illustrated in Figure 2.3.  This graph demonstrates that the 

distribution of a given parameter from a bootstrap method has a “simple” distribution, 

somewhat symmetric, with a single mode. 
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Figure 2.3. The values of the shape parameter of the GEV model for the 

nonparametric bootstrap technique. The white line indicates the value of the shape 

parameter computed over the historical data set. 

 

 

    The ratio of exceedence probabilities by 2100 

 

    To evaluate the impact of sea level rise on future inundation frequencies, ratios of 

increase in exceedance probabilities by 2100 are computed based on the two selected sea 

level rise scenarios: the conservative linear continuation of the past century trend and the 

A1FI scenario in the IPCC AR4 report. These ratios are presented in Figure 2.4. The risk 

of flooding significantly increases by the end of the century for both scenarios.  

     For water levels up to about 1 m, both sea level rise scenarios predict exceedance 

probabilities of 100% by the end of the century.  Thus, the two curves in Figure 2.4 are 

the same for that range of water levels.  At 1 m, both models predict a six-fold increase in 

exceedance probabilities over the 2008 levels.  From this point, the models diverge 
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sharply.  For the conservative scenario, the ratio of exceedance probabilities increases a 

little, up to 1.1 m, and then gradually declines to a two-fold increase in probabilities of 

2.8 m surges (corresponding to Hurricane Ike in 2008).  For the A1FI scenario, the ratios 

of increase in exceedance probabilities continue to increase sharply, peaking at a 

predicted twenty-fold increase for surges of 1.6 m.  From there the ratios decline almost 

as sharply to a four-fold increase in 2.8 m surges in 2100. 

 

 

 

 

 

Figure 2.4. Ratios of water level exceedance probability in 2100 versus the 

exceedance probability in 2008 for the conservative and A1FI scenarios of sea level 

rise (nonparametric bootstrap). 
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90% and 95% confidence intervals for the ratios of increase in exceedance 

probabilities 

 

 

    The results from the two bootstrap techniques were extremely close, and the 

nonparametric bootstrap was selected to discuss the results of the study. Figure 2.5 

presents 90% and 95% confidence intervals around ratios of increase in exceedance 

probabilities for both sea level rise scenarios. As the century progresses the risk of 

flooding significantly increases for both scenarios. The greatest uncertainties in the 

estimates coincide with the greatest increases. Even with these uncertainties, the lower 

bounds of the confidence intervals imply a four-fold increase in surges of 1 m for the 

conservative scenario, and at least a ten-fold increase in surges of 1.6 m for A1FI 

scenario. As a practical example, the conservative scenario takes the current 16% annual 

chance of a 1.01 m surge (impact of Hurricane Rita in 2005 in the Galveston Bay) to at 

least a 64% annual chance of the same surge in 2100. Note also that there is almost no 

difference in the lower bounds of the 90% and 95% confidence intervals. 
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Figure 2.5. (a) The 90% and 95% confidence intervals (nonparametric bootstrap) 

around the ratios of increase of the water level exceedance probability in 2100 versus 

the present exceedance probability in 2008 for the conservative scenario and (b) A1FI 

scenario (on the right). 
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DISCUSSION 

 

    The confidence intervals for the ratio of exceedance probability in 2100 versus the 

exceedance probability in 2008 were estimated by two different techniques, by a 

nonparametric bootstrap and by a parametric bootstrap.  The fact that the two methods 

result in the same confidence intervals is an indication that the GEV distribution 

appropriately models surge height distribution for the data set. While there is still a great 

deal of uncertainty in the current projections of the rate of sea level rise, results show that 

even without acceleration of the rate of sea level rise the probability of inundation will 

increase substantially. As it is unlikely that the rate of sea level rise will remain the same, 

a higher ratio of exceedance probabilities is more likely, unless the local rates of 

subsidence decrease.   

      An important feature of the confidence intervals in Figure 2.5 is their asymmetry 

with narrower spans between the medians and lower bound estimates than between the 

medians and upper bound estimates. For an understanding of the cause of this asymmetry 

consult Figure 2.6.  In Figure 2.6a we have plotted 10,000 exceedance probabilities for 

1.11 m (the highest ratio for the conservative scenario) in 2008 (on the x-axis) and 2100 

(on the y-axis), as predicted by the GEV fits for our nonparametric bootstrap resamples.  

The increase in exceedance probabilities is thus the ratio of the y-coordinate for each 

point in Figure 2.6a, divided by its x-coordinate.  Compare an example point in the lower 

right hand quadrant—say, (0.16, 0.75)—with the point in the center of the crosshairs, 

(0.12, 0.81)—with a mirror image point in the upper left hand quadrant—say, (0.08, 

0.87).  The corresponding ratios are 4.69, 6.75, and 10.875.  The change in the 

numerators (y-coordinate) is only about 20%, but the change in the denominators (x-
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coordinate) is about 100%.  Thus, the exceedance probabilities for the two years are 

roughly symmetrically distributed in Figure 2.6a. However, their ratios are not, and the 

quadrant with small x-coordinates and large y-coordinates will have much greater 

variation than the quadrant with large x-coordinates and small y-coordinates. 

 

 

 

Figure 2.6. (a) Exceedance probability in 2008 versus exceedance probability by 

2100 for the conservative scenario for water level 1.11 m (the highest ratio); the 

crosshairs represent the corresponding quantities for the GEV fit on the historical data 

and (b) Ratios of all 10,000 nonparametric bootstraps for water level 1.11 m sorted in 

descending order.  

 

      As one considers expanding this analysis to other locations the length of the time 

series available will be a limiting factor. Accordingly to Kyselý (2008) our ability to use 

the bootstrap and achieve nominal confidence levels for the increase in exceedance 

probabilities by 2100 for other stations will require at least 60 years of data. There are 

presently only three other stations along the Gulf of Mexico that satisfy this requirement: 
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Saint Petersburg, FL (63 years of data), Pensacola, FL (86 years of data), and Key West, 

FL (97 years of data). 

    The next step of the research may be analyzing the economic impact of the elevated 

sea levels and associated storm surges. As sea level increases, flood events will threaten 

more lives, and damage more public and private properties. This problem may become 

more severe due to population growth in coastal areas. With this in mind, public demand 

for seawalls, bulkheads, beaches nourishments and other shoreline maintenance will 

increase in order to protect coastal communities. 
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CONCLUSION 
 

 

    This study examines the impact of sea-level rise on storm surge for Galveston Bay, 

Texas and estimates the 90% and 95% confidence intervals for increases in the 

probability of inundation in the study area. To estimate uncertainty in predictions of the 

likelihood of future inundations by 2100 two bootstrap techniques (parametric and 

nonparametric) were combined with two sea level rise scenarios (a conservative 

continued linear sea level rise and a scenario based on the upper end of the IPCC AR4 

A1FI estimates). The minimum values of the increase in exceedance probabilities are 

high with very little difference between the 90% and 95% confidence intervals. Both 

scenarios show continuously increasing risks of flooding as the century progresses.  

    With advancing sea level rise, there are substantial differences in the relative 

increase in probability of inundation caused by events of different sizes. In particular, 

relatively small storms will cause a larger proportional increase in flooding frequency. At 

a minimum the frequency of reaching an annual maximum water level of 1.1 m will 

increase by a factor 4 with 95% confidence for the most conservative sea level rise 

scenario. The insurance industry will use this information when estimating future 

insurance rates to cover the growing flooding damages as the century progresses. In 

addition, decision makers can use the results of this research for better preparation of 

coastal infrastructure and coastal land use. More frequent, smaller storm surges may have 

a larger impact on coastal communities than the effect s of less frequent, larger storm 

surges.  
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CHAPTER 3 

 

Estimated Increase in Inundation Probability with 

Confidence Intervals for the Gulf of Mexico 

 

ABSTRACT 

 

The primary goal of this research is to compare the relative increase in frequency of 

inundation caused by storms of different sizes for different sea level rise scenarios and 

regions of the Gulf of Mexico. The research is based on locations around the Gulf of 

Mexico that benefit from existing long term sea level records and are located near 

population centers: Galveston Pier 21, Galveston Pleasure Pier, Port Isabel, Rockport, 

Texas, Grande Isle, La, and Pensacola, Key West, and St. Petersburg, Florida stations.  

Differences in oceanographic setting are discussed and affect the quantitative estimate of 

vulnerability to sea level rise. Increases in inundation frequencies are computed based on 

two possible sea level rise scenarios, a conservative linear continuation of the past 

century trend and a scenario based on the upper limit of the sea level range in the IPCC 

AR4 report, i.e. the A1FI scenario. Results are expressed as the ratios of water level 

exceedance probabilities between years 2100 and 2011.   

Water levels at maximum ratios have a strong correlation with most common moment- 

and quantile - based statistics except the maximum annual surges.  This indicates that the 

results of this study are not overly sensitive to the most extreme values or largest surge on 

the record provided that the record includes at least one large surge. Statistical bootstrap 

methods are used to estimate 90% and 95% confidence intervals for increases in 
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inundation probability at the study locations. For most cases the confidence intervals 

show a substantial decrease in interval width for stations with lengths of datasets of 50 

years or longer indicating a preferred data length provided that a large surge event is 

included. 

The lower bounds of the confidence intervals imply significant increase in exceedance 

probabilities for each station for both scenarios. While expected increases in inundation 

frequencies are substantial for all stations, the results show considerable variation 

depending on the sizes of the surges, the station locations and the sea level rise scenarios. 

More frequent, smaller storm surges may have a larger impact on coastal communities 

than the effects of less frequent, larger storm surges. Ratios of the exceedance 

probabilities depend mostly on sea level trends and the shape of the curves of the 

exceedance probabilities with the relative importance of these parameters depending on 

the sea level rise scenario: the maximum ratios are strongly correlated to the sea level 

trends for the conservative scenario, but for higher rates of global sea level rise local 

subsidence becomes less important. Locations with low rates of vertical land motion 

combined with narrow surge ranges such as the Key West station have the largest ratios 

of exceedance probabilities and become the most at risk for the A1FI based scenario. 

Results for both scenarios show that by 2100 the Grande Isle station will experience 

substantial increases in inundation frequencies due to the large local subsidence.  For the 

faster sea level rise scenario water levels accoiated with majority of the hurricanes are 

predicted to take place every year by 2100.  
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INTRODUCTION 

 

One of the most frequent and costly natural disasters that affect societies around the 

world is flooding. According to the United States Federal Emergency Management 

Agency (FEMA), 2.03 million properties were affected by floods from January 1978 to 

November 2012 in the United States with total monetary loss approximately 42 billion 

dollars (NFIP, 2013). The combination of sea level rise and population growth in coastal 

regions makes necessary to continue improving flood management strategies. This 

problem will become even more severe due to population growth in coastal areas. From 

1990-2008, population density increased by 32% in Gulf coastal counties, 17% in 

Atlantic coastal counties, and 16% in Hawaii (U.S. Census Bureau 2010) (NOAA, 

2013a). Sea level rise, whether caused by downward vertical land motion or global sea 

level rise, will cause storm surge floods to progress further inland, thereby increasing 

flood damage and the recurrence interval of present 30- or 50-year floods.  Recent 

research results indicate that effects of sea level rise on storm surge impact and 

occurrence rate estimates may not be adequately accounted for. A study by Frazier et al. 

(2010) concludes that the impact of storm surges in Sarasota County, Florida, caused by 

small hurricanes will increase due to sea level rise. Park et al. (2011) analyzed long term 

tidal records from Key West, Pensacola, and Mayport, Florida and concluded that one-in-

fifty year surge event can become a one-in-five year event depending on the sea level rise 

scenario and station. Tebaldi et al. (2012) investigated the influence of sea level rise on 

expected storm surge-driven water levels and their frequencies along the contiguous 

United States by analyzing records of 55 stations. They concluded that even at the 
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locations with relatively slow relative sea level rise the frequency of what is now 

considered extreme water levels may substantially increase. Frey et al. (2010) 

investigated the effect of sea level rise and hurricane intensification on storm-surge 

flooding on the city of Corpus Christi, Texas. Their conclusion is “events that currently 

cause minor or negligible damage might become significant events, causing much greater 

damage in the future. Events that currently cause moderate damage might become 

devastating hurricanes, possibly resulting in significant loss of property and lasting 

economic and social impacts”. 

     Relative sea level rise occurs where there is a local increase in the level of the ocean 

relative to the land, which may be due to rising ocean levels and/or subsiding land levels 

(Bates et al., 2008). The subject of this study is the impact of sea level rise on storm 

surges of various magnitudes in low-lying coastal zones around the Gulf of Mexico. The 

research is based on locations that benefit from existing long term sea level records: 

Galveston Pier 21, Galveston Pleasure Pier, Port Isabel, Rockport, Texas; Grande Isle, 

Louisiana; and Pensacola, Key West, and St. Petersburg, Florida stations. Different 

portions of the Gulf of Mexico (Figure 3.1) are experiencing different sea level rise 

trends and can be divided into five regions, based on the characteristics of the land 

masses: Florida Gulf Peninsula, Northeastern Gulf Coast, Mississippi Delta Area, Texas 

Coast, and Mexico Coast (Davis, 2011). Only about 20 million years ago the Florida 

Peninsula was isolated from the mainland. Geologically the Florida Gulf Peninsula did 

not have a substantial sediment input and can be characterized as a carbonate platform 

that can accumulate limestone, but did not receive sediment runoff from the continent. 
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The local rate of sea level rise in this area is influenced mostly by global sea level rise, 

and has been about 2-2.2 mm over the past century depending on location (Davis, 2011).  

The Florida Gulf Peninsula is currently experiencing substantial erosion of its open 

beaches. Estuarine shorelines are dominated by wetlands. These wetlands areas are stable 

at the present time because of the stability of the carbonate platform, and provide natural 

protection from hurricanes. The current sea level rise is slow for Florida Gulf Peninsula 

and is presently not a significant problem. The Northeastern Gulf Coast is a wave-

dominated, barrier coast that has substantial streams running into the Gulf. The Mobile 

River and the Apalachicola River are contributing a considerable amount of sediment to 

the Gulf. The sea level rise for this region varies between 2.4-4.0 mm per year at the 

present time (Davis, 2011). The Mississippi Delta Area experiences the largest rate of sea 

level rise because of mud compaction and withdrawal of fluids. These factors together 

with global sea level rise drive regional rates of rise up to 8-10 mm per year and at even 

larger rates locally (Davis, 2011). Many areas along the Texas Coast area are 

experiencing fluid withdrawal as well (for example, Houston-Galveston area), oil and gas 

extraction and/or groundwater pumping. The sea level rise for this area varies from 12 

mm per year at the Louisiana-Texas border to 4 mm per year at the Rio Grande area 

(Davis, 2011). The Mexico Coast is an area with thick accumulation of the sediments in 

river deltas. There is no substantive data on the rates of the sea level rise for this area. 

The area close to the Rio Grande can be assumed to experience rates of the sea level rise 

similar to the south most portions of the Texas coast or about 4 mm per year (Davis, 

2011). 
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      Figure 3.1. Map of the study area (red line indicates the 30 m depth contour). 

White dots indicate the study locations. 

 

 

The bathymetry along the coastline of the Gulf of Mexico also varies noticeably 

(Figure 3.1). Knowledge of the offshore bathymetry is important, as shallow water close 

to shore tends to increase the magnitude of the storm surge generated by hurricanes. The 

height of the surge is directly proportional to the width of the shallow water, and 

inversely proportional to the depth (Hicks, 2006). “The largest surges occur when 

hurricane winds blow for a long time over large expanses of shallow water” (Pugh, 

2004). Because the width and the slope of the continental shelf and the shoreline 

elevation influence the storm surge, coastal communities on steeper coastlines will 

http://chps.sam.usace.army.mil/ushesdata/NC/Data/definitions/Bathymetry.html
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typically not see as much surge inundation as communities on shallow sloping coastlines. 

Accordingly to Irish and Resio (2010)  75% of surge is generated in waters shallower 

than 30 m. The range to which variations in near shore bathymetry influence the storm 

surge was examined by Weaver and Slinn (2010). They concluded that as distance 

offshore decreases (in waters less than 30 m) the bathymetric fluctuation becomes 

increasingly important. (Fitzpatrick et al., 2009) proposed a new scale that includes 

combined factors influencing the storm surge. They propose defining the coastal regions 

by “bathymetry zones”. This scale identifies the regions by the extent of the continental 

shelf and shallow water proximity. Their research is based on the examination of the 

bathymetry of the different Atlantic and Gulf of Mexico coastal cities. The locations have 

a large variation of depth and slope of the shallow waters and different continental shelf 

locations. For example, their analysis concludes that Gulfport, MS is very vulnerable to 

storm surge as this location is adjacent to very shallow water, while Fort Lauderdale, FL 

might experience relatively small storm surge since it is near very deep water. They 

subjectively define six bathymetry zones to represent these variations: very deep, deep, 

moderate, average, shallow, and extremely shallow.  

To estimate future storm surge impact requires knowledge of the underlying 

distribution. A number of studies have been conducted to model the extreme value 

distributions of flood data. The generalized extreme value distribution (GEV) is 

recommended by (FEMA, 2007) for modeling floods, and has been used by previous 

researchers (Kotz and Nadarajah, 2000; Nadarajah and Shiau, 2005; ÖnÖz and Bayazit, 

1995). Warner and Tissot (2012) determined that the GEV was one of the best 

distributions for modeling surges at Galveston Pier 21, the station with the longest record 
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in the Gulf of Mexico. Unfortunately, a historical sample is necessarily an incomplete 

record of the entire distribution of the process, which leads to some uncertainty in 

estimates of model parameters, and consequently in the predictions made from them. The 

bootstrap method (Efron, 1979) is widely used by statisticians to estimate uncertainty in 

model parameters. The parametric and nonparametric bootstrap methods were used by 

Warner et al. (2012b) to estimate 90% and 95% confidence intervals for the ratios 

between exceedance probability by the end of the century and present values of the 

probability of inundation for the Galveston Pier 21, Texas station. The main focus of this 

study is to use the GEV model along with the nonparametric bootstrap method to 

quantify and compare the future impact of sea level rise on inundation frequencies and to 

estimate confidence intervals for increases in inundation probability for various water 

levels. Model results are compared and linked to the physical settings of tidal stations 

along the Northern Gulf of Mexico: Galveston Pier 21, Galveston Pleasure Pier, Port 

Isabel, and Rockport, Texas; Grande Isle, La; and Pensacola, Key West, and St. 

Petersburg, Florida stations. 
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DATA AND METHODS    

 

     Study site and data 

The eight stations mentioned above are part of the US National Water Level 

Observation Network (Figure 3.1). These stations along the Gulf of Mexico were 

selected because they combine the longest water level time series available, at least 30 

years, and are also located in the vicinity of large coastal population centers.  The 

necessary length of the data set will be discussed in the results and discussion section. 

They have significantly different bathymetries, coastal settings and relative sea level 

rise rates representative of the various regions of the Northern Gulf of Mexico 

Coastline. The stations’ characteristics are presented in Table 3.1. Return periods of 

hurricanes of category 1 or larger for Galveston, Pensacola, Key West, and St. 

Petersburg areas are between 8 and 11 years, 19 years for the Rockport area, 13 years 

for the Port Isabel area, and 7 years for the Grande Isle area (NOAA, 2013b).   

 

 

Table 3.1. Characteristics of the study stations. 

Station name State Longitude Latitude
Years data 

available for

Sea level 

trend 

mm/year

Cross-shore 

distance to 30 

m depth 

contour [km]

Epoch
Missing 

data [%]

Port Isabel Tx 97° 12.9' W 26°  3.6' N 69 3.64 25 1983-2001 6.29

Rockport Tx 97°  2.8' W 28°  1.3' N 49 5.16 40 1983-2001 2.78

Galveston Pier 21 Tx 94° 47.6' W 29° 18.6' N 108 6.39 78 1997-2001 2.16

Galveston Tx 94° 47.3' W 29° 17.1' N 53 6.84 80 1983-2001 3.22

Grande Isle La 89° 57.4' W 29° 15.8' N 32 9.24 25 2002-2006 1.79

Pensacola Fl 87° 12.6' W 30° 24.2' N 88 2.10 41 1983-2001 2.11

St Petersburg Fl 82° 37.6' W 27° 45.6' N 65 2.36 65 2002-2006 3.11

Key West Fl 81° 48.4' W 24° 33.3' N 99 2.24 9 1997-2001 2.39
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The Port Isabel station’s records are available starting in January 1944 till present and 

include water levels measured hourly. Unfortunately, the records have large gaps. One of 

the gaps coincides with the passage of Hurricane Beulah in September, 1967 that caused 

large damage to an area including the city of Port Isabel. On 23 July 2008, Hurricane 

Dolly also caused extensive damage to the city; the surge generated by Dolly is part of 

the available record.  

The Rockport station’s water level records measured hourly are available starting in 

January 1963 till present with data missing during hurricane Celia in 1970. Only sparse 

data is available for years 1937-1939 and 1948-1954; several large gaps prevented this 

data from being used.  The station is located within Aransas Bay with a connection to the 

Gulf of Mexico through the Corpus Christi ship channel. 

The Galveston Pier 21 station is located on the north-east side of Galveston Island, 

Texas. This barrier island is made up generally of sand-sized particles and smaller 

amounts of mud sediments and larger gravel-sized sediments on the Texas Gulf coast 

near the mainland coast.  On September 8, 1900 the island was hit by a major hurricane. 

This hurricane is known as the deadliest natural disaster of the United States. In 

September 2008 Hurricane Ike made landfall just north of Galveston causing extensive 

damage to the Houston-Galveston area. Station Galveston Pier 21 is positioned on a ship 

channel about 4 km away from the main Galveston Ship Channel and the mouth of 

Galveston Bay and protected from the open waters wave climate. Water level records 

measured hourly are available starting in January 1904 till present with only a few 

interruptions. 

http://en.wikipedia.org/wiki/Hurricane_Dolly_(2008)
http://en.wikipedia.org/wiki/Hurricane_Dolly_(2008)
http://en.wikipedia.org/wiki/Barrier_island
http://en.wikipedia.org/wiki/Texas
http://en.wikipedia.org/wiki/Tropical_cyclone
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The Galveston Pleasure Pier station is located on the Gulf of Mexico side of Galveston 

Island at the end of a pier.  Water level records measured hourly are available starting in 

January 1957 till July 7th, 2011 with only a few interruptions.  

The area of the Grande Isle station has been affected by hurricanes or tropical storms 

very often with the shortest return period, 7 years, for hurricanes of category 1 or larger. 

Some of the more severe storms are: a 1909 hurricane (4.57 m storm surge) (Needham 

and Keim, 2011), a 1947 hurricane, hurricane Flossy in 1956, hurricane Betsy in 1965, 

tropical storm Frances in 1998, hurricane Katrina in 2005, and hurricane Gustav in 2008. 

Water level records measured hourly are available starting in January 1980 till present 

with only minor interruptions. 

Pensacola is a sea port on Pensacola Bay, which is directly linked to the Gulf of 

Mexico. This location is often hit by hurricanes. Major hurricanes Eloise in 1975, 

Frederic in 1979, Juan in 1985, Erin in 1995, Opal in 1995, Georges in 1998, Ivan in 

2004, and Dennis in 2005 have made landfall near Pensacola. Pensacola and surrounding 

areas were especially devastated by 2004 Hurricane Ivan. Water levels records measured 

hourly are available starting in January 1924 till present. Unfortunately, missing records 

for this station coincide with the passage of major hurricane Ivan in 2004, probably due 

to equipment malfunctions.  

The city of St. Petersburg is located on a peninsula between Tampa Bay and the Gulf 

of Mexico. The station’s records are available starting in January 1947 till present and 

include water levels measured hourly with only a few interruptions.  Uniquely among the 

locations used in this study, St. Petersburg has no major hurricane in its time series. 

http://en.wikipedia.org/wiki/Sea_port
http://en.wikipedia.org/wiki/Pensacola_Bay
http://en.wikipedia.org/wiki/Gulf_of_Mexico
http://en.wikipedia.org/wiki/Gulf_of_Mexico
http://en.wikipedia.org/wiki/Hurricane_Eloise
http://en.wikipedia.org/wiki/Hurricane_Frederic
http://en.wikipedia.org/wiki/Hurricane_Juan_(1985)
http://en.wikipedia.org/wiki/Hurricane_Erin_(1995)
http://en.wikipedia.org/wiki/Hurricane_Opal
http://en.wikipedia.org/wiki/Hurricane_Georges
http://en.wikipedia.org/wiki/Hurricane_Ivan
http://en.wikipedia.org/wiki/Hurricane_Dennis
http://en.wikipedia.org/wiki/Hurricane_Ivan
http://en.wikipedia.org/wiki/Peninsula
http://en.wikipedia.org/wiki/Tampa_Bay
http://en.wikipedia.org/wiki/Gulf_of_Mexico
http://en.wikipedia.org/wiki/Gulf_of_Mexico
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The Key West station’s records are available starting in January 1913 till present and 

include water levels measured hourly with only a few interruptions. Hurricane Wilma on 

October 24, 2005, was the worst storm in memory of local residents of Key West.  

 

     Annual maximum surge time series 

 

Hourly water level records are available from NOAA's Tides and Currents data 

repository for all the study stations with only a few very short gaps (NOAA, 2013c). The 

data for Port Isabel station were provided through personal communications from Chris 

Zervas (NOAA, Silver Spring). Verified hourly water levels were used to identify 

monthly maximum water levels and compared with NOAA’s monthly extremes time 

series (NOAA, 2013c) for quality control. Next the mean sea level trends (Table 3.1) 

(NOAA, 2013d) were removed from the hourly time series with the zero mean sea levels 

set for the middle of the tidal epoch applicable for each station to match tidal predictions 

(Table 3.1). For the stations with the most rapid sea level trend (Galveston Pier 21, 

Galveston Pleasure Pier, Rockport, Grande Isle) data from the latest special modified 5-

year epoch (NOAA, 2013e) were used. To compute the surge time series harmonically 

predicted water levels obtained from (NOAA, 2013c) for each station were subtracted 

from the respective water level records to remove tidal variability.  

Overall missing data accounted for is presented in Table 3.1. Missing records were 

imputed by the means of the maximum surges for the corresponding months. Then 

maximum annual surge time series were computed for each station. The timing of the 

missing data did not coincide with hurricanes impacting study locations with a few 

http://en.wikipedia.org/wiki/Hurricane_Wilma
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exceptions: hurricane #9 in September 1945 for the Key West station, Hurricane Ivan in 

September 2004 for Pensacola, Hurricane #2 in August 1915 and Hurricane #1 in July 

1943 for the Galveston Pier 21 station, Hurricane Beulah in September 1967 for Port 

Isabel station, Hurricane Celia in August 1970 for Rockport station, and Hurricane #4 in 

September 1947 for St. Petersburg station. Reliable data was not found for Hurricane #9, 

1945 for Key West station, for Hurricane #4 in 1947 for St. Petersburg station, for 

Hurricane Celia in 1970 for Rockport station, and Hurricane Beulah in 1967 for Port 

Isabel station. Needham and Keim  (2011) was considered as a source to impute the 

missing data during the passage of hurricanes. The study identified the locations and 

heights of peak storm surges for 195 events since 1880, including the mentioned above 

hurricanes. The Needham and Keim  (2011) surge heights were compared with this 

study’s tide gauge maximum surges during several hurricanes. For example, the records 

during Hurricane Ike in 2008 are 5.33 m for Chambers County (Needham and Keim, 

2011) and 2.85 m for Galveston Pier 21 station. The locations are approximately 35 km 

apart. The records during Hurricane Alicia in 1983 are 3.85 m for San Luis Pass 

(Needham and Keim, 2011), 1.28 m for Galveston Pier 21 station, and 2.13 m for 

Galveston Pleasure Pier station.  San Luis Pass location is approximately 41 km from 

Galveston Pier 21 station and 40 km from Galveston Pleasure Pier station. Stations 

Galveston Pier 21 and Galveston Pleasure Pier are approximately 3 km apart. These large 

differences in surge heights for locations that are geographically relatively close indicate 

that records for each geographical location are unique and imputing the missing records 

during mentioned above hurricanes by the records of nearby locations would be incorrect. 

To address the issue of the extreme event distribution sensitivity to the absence of data 
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that coincide with the passage of hurricanes Warner and Tissot (2012) computed the 

variability in the distribution parameters for a range of likely surges for Galveston Pier 21 

station. To test the robustness of the respective models they computed the parameters of 

the distributions for the first 104 years of the time series, omitting the 2008 surge 

generated by Hurricane Ike in 2008. The results show that the distribution parameters are 

not overly sensitive to the presence of the largest surges in the dataset for this station. The 

assumption for this study is that the missing records for the missing hurricane for Key 

West, Rockport, St. Petersburg, and Port Isabel stations will not substantially affect 

results as well. This assumption is further discussed in the results and discussion section. 

Hourly water level records for the stations close to Pensacola were examined and 

significant correlation between the Pensacola and the Dauphin Island, Alabama water 

levels was found for September 2004 (Figure 3.2). The monthly maximum water level 

missing data for September 2004 for Pensacola was imputed with the monthly maximum 

water level for Dauphin Island station. 

Statistics for the station’s maximum annual surges are compared in Table 3.2. 

Boxplots of the maximum annual surges for all stations are presented in Figure 3.3 and 

the resulting annual maximum water levels and surges time series for all stations are 

presented in Figure 3.4.a-g. The sea level rises are clearly discernible when comparing 

the pairs of figures for each station in Figure 3.4.a-g. Substantial differences in surge 

ranges and distribution parameters can be seen in Figure 3.4.a-g and Table 3.2 including 

the presence of large surge events for most stations, but absence of such events for the 

St.Petersburg and Grande Isle stations.  
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Figure 3.2. Hourly water level records during the passage of September 2004 

Hurricane Ivan at the Pensacola, FL, and Dauphin Island, AL tide stations (Warner et 

al., 2012a) 

 

 

 

     Table 3.2. Statistics of the annual maximum surge time series of the study stations. 

 

 

Station name State Mean [m] Median [m] Range [m] Max [m] Min [m] Skewness

Port Isabel Tx 0.52 0.46 1.68 1.98 0.30 3.01

Rockport Tx 0.46 0.38 1.13 1.37 0.23 2.13

Galveston Pier 21 Tx 0.79 0.68 2.45 2.85 0.40 2.71

Galveston Pleasure Tx 0.93 0.78 2.39 2.84 0.45 2.43

Grand Isle La 0.64 0.56 0.96 1.31 0.35 1.22

Pensacola Fl 0.64 0.54 1.94 2.30 0.35 2.81

St.Petersburg Fl 0.71 0.67 0.89 1.27 0.37 0.80

Key West Fl 0.31 0.28 0.75 0.91 0.16 2.48
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Figure 3.3. Boxplots of the annual maximum surge time series of the study stations. 
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Figure 3.4.a. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) forPort Isabell station. 
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Figure 3.5.b. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) for Rockport station. 
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Figure 3.6.c. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) for Galveston Pier 21  station.  
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Figure 3.7.d. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) for Pleasure Pier station. 
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Figure 3.8.e. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) for Grand Isle station. 
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Figure 3.9.f. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) for Pensacola station. 
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Figure 3.10.h. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) for St. Petersburg station. 
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Figure 3.11.g. Annual maximum water level time series (on the top) and annual 

maximum surge time series (on the bottom) for Key West station. 
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    Generalized Extreme Value Distribution 

 

The generalized extreme value distribution (GEV) is selected for this study as 

discussed in the introduction. The equation and parameters of the cumulative distribution 

function (CDF) of the GEV for this study are listed below with parameters following the 

convention of  Kotz and Nadaraiah (2000): 

 

  

.,, parameterlocationaisandparameterscaleaisparametershapeaiswhere   

   

For our data time series, the GEV model was fit using Matlab’s gevfit function 

(MatLab®, 2009a), which uses maximum likelihood to estimate the model parameters. 

    Two goodness-of-fit tests were used to evaluate the suitability of GEV probability 

distribution: the Kolmogorov–Smirnov (KS) and the Anderson–Darling (AD) tests (see 

Chapter 1 section “Extreme value statistical distributions”).  

 

     Rates of sea level rise 

Various studies (Bindoff et al., 2007; Domingues et al., 2008; Edwards, 2007; 

Gregory, 2008; Vermeer and Rahmstorf, 2009) indicate a large uncertainty in projections 

of the sea level rise by the end of the century. The difficulties in accurate estimation of 

sea level rise are due to uncertainty related to future changes in global atmospheric 

temperatures, as well as ongoing research on the future contributions of melting ice 

,0for/,)(
/1))/)((1( 

 
 xexF x



75 

 

sheets from Greenland and Antarctica (Gregory, 2008; Hansen, 2007; Meehl et al., 2007; 

Shum et al., 2008). For the purpose of this study, two scenarios of sea level rise were 

selected:  

 A very conservative continued linear sea level rise based on the 20
th

 

century trends for each station (Table 3.3), resulting in increase in sea level by year 

2100 shown in Table 3.3 as compared to the mean sea level referenced to the middle 

of the respective stations’ epochs (Table 3.2);  

 A quadratic model of sea level rise, resulting in a total increase in sea level 

by year 2100 as compared to the mean sea level referenced to the middle of the 

epoch applicable for each station (Table 3.1) presented in Table 3.3. For this second 

scenario the local vertical land motions (Table 3.3) for each station were estimated 

by comparing last century’s rate of local sea level rise (Table 3.1) with a global rate 

of sea level rise of 1.7 mm/year (Bindoff et al., 2007).  A quadratic model of sea 

level rise was then added to the vertical land motion rate to bridge the years between 

the last water level measurements and the global increase in sea levels as estimated 

for the A1FI 2090-2099 upper bound level (Meehl et al., 2007). 

     The first scenario was labeled as “Lowest Scenario” in the recent NOAA report (Parris 

et al., 2012). While the second scenario is considered here as an upper bound 

substantially higher sea level rise projections can be found in recent work e.g. in 

(Vermeer and Rahmstorf, 2009). It is also important to remember that the IPCC Fourth 

Assessment Report (AR4) (Meehl et al., 2007) projections do not include the likelihood 

of future acceleration of glacial contributions (Shum et al., 2008).  “At this stage, the 
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greatest uncertainty surrounding estimates of future global SLR is the rate and magnitude 

of ice sheet loss, primarily from Greenland and West Antarctica” (Parris et al., 2012). 

 

Table 3.3. Estimated sea level increases by 2100 for all stations for the conservative 

and A1FI scenarios. 

 

 

    Computation of increases in exceedance probabilities by 2100 

 

Water levels are driven by high frequency forcing, tidal, and meteorological, and by 

longer term factors such as local subsidence and global sea level rise (CCSP, 2009). For 

the study locations these events are driven by meteorological forcing such as tropical and 

extra tropical storms with possible impact from precipitation and riverine input. Bender et 

al. (2010) suggest that climate change will modify both the overall frequency of tropical 

storms and the intensity distribution of storms in the Atlantic basin. On the other hand 

records of past storm activity including recent events are yet to indicate any significant 

trend for the Atlantic Basin (Landsea, 2007),  and Gulf of Mexico in particular (Levinson 

Station name State
 Trend 

[mm/year]

Sea Level 

Increase by 

2100 for 

Conservative 

Scenario [m]

Vertical 

Land Motion 

[mm/year]

Sea Level 

Increase by 

2100 for A1FI 

Scenario [m]

Port Isabel Tx 3.64 0.32 1.94 0.81

Rockport Tx 5.16 0.46 3.46 0.96

Galveston Pier 21 Tx 6.39 0.57 4.69 1.09

Galveston Pleasure Tx 6.84 0.61 5.14 1.13

Grand Isle La 9.24 0.82 7.54 1.38

Pensacola Fl 2.10 0.19 0.40 0.68

St. Petersburg Fl 2.36 0.21 0.66 0.70

Key West Fl 2.24 0.20 0.54 0.69



77 

 

et al., 2010). Also, storm surge is not well correlated with the intensity of tropical storms. 

Estimates of changes in other storm characteristics such as size (Irish et al., 2008) and 

forward speed (Rego and Li, 2009) would have to be combined with possible changes in 

storm frequency to attempt estimates of changes in future storm surges. “Although a 

consensus has not yet been reached on how the frequency and magnitude of storms may 

change in coastal regions of the US, it is certain that higher mean sea levels increase the 

frequency, magnitude, and duration of coastal flooding associated with a given storm” 

(Parris et al., 2012). The stationarity of the surge distribution for Galveston Pier 21 

station was verified by Warner and Tissot (2012). For this research we assume that the 

surge distributions and meteorological forcings that drive the surge and frequency of the 

tropical storms in the study area will remain unchanged for the next century.  The 

previously selected GEV distributions was fitted to each location to project water level 

exceedance probabilities for future years while considering the two possible sea level rise 

scenarios, described in section “Rates of the sea level rise” of this Chapter. To evaluate 

the impact of sea level rise on future indundation frequencies the ratios between 

exceedance probability in 2100 and exceedance probability in 2011 for various water 

levels for each station were computed.  

 

     Nonparametric Bootstrap method to estimate confidence intervals  

 

The bootstrap technique was introduced by Efron (1979) and is further described in 

Efron and Tibshirani (1993) and Davison and Hinkley (1997). To investigate the 

uncertainty of the surge distribution, a nonparametric method was used.  For this method, 
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bootstrap samples are replicated from the empirical distribution.  The method is used to 

approximate parameters or derived quantities of a population or probability distribution 

when the true values of the parameters are unknown. This method was used by Warner et 

al. (2012b) to estimate 90% and 95% confidence intervals for the ratios between 

exceedance probability by the end of the century and present values of the probability of 

inundation for Galveston 21, TX station. The present work follows the same method to 

estimates the 90% and 95% confidence intervals for the relative increases in the 

probability of inundation for each of the selected locations.  The family of the GEV 

includes three types of distribution (Weibull, Gumbell, and Frechet) depending on the 

value of the shape parameter. For this study the Frechet type of GEV distribution with 

positive shape parameter was selected as the best fit. When bootstraps cases resulted in 

models with negative shape parameters bootstrap samples were rejected as the resulting 

data do not lead to an appropriate fit with the GEV distribution and new bootstrap 

samples redrawn. The number of rejected bootstraps was not significant for all stations 

except St. Petersburg station. For St. Petersburg station ~30% of the bootstrap samples 

are removed from both scenarios. The impact of the removal of these bootstrap samples 

will be will be discussed in the Results and Discussion section.     
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 RESULTS AND DISCUSSION 

 

    Cross-shore distance and magnitude of the surges 

One of the goals of this research is to assess how differences in coastal setting will 

affect the vulnerability of the locations to sea level rise. The cross-shore distances 

seaward from the shoreline to the 30 m depth contours were approximated for each of the 

stations in ArcGIS and presented in Table 3.1. Other characteristics of the annual 

maximum surges at each station are presented in Table 3.2. To highlight the differences 

in the magnitude of the storm surges depending on the local coastal morphology cross-

shore distances were plotted against medians of the annual maximum surges for each 

location and presented in Figure 3.5. The correlation coefficients between cross-shore 

distances to 30 m depth contours and medians, means, maximums, minimums, and ranges 

of the annual maximum surges are presented in Table 3.4. The results indicate that the 

distances of the stations from the continental shelf is directly related to the historical 

ranges of surges, the further away a station is from the continental shelf, the more time 

for a storm to build a surge. For example, the Key West station is the closest study 

location to the continental shelf and has a small range of surges, while the Galveston 

stations have wide continental shelf and have large surge ranges. The results of this study 

are consistent with previous work stating that the height of the surge is directly 

proportional to the width of the shallow water (Hicks, 2006) and that 75% of surge is 

generated in waters shallower than 30 m (Irish and Resio, 2010).  



80 

 

 

 

 

Figure 3.12. Cross-shore distances vs. medians of the annual maximum surges. 

 

 

Table 3.4. Correlation coefficients between cross-shore distances to 30 m depth 

contours vs. medians, means, maximums, minimums, and ranges of the annual 

maximum surges. 

Max Min Range Mean Median

Cross-shore distance 

to 30 m depth contour
0.69 0.81 0.65 0.86 0.86
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     GEV model of the historical data and its parameters 

 

     Values of the parameters and graphs of surge exceedance probabilities 

 

The parameters of the GEV distribution based on the historical surge record for each 

study station were estimated and are presented in Table 3.5. Two goodness-of-fit tests 

were used to evaluate the suitability of GEV probability distribution: the Kolmogorov–

Smirnov (KS) and the Anderson–Darling (AD) tests. The results show that GEV 

distribution is a good fit for evaluating the probability of inundation for study locations. 

The exceedance probability is the likelihood that surge will exceed a given level and 

indicate how often surges of different magnitudes are expected to occur at each location. 

The exceedance probability curves were calculated by fitting the three parameters of the 

GEV distribution function and are presented in Figure 3.6 for surges between 0 and 2 m. 

The exceedance probabilities for the same surges differ significantly among locations. 

For example, the exceedance probability of a 0.5 m surge for Key West is less than 10% 

while 0.5 m surges are expected annually for the stations of Galveston Pleasure Pier, 

Galveston Pier 21, St. Petersburg, Grande Isle, and Pensacola. 

 

Location parameter 

 

The GEV location parameters for the respective stations vary from 0.25 to 0.72. The 

location parameter describes the shift of a distribution along the horizontal axis i.e. 

specifies where the distribution is centered. GEV location parameters for our stations are 
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positively correlated with the mean, median, and maxima of the surge distributions, and 

the cross-shore distances to the 30 m depth contour. 

 

 

 

Table 3.5. The parameters of the GEV distribution of the historical surge records. 

 

 

Figure 3.13. The exceedance probability curves for surges between 0 and 2 m for all 

study locations. 

 

Station name State Shape parameter ξ  Scale parameter σ Location parameter μ

Port Isabel Tx 0.50 0.10 0.40

Rockport Tx 0.32 0.11 0.35

Galveston Pier Tx 0.34 0.17 0.61

Galveston Tx 0.30 0.21 0.72

Grand Isle La 0.33 0.14 0.50

Pensacola Fl 0.43 0.11 0.49

St.Petersburg Fl 0.05 0.16 0.60

Key West Fl 0.24 0.06 0.25
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Scale Parameter 

 

The scale parameters for the stations vary from 0.07 to 0.21. The scale parameter 

describes the spread of the surge distribution and defines where the bulk of the 

distribution lies. As the scale parameter increases, the distribution will become more 

spread out. The scale parameter represents the dispersion.  The parameter correlates with 

the cross-shore distances to the 30 m contour, the maximums, means, medians, and 

ranges of the annual maximum surges. The smallest scale parameter is for the Key West 

station which experiences the smallest surge range of the study stations. 

 

Shape parameter 

 

The shape parameters vary from 0.05 to 0.50 and are indicative of the respective 

skewness of the surge distributions and in particular indicative of the distributions’ tails. 

A shape parameter determines the rate of tail decay and the shape of the upper tail of the 

distribution. The shape parameter for St. Petersburg is substantially smaller at 0.05 as 

compared to the shape parameters for the other stations ranging from 0.24 to 0.50. The 

smaller shape parameter for St. Petersburg is indicative of a more rapid decay of the tail 

of the modeled distribution and is linked to the absence of outliers, i.e. larger surge events 

as compared to the Annual maximum average surges (see Figure 3.6).  
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    The ratios of water level exceedance probabilities by 2100 

 

We use the respective GEV distributions fitted for each location to project future water 

level exceedance probabilities while considering the two possible sea level rise scenarios 

described in section “Rates of the sea level rise” of this Chapter. To evaluate the impact 

of sea level rise on future indundation frequencies the ratio between exceedance 

probability in 2100 and exceedance probability in 2012 are computed. The curves of the 

ratios for different water levels are presented in Figure 3.7 and the values for the 

maximum exceedance ratios and their corresponding water levels are presented in Table 

3.6 for both scenarios.  

 

 

 

 

Table 3.6. Water levels at maximum ratios and maximum ratios for both scenarios. 

 

  

Station name State

Water level at max 

ratio for conservative 

scenario [m]

Max ratio for 

conservative 

scenario

Water level at max 

ratio for A1FI 

scenario [m]

Max ratio 

for A1FI 

scenario

Port Isabel Tx 0.65 5.4 1.07 19.7

Rockport Tx 0.75 10.26 1.15 44.44

Galveston Pier 21 Tx 1.10 6.42 1.50 18.54

Galveston Tx 1.26 5.36 1.63 13.78

Grand Isle La 1.23 17.29 1.65 45.16

Pensacola Fl 0.64 2.60 1.02 12.48

St.Petersburg Fl 1.02 2.81 1.35 21.15

Key West Fl 0.44 6.93 0.83 112.52
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Figure 3.14. Ratios of exceedance probabilities for the conservative (on the top) and 

the A1FI based (on the bottom) scenarios.  
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The ratios of exceedance probabilities vary substantially by location and by sea level 

rise scenario. The smallest maximum ratio is observed for the Pensacola station for both 

scenarios. It can be explained by the smallest rate of subsidence and a relatively large 

surge range for this station. The maximum ratio for St. Petersburg is 3, about the same as 

that for Pensacola for the conservative scenario. The locations have similar rates of sea 

level rise, 2.10 mm/year and 2.36 mm/year, and similar mean surges of 0.64 m and 0.71 

m respectively leading to similar probabilities of inundation by 2100. The difference in 

maximum ratios for A1FI scenario for these stations can be explained by the diminishing 

relative importance of subsidence rates with increasing global rates of sea level rises. The 

difference in maximum ratios between the two stations becomes dominated by the 

difference in surge ranges leading to the higher ratio of 21 for St. Petersburg versus 12 

for Pensacola. As discussed later in this section, the results for St. Petersburg are less 

robust than those of other stations due to the lack of large surges in the existing record 

and must therefore be analyzed cautiously.  

Key West, Galveston Pier 21, Galveston Pleasure Pier, and Port Isabel stations have 

similar maximum ratios (between 5.4 and 6.9) for the conservative scenario. These ratios 

are the combination of either a small rate of sea level rise (Key West station 2.24 

mm/year and Port Isabel station 3.64 mm/year) and small surges (mean of surges for Key 

West station 0.31 m and for Port Isabel station 0.52 m) or a larger rate of sea level rise 

(Galveston Pier 21 station 6.39 mm/year and for Galveston Pleasure Pier 6.84 mm/year) 

and larger surges (mean of surges for Galveston Pier 21 station 0.79 m and for Galveston 

Pleasure Pier 0.93 m). The two groups of stations however differ by the water levels at 
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the maximum ratios, larger for the Galveston stations (1.10 m and 1.26 m) than for the 

Port Isabel (0.65 m) and Key West (0.44 m) stations.  

Although the Rockport station has small surges (mean 0.46 m), it has a large rate of 

sea level rise (5.16 mm/year) resulting in a larger increase in inundation probabilities for 

the conservative scenario (maximum ratio 10.3) as compared to the previously mentioned 

stations. The largest maximum ratio for the conservative scenario is for the Grande Isle 

station and is caused by the largest local vertical land motion of 7.54 mm/year among our 

study locations.  

Pensacola, Galveston Pleasure Pier, Galveston Pier 21, and Port Isabel stations have 

similar maximum ratios for the A1FI scenario (between 13 and 21), which indicates that 

the future probability of inundation for stations with similar surge ranges will likely be 

similar. Variation in water levels at maximum ratios for these stations for A1FI scenario 

(1.02 m -1.63m) can be explained by the differences in medians of the historical surges.  

The maximum ratio for A1FI scenario for the St. Petersburg station is similar to the 

maximum ratios for the Pensacola, Galveston Pleasure Pier, Galveston Pier 21, and Port 

Isabel stations, but the range of surges is much smaller, which makes the St. Petersburg 

station an exception. The main reason for this difference is the absence of outliers or 

large surges for this station (Figure 3.3).  While modeled appropriately based on the 

existing record, its distribution will change substantially when impacted by a major 

hurricane. Accordingly to Needham and Keim (2011) large surges (3.2 m) were recorded 

for nearby location in Tampa Bay prior to the available record in 1921 (~25 kilometers 

from study location).  It is reasonable to assume that a big hurricane will eventually land 

and result in a large surge at St. Petersburg station. 
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The largest maximum ratio for the A1FI scenario is for the Key West station. A ratio 

of water level exceedance probabilities of 112 for that station may seem surprising, but it 

is the result of the relatively narrow range of historical surges (0.8 m) for this station. The 

small surge range is in large part related to the narrow extent of the continental shelf 

offshore of the station.  This maximum ratio for Key West is reached for a water level of 

0.89 m. At the end of 2011 the probability of water level exceeding 0.89 m was less than 

1%. With a sea level rise of 0.69 m by year 2100 the probability of reaching the same 

level increases to 80% leading to a ratio of 112.  

Although Grande Isle and Rockport stations differ in the magnitude of their surges 

(means of 0.64 m and 0.46 m respectively) they both have small surge ranges and as a 

result will likely experience substantial and similar impact of sea level rise for the A1FI 

scenario (maximum ratios are 45.2 and 44.4 respectively). The two stations however 

differ by the water levels at the maximum ratios, larger for the Grande Isle station (1.65 

m) than for the Rockport (1.15 m) station. 

The large maximum ratios of the exceedance probabilities for Key West, Rockport, 

and Grande Isle stations indicate that locations with historically narrow surge ranges 

could be relatively more affected by sea level rise for accelerating sea level rise 

scenarios. 

Maximum ratios of the exceedance probabilities depend mostly on sea level trends and 

the shape of the curves of the exceedance probabilities. The maximum ratios are strongly 

correlated to the sea level trends for the conservative scenario (correlation coefficient 

0.77), but not for the A1FI. For the conservative scenario the sea level rise trends are 

2.10-9.24 mm/year. For the A1FI scenario the relative differences in trends are smaller 
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(6.36-13.5 mm/year) and the respective shapes of the exceedance probability distributions 

becomes the dominant factor. This result indicates that for the lower sea level rise 

scenarios the different rates of subsidence around the Gulf of Mexico, including local 

anthropogenic impact due to fluid extraction, are the most important for increases in 

inundation probabilities. For higher rates of global sea level rise local subsidence 

becomes less important as global sea level rise becomes the dominant factor in local rates 

of sea level rise. For higher rates of global sea level rise such as this study’s A1FI based 

scenario locations with low rates of vertical land motion combined with narrow surge 

ranges such as the Key West station have the largest ratios of exceedance probabilities 

and become the most at risk. 

 

    Water levels at maximum ratios 

 

Values of water levels at maximum ratios 

 

Values of water levels at maximum ratios are presented in Table 3.6. Substantial 

differences in water levels at maximum ratios can be observed for both scenarios. The 

values vary from 0.44 m to 1.26 m for the conservative scenario and from 0.83 m to 1.65 

m for the A1FI scenario. The curves of the probabilities of water levels exceeding these 

values by 2100 are presented in Figure 3.8 and allow for a comparison of the changes in 

water level exceedance probabilities by 2100.  

The change in inundation frequency for the water levels at maximum ratios increases 

much more slowly for the St. Petersburg station than for the other stations for both 
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scenarios. The slower increase is the result of a different surge distribution for this station 

due to the absence of outliers and the related small skewness of the dataset. Two 

goodness-of-fit tests were used to evaluate the suitability of GEV probability distribution: 

the Kolmogorov–Smirnov (KS) and the Anderson–Darling (AD) tests. Although St. 

Petersburg station’s records do not have outliers, the GEV distribution is a good fit for 

the existing data set and a good model to evaluate the probability of inundation for this 

area for low to medium surges. As will be discussed later in this section, the absence of 

outliers or large surges leads to a substantially broader confidence interval for surges 

around 1.3 m and above. This broader confidence interval for large surges affects the 

precision of the estimates for the maximum ratios and their associated water levels.  

As expected the faster rate of sea level rise of A1FI scenario leads to substantially 

larger increases in water level exceedance frequency for all stations. For example, for the 

conservative scenario the exceedance probability of the water levels at maximum ratios 

increases from 5-30% to 70-90% while for A1FI scenario it increases from 1-7% to 86-

97% by 2100. For the A1FI based scenario, exceedance probabilities become similar by 

2060-2080 for all stations except St. Petersburg. The stations with the smallest water 

levels for maximum exceedance probabilities are Key West (0.83m), Pensacola (1.02m), 

Port Isabel (1.07m) and Rockport (1.15m). These substantial increases in exceedance 

probabilities for all stations further highlight and quantify the impact of sea level rise as 

the century progresses. 
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Figure 3.15. Exceedance probabilities of water levels at maximum ratios by 2100 for 

conservative scenario (on the left) and A1FI scenario (on the right). 

 

    Water levels at maximum ratios vs. max, min, mean, median, GEV scale 

parameter, GEV location parameter, and bathymetry 

 

The correlation coefficients between water levels at maximum ratios and cross-shore 

distances to 30 m depth contours, medians, means, maximums, minimums, ranges of the 

annual maximum surges, and parameters of the GEV distribution are presented in Table 

3.7. Water levels at maximum ratios have strong correlation with all statistics except the 

maximum annual surges, which indicates that the results of this study are not overly 

sensitive to the most extreme value or largest surge on record provided that the record 

includes at least one large surge.  
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Table 3.7. The correlation coefficients between water levels at maximum ratios and 

cross-shore distances to 30 m depth contours, medians, means, maximums, minimums, 

ranges of the annual maximum surges, and parameters of the GEV distribution. 

 

 

The plot of water levels at maximum ratios with respect to the median maximum 

annual surges is presented in Figure 3.9. The water levels at maximum ratios for the 

stations with larger median surges are higher for both sea level rise scenarios. 

The relation between water levels at maximum ratios and cross-shore distance to 30 m 

depth contour is shown in Figure 3.10. Locations with shorter distances to the continental 

shelf will have smaller water levels than locations that are further away from the 

continental shelf. The result for Grande Isle could be explained by much higher local 

subsidence for the location influencing the water levels at maximum ratios as discussed 

in section “Values of water levels at maximum ratios” of this Chapter.  

 

 

 

 

Cross-shore 

distance to 30 m 

depth contour

Max Min Mean Median
GEV Scale 

parameter

GEV 

Location 

parameter

Water levels at 

maximum ratios
0.68 0.41 0.80 0.84 0.85 0.92 0.84
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Figure 3.16. Water levels at maximum ratios vs. medians of surges for conservative 

scenario (on the top) and A1FI scenario (on the bottom). 
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Figure 3.17. Water levels at maximum ratios vs. cross-shore distance to 30 m depth 

contours for conservative scenario (on the top) and A1FI scenario (on the bottom).   
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    Water levels at maximum ratios and maximums of annual maximum surges 

 

Water levels at maximum ratios for both scenarios and maximums of the historical 

surges are presented in Table 3.8. It is noticeable that for the Grande Isle station for the 

conservative scenario the water level at maximum ratio (1.23 m) will be close to the 

present maximum of annual maximum surges (1.31) m.  Based on the historical record 

through 2011, the probability of water levels exceeding 1.23 m is ~5.3%. With a sea level 

rise of 9.4 mm/year by year 2100 the probability of reaching the same level increases to 

~90% leading to a ratio of ~17 for conservative scenario. For the A1FI scenario the water 

level at maximum ratio (1.76 m) might be much higher than the present maximum of 

annual maximum surges.  At the end of the dataset in 2011 the probability of water levels 

exceeding 1.76 m was very small (~1.7%). With a quadratic sea level rise by the year 

2100 the probability of reaching the same level increases to ~76% leading to a ratio of 

~45 for A1FI scenario.  

Key West, St. Petersburg, and Rockport stations have narrower ranges of surges 

leading to water levels at maximum ratios that exceed the present maximum recorded 

water level for the A1FI based scenario. For the Grande Isle station the water level at 

maximum ratio is projected to exceed the maximum of annual maximum surges by 0.45 

m. 

Results for both scenarios show that by 2100 the Grande Isle station will experience 

substantial increases in inundation frequencies due to the large local subsidence. 
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Table 3.8. Water levels at maximum ratios for both scenarios and maximums of the 

historical surges. 

 

   90% and 95% confidence intervals for the ratios of increase in exceedance 

probabilities 

 

To investigate the uncertainty of the surge distribution, a nonparametric bootstrap 

method was used.  For this method, bootstrap samples are replicated from the empirical 

distribution.  The method is used to approximate parameters or derived quantities of a 

population or probability distribution when the true values of the parameters are 

Station name State

Maximum of 

the historical 

surges [m]

Water level at 

maximum ratio 

for 

conservative 

scenario [m]

Water level at 

maximum ratio 

for A1FI 

scenario [m]

Port Isabel Tx 1.98 0.65 1.12

Rockport Tx 1.37 0.75 1.22

Galveston Pier 21 Tx 2.85 1.10 1.57

Galveston Pleasure Tx 2.84 1.26 1.73

Grand Isle La 1.31 1.23 1.76

Pensacola Fl 2.30 0.64 1.08

St.Petersburg Fl 1.27 1.02 1.35

Key West Fl 0.91 0.44 0.89
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unknown. When bootstrap cases resulted in models with negative shape parameters such 

bootstrap samples were rejected as the resulting data did not lead to an appropriate fit 

with the GEV distribution and new bootstrap samples were redrawn. The number of 

rejected bootstraps was not significant for all stations except St. Petersburg station. For 

the station of St. Petersburg ~30% of the bootstrap samples were cut for both scenarios. 

The impact of the removal of these bootstrap samples was tested by comparing the 

median of the accepted bootstrap samples with the distribution built from the historic 

data. For other stations these two distributions are virtually indistinguishable. For the 

station of St. Petersburg differences are noticeable (See Figure 3.11), but the differences 

in the ratios of exceedance probabilities remain below 0.33 or about 12% or less for the 

conservative scenario and about 6 or about 30% for the A1FI scenario. These differences 

are relatively small as compared to the uncertainty ranges which are about 2 for the 

conservative scenario and about 40 for the A1FI scenario for most of the water level 

range at the 90% confidence interval. St. Petersburg was therefore included with the other 

study locations for the study’s overall comparative analysis. The confidence intervals in 

Figure 3.11 can be further compared with the confidence intervals for the other stations 

presented in Figure 3.12. Unlike the other stations the St. Petersburg confidence intervals 

do not decrease substantially for water levels larger after the maximum ratio. These larger 

uncertainty ranges are due to the lack of large surges in the existing record. These larger 

uncertainties also affect the estimated values of the maximum ratios and associated water 

levels and must be taken into account in the related discussions.  

Figure 3.12.a-g presents 90% and 95% confidence intervals around the median ratios 

of increase in exceedance probabilities for both sea level rise scenarios. As the century 
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progresses the risk of flooding significantly increases for both scenarios. The greatest 

uncertainties in the estimates coincide with the largest values of the ratios. Even with 

these uncertainties, the lower bounds of the confidence intervals imply significant 

increase in exceedance probabilities for each station for both scenarios. The lower and 

upper bounds of the 90% and 95% confidence intervals for maximum ratios and 

maximum ratios for both scenarios are presented in Table 3.9. There is almost no 

difference in the lower bounds of the 90% and 95% confidence intervals for all stations 

and the ranges between the lower bounds of the confidence intervals and the median 

ratios are considerably smaller than the differences between the higher bounds of the 

confidence intervals and the medians. This suggests that coastal planner should make 

plans for increases in inundation frequencies in at least the range between the 95% 

confidence interval bound and the median ratio and higher values for larger coastal 

infrastructure investments. 
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Table 3.9. The lower and upper bounds of the 90% and 95% confidence intervals 

for maximum ratios and maximum ratios for both scenarios. 

 

 

Station name State

Maximum 

ratios for 

conservative 

scenario

Lower bound 

of 90% CI 

for 

conservative 

scenario

Lower 

bound of 

95% CI for 

conservative 

scenario

Upper 

bound of 

90% CI for 

conservativ

e scenario

Upper bound 

of 95% CI 

for 

conservative 

scenario

Port Isabel Tx 5.37 4.06 3.87 8.06 9.01

Rockport Tx 10.26 6.30 5.85 26.39 35.60

Galveston Pier 21 Tx 6.42 4.84 4.61 9.78 10.88

Galveston Pleasure Tx 5.36 3.78 3.56 9.80 11.86

Grand Isle La 17.29 9.41 8.59 63.02 96.76

Pensacola Fl 2.60 2.20 2.14 3.26 3.44

St.Petersburg Fl 2.81 2.36 2.30 3.40 3.57

Key West Fl 6.93 4.99 4.74 11.69 13.31

Station name State

Maximum 

ratios for 

A1FI 

scenario

Lower bound 

of 90% CI 

for A1FI 

scenario

Lower 

bound of 

95% CI for 

A1FI 

scenario

Upper 

bound of 

90% CI for 

A1FI 

scenario

Upper bound 

of 95% CI 

for A1FI 

scenario

Port Isabel Tx 19.66 11.51 10.60 49.98 67.74

Rockport Tx 44.44 18.49 16.41 294.45 593.12

Galveston Pier 21 Tx 18.54 11.48 10.62 37.79 45.73

Galveston Pleasure Tx 13.78 7.86 7.23 40.94 58.07

Grand Isle La 45.16 18.28 16.09 289.12 580.95

Pensacola Fl 12.48 8.11 7.56 23.79 28.39

St.Petersburg Fl 21.15 11.88 10.96 39.22 46.66

Key West Fl 112.52 46.39 40.55 596.77 1006.96
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Figure 3.18. 90% and 95% confidence intervals of the ratios of exceedance 

probabilities for conservative scenario (on the top) and A1FI scenario (on the bottom) 

for St. Petersburg station. 

 



101 

 

 

                 

                 

Figure 3.19.a. 90% and 95% confidence intervals (nonparametric bootstrap) around 

the ratios of increase of the water level exceedance probability in 2100 versus the 

present exceedance probability in 2012 for the conservative scenario (on the top) and 

A1FI scenario (on the bottom) for Port Isabel station. 
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     Figure 3.20.b. 90% and 95% confidence intervals (nonparametric bootstrap) 

around the ratios of increase of the water level exceedance probability in 2100 versus 

the present exceedance probability in 2012 for the conservative scenario (on the top) 

and A1FI scenario (on the bottom) for Rockport station.  
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Figure 3.21.c. 90% and 95% confidence intervals (nonparametric bootstrap) around 

the ratios of increase of the water level exceedance probability in 2100 versus the 

present exceedance probability in 2012 for the conservative scenario (on the top) and 

A1FI scenario (on the bottom) for Galveston Pier 21 station.  
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Figure 3.22.d. 90% and 95% confidence intervals (nonparametric bootstrap) around 

the ratios of increase of the water level exceedance probability in 2100 versus the 

present exceedance probability in 2012 for conservative scenario (on the top) and A1FI 

scenario (on the bottom) for Galveston Pleasure Pier station.  
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Figure 3.23.e. 90% and 95% confidence intervals (nonparametric bootstrap) around 

the ratios of increase of the water level exceedance probability in 2100 versus the 

present exceedance probability in 2012 for the conservative scenario (on the top) and 

A1FI scenario (on the bottom) for Grande Isle station.  
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Figure 3.24.f. 90% and 95% confidence intervals (nonparametric bootstrap) around 

the ratios of increase of the water level exceedance probability in 2100 versus the 

present exceedance probability in 2012 for the conservative scenario (on the top) and 

A1FI scenario (on the bottom) for Pensacola station.  
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Figure 3.25.h. 90% and 95% confidence intervals (nonparametric bootstrap) around 

the ratios of increase of the water level exceedance probability in 2100 versus the 

present exceedance probability in 2012 for the conservative scenario (on the top) and 

A1FI scenario (on the bottom) for St. Petersburg station.  
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Figure 3.26.g. 90% and 95% confidence intervals (nonparametric bootstrap) around 

the ratios of increase of the water level exceedance probability in 2100 versus the 

present exceedance probability in 2012 for the conservative scenario (on the top) and 

A1FI scenario (on the bottom) for Key West station.  



109 

 

To evaluate the robustness of the models the relative difference between maximum 

ratios of the exceedance probabilities and upper bounds of 95% confidence intervals were 

computed for both scenarios and plotted against the years of available data. Results are 

presented in Figure 3.13. The wider confidence intervals for Rockport and Grande Isle 

stations can be explained by the shorter data sets available for these stations (49 and 32 

years respectively). The confidence intervals are narrower for the stations with lengths of 

the datasets at least 50 years. This observation is consistent with Kyselý’s (2008) 

findings. Kyselý (2008) compares performance of nonparametric bootstraps to fit GEV 

models for time series of lengths 20, 40, 60 and 100 extreme values, and concludes that n 

= 60 is enough information for the technique to achieve its nominal level of significance. 

As previously discussed when analyzing confidence intervals for St. Petersburg, the 

presence of large surges are an additional requirement to provide more precise estimates 

for larger surges.  

The larger result for Key West station for A1FI scenario as compared with stations 

with similar length of records can be explained by the relatively narrow range of 

historical surges for this station. The ratios are computed by dividing values of two 

exceedance probabilities of the datasets obtained from bootstrap replicates.  The 

maximum value of the 95% confidence interval of the ratios for 0.89 m water level for 

Key West (A1FI scenario) is about 1000. Key West historical surge range (~ 0.8m) is 

similar to the projected sea level rise of 0.69 m for the A1FI scenario. This leads to a 

broader confidence interval when moving outside of the historically available range of 

water level observations. 
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Figure 3.27. The relative difference between maximum ratios of the exceedance 

probabilities and upper bounds of the 90% and 95% confidence intervals vs. years of 

available data. 
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    Galveston Pier 21 and Galveston Pleasure Pier 

 

The Galveston Pier 21 station is located on the north-east side of Galveston Island, 

Texas. Station Galveston Pier 21 is positioned on a ship channel about 4 km away from 

the main Galveston Ship Channel and the mouth of Galveston Bay and protected from 

open water waves. The Galveston Pleasure Pier station is located on the other side of 

Galveston Island and is not protected from Gulf of Mexico wave activity. The distance 

between the stations is only about 3 km. Although the data record for Galveston Pleasure 

Pier is only half as long for Galveston Pier 21 the results for quantifying the increase in 

exceedance probability are relatively similar. Maximum ratios for Galveston Pier 21 and 

Galveston Pleasure Pier are 6.46 and 5.36 respectively, and water levels at maximum 

ratios are 1.10 m and 1.26 m for the conservative scenario (Table 3.10). For the A1FI 

scenario the maximum ratios are 18 and 22, and water levels at maximum ratios are 1.49 

m and 1.73 m. These relatively small differences can be explained by the separation of 

the stations by Galveston Island and their link through the ship channel. The consistency 

of the results is a further indication of the robustness of the method. 

To further confirm that the study results are not overly affected by the lengths of the 

data sets beyond larger confidence intervals, ratios of exceedance probabilities were 

estimated based only on annual maximum surges for 1958-2011 years for Galveston Pier 

21 station. Results for the conservative scenario are presented in Figure 3.14 and Table 

3.10 with comparison with the results obtained for the full data set. The difference 

between results based on shorter and longer surge series is relatively small. Results for 

A1FI for 1958-2011 are 16.21 and 1.50 m, and for 1904-2011 results are 18.54 and 1.49 
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m with no significant difference in lower bounds of 90% and 95% confidence intervals. 

Furthermore, the results were computed for both stations while omitting the 2008 surge 

generated by Hurricane Ike. Results for the conservative scenario are presented in Figure 

3.15.a, b and Table 3.10. It is noticeable that there is no significant difference between 

these results for both the maximum ratios and the water levels at maximum ratios.  

 

 

 

 

 

 Table 3.10. Results for Galveston stations for conservative scenario based on 

various surge time series. 

 

 

 

 

 

 

 

 

 

Max 

[m]

Min 

[m]

Range 

[m]

Mean 

[m]

Median 

[m]
Skewness

Shape 

parameter

Scale 

parameter

Location 

parameter

Maximum  

ratio

Water level 

at max ratio

Galveston Pier 21 

(1904-2011)
2.85 0.40 2.45 0.79 0.68 2.71 0.34 0.17 0.61 6.46 1.10

Galveston Pier 21 

No Ike
2.38 0.40 1.98 0.77 0.68 2.38 0.29 0.17 0.61 7.25 1.12

Galveston Pier 21 

(1958-2011)
2.85 0.40 2.45 0.79 0.68 2.71 0.49 0.14 0.62 7.22 1.08

Galveston Pleasure 

Pier
2.84 0.45 2.39 0.93 0.78 2.43 0.30 0.21 0.72 5.36 1.26

Galveston Pleasure 

Pier No Ike
2.58 0.45 2.13 0.89 0.78 2.35 0.23 0.20 0.72 6.59 1.30
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Figure 3.28. Ratios of exceedance probabilities for Galveston Pier 21 based on 

annual maximum surges for 1904-2011 years (on the top) and annual maximum 

surges for 1958-2011 years (on the bottom) for conservative scenario.    
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Figure 3.29.a. Ratios of exceedance probabilities for Galveston Pier 21  station 

based on annual maximum surges for all available data (on the top) and annual 

maximum surges except records during Hurricane Ike in 2008 (on the bottom) for 

conservative scenario. 
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Figure 3.30.b. Ratios of exceedance probabilities for Galveston Pleasure Pier 

station based on annual maximum surges for all available data (on the top) and 

annual maximum surges except records during Hurricane Ike in 2008 (on the bottom) 

for conservative scenario. 
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    Water level at maximum ratio and water levels associated with hurricanes 

 

To further analyze the impact of sea level rise on inundation frequencies it is helpful to 

consider the future impact of surges generated by historical storms. The projected 

changes in return periods for both scenarios are computed by year 2100 for a variety of 

storms that have impacted stations of the Gulf of Mexico. These hurricanes were selected 

because water levels associated with them have the higher predicted increases in the 

probability of inundation under both scenarios. The results are presented in Figure 3.16, 

Figure 3.17.a, b, c, d, and Table 3.11. Return periods directly based on observations are 

listed under year 2011 while results for 2100 are model based estimates. For the faster sea 

level rise scenario water levels associated with the majority of the hurricanes are 

predicted to take place every year by 2100. More frequent, smaller storm surges may 

have a larger impact on coastal communities than the effects of less frequent, larger storm 

surges. For example, at this point in time (2011) the probability of water levels associated 

with Hurricane Alex for Port Isabel station is very small (~6%), with a quadratic sea level 

rises by the year 2100 the probability of reaching the same level increases to 100%. The 

return period of an event of the magnitude of Hurricane Elena for St. Petersburg station is 

predicted to decrease to 1.7 years from presently 65 years for A1FI scenario. 
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Table 3.11. Projected return periods for inundation levels that have been generated 

by a range of historical storms for the study stations for both sea level rise scenarios. 

 

 

 

 

 

 

 

 

 

Return periods in 

years

Station State Hurricane Year Month
Corresponding 

water level [m]

Corresponding 

surge [m]
in 2011

Conservative 

scenario by 2100

A1FI scenario by 

2100

Port Isabel Tx Gilbert 1988 9 0.97 1.15 23 10.7 1.5

Alex 2010 6 1.03 0.97 17 5.6 1.0

Rockport Tx Beulah 1967 9 0.99 1.10 25 7.5 1.0

Allen 1980 8 1.26 1.37 49 22.0 3.2

Galveston Pier 21 Tx Audrey 1957 6 1.37 1.44 15 4.0 1.0

Alicia 1983 8 1.36 1.28 10 2.3 1.0

Galveston Pleasure Pier Tx Alicia 1983 8 2.37 2.13 18 12.7 4.5

Claudette 2003 7 1.93 1.57 11 3.2 1.1

Grand Isle La Andrew 1992 8 0.81 1.06 8 1.0 1.0

Katrina 2005 9 1.54 1.27 16 1.3 1.0

Ike 2008 8 1.43 1.31 31 1.5 1.0

Pensacola Fl Georges 1998 9 1.26 1.14 13 11.0 1.8

Ike 2010 9 0.87 0.98 9 6.5 1.0

St.Petersburg Fl Elena 1985 8, 9 1.32 1.27 65 14.3 1.7

Key West Fl Wilma 2005 10 1.18 0.84 50 44.2 1.1
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Figure 3.31. Exceedance probabilities in 2100 versus the present exceedance 

probabilities in 2011 for the conservative scenario (on the top) and A1FI scenario (on 

the bottom) for study stations. 
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Figure 3.32.a. Ratios of water levels exceedance probabilities in 2100 vs. the 

exceedance probabilities in 2011 for the conservative and A1FI scenarios of sea level 

rise for Port Isabel and Rockport stations. 
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Figure 3.33.b. Ratios of water levels exceedance probabilities in 2100 vs. the 

exceedance probabilities in 2011 for the conservative and A1FI scenarios of sea level 

rise for Galveston Pier 21 and Galveston Pleasure Pier stations. 
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Figure 3.34.c. Ratios of water levels exceedance probabilities in 2100 vs. the 

exceedance probabilities in 2011 for the conservative and A1FI scenarios of sea level 

rise for Grande Isle and Pensacola stations. 
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Figure 3.35.d. Ratios of water levels exceedance probabilities in 2100 vs. the 

exceedance probabilities in 2011 for the conservative and A1FI scenarios of sea level 

rise for St. Petersburg and Key West stations. 
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CONCLUSION 

This study examined the impact of sea-level rise on future inundation frequencies for 

eight stations of the Gulf of Mexico and estimated associated 90% and 95% confidence 

intervals. Results are expressed as the ratio of water level exceedance probability 

between years 2100 and 2011. To estimate uncertainty in predictions of the likelihood of 

future inundations by 2100 a nonparametric bootstrap technique was used and combined 

with two sea level rise scenarios (a conservative continued linear sea level rise and a 

scenario based on the upper end of the IPCC AR4 A1FI estimates).  

While as expected increases in inundation frequencies are substantial for all stations 

results show considerable differences depending on the sizes of the surges, the station 

locations and the sea level rise scenarios. The frequency of annual maximum water levels 

resulting from small storms/surges will increase considerably more, typically by a factor 

of 3 or more, than the frequency of water levels resulting from large hurricanes. As a 

result more frequent, smaller storm surges may have a larger impact on coastal 

communities than the effects of the less frequent, larger storm surges. For the 

conservative sea level rise scenario the study’s highest increase in water level exceedance 

probability of 17 times is computed for a water level of 1.23m above present mean sea 

level for Grande Isle, Louisiana. For the study’s A1FI based sea level rise scenario, 

locations with low rates of vertical land motion combined with narrow surge ranges have 

the largest ratios of exceedance probabilities and become the most vulnerable to sea level 

rise. For the Key West, Florida, station the predicted increase in water level exceedance 

probability is over 100 times for a water level of 0.83m above present mean sea level.  
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For most cases the confidence intervals show a substantial decrease in width for 

stations with lengths of datasets of 50 years or longer indicating a preferred data length of 

50 or more years provided that a large surge event is included. The lower bounds of the 

confidence intervals of the ratios imply significant increases of the risk of flooding by the 

end of the century for all stations and both scenarios.  

Ratios of exceedance probabilities depend mainly on sea level trends and the shape of 

the curves of the exceedance probabilities. The relative importance of these parameters 

depends on the sea level rise scenario: the maximum ratios are strongly correlated to sea 

level trends for the conservative scenario (correlation coefficient 0.77), but for higher 

rates of global sea level rise local subsidence becomes less important and the range of 

maximum annual surges becomes the main factor (correlation coefficient between 

maximum ratios and ranges of surges -0.66). Water levels at maximum ratios have strong 

correlation with all statistics except the maximum annual surges, which indicates that the 

results of this study are not overly sensitive to the most extreme values or largest surge on 

the record provided that the record includes at least one large surge. The sensitivity of the 

results to the lengths of the data sets and the presence or absence of the largest storm was 

further investigated for the stations of Galveston Pleasure Pier and Galveston Pier 21 and 

the passage of 2008 Hurricane Ike. The results show that the predicted increases in 

exceedance probabilities for the different alternate scenarios are relatively small and do 

not affect guidance based on the study results.  

This research identifies an important subject: the impact of sea level rise on storm 

surges in low-lying coastal zones. The approach of this study brings together studies that 

have focused on distributions of storm surges with sea level rise and studies that 



125 

 

evaluated the exceedance probabilities of flood at a single point over time, and takes into 

account differences in oceanographic setting at the study sites. The combination of sea 

level rise and population growth in coastal regions makes it essential to continue 

improving flood management strategies. Flooding estimates must take into account both 

local vertical land motion and estimated rates of sea level rise linked to global climate 

change. As sea level increase flood events will threaten more lives, damage higher 

number of public and private properties. Public demand for seawalls, bulkheads, beaches 

nourishments and other shoreline maintenance will increase in order to protect coastal 

communities. A rising sea level in combination with increasing population will not only 

increase losses, but also increase the number of policies and thus premium income 

available to pay losses. The required investments to protect such areas will be very large, 

and as sea levels rise, available resources will likely not be sufficient to protect all areas. 

The results of this research provide coastal decision makers quantitative estimates of 

future inundation risks for two sea level rise scenarios and a calibrated method to 

compute such risks for more sea level rise scenarios. This research is relevant for 

engineers, planners, insurance executives, and others to take into account the increasing 

impacts of storm surges of various sizes as sea level rises. The results will help develop 

better insurance rates, plan structures, land-use zoning, and others as the century 

progresses. The models, methodology and estimates developed as part of this research 

may be used to estimate the time before specific locations may become economically 

uninhabitable due to surge inflicted damages as sea level rises. Particularly, it is expected 

that this work will allow better to quantify coastal vulnerability to sea level rise along the 

Gulf of Mexico. 
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