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ABSTRACT

Relationships between time series of environmental variables are commonly calculated using

non-parametric methods, such as Kendall’s τ , because of ”non-detects”, i.e., left-censored data that

falls below a measurement limit. However, these methods are not well-adapted to situations where

variables have multiple contemporaneous measurements. In this thesis, we define a new method,

τ̃ , in an attempt to calculate correlations using each of the multiple measurements instead of daily

means. We investigate τ̃ using two methods: simulations that approximate a null distribution for τ̃

and closed form calculations for a specific special case. We also apply τ̃ to an actual data set.

The results of our investigation shows that τ̃ may handle certain things, such as outliers, bet-

ter than current methods. However, its requirements for distributional assumptions about the data

make it a less practical option for real data. Further work could explore ways to avoid the prerequi-

site need for distribution knowledge and could also further investigate τ̃ under noise sampled from

asymmetric distributions.
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CHAPTER I: INTRODUCTION

Samples measuring the levels of Vibrio vulnificus and dissolved organic carbon (DOC) were taken

from July 12, 2016 to August 6, 2016 in the water off of Looe Key, Florida. On each day, three

separate samples were taken and measured for Vibrio=y and two were taken for DOC=x, giving six

(x,y) observations for each day. These measurements were taken within the same hour and will be

treated as contemporaneous events. We wish to determine if there is a correlation between DOC

and Vibrio levels. Although DOC measurements were not censored, other nutrient measurements

in the dataset were left-censored (below detection limits), making the use of Kendall’s τ the best

choice for measuring correlation. [1]

The current practice is to take the average of the multiple measurements from a given day to

create a single data point for that day. Correlation is then calculated based on the daily averages.

However, measurements can be very different within a single day, and daily averages can be greatly

influenced by outlying data points, so the mean is not necessarily the best single estimate of the

”true” daily value. In addition, information is lost when multiple observations are replaced by their

mean.

Another possible approach would be to treat each of the six pairs of measurements from a

given day as independent observations. However, examination of the data makes independence of

observations on the same day unlikely. If each pair of points on each day is inappropriately treated

as a full observation, the effective size of the data set is exaggerated. This can cause problems

when testing for significance. As we will soon see, the test statistic for Kendall’s τ relies on the

sample size of the data. An increase in the sample size will cause the test statistic to decrease,

reducing the power of the test.

In this thesis, we will explore a new approach to estimating correlations with multiple mea-

surements. We will calculate τ for each pair of days, then use the average of the τ’s to estimate the

correlation in the data. This method will still use each data point collected on each day and retain

1



robustness to outliers.

We further explore τ defined in this new manner. We created software to simulate how this new

approach is affected by different sized noise around randomly sample data points and also wrote

code for simulations that allow us to observe null distribution of the new method. Using this code,

we were able to verify our results found analytically for a particular ”all-normal” case.
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CHAPTER II: REVIEW OF THE LITERATURE

2.1 Kendall’s τ

Kendall’s τ was first introduced in Kendall (1938). For this thesis, we will just be using Kendall’s τ

without accounting for ties. The formula for calculating τ without ties as given by Kendall (1962)

is:

τobs =

n
∑

1≤i< j≤n
Q((xi,yi),(x j,y j))

n(n−1)/2

where Q is the concordance indicator function:

Q((xi,yi),(x j,y j)) =−1 if (xi− x j)(yi− y j)< 0

Q((xi,yi),(x j,y j)) = +1 if (xi− x j)(yi− y j)> 0

For testing the significance of τ we define the following quantities:

S =
n
∑

1≤i< j≤n
Q((xi,yi),(x j,y j))

Z = S−sign(S)√
(n(n−1)(2n+5))/18

Because it is defined using ranks, τ is robust to outliers and invariant under rank-preserving trans-

formations.

Correlations of environmental parameters are often calculated using Kendall’s τ instead of

Pearson’s ρ [1]. This is because of the many practical benefits of using a nonparametric ordinal

method for correlation when dealing with environmental measurements, such as no need to assume

any distributions of the data and the previously mentioned robustness to outliers. Environmen-

tal measurements can also have non-detects (in statistical terms, left-censored data). A common

method for handling non-detects is substituting a 0 or the reporting limit for all non-detects, but

substituting data this way and calling it ”real data” can impose an artificial pattern.

3



2.2 Mean and Variance of τ in the Null Case

In this section we prove the following theorem:

Let (xi,yi) and (x j,y j) be an arbitrary pair of points, with i not necessarily different from j.

Define ai j = sign(xi− x j), with bi j defined similarly for y. The distribution of τ under the null

hypothesis H0: ai j is independent of bi j for all i, j, has mean 0 and variance n(n−1)(2n+5)
18 . The

proof is based on Kendall (1962), Chapters 4 and 5 [2]. Let ci j = ai jbi j, then

c =
n
∑

i=1

n
∑
j=1

ci j = 2S

Now

n
∑

l=1
ail = n+1−2i

Further,

n
∑

i=1

n
∑

l=1
a2

il = n(n−1)

for a2 is +1 and this sum is the number of possible ways of choosing a pair from n members. It

follows that

n
∑

i=1

n
∑

l=1
ail =

n
∑

i=1
(n+1−2i)

= n(n+1)−2 ∑
i=1

i

= 0

We also have

n
∑

i=1

n
∑

l=1

n
∑

t=1
ailait = ∑

i
∑
l

ail(n+1−2i)

= ∑
i
(n+1−2i)2

= ∑(n+1)2−4(n+1)∑ i+4∑ i2

= n(n+1)2−2n(n+1)2 + 2
3n(n+1)(2n+1)

= 1
3n(n2−1)

For the mean values on summation over all possible permutations, we have

4



E(c) =
n
∑

i=1

n
∑
j=1

E(ai jbi j)

Since a and b are independent, the mean value of any term ai j or bi j is zero. So

E(c) = 0

For the variance of c we have

E(c2) = E[∑
i

∑
j
(ai jbi j)]

2 = E

(
n
∑

i=1

n
∑
j=1

n
∑

k=1

n
∑

l=1
ai jbi jaklbkl

)
The quadruple sum may be broken into four pieces.

(i) Case 1: i = j = k = l.

Figure 2.1: Case 1

In this case τ will clearly be zero, as we are comparing a single point to itself. aii = sgn(xi−

xi) = 0

(ii) Case 2: i = k and j = l, or, i = l and j = k.

5



Figure 2.2: Case 2

This case corresponds to the terms involving only two (x,y) points. Here we have ai jbi jai jbi j or

ai jbi ja jib ji which are equivalent to
n
∑

i=1

n
∑
j=1

a2
i jb

2
i j. So for E[

n
∑

i=1

n
∑
j=1

a2
i jb

2
i j], an individual term arises

from the square of ai jbi j or the product of that term with ai jb ji. Thus the sum is twice the sum of

a2
i jb

2
i j with i, j from 1 to n. There are n(n−1) terms in the sum, and the expected value is therefore

2n(n−1)E(a2
12b2

12) = 2n(n−1)E(a2
12)E(b

2
12)

=
2

n
∑

i=1

n
∑

j=1
a2

i j

n
∑

i=1

n
∑

j=1
b2

i j

n(n−1)

(iii) Case 3: Exactly one of (i, j) equals exactly one of (k, l).

Figure 2.3: Case 3

6



This case corresponds to the terms involving three (x,y) points. The product ai jaikbi jbik can

arise in four ways, since if we fix i, j,k for the a’s and the b terms can appear with suffixes

(i j, ik),( ji, ik),(i j,ki) and ( ji,ki) and there are n(n−1)(n−2) ways of fixing three different suf-

fixes out of n. So

E[
n
∑

i=1

n
∑
j=1

n
∑

k=1
(ai jbi jaikbik)] =

4
n(n−1)(n−2)

n
∑

i=1

n
∑
j=1

n
∑

k=1
ai jaik

n
∑

i=1

n
∑
j=1

n
∑

k=1
bi jbik

with

n
∑

i=1

n
∑
j=1

n
∑

k=1
ai jaik =

n
∑

i=1

n
∑
j=1

n
∑

k=1
ai jaik−

n
∑

i=1

n
∑
j=1

a2
i j

(iv) Case 4: Each i, j, k, l is distinct.

Figure 2.4: Case 4

This corresponds with terms involving four (x,y) points. We will show this sum has an expected

value of 0. Since a’s and b’s are independent, it suffices to show E(
n
∑

i=1

n
∑
j=1

n
∑

k=1

n
∑

l=1
ai jakl) = 0. Let

∑
′′ be the summation over all values of where the suffixes are not equal and ∑

′ being the sum

where exactly one pair of suffixes are equal. We have:

∑(ai jakl) = ∑
′′(ai jakl)+∑

′(ai jail)+∑
′(ai jaki)+∑

′(ai ja jl)+∑
′(ai jak j)+∑(ai jai j)+∑(ai ja ji)

Since ai j =−a ji, all terms after the first term to the right cancel in pairs. The term E[∑(ai jbi j)] = 0,

so therefore, 0 = E(∑′′ ai jakl)

7



For the variance of c we now have

E(c2) = 2
n(n−1) ∑a2

i j ∑b2
i j +

4
n(n−1)(n−2) [∑ai jaik−∑a2

i j][∑bi jbik−∑b2
i j]

Using
n
∑

i=1

n
∑

l=1
ail = 0 and

n
∑

i=1

n
∑

l=1

n
∑

t=1
ailait =

1
3n(n2−1) we have

E(c2) = 2
n(n−1)n(n−1)]2 + 4

n(n−1)(n−2) [
1
3n(n2−1)−n(n−1)]2

= 2n(n−1)(2n+5)
9

Therefore

var(S) = E(S2)

= E(( c
2)

2)

= 1
4E(c)

= n(n−1)(2n+5)
18

which is needed for our test statistic, Z.

The proof for τ tending to normality is beyond the scope of this thesis, but proofs can be found

in [2] and [3].

2.3 Standard Statistical Tools used in the Methods Sections

Order Statistics

Nonparametric methods are often based on ordered data values called order statistics [4]. Let

X1,X2, ...,Xn be independent identically distributed observations from a continuous distribution

with cumulative distribution function (cdf) F(x) and probability density function (pdf) f (x). Define

the order statistics as X(1) < X(2) < ... < X(n). The pdf for the distribution of the rth order statistic

is given by

f(r)(x) =
n!

(r−1)!(n−r)! [F(x)]r−1[1−F(x)]n−r f (x)

8



Convolution

In the following sections we will need a formula for finding the distribution for the sum or differ-

ence of two independent variables. The distribution is given by the convolution of the variables’

distributions. If Z = X +Y , then fZ(z) is given by:

fZ = ( fX ∗ fY )(z) =
∫

∞

−∞
fX(t) fY (z− t)dt

Similarly, if Z = X−Y , then fZ(z) is given by:

fZ = ( fX ∗ fY )(z) =
∫

∞

−∞
fX(t) fY (t− z)dt

9



CHAPTER III: METHODOLOGY

3.1 Defining τ̃

At time point i, let xi =(xi,1,xi,2, ...,xi,nx) be measurements of the x variable and yi =(yi,1,yi,2, ...,yi,ny)

be measurements of the y variable. Define x j and y j similarly at time point j 6= i. Define τ̃i j to be

τ̃i j =

nx
∑

s=1

ny
∑

t=1

nx
∑

q=1

ny
∑

r=1
Q((xi,s,yi,t),(x j,q,y j,r))

n2
xn2

y

Define τ̃ to be the mean of all τ̃i j’s.

3.2 Simulation for Sampling Distribution of τ̃ Under the Null Hypothesis

We use two simulations written in R [5] to study the sampling distribution of τ̃ under the null hy-

pothesis. The simulation assumes that the observations xi arise as nx random ”noise” values added

to a single representative xi value. The same distribution of noise values applies to all xi’s and the

xi’s in turn are a random sample from some distribution stationary in time. The same assumptions

apply to yi. The inputs required for each simulation are a distribution for x, a distribution for y, a

distribution for noise in x, a distribution for noise in y, the total number n of (x,y) points, the total

number of noise points nx for x and ny for y, and the number of simulations.

In the first simulation, the desired number of points are sampled from the distributions given

for x and y, then the following is done many times. The appropriate number of noise points are

sampled and added to the x and y points. τ is then calculated for each pair of (x,y) coordinates and

then averaged, giving us τ̃ . This algorithm is done many times and τ̃ is stored for each iteration.

The result is a distribution of τ̃ that is compared to the traditional τ before noise is added. With this

simulation we can observe and compare the effects of the noise sampled from different distributions

on the correlation calculated.

The second simulation runs just as the first, but samples new initial values for x and y for each

iteration. This allows us to better observe the null distribution of τ̃ as we can see how it behaves for

10



many different x and y many times. We can also use this simulation to investigate the distribution

of particular cases. The results of this simulation will be used to support an analytical problem

introduced in the next section.

3.3 2×2 Closed Form Case

We introduce the following notation: for any random variable W , let fw be the pdf and Fw be the

cdf.

Let xi, i = 1,2, be independent random values from a distribution fx. For each i, let εi( j),

j = 1,2, be two independent random ”noise” values drawn from fε . Adding the ”noise” gives us

four data points to consider. We write these points as order statistics x1(1), x1(2), x2(1), and x2(2),

where xi( j) = xi + εi( j). Four comparisons are needed to calculate τ for x1 and x2:

x2(1)− x1(1), x2(1)− x1(2), x2(2)− x1(1), x2(2)− x1(2)

The number of positive differences from these comparisons is any integer from zero to four. We

want to find the probabilities of each number of positive differences. Due to the symmetry of the

problem, the case of zero positive differences will have the same probability as the case for four

and similarly the probabilities of one and three positive values are the same. This means there are

just three cases we need to understand: the cases of four, three, and two positive differences.

We start with the case given by Figure 3.1, where all four comparisons are positive. This occurs

if the smallest point associated with x2 is larger than the largest point from x1. What we must find

is P(x1(2) < x2(1)). Since x1 and x2 are independent of each other, the probability is given by:

∫
∞

−∞

∫ x2(1)
−∞ fx1(2)(x(1)) fx2(1)(x(2))dx(1)dx(2)

=
∫

∞

−∞
Fx1(2)(x(2)) fx2(1)(x(2))dx(2)

where Fxi( j)(x) and fxi,( j)(x) are the respective cdf and pdf.

Next is the case of three positive differences, seen in Figure 3.2. This occurs if the points are

arranged so that x1(1) < x2(1) < x1(2) < x2(2), so all four points will be considered when finding the

probability. We start by expanding the inequality to

11



x1 + ε1(1) < x2 + ε2(1) < x1 + ε1(2) < x2 + ε2(2)

Let ∆x = x2− x1 which has a pdf f∆x, found by the convolution of fx2 and − fx1 . Then

(ε1(1) < ∆x+ ε2(1))∩ (ε2(1) < ε1(2)−∆x)∩ (ε1(2) < ∆x+ ε2(2))

This gives us the integral

∫
∞

−∞

∫
∞

−∞

∫ ε2(2)+∆x
−∞

∫ ε1(2)−∆x
−∞

∫ ε2(1)+∆x
−∞ fε1(1)(ε1(1)) fε2(1)(ε2(1)) fε1(2)(ε1(2)) fε2(2)(ε2(2)) f∆x(∆x)

dε1(1)dε2(1)dε1(2)dε2(2)d∆x

The third case of two positive differences can occur in two ways. Either both x1 points are be-

tween the two x2 points or both x2 points are between the two x1 points. Without loss of generality,

let us consider x1(1) < x2(1) < x2(2) < x1(2), given by Figure 3.3. There is a bit more difficulty in

solving this particular case. This is due to x2(1) not being independent from x2(2). This means we

can not find the probability in the same way as before. What we will do is transform our variables.

Let

(x1 + ε1(1),x1 + ε1(2)) = x̄1±∆ε1

where

x̄1 =
x1+ε1(1)+x1+ε1(2)

2 = x1 + ε̄1

∆ε1 =
ε1(2)−ε1(1)

2 and ε̄1 =
ε1(2)+ε1(1)

2

Define x̄2±∆ε2 similarly. By our previous assumption, ∆ε2 < ∆ε1. Finally, define ∆x̄ = x̄2− x̄1.

This gives the inequality

∆ε2−∆ε1 < ∆x̄ < ∆ε2 +∆ε1

The distribution of ∆ε’s can be found by the convolution of fεi(2) and fεi(1) . Call this pdf f∆ε We

must next find distributions for ∆x̄. To do this, we derive a distribution for x̄. We do this by

convolving the pdf for x, fx, and the pdf of ε , fε . The result is the pdf fx̄. Then by convolving fx̄

with − fx̄ we can derive a distribution for ∆x̄ with pdf f∆x̄. Now we are left with the integral:
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∫
∞

−∞

∫
∞

−∞

∫ ∆ε1−∆ε2
∆ε2−∆ε1

f∆x̄(t)dtd∆ε1d∆ε2

The probabilities for y can be found in the same way.

In our 2×2 closed case, there are just seven possible τ’s than can appear. The combinations of

positive y and positive x differences possible and the resulting possible τ’s are shown by the table

below.

Number of Positive y

Number of
Positive x

4 3 2 1 0
4 1 0.5 0 -0.5 -1
3 0.5 0.25 0 -0.25 -0.5
2 0 0 0 0 0
1 -0.5 -0.25 0 0.25 0.5
0 -1 -0.5 0 0.5 1

Table 3.1
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Figures for 2X2 Closed Form

Figure 3.1: Figure for x1(2) < x2(1)

Figure 3.2: Figure for x1(1) < x2(1) < x1(2) < x2(2)

Figure 3.3: Figure for x1(1) < x2(1) < x2(2) < x1(2)
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CHAPTER IV: RESULTS

4.1 Simulation Results

Our first function allowed us to observe how noise can affect the distribution of τ̃ . For our example,

we choose 50 (x,y) points from x,y ∼ N(0,1), add two noise points to each x and three to each

y, and sample each noise point for both x and y from εx,εy ∼ N(0,σε). We ran each simulation

100 times. What we have shown through simulation is that a small σε gives a much narrower

distribution for τ̃ centered around the true τ value, while an increase in σε widens the distribution

of τ̃ and moves the center away from the true τ towards 0. This result makes sense since an increase

in the size of the noise adds more randomness, pushing τ̃ to 0.

Figure 4.1: Graphs showing effect of noise with σε = 0.01,0.5,1,10

The simulation was also used to estimate the variation of τ̃ for a given set of (x,y) points for
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different values of σε . Different values of σε were chosen randomly between 0.05 and 20, and 500

simulations were run in the situation described above. In the plot below, σε is plotted against the

standard deviation of the resulting 500 values of τ̃ .

Figure 4.2: σε vs. standard deviation of τ̃

4.2 Integrals for 2×2 Normal Closed Case

Let us take the 2× 2 closed case from the previous chapter and solve a particular case. Let x ∼

N(0,1) and ε ∼ N(0,0.5). The integrals in this section will be evaluated numerically using the

trapezoid method.

Our first integral to solve is

∫
∞

−∞
Fx1(2)(x(2)) fx2(1)(x(2))dx(2)

We use our formula for pdf’s of order statistics and plug in our normal pdf. The result of this

integral is 0.3564333.

Now on to the second integral

∫
∞

−∞

∫
∞

−∞

∫ ε2(2)+∆x
−∞

∫ ε1(2)−∆x
−∞

∫ ε2(1)+∆x
−∞ fε1(1)(ε1(1)) fε2(1)(ε2(1)) fε1(2)(ε1(2)) fε2(2)(ε2(2)) f∆x(∆x)
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dε1(1)dε2(1)dε1(2)dε2(2)d∆x

Using similar numeric techniques, we arrive to a result of 0.0812346.

Then our final integral

∫
∞

−∞

∫
∞

−∞

∫ ∆ε1−∆ε2
∆ε2−∆ε1

f∆x̄(t)dtd∆ε1d∆ε2

is 0.0612689.

The probability distribution for the number of positive differences in x attributing to τ looks

like

Number of positive differences 0 1 2 3 4
Probabilities 0.3564 0.0812 0.1225 0.0812 0.3564

Table 4.1

Using the same for y, we get

τ̃ =±1: 2(0.3564)2 = 0.2540

τ̃ =±0.5: 4(0.3564)(0.0812) = 0.1157

τ̃ =±0.25: 2(0.0812)2 = 0.0131

τ̃ = 0: 2(0.1225)− (0.1225)2 = 0.2299

To check these results we ran our second simulation 100,000 times with fx, fy ∼ N(0,1) and

fεx , fεy ∼ N(0,0.5). The results from the simulation support our analytical results.

Results from 100000 simulations for 2×2 normal case
-1 -0.5 -0.25 0 0.25 0.5 1

0.25579 0.11764 0.01381 0.22822 0.01340 0.11760 0.25354

Table 4.2
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Figure 4.3: Distribution of τ̃ for our particular case

We can also use our second simulation to see how an expansion of our 2×2 closed case may

look. Instead of just sampling two (x,y) points, we sampled 20 and ran our simulation 1000 times.

The plot of the distribution is centered at 0 as to be expected.
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Figure 4.4: Distribution of τ̃

We also found from this simulation that the standard deviation of τ̃ is less than that of standard

τ without noise.

τ τ̃

sd 0.16156 0.13835

Table 4.3

4.3 Application of τ̃ to Real Data

We took τ̃ and applied it to the Vibrio vulnificus and dissolved organic carbon data from Looe Key,

FL. We calculated τ̃ = 0.12592. Applying the method of daily averages resulted in τ = 0.13482.

We then calculated the following from the original data and used it for our second simulation:

Vibrio ∼ N(57.2,41.8), DOC ∼ N(87.2,16.4), εvib ∼ N(0,39.0), and εDOC ∼ N(0,5.0). We ran
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our simulation to mimic the real data by generating three noise points for y and two for x. This

resulted in the following distribution for τ̃ , based on 10,000 simulations.

Figure 4.5: τ̃ applied to real data

From the simulation, we can generate a ”pseudo” p-value. To do this we let τ̃i be the estimate

of τ̃ for simulation iteration i = 1, ...10000. Let p̂ = #(|τ̃i| > | ˆ̃τ|) where ˆ̃τ is the actual sample

p-value. Our two-tailed p-value for τ̃ was .31. By using the cor function in R we were able to find

a p-value for τ calculated with daily means and got a result of .38. So τ̃ had a slightly stronger test,

but the result still isn’t powerful enough to reject the null hypothesis.
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CHAPTER V: DISCUSSION AND CONCLUSIONS

5.1 Summary

From our results section, we can see that our analytical solutions for our 2× 2 closed case with

x,y∼N(0,1) and εx,εy ∼N(0,0.5) match our results from running our second simulation 100,000

times with the same parameters. This agreement of results confirms that both our analytical solu-

tion and our simulation are correct.

With our first simulation, we observed how the size of the noise added to original (x,y) points

affects τ̃ . As the variation in the noise increases, the distribution of τ̃ widens and moves its center

towards 0. It is also notable that we observed the largest standard deviation for τ̃ when the noise

variance was closest to the variance of the original points.

When we applied τ̃ to the real data from Looe Key, we found that the correlation found with τ̃

was smaller than when calculated with daily averages. The p-value for τ̃ was more powerful than

what was obtained with the method of daily averages, but the result of the hypothesis test was the

same.

Since τ̃ varies with σε , we can’t use Kendall’s assumption that all configurations are equally

likely, and we have to know distributional information about both x and ε .

Future works could further explore how τ̃ behaves when data is sampled from skewed distri-

butions or what effects skewed noise could have. Future efforts could also be made to explore why

the standard deviation of τ̃ is at its greatest when the standard deviation of the noise is close to that

of the data. Also, a way to avoid the need for distributional knowledge of our data is needed in

order to make τ̃ a more applicable option in the field.
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APPENDIX A: R CODE

6.1 Sample Distributions

% The following are the functions for the distributions for x, y,

% ep to be used for the simulations

normal.0.10<-function(n){rnorm(n,0,10)}

normal.0.01<-function(n){rnorm(n,0,.01)}

normal.0.0.05<-function(n){rnorm(n,0,.5)}

normal.0.1<-function(n){rnorm(n,0,1)}

normal.1.1<-function(n){rnorm(n,1,1)}

6.2 First Simulation

tau.prob.func<-function(fx, fy, fepsx, fepsy, npts, nxnoise,

nynoise, iterations) {

% tau.prob.func has inputs of a distribution for x, a distribution for y, a

% distribution for the noise in x, a distribution for the noise in y, total

% number of (x, y) points, total number of noise points for x,

% total number of noise points for y, and total number of iterations.

% This function samples x and y points once, then adds different

% randomly generated noise to the points in each iteration. Tilde

% tau is calculated and stored for each iteration.

X=fx(npts)

Y=fy(npts)

tau.without.noise <- cor(X, Y, method="kendall")

tau<-numeric()
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a<-numeric()

for(n in 1:(iterations)){

% generate noise

epsx=fepsx(npts*nxnoise)

epsy=fepsy(npts*nynoise)

% add the noise

x= X+epsx

y= Y+epsy

x.mx=matrix(x, npts, nxnoise)

y.mx=matrix(y, npts, nynoise)

tau.with.noise.one.pair <- matrix(NA, npts, npts)

for(i in 1:((npts)-1)){

for(j in (i+1):npts){

nxpos=0

nypos=0

for(k in 1:nxnoise){

for(l in 1:nxnoise){

nxpos=nxpos+sign(x.mx[i,k]-x.mx[j,l])

}

}

for(k in 1:nynoise){

for(l in 1:nynoise){
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nypos=nypos+sign(y.mx[i,k]-y.mx[j,l])

}

}

% concordance

tau.with.noise.one.pair[i, j] <- nxpos*nypos/nxnoise^2/nynoise^2

}

}

tau[n] <- mean(tau.with.noise.one.pair, na.rm = T)

}

plot(density(tau), xlim=c(-.25, .25), main = "sigma=10")

abline(v=tau.without.noise, col=2)

return(list(tau.without.noise=tau.without.noise, tau=tau,

mean.tau=mean(tau)))

}
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6.3 Second Simulation

many_tau.prob.func<-function(fx, fy, fepsx, fepsy, npts, nxnoise, nynoise,

iterations) {

% many_tau.prob.func takes the same inputs as tau.prob.func.

% In this function x and y values are resampled for each iteration,

% noise is added to the values and tilde tau is calculated and recorded

% each iteration.

tau.without.noise <- numeric(iterations)

tilde.tau<-numeric(iterations)

for(n in 1:iterations){

X=fx(npts)

Y=fy(npts)

tau.without.noise[n] <- cor(X, Y, method="kendall")

% generate noise

epsx=fepsx(npts*nxnoise)

epsy=fepsy(npts*nynoise)

%add the noise

x= X+epsx

y= Y+epsy

x.mx=matrix(x, npts, nxnoise)

y.mx=matrix(y, npts, nynoise)

tau.with.noise.one.pair <- matrix(NA, npts, npts)
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for(i in 1:((npts)-1)){

for(j in (i+1):npts){

nxpos=0

nypos=0

for(k in 1:nxnoise){

for(l in 1:nxnoise){

nxpos=nxpos+sign(x.mx[i,k]-x.mx[j,l])

}

}

for(k in 1:nynoise){

for(l in 1:nynoise){

nypos=nypos+sign(y.mx[i,k]-y.mx[j,l])

}

}

%concordance

tau.with.noise.one.pair[i, j] <- nxpos*nypos/nxnoise^2/nynoise^2

}

}

tilde.tau[n] <- mean(tau.with.noise.one.pair, na.rm = T)
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}

return(list(tau.without.noise=tau.without.noise, tilde.tau=tilde.tau,

mean.tilde.tau=mean(tilde.tau)))

}
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