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ABSTRACT 

 

Marine debris is a global issue with adverse impacts on the marine environment, wildlife, 

economy, and human health. Its presence on beaches may vary due to topography, hydrological 

conditions, proximity to litter sources, and the extent of beach use. Studies of these parameters on 

beach litter are essential for understanding spatial and temporal patterns; however, this work is 

labor-intensive and time-consuming. To overcome these obstacles while gaining higher spatial and 

temporal resolution data, two methods were developed (1) segmentation and (2) regions with 

convolutional neural networks (R-CNN) to detect and quantify marine macro-debris using high-

resolution imagery. 

Data to develop and test the methods were collected using a rotary Unmanned Aerial 

System (UAS) with an RGB sensor at various altitudes over a 100m section of sandy beach on 

Mustang Island, Texas. Images were processed through structure-from-motion photogrammetry to 

derive orthomosaics for each flight. Orthomosaics were then run through an image processing, and 

classification workflow developed for segmentation and delineation of imaged debris. The 

segmentation algorithm detected the most debris at the lowest altitude (215 of 341 total at 15m), 

with decreasing detections at 22m (101) and 35m (50). The second method applied deep learning 

object detection to smartphone images. Based on the dataset and the network architecture, R-CNN 

mean average precision can range from 31.4% to 66% (Girshick et al., 2014). Training for R-CNN 

consisted of three stages: extract region proposals, train AlexNet to classify objects, and train a 

bounding box regression model to locate the debris. Average precision for the Specifically 

Engineered Algorithm for Gathering and Understanding Litter Location (SEAGULL) detector was 

~22%, meaning it has a low performance at detecting all the debris in the testing dataset and 
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correctly predicting whether or not that region was debris or not. Object detection has been a 

challenging task for decades, and with a low overall debris detection accuracy, it needs to be further 

improved with the use of a larger dataset or adjusting the training parameters. Few studies have 

been published on this topic, but this work demonstrates that remote sensing with UAS has the 

potential to increase research efficiency. 
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CHAPTER I: INTRODUCTION 

1.1 Marine Debris  

Contamination of marine debris is a global problem, and increasing sea level, wind speed, and 

oceanic currents associated with climate change are likely to influence the transport and fate of 

this debris on beaches, in estuaries, and in the open ocean (Browne et al., 2015). According to the 

Marine Debris Research, Prevention, and Reduction Act, “marine debris is defined as any 

persistent solid material that is manufactured or processed and directly or indirectly, intentionally 

or unintentionally, disposed of or abandoned into the marine environment or the Great Lakes” 

(Marine Debris Research, Prevention, and Reduction Act, 33 USC §§ 1951). Our ocean and coastal 

systems are polluted with a wide variety of marine debris; common items are cigarette butts, plastic 

bottles, plastic caps, and food wrappers (Belhouari et al., 2017). Marine debris is items that have 

been made or used by people and is either from inland sources or transported to the coast by rivers, 

wind, human-made drainage systems or human activity. (Corcoran et al., 2009; Duhec et al., 2015). 

It has adverse impacts on the marine environment, wildlife, economy, and human health (Engler, 

2012; Critchell et al., 2015). Marine debris has negatively impacted marine animals of all trophic 

levels, through entanglement, ingestion, habitat destruction, and physiological effects (Duhec et 

al., 2015; Gregory, 2009). Debris can also modify coastal habitats and transport invasive species. 

It can also have negative economic impacts, which include damage to vessels when floating (nets, 

solid objects, and even plastic bags) or submerged and the loss of tourism revenues due to a 

reduction in the visual appeal of a destination (Jang et al., 2014).  Human health may also be 

affected, either by physical injury, transfer of toxic chemicals into the marine food web and to 

human diet, and ingesting synthetic debris from tap water, beer, and sea salt (Ribic et al., 1992; 

https://www.sciencedirect.com/science/article/pii/S0025326X1100498X#bb0180
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Browne et al., 2007; Yang et al., 2011; Engler, 2012; Kosuth et al., 2018). Consequently, there is 

a need to address the growing presence of marine debris.  

The concentration of marine debris varies among locations, which include both densely 

populated regions to remote areas. The amount of marine debris at each site is influenced by a 

number of variables, such as the physical characteristics of the debris, hydrology, human activities, 

and oceanographic processes (Browne et al., 2015). These variables can affect the transportation 

process, transport direction, and accumulation rates of marine debris. Marine debris is sometimes 

distinguished by its source, either land-based, sea-based or both (Thiel et al., 2013). Land-based 

sources originate from human activities, such as recreational use of beaches, landfills, sewage, and 

debris that are washed into coastal waters by natural disasters such as hurricanes and tsunamis. 

Sea-based sources include shipping, fishing, and oil and gas extraction activities. However, it can 

be challenging to identify the source or the origin of the debris, especially when the floating debris 

sinks, fragments into smaller pieces, and is consumed by organisms or deposited in the sediment 

(Thiel et al., 2013). Marine debris is classified based on size and type (Ribic et al., 1992). 

According to NOAA Marine Debris Monitoring and Assessment, macro-debris is greater than 

2.5cm, meso-debris is from 5mm -2.5cm, and micro-debris is less than or equal to 5mm (Lippiatt 

et al., 2013). NOAA also classified the debris based on material type, which includes plastic, metal, 

glass, rubber, processed lumber, cloth/fabric, and other/unclassifiable material (Opfer et al., 2012).  

Plastic is the dominant type of marine debris, accounting for 60-80% of material found on 

beaches, (Derraik, 2002; Lee et al., 2013; Browne et al., 2015). Annually, ~4.8-12.7 million metric 

tons of plastic debris enter the ocean from coastal zones or ships and has significantly increased 

over the last five decades (Jambeck et al., 2015). In the environment, plastic debris can fragment 

into smaller particles, which can increase their spatial distribution (Lee et al., 2013). Beach 
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topography, near-shore currents, storm activity, proximity to litter sources, and visitation rates all 

affect the amount and type of debris that is present (Corcoran et al., 2009). Lightweight, buoyant 

materials such as plastics bottles and utensils that float are circulated by ocean winds and surface 

currents until they sink into the water column or settle on a coastline. 

In the Gulf of Mexico, the major current is called the Loop Current. It is an area of warm 

water that travels northward from the Caribbean at a speed of 0.8 m/s, reaching the northern Gulf 

of Mexico before looping back south and flowing into the Atlantic Ocean through the Florida 

Straits. Eddies periodically spin-off from the Loop Current and travel westward towards the Texas 

coast at a speed of about 2-5 km/day (Xu et al., 2013). The Loop Current captures marine debris 

along its path, and its eddies transfer some of this material to the western continental shelf of the 

Gulf of Mexico. The material is then captured in longshore transport cells that run parallel to the 

shore, helping to deposit marine debris on coastal beaches and marshes (Figure 1). Padre Island 

National Seashore can accumulate up to one ton of marine debris per linear mile, with 

approximately 90% being plastics (National Park Service, 2005).  This buildup of debris on Padre 

Island National Seashore varies during the year due to the wind and current patterns of the Gulf, 

weather conditions, and sea-based activities (Ribic et al., 2011).  

 
Figure 1: Concentration of marine debris varies due to the influence of the Gulf Loop current, 

eddies, and longshore currents (Illustration done by Dr. Conkle using Google Earth). 
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1.2 Beach Surveys 

With the high accumulation rates of marine debris on beaches, like Padre Island National Seashore, 

characterizing and cataloging this material as well as studying its presence and movement is labor-

intensive and time-consuming. In the last decade, there has been an increase in published papers 

involving marine debris and different approaches to gathering marine debris data such as sources, 

composition, amounts, and environmental significance based on monthly or longer in situ beach 

surveys (Browne et al., 2015; Galgani et al., 2015). Beach surveys using conventional surveying 

techniques are the most widely used method for monitoring the amount and type of litter in a 

specified area at a specific time or how litter changes with time (Rubic et al., 1992). Various groups 

like NOAA Marine Debris Program and Ocean Conservancy have developed a standardized 

marine debris shoreline survey protocol to allow trained individual and volunteers to gather 

valuable data for monitoring and assessing marine debris (Opfer et al., 2012). The traditional beach 

surveys rely on visual methods, where surveyors count and classify individual debris items, the 

debris may or may not be removed from the beaches, and either the entire beach or smaller sections 

(100m transects) may be surveyed (Ribic et al., 1992). In addition to the high expense, labor and 

time required they also cover varying spatial and temporal scales making comparisons across 

studies difficult (Jang et al., 2014). To overcome the obstacles of conventional monitoring, 

researchers used webcams and applied image analysis techniques to sequentially quantify debris 

abundance at specific sites (Kako et al., 2010; Kataoka et al., 2012). A remote-controlled digital 

camera suspended from a balloon was used to estimate the total mass of litter washed ashore on 

beaches (Nakashima et al., 2011). An unmanned aerial system (UAS) model GAUI 500X was used 

to develop a beach litter detection software for debris larger than 50cm (Jang et al., 2014; Jang et 

al., 2015). Light Detection and Ranging (LIDAR) was used to classify and quantify marine debris 
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based on its shape (Ge et al., 2016). Moreover, a single-engine, general aviation aircraft with fixed 

landing gear was used to manually detect macro-debris ranging from <0.5m2 to >2.0m2 (Moy et 

al., 2017). These approaches, while potentially advantageous over traditional methods, do not 

provide as much promise as a small, low-flying, inexpensive Unmanned Aerial Systems to study 

marine debris larger than 2.5cm on beaches. 

1.3 Small Unmanned Aerial System (UAS) 

Small UAS or drones are remotely or self-piloted aircraft weighing less than ~25kg with a payload 

that includes cameras and various sensors. This technology is rapidly advancing due to a growing 

demand for their use in military, civil, hobby, and research (Itkin et al., 2016). For research, UAS 

is used to collect data in a variety of fields like agriculture, animal behavior and population size, 

and coastal mapping. Applications of using UAS for coastal and marine surveys include dune and 

beach face erosion measurement, detecting sizeable marine debris at sea, and seal population 

surveys (Turner et al., 2016; Veenstra & Churnside, 2012; Seymour et al., 2017). Vertical aerial 

photographs are the most commonly used data source in shoreline mapping since they provide a 

valuable record of shoreline position. However, distortion and displacement are greater in small-

scale aerial photographs (e.g., 1:50,000); those imageries cover large areas with less detail. Low- 

flying UAS can produce a higher spatial resolution at a lower cost, a closer view of the areas of 

interest, and used in a variety of situations (Ramesh et al., 2016). Due to the low flying ability of 

a UAS and the high-resolution imagery, detecting macro-debris is possible. There are two main 

types of UAS’s used for mapping purpose: fixed wing and rotary wing; each with its advantages 

and disadvantages. Despite being limited by meteorological conditions (wind speed and rain), 

battery life, and the flight restriction areas, UAS is useful for coastal research and monitoring. The 

flexibility of UAS will reduce cost at local geographic scales (e.g., routine monitoring a few km 
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stretch of beach) and offer better spatial and temporal resolution than conventional field survey 

approaches to marine debris monitoring. Manually counting marine debris in imagery is time 

consume and inefficient. However, recent advances in automated counting and computer vision 

approaches can help overcome these inefficiencies.  

1.4 Object Detection  

Object detection is a growing field of study related to computer vision, machine learning, and 

digital image processing. A good detector can identify the object, categorize it and provide the 

location of the object (Chen et al., 2018). For humans, we can effectively recognize and localize 

objects in a scene or image, but for artificial systems, recognition is challenging due to factors, 

such as shape, distortion, texture, and color (Dan et al., 2014). Different techniques for solving this 

problem have been proposed, ranging from low-level to high-level processing.  

Digital image processing performs various operations that improve image quality and 

extracts relevant information (Chudasama et al., 2015). Low-level processing improves the quality 

of the image through enhancement or noise removal processes. Mid-level processing can extract 

some attributes from an image through segmentation, feature-based, and object recognition. Image 

segmentation tries to segment or separate the part of an image that contains the target objects from 

the image background or other targets. High-level processing understands and recognizes objects 

in an image for analysis; such as using support vector machine classification (SVM) with a 

histogram of oriented gradient features, convolutional neural network (CNN), and other computer 

vision techniques (Gonzalez and Woods, 2007).   

High-level processing is advancing rapidly due to “deep learning” that has been widely 

applied to various computer vision tasks such as image classification, object detection, and scene 

labeling (Sun et al., 2017). Deep learning is a machine learning technique that enables the computer 
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to build and understand complex concepts out of simpler concepts. Deep learning is usually 

implemented using a neural network architecture, such as CNN. CNN typically consists of multiple 

layers including the convolutional layers and each layer has many neurons with learnable weights 

and biases. With each layer, the network will start to recognize patterns, such as specific color, 

edges, shape, and texture. To achieve high predictive accuracy from a CNN, it must be trained 

with large datasets; instead, this project used transfer learning with an existing pre-trained network 

(AlexNet) and modified it with a project-specific dataset (Pan & Yang, 2010). Transfer learning 

has been used in a variety of deep learning application, and it is time efficient than training the 

network from scratch. The modified network was then further re-trained using Region-Based with 

CNN (R-CNN) to classify and locate the objects in the image.  

1.5 Objectives 

The primary purpose of this research is to increase the efficiency and temporal repeatability of 

marine debris monitoring relative to standardized field counting approaches through remote 

sensing techniques. To achieve this goal, the first objective for this project is to assess the impact 

of flight design and ground sample distance on detection and quantification of marine debris. The 

second objective is to design and established the parameters for segmentation by color thresholding 

and R-CNN to make a plausible estimate of the quantities and locations of macro-debris deposited 

on sandy beaches from aerial images acquired from a small rotary UAS and smartphone.  
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CHAPTER II: METHODS AND MATERIALS 

2.1 Study Area 

Federal Aviation Administration (FAA) guidelines limited the potential beach survey study sites 

in the local area due to the Corpus Christi Naval Air Station, Padre Island National Seashore, and 

airports/heliports (Figure 2). These rules state that operating a UAS for research is considered 

recreational use. However, the pilot must follow FAA guidelines to minimize risks to other aircraft, 

people, and property. These include aircraft weighing less than ~25kg, flying at or below ~122m, 

keeping the UAS within sight, never flying near other aircraft and airports, and never flying over 

unprotected people on the ground who are not directly participating in the UAS operation 

(Recreational Users, 2015).  

 
Figure 2: Restricted areas (red), special use airspace (blue) and advisories (orange) of where to 

fly a UAS around Corpus Christi, TX (Picture from AirMap). The study site (yellow star) location 

is in an advisory area. 
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The area chosen for this research was a 100m section of beach on Mustang Island, TX 

(Figure 3). The specific study area was chosen to meet FAA safety guidelines, located away from 

any access points, and minimum influence from human activities. However, Corpus Christi Naval 

Air Station had flight restrictions due to security reasons, and flight plans were canceled or 

rescheduled more than once. To obtain the best imagery possible, the flights were scheduled once 

a month around low tide to capture the majority of the beach shoreline, and it was typically taken 

early in the day to avoid foot traffic and parked vehicles on the beach. Flights were also limited by 

wind speed; the preferred wind speed was less than 17mph to avoid turbulence, improve handling 

of the UAS, ensure public safety, and reduce battery usage per flight. 

 
Figure 3: 100m section of beach (yellow star) on Mustang Island, TX. The focus area starts from 

the dune toe to the low tide shoreline (Map from Google Earth). 

 

2.2 UAS  

Aerial images were collected using two different UAS. First was the DJI Phantom 4 Pro (Figure 

4A) with a 1-inch 20-megapixel CMOS sensor, weighing ~1.4kg including the battery and 

propellers, and maximum flight time of ~30 minutes (Phantom 4 Pro, n.d.). When the Phantom 4 

Pro was not available, the 3DR Solo with a Sony QX camera with similar properties was used 

(Figure 4B).  A rotary UAS was used rather than a fixed-wing UAS because of its capability of 
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holding a steady field of view for an extended period, no need for a launching and landing runaway, 

and ability to handle highly dynamic areas, like the beach.  

 
Figure 4: The DJI Phantom 4 Pro (A) was used for the majority of the surveys, and the 3DR Solo 

(B) was a backup. 

 

2.2.1 Mission Plan 

The mission plan (flight path, height, speed, image overlap and side-lap) varied for each flight. 

Plans were developed with Ground Station Pro (GS Pro), an iPad app designed to control and plan 

automatic flights for the DJI Phantom 4 Pro. This app also provides real-time flight information 

such as location, remaining battery life, and progress. The 3DR Solo used Mission Planner, an 

open source software similar to the GS Pro.   

Choosing a flight altitude is critical for debris visibility, debris detection, and finding a 

balance between image resolution and coverage. To determine optimal flight altitude, ground 

control targets were used as a standardized measurement, and because macro-debris is considered 

as items larger than 2.5cm (Lippiatt et al., 2013); the flight altitudes were chosen based on the 

clarity of the 7.6cm diameter circle of the target (Figure 5). For this UAS application, optimal 

flight altitudes were between 15 and 35m (Figure 6). Flights ≥20m were completed with one 

A B 
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battery and in one mission plan, while flights ≤20m required multiple batteries usage and mission 

plan to cover the area.  

Each mission plan was implemented with a high overlap ratio (≥70%) to enable structure-

from-motion (SfM) photogrammetry capability. Flight plans were uploaded to the UAS via Wi-Fi 

connection between the remote controller and the UAS. During the autonomous aerial survey, all 

images captured were geo-tagged by the onboard GPS as required for SfM processing.  All the 

aerial images and data were stored in the platform’s onboard SD card and later transferred to a 

computer for storage and processing.  

 
Figure 5: Target center (7.6cm) was compared across different flight altitudes and ground 

resolutions to determine the best flight plans. 
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Figure 6: Aerial photographs of a blue plastic bottle comparing the ground sample distance and 

flight altitude. 

 

2.2.2 Ground Control Targets 

Ground targets were used to georeferenced images for time series analysis at the site. This 

simplifies image alignment with the chosen coordinate system (WGS84 UTM Zone 14N), and 

reduces shifting, rotating, or skewing of images. Each ground control target was surveyed with an 

Altus APS-3 Real Time Kinematic GPS with a Leica CS10 field controller. WGS84 UTM Zone 

14N was the horizontal coordinate system used for this survey with heights (z-values) referenced 

to North American Vertical Datum 1988 computed by transforming WGS84 ellipsoid heights 

using the National Geodetic Survey GEOID 12b model. The northing and easting coordinates, as 

well as the elevation for each target, were exported to a comma separated value text file and saved 

for use during image processing. This project used 5, 2.5 x 4ft black plywood boards painted with 

a white cross, and a black circle (7.6cm diameter) in the center (Figure 7). Four control targets 

were set in the corner of the beach and one in the center, creating a symmetrical pattern as to 

maximize the geolocation accuracy across the entire beach section (Figure 8).  
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Figure 7: A ground control target used during the beach survey. 

 

 
Figure 8: Location of the ground control targets (orange circle) used across a 100 m section of 

beach. 
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2.2.3 Ground Truth Data 

To compare UAS detection of plastic materials with actual material on the beach, all macro-debris 

(larger than 2.5cm) was geotagged (Figure 9) using a Garmin Monterra handheld GPS and then 

imported into ArcMap to create a point shapefile. Since the Garmin Monterra has a 

GPS/GLONASS receiver, the GPS positioning of the debris were checked using the raw images 

and orthomosaic. These data were also used later in the project to compare the number of debris 

detected through segmentation, which divides the image into multiple parts (foreground and 

background) to help identify marine debris.  

 
Figure 9: Ground truth map of debris (341 items; red diamonds) on a 100m section of Mustang 

Island, TX beach. 
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2.3 Data Processing 

SfM is a computer vision technique that relies on a series of overlapping, offset images to recreate 

an environment (Westoby et al., 2012). The georeferenced SfM datasets consist of the X, Y, and 

Z (latitude, longitude, and elevation) information with additional RGB spectral (red, green, and 

blue) (Mathews & Jensen, 2013).  Post-flight, images were processed using Pix4D SfM software, 

to create an orthomosaic for each data collection. Pix4D is commercial software that implements 

SfM photogrammetry to convert the aerial images into georeferenced 2D or 3D surface models 

and point clouds. It was chosen for this project due to it simple-to-use interface and ability to 

process images taken from varying angles and distances to create 2D maps and 3D models. 

2.3.1 Pix4D Settings 

Images were loaded into Pix4D and the appropriate input and output coordinate systems, as well 

as geolocation accuracy, were determined. The output coordinate chosen for this project was 

“Geoid Height above WGS84 Ellipsoid” to match the ground control point coordinate system. 

Pix4D has three processing stages: (1) initial processing, (2) point cloud and mesh, and (3) Digital 

Surface Models (DSM), orthomosaic, and index. Stage 1 begins matching image features and 

generates a sparse point cloud. The processing options were set to default except for the Matching, 

which was set to “Triangulation of Image Geolocation.” This was chosen because the aerial images 

were geo-tagged and the images were matched with at least three similar images. The Matching 

Strategy was selected for this project, using the “Geometrically Verified Matching” to look at 

relative camera positions and discard geometrically unrealistic matches. After this processing 

stage, Pix4D generates a “Quality Report” and a low-resolution orthomosaic preview. This report 

summarized the project and provided a quality check to the images, dataset, camera optimization, 

matching, and georeferencing before starting stage 2. 
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After stage 1, a ground control coordinate text file was imported into the project with the 

specified coordinate system of the control points. Using the RayCloud Editor in Pix4D, two images 

of each target were manually tagged, which then enable the software to tag the remaining images 

containing the ground control targets automatically. All images containing a ground target were 

manually inspected to make sure they were centered before they were rematched and optimized. 

The addition of ground control points improved the quality and accuracy of the orthomosaic. 

For stage 2, Point Cloud and Mesh increase the density of 3D points in the point cloud and 

3D textured mesh. Users can update image processing options and desired outputs for the 

generated point cloud. In this stage, the parameters were set to default, producing denser 3D points 

for the point cloud to render a more accurate DSM for creating the orthomosaic.  

Lastly Stage 3, DSM, Orthomosaic, and Index, the users finalize the processing options 

and outputs for the DSM and orthomosaic. The resolution, DSM filter, raster DSM, and 

orthomosaic was set to default to reduce noise and to improve the image quality by removing 

redundant points. The orthomosaic was saved as a single orthomosaic GeoTIFF file without 

transparency for digital image processing.  

2.4 Mid-Level Processing 

After initial image processing, mid-level and high-level processes were performed to detect marine 

debris captured in the orthomosaics. Matlab (R2017b) was used to perform the remaining image 

processing (segmentation, morphological operation, and extraction) and apply deep learning 

(transfer learning, R-CNN, and evaluation) to the images. Due to its large file size, the orthomosaic 

file was evenly split into four tiles before processing (Figure 10). In Matlab, the RGB images are 

stored as an m-by-n by 3 data array that defines red, green, and blue color components for each 

pixel. The m-by-n grid of pixels represents m as the number of columns (width) and n as the 



17 
 

number of rows (height) in an image. For the mid-level processing, each tile went through three 

stages: Image Preprocessing, Morphological Operations, and Extract Features (Figure 11). The 

parameters applied during these three stages were manually determined through trial-and-error.  

 
Figure 10: Site was divided into four even tiles for Matlab to process. 



18 
 

 
Figure 11: Method flowchart for detecting and counting marine debris using segmentation color 

thresholding. 

 

Image Preprocessing involves using Matlab Color Thresholder Application, an interactive 

application that automates colormap conversion, color threshold, and binary image conversion.  

This was done to convert the RGB image to YCbCr. RGB color space defines the color as the 

percentage of the mixture between red, green, and blue hues; a standard color space used in image 

processing. However, other color spaces describe colors by their hue, saturation, luminance, or 

intensity (Figure 12).  By testing out each color space, the best approach to detect the debris was 

through YCbCr.  



19 
 

 
Figure 12: Color Thresholder Application of Matlab is displaying the various color space for this 

aerial image. 

 

With YCbCr, Y, Cb, and Cr represent the brightness, the blue-yellow spectrum, and the 

red-green spectrum. YCbCr was also chosen because it could exclude the background pixels that 

have no value ([0 0 0]) without affecting the orthomosaic. To automatically detect the pixels 

containing the targeted debris in the images, the color space threshold was defined (Table 1). 

Segmentation by color thresholding used the color information of the object to extract it from the 

background and other objects. This technique specifies the range of YCbCr intensities for 

thresholding. If the pixel values were outside the range for all three channels, that pixel would be 

considered as the background (sand, vegetation, and water) and pixels that are within the threshold 

would be considered as the foreground (debris) (Table 1). The color threshold for each tile varies 

due to the amount and angle of the sunlight, but they are all close in range. Using the “select a 

region of colors in the image” tool in Matlab, the majority of the background pixels were excluded, 

and three thresholds were established (Figure 13). The image was exported as a binary image 

(Figure 14A), a masked image, and the function was exported and saved.  
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Table 1: Color threshold range for each altitude based on histogram settings. 

 

Altitude 

 

Tile Number 

Channel 1 

Threshold 

(min/max) 

Channel 2 

Threshold 

(min/max) 

Channel 3 

Threshold 

(min/max) 

35 1 16 215 89 133 116 139 

35 2 16 197 93 133 118 149 

35 3 16 195 67 135 116 154 

35 4 16 204 77 136 113 154 

22 1 16 184 85 134 116 140 

22 2 16 217 93 136 115 140 

22 3 16 211 71 134 116 148 

22 4 16 199 77 134 117 148 

15 1 16 198 78 138 112 149 

15 2 16 206 72 151 101 154 

15 3 16 212 62 147 110 158 

15 4 16 205 71 144 105 154 

 

 
Figure 13: Removing most of the background pixels and establishing the YCbCr range. 
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Next is the Morphological Operation stage, which aims to eliminate the noise with minimal 

image distortion. The two operations used for this project were Dilation and Erosion. Dilation 

“expands” the boundary by adding pixels to the boundaries of objects in an image while Erosion 

“contracts” or removes the pixels (Figure 14B). Erosion was used first to remove the noise such 

as vegetation or sand pixels. After those pixels were removed, the dilation operation was used to 

restore the debris shape that was affected by erosion.  The number of pixels added or removed 

from the object in an image depends on the size and shape of a predetermined structuring element. 

The structuring element used for this project was either “disk” or “diamond” shape, with size 

varying based on noise and debris present. The noise is random background pixels that are left 

after the majority of the background have been removed from the Image Preprocessing Stage. The 

structuring element shape and size for each tile was decided on whether it can remove the majority, 

if not all, of the noise and whether it affected the debris pixels. The center pixel of the structuring 

element is called the origin, and the size of the element is either the radius of the disk or the distance 

from the origin to the points of the diamond. The size of the structuring element used in each tile 

was determined through trial and error. The size started off small (1-3 pixel) before it was increased 

to the 5-6 pixel so that the background pixels can be removed. By increasing the structuring 

element of erosion, the original shape of the debris was affected. However, as long as there are 

enough debris pixels present, it can be dilated to restore its shape.  Sometimes, the objects had 

holes from the Erosion stage, so an additional fill tool was used to help fill in the missing pixels 

(Figure 14C).  

Last is the Extract Feature stage, where the debris will be counted and detected using 

bounding boxes (Figure 14D). To detect the debris, “regionprops” function in Matlab was used to 

measure properties of the binary image. Properties like centroid and eccentricity were used to 
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determine the center of mass of the region and to count the objects. To find the location of objects 

in the image, a bounding box was used to determine the [x y width height] of the object, x and y 

are the coordinates to the center of the object, and the width height is the size of the box. The 

detection rate was calculated for each altitude by measuring the proportion of true positive to the 

sum of true positive and false negative detection.      

 
Figure 14: Morphological processing: (A) binary image includes the noise of background, (B) and 

(C) the image after applying the dilation, erosion, and fill operation to (A), and the result of 

applying the morphological operations to detect the debris using red bounding boxes (D). 

 

2.5 High-Level Processing 

The mid-level process involves images as input with outputs being attributes extracted 

from those images, such as segmentation and classification. With high-level processing, image 
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attributes are the input, and the output is understanding, such as scene and text description and 

individual objects recognition. This can be achieved through deep learning; a type of machine 

learning that train a neural network to learn unique characteristics of the features directly from 

data to classify and detect specific information, in this instance, debris in aerial images. One 

favorite type of deep neural network is convolutional neural networks (CNN). The main advantage 

of using the CNN over traditional methods like segmentation is the ability to construct feature 

filters during the training process. With enough training data, the self-learning CNN can perform 

accurate image classification task and image localization. Due to the small dataset of aerial images 

that contains marine debris (88 images), the SEAGULL detector was unable to classify and 

localize the debris in the aerial images. Instead, photos taken by a smartphone were used to train 

the SEAGULL detector. The goal of this section is to establish a baseline for debris detection so 

future works can build upon it.  

This training typically takes hours to days, while requiring substantial computing power. 

To reduce the time required for training, the Matlab General Java Heap Memory preference was 

set to the maximum, and the Computer Vision System Toolbox preference was set to local parallel 

with four workers in a parallel pool. The computer used was GeForce GTX 1080Ti with a compute 

capability of 6.1.  

2.5.1 Transfer Learning Using AlexNet  

To achieve high predictive accuracy from a CNN, the network requires large datasets to train with 

(Krizhevsky et al., 2012). A dataset of that size was not feasible for this study. Therefore, this 

project used transfer learning. This involves fitting the debris and non-debris datasets to an existing 

pre-trained network. AlexNet has been trained with over a million images using the ImageNet 

database and can classify objects found in the image into ~1000 categories (Krizhevsky, Sutskever, 
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& Hinton, 2012). Transfer learning is a process of taking a pre-trained model and adjusting the 

model to the custom dataset (Dan et al., 2014). The goal of this aspect of the project was to adapt 

a pre-trained convolutional neural network (AlexNet) for automated marine debris classification.  

AlexNet won the ImageNet Large-Scale Visual Recognition Challenge in 2012, achieving 

the highest classification performance at that time (Han et al., 2017). The network consists of 

twenty-five layers: 5 convolutional layers, three fully connected layers, one image input layer, two 

cross-channel normalization layers, three max-pooling layers, 7 rectified linear unit layers (ReLU), 

two dropout layers, one softmax layer, and one classification output layer (Figure 15).  

 
Figure 15: Architecture of AlexNet (Krizhevsky et al., 2012). 

The image input layer defines the size of the input images, and AlexNet required the input 

image size of 227 pixels by 227 pixels with three color channels. The Debris and Non-debris 

datasets were resized using Matlab’s Image Batch Processor application. Both datasets were 

randomly split into 80% for training and 20% for validation by Matlab. The training images will 

go through AlexNet network with the last fully connected layer being modified to train the network 

to classify the images into two class: Debris or Non-Debris.  
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The training images will go through 5 Convolution layers, each with different filter and 

stride number, feature maps, zero padding, output size, and neurons. The training options used for 

the convolutional layers was 0.001 for the initial learning rate, 64 for the mini-batch size, and 20 

for the max epochs. The parameters chosen worked well with the custom datasets, and it ensures 

a fast training time. The initial learning rate helps to reduce the rate at which the network 

parameters are changing. The minibatch size is a subset of the training data that was used to 

evaluate the gradient of the loss function and update the weights. Lastly, the max epoch is the 

number of epochs used for training. Each convolutional layer has neurons or filters that learn the 

significant features like straight edge, colors, and curves. A ReLU layer is applied after every 

convolutional layer. ReLU introduces nonlinearity to the system, meaning it speeds up the training 

because the established threshold operation was zero. Any pixel values ≤0 is set to zero, and it will 

not propagate through the network. Due to the unbound activations of ReLU neurons, a Cross-

Channel Normalization layer usually follows after the ReLU layer to normalize it. The Cross-

Channel Normalization layers are channel-wise local response normalization; this layer will 

amplify the excited neuron while reducing the sensitivity of the neighboring neuron. The Max 

Pooling layers are the down-sampling layer; reducing the number of connections to the following 

layers and help reduce overfitting. Overfitting means that the model fits too well into the training 

set, making it hard to generalize to other patterns. The Fully Connected layers combine all the 

features learned from the previous layers to identify significant patterns. The last Fully Connected 

layer was modified since AlexNet was initially designed to classify images into 1000 object 

categories, but for this project, there were only two classes (Debris and Non-Debris). The Dropout 

layers set the layers input elements to zero with a given probability. This layer helps with 

overfitting. The last two layers were Softmax and Classification, the output layers. The Softmax 
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Layer normalizes the output of the fully connected layers and determines how likely the image 

falls into each class, and the Classification Layer detects and identifies the image. After the Debris 

Classification Network was trained, the performance was evaluated by comparing the predicted 

label from the network to the testing images.   

2.5.2 Datasets 

CNN’s advantage is that once trained with existing datasets, it automates feature extraction, which 

as stated above for the mid-level processing, was initially done manually. There were two datasets 

for this project. The first dataset contained 1037 images of marine debris (individuals or clusters), 

which examples shown in Figure 16.  

The second training dataset was non-debris images, which were used to reduce false 

positive. These images depicted naturally occurring materials such as sand, water, and coastal 

vegetation (some examples shown in Figure 17). Aerial images and smartphone images were used 

for this dataset, which contained about 1,364 images.  

All of the debris dataset and some of the non-debris dataset were taken from one 

smartphone camera, with each image measuring ≥3000 by ≥5000 pixels. The sensor width of the 

camera is ~5.92mm, and the focal length of the camera is ~ 27mm. Pictures were taken between ~ 

1-1.5m altitude to produce a GSD of ~0.01cm/pixel. 
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Figure 16: Samples from the Debris Dataset. 

 
Figure 17: Samples of the Non-debris dataset. 
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To adapt the pre-trained neural network, AlexNet, both datasets (Debris and Non-Debris) 

were used for object classification training. The adapted network was further modified with R-

CNN. This was done by further processing the debris image dataset using the Matlab Image 

Labeler application to identify debris and label it as a rectangular region of interest (ROIs; Figure 

18).  No cluster images (Figure 19) or those with coarse sand and white shells background (Figure 

20) was used to train the R-CNN because it would increase the false positive and the false negative 

rate. After labeling, 839 images were exported to Matlab for training and testing the R-CNN. 

 
Figure 18: Each image contained ROIs for debris detection. 
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Figure 19: An image containing a variety of debris. 

 
Figure 20: A blue plastic object in a coarse sand environment with the white shells. 
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2.5.3 Region with CNN (R-CNN) Training Parameters 

The goal of any object detector is to find the location of objects in an image and classify them 

correctly (Ibrahim et al., 2012). After image classification training was accomplished using 

AlexNet, R-CNN was trained to locate all relevant objects. Matlab R-CNN has three stages: extract 

the region proposals, train a neural network to classify objects in the training data, and train the 

bounding box regression models for each object class (Figure 21). After inputting the images, R-

CNN creates bounding boxes or region proposals through a selective search to capture all possible 

object locations (Figure 21B). The selective search looks at the image through different size 

windows and will group adjacent pixels by texture, color, or intensity. Once the proposals are 

created, R-CNN warps the regions to a standard square size and passes it through the modified 

AlexNet (Figure 21C). The last layer will use SVM to classify the object and its location (Figure 

21D). The bounding boxes will run through a linear regression model to output tighter coordinates 

for the box once the object is classified.  

Matlab has a “trainRCNNObjectDetector” function that requires ground truth training data, 

a network (AlexNet), and pre-determined training options. Due to the massive raw image size, the 

debris dataset was resized to maintain its existing high resolution. Resizing the images also reduced 

Matlab memory usage and increased the performance speed of R-CNN training. The images were 

all resized with a width and height of 666 pixels and 1000 pixels. These values were chosen 

because the 2.54cm diameter debris pieces were still recognizable, and it contained enough pixels 

to extract relevant information (Figure 22).  
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Figure 21: A modified overview of R-CNN for marine debris detection (original R-CNN figure 

is from Girshick et al., 2016). 

 
Figure 22: Resolution comparison of the original image vs. the resized image.  
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To start training the R-CNN for debris detection in the images, a ground truth data table 

was exported from the Image Labeler Application. This table contains ROI labels [x, y, width, 

height], which are bounding boxes that specify the object position in each image. The ground truth 

table was randomly split with 70% for training dataset and 30% for the testing dataset. The network 

used for R-CNN was the modified AlexNet that classified images into debris or non-debris class. 

The training options for R-CNN was set to use the stochastic gradient descent with momentum 

optimizer. This helped to accelerate gradient vectors in the right direction and learn the optimal 

filters for object detection. The training option also set the mini batch size to 96, the initial learning 

rate to 0.001, and the max epochs to 32. Training the R-CNN took a couple of hours.  

 To use the SEAGULL detector, the “detect” function in Matlab is used on a test image. 

The location of the objects detected and the detection scores for each bounding box are calculated. 

Detection scores range from 0-1 with larger values indicative of higher detection confidence. An 

annotation function was used to display the image with the bounding boxes and scores (Figure 23). 

The SEAGULL detector was tested against three different backgrounds (fine sand, coarse sand, 

and carpet) and a couple of aerial images at 8m and 10m.  

The SEAGULL detector was evaluated using the “evaluateDetectionPrecision” function 

(Average Precision metric).  The average precision provides a single number that incorporates the 

ability of the detector to make the correct classification (precision) and the ability of the detector 

to find all relevant objects (recall). The first step is to run the detector on the test dataset (30% of 

the total dataset). The Average Precision metric was used to evaluate the expected results vs. the 

results from the detector, and a precision/recall curve is generated to visualize the relationship 

between precision and recall. Ideally, the precision should be one at all recall levels. If the average 

precision is less than 0.5, additional training data and time may be required.  
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Figure 23: An example of R-CNN object detection.  
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CHAPTER III: RESULTS AND EVALUATION 

3.1 Segmentation by Color Threshold 

The amount of marine debris detected through segmentation varies due to weather condition, 

especially the amount of sunlight reflecting off the debris, and the threshold range required to 

remove the majority of the background. During the August 2017 shoreline survey, a total of 341 

macro-debris (>2.5cm diameter) items were manually recorded. The segmentation algorithm 

detected a total of 258, 134 and 57 debris items at 15, 22, and 35m. The debris detected is identified 

in Figure 24 by red bounding boxes.  
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Figure 24: Result of detection for marine debris at 15m (A-D), 22m (E-H), and 35m (I-L). 

However, the true positive (actual debris after removing false positives) for 15, 22, and 

35m was 215, 101 and 50 debris items. Separating the foreground and background with three 

channels was challenging, and each flight had false positives and false negatives (Table 2). 

Examples of false positives included flowers or water reflection and the false negatives were 

attributed to debris having similar pixel values to sand and vegetation (Figure 25). These items 

include cardboard, transparent glass or plastic bottles, and black objects. Additionally, 

multicolored objects were recognized by the algorithm as multiple items (Figure 26). Overall, the 

detection rate at 15, 22 and 35m was 63.0, 29.6, and 14.7% over a 100m section of beach. While 

most of the color debris was detected at all altitudes, fragmented and therefore smaller debris 

(<2.5cm diameter) was not detected by the algorithm in images captured at higher altitudes.  

Table 2: Quantity and assessment of debris detected at various altitudes for August 2017. 

Altitude (m) Objects 

Identified 

(out of 341) 

True 

Positive 

False 

Positive 

False 

Negative 

Detection 

Rate 

15 258 215 43 126 63.0% 

22 134 101 33 240 29.6% 

35 57 50 7 291 14.7% 
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Figure 25: Two objects were missed due to the similar pixel values as sand (yellow circles). 

 

 
Figure 26: The algorithm recognized this target as multiple bits of debris even though it was only 

one object. 
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3.2 Object Detection by R-CNN 

With object detection, it was evaluated based on determining the existence (classification) and 

location (localization) of an object in an image.  

3.2.1 AlexNet Results and Accuracy 

AlexNet was modified to sort images into two classes: Debris or Non-Debris. There were 1,037 

images for debris and 1,364 images for non-debris for a total of 2,401. These images were pooled, 

and Matlab randomly split the two datasets where 80% (1,921 images) were used for training, 

while 20% (480) were used for testing. Correctly classifying the images is part of the R-CNN 

evaluation, so more images were put into the training process to have a higher precision. AlexNet 

produced 99.58% accuracy with the testing dataset. As shown in Figure 27, AlexNet was able to 

classify the images with high confidence.   

 
Figure 27: Each image contained a confidence score below the classification. 
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3.2.2 R-CNN Results and Average Precision 

There are three stages in the training process of R-CNN in Matlab extract region proposals, training 

a neural network to classify objects in training data (AlexNet) and training bounding box 

regression models for each object class (Girshick et al., 2016).  

The debris dataset used for R-CNN contained 839 labeled images, with 251 images (30%) 

for testing and 539 images (70%) for training. The size of the training dataset was smaller than the 

original debris dataset because cluster images and coarse sand with white shells background were 

removed to decrease false positive and false negative detection. The ground truth labels for the 

debris images were used to extract positive region proposals, and the negative regions came from 

the background of the image. A positive overlap range was included in the training to ensure that 

the region proposals that overlap the ground truth bounding box within the range of [0.6 1] were 

used as positive training samples. Through Selective Search, R-CNN will come up with ~2000 

fixed size regions per image that possibly contain the objects. There were some images where R-

CNN could not extract the region proposal even with a ground truth label (Figure 28). This may 

be due to background color relative to the debris or its size. It also did not process an image with 

a light blue plastic film and a green bottle cap. Interestingly, while the ground truth labels of debris 

found in a coarse sand background were rejected like Figure 28, similar debris in a fine sand 

background was accepted.  
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Figure 28: This training image was rejected because the detector cannot extract any region 

proposal. 

The training bounding box regression models for each object class was programmed by 

Matlab to improve localization performance. A linear regression model was used to refine the 

bounding box coordinates, and it applied a Greedy Non-Maximum Suppression (Greedy NMS) to 

eliminate duplicate detections and to select the best scoring window; assuming that it covers an 

object. However, there are some downsides when using a Greedy NMS; it accepts the top score 

box even though it may not be the best fit, it will suppress nearby objects, and it does not suppress 

false positives. In Figure 29, the red spoon was partially detected, and it might be because the other 

proposed bounding box was not higher than 0.87177, so it was removed. 
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Figure 29: Plastic spoons were detected with a bounding box (yellow) and a confidence score 

using a greedy NMS. 

 

Once trained, the average precision was calculated by comparing the ground truth data to 

the detection results. Precision looks at how many predicting items were relevant objects and recall 

represents how many relevant objects were predicted. The average precision for R-CNN 

SEAGULL detector was 21.86% (Figure 30). The low average precision for the SEAGULL 

detector may have been due to a high false positive and false negative rate. For example, using 

two images from the testing dataset for R-CNN, the image with ground truth labels shown in Figure 

31A identifies only one object, but the SEAGULL detector identified five additional false positives 

(Figure 31B). The SEAGULL detector was also tested against a sand and vegetation background 

(Figure 31C) with six known items, but the SEAGULL detector only identified one, resulting in 

five false negatives (Figure 31D). These issues might be the result of the small debris dataset used 
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to train the model and having three separate stages does not allow any update to network layers 

when training. 

 
Figure 30: Precision-Recall curve for the SEAGULL detector. 

 
Figure 31: Ground truth bounding boxes (A & C, red) compared with the predicted bounding 

boxes and their confidence score (B& D, yellow). 
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The SEAGULL detector was tested against three different backgrounds using a smartphone 

camera (fine sand, coarse sand, and carpet) and three aerial images taken with the Phantom 4 Pro 

(0.21cm/pixel and 0.27cm/pixel). With the fine sand, the SEAGULL detector located seven out of 

ten debris items. Of those seven debris items, the confidence score ranged from 72%-100% for 

debris classification (Figure 32). It missed two clear plastic items (cap and bottle), a green plastic 

tube, and part of a buried red plastic spoon. However, with the coarse sand, the SEAGULL detector 

was only able to detect one out of nine objects (Figure 33). The SEAGULL detector was also tested 

using a carpeted background; it was able to locate six out of six objects with confidence score from 

64%-100% (Figure 34). Even though the SEAGULL detector was able to locate and classify all 

the objects, it was not able to adequately locate the black fork. This may be an issue similar to 

Figure 29 that is related to greedy NMS. 

 
Figure 32: Detected debris in a fine sand background with a bounding box (yellow) and 

confidence score. 
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Figure 33: Detected debris in a coarse sand background with a bounding box (yellow) and 

confidence score. 

 
Figure 34: Detected debris using a carpeted background with a bounding box (yellow) and 

confidence score. 
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Due to the minimal aerial dataset that contains marine debris, it was not used to train the 

R-CNN. However, the SEAGULL detector was used for the 8m and 10m aerial images that 

contained staged debris. The SEAGULL detector identified five out of 12 objects for the 8m with 

one misclassification (Figure 35). Another 8m aerial image was tested, and the SEAGULL detector 

located four out of four debris but also falsely identified four vegetation items (Figure 36). In the 

10m aerial image, 10 out of 36 objects were detected (Figure 37).  The false negatives were likely 

missed because their size was less than the smallest object used during training. Overall, using 

deep learning based on visual detection of marine debris on the beach is plausible, considering the 

SEAGULL detector was capable of understanding and recognizing different types of debris.  

 
Figure 35: The SEAGULL detector located 5 out of 12 debris (yellow box) using the aerial image 

taken at 8m; with one misclassification (blue box). 
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Figure 36: The SEAGULL detector located four out of four debris (yellow box) using the aerial 

image taken at 8m. However, the detector also misclassified vegetation (blue box) as debris. 

 
Figure 37: The SEAGULL detector located 10 out of 36 debris (yellow box) using the aerial image 

taken at 10m. 
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CHAPTER IV: DISCUSSION AND CONCLUSION 

4.1 Discussion 

Marine debris presents physical, biological, and chemical threats to coastal and marine ecosystems 

(Gall & Thompson, 2015). These threats can compromise the balance of marine ecosystems, 

resulting in costly control efforts, cleanups, and adverse economic impacts (Mouat et al., 2010). 

Beach surveys typically involve volunteer groups collecting and characterizing debris abundance, 

but these surveys are limited due to a significant amount of labor required. UAS beach surveys 

require only 1-2 people, cover large swatch of beach in a relatively short amount of time and can 

be performed as needed with minimal planning. This research used high-resolution UAS aerial 

imagery to established two image processing methods to detect and quantify marine debris in a 

coastal environment.  

The methods developed and applied in this study to advance the ability of researchers to 

systematically quantify marine debris over an expansive coastline in several ways. UAS can collect 

data in a shorter time frame than a traditional beach survey, obtain high-resolution imagery, and 

allowed for repeated analysis when necessary. Essentially it can overcome the spatial and temporal 

limitations of traditional beach surveys.  However, UAS operation is limited by weather and FAA 

restrictions. Jang et al. (2014) developed a similar technique for detecting beach litter using UAS: 

converted RGB to HSI color space, created a binary image, performed morphological operations 

on the image, and extracted the debris. However, Jang et al. (2014) only flew the UAS at ~10m 

and only used debris larger than 50cm in diameter because their Beach Litter Detection software 

was tested with 50cm by 50cm markers. This research was able to assess the impact of flight design 

and ground sample distance on detection and quantification of marine debris as varies altitudes. 

From this project, the maximum altitude for flying the UAS should be 35m. While 35m altitude 
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may not be suitable for detecting the small debris (bottle caps and fragmented plastics), it might 

be suitable for coastal environments with large items such as buoys, ghost nets, and vessels. 

Through segmentation by color thresholding, the most accurate flight elevation tested was 

15m.The lower the altitude, the higher the resolution, allowing fragmented debris to be detected 

better. However, with top-down photography, only the superficial layer of debris was detected 

which can result in an underestimate of the total debris on the beach. The spatial coverage of 

marine debris was not calculated because the debris pixels were altered during the Morphological 

Operation stage when the background pixels were removed. Also, objects with similar pixel values 

as sand and vegetation were either ignored or misclassified as a non-debris item. This problem has 

also been encountered by Nakashima et al., 2011; Kataoka et al., 2012; and Jang et al., 2014, which 

used a different remote sensing technique or color space and they still could not detect the clear 

plastics or objects with similar pixel values as sand and vegetation. Then again, they all used an 

RGB sensor so that future work could incorporate a multispectral or hyperspectral imaging camera 

on the UAS. These cameras use visible, near-infrared (NIR), and shortwave infrared wavebands 

when capturing images. This additional information, including the brightness and spectral 

reflectance, could be useful for object detection. Goddijn-Murphy et al. (2018) developed an 

optical reflectance model for measuring light reflectance off of floating macro-plastics. While this 

model is only applied to a single smooth flat layer, it does take into consideration the color, 

transparency, reflectivity, and shape of the plastic debris. Since beached debris is usually biofouled 

by bacteria, algae or barnacles, this can reduce the reflectance of visible light. However, since 

algae contain chlorophyll, NIR would be useful to look at the high reflectance from the algae 

biofilm to detect the debris (Goddijn-Murphy et al., 2018). Other components that could affect the 

spectral reflectance of macro-plastics is the color, condition (dry or wet), and polymer type (Garaba 
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& Dierssen, 2018). Another example is to use NIR and red band to create a vegetation index, which 

can be used to exclude vegetation from the orthomosaic. Attempts like this at reducing background 

noise associated with non-target pixels would increase the amount of debris detected and reduce 

the false positives. Multispectral sensors can also be flown at night to determine differences in 

radiant flux between the plastic and its surroundings. The debris density, thermal conductivity, and 

specific heat might be different from sand, and the different spectral channels can help in debris 

detection. However, for researchers with limited access to advanced sensors and software, manual 

tagging of debris on the orthomosaic is acceptable to determine location and abundance as well as 

some physical characteristics (Moy et al. 2017). Even though it can be time-consuming and the 

results may vary from observer to observer, visual observation can help reduce the false positive 

detection and missed objects.  

4.2 Conclusion 

With recent advancement in deep learning based computer vision model, object detection 

applications have been well researched in many fields. CNN have revolutionized object detection 

and recognition, but with regards to marine debris, this deep-learning approach has only been 

applied to submerged materials captured with an autonomous underwater vehicle  (Valdenegro-

Toro, 2016; Fulton et al., 2018). This research, however, looked at beached debris and created two 

custom datasets to train an R-CNN. Even though the dataset to train the R-CNN was small 

compared to using the ImageNet database, the accuracy for debris classification through AlexNet 

was ~99%. However, the average precision for debris detection through R-CNN was 22%. Even 

though the average precision is low, the initial results are promising. The overall low performance 

of the SEAGULL detector might be due to the small amount of training data, the complex 

background used to test R-CNN, and 25 layers used for debris classification. In the future, we hope 
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to expand upon this work by increasing the marine debris dataset, but also test it with similar 

algorithms such as Fast R-CNN and Faster R-CNN. These updated versions of R-CNN should 

increase the overall accuracy, have faster processing time, and the ability to re-train the different 

stages to decrease false positive and false negative rates. By increasing the marine debris database, 

we hope to classify and detect the different types of debris (plastic, metal, paper, wood, and other 

types of debris.) on the beach. Also, by collaborating with other researchers, we can look at the 

benefits and limitations of using different object detector networks such as You Look Only Once 

(YOLO), YOLO version 2, and Single Shot MultiBox Detector.  

These findings can help establish a structured protocol for mapping and monitoring debris 

along with any coastline, especially remote or inaccessible area where beach surveys are not an 

option. The capability for rapid deployment, survey collection, and data processing makes UAS 

an optimal survey tool to conduct repeated surveys over areas of limited spatial coverage. 

Incorporating UAS surveys into the beach litter monitoring program can “help identify, determine 

sources of, assess, reduce, and prevent marine debris and its adverse impacts on the marine 

environment (Marine Debris Research, Prevention, and Reduction Act, 33 USC §§ 1951).”  The 

methods developed and applied in this research lay a foundation that can be used to vastly improve 

our ability to study the fate and transport of marine debris in coastal systems. 

  

https://www.sciencedirect.com/science/article/pii/S0025326X1100498X#bb0180
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