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We measured respiratory flow rates, and expired O,
in 32 (2-34 years, body mass [Mj,] range: 73-291 kg) common
bottlenose dolphins (Tursiops truncatus) during voluntary
breaths on land or in water (between 2014 and 2017). The
data were used to measure the resting O, consumption rate
(VO,, range: 0.76-9.45ml O;min~'kg™') and tidal volume
(Vt, range: 2.2-10.41) during rest. For adult dolphins, the
resting Vt, but not VO,, correlated with body mass (M,
range: 141-291kg) with an allometric mass-exponent of 0.41.
These data suggest that the mass-specific V1 of larger dolphins
decreases considerably more than that of terrestrial mammals
(mass-exponent: 1.03). The average resting sVO, was similar
to previously published metabolic measurements from the
same species. Our data indicate that the resting metabolic
rate for a 150 kg dolphin would be 3.9ml Oy min~! kg~!, and
the metabolic rate for active animals, assuming a multiplier
of 3-6, would range from 11.7 to 23.4ml O, min 1 kg_l.
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Our measurements provide novel data for resting energy use and respiratory physiology in wild n

cetaceans, which may have significant value for conservation efforts and for understanding the
bioenergetic requirements of this species.

1. Introduction

Climate change is causing perturbations in oceanic and coastal circulation and water temperature,
which can alter the spatial and temporal distribution of animals and their food resources [1].
Increased utilization of the planet’s oceans by a growing human population has impacted marine
ecosystems. For marine mammals known effects include increased ocean noise, increased incidence
of human interactions like fishing gear entanglements and ship strikes, exposure to toxic chemicals
(e.g. organochlorines such as DDT, PCBs, heavy metals, etc.), and eutrophic waste from agriculture,
expanding industry and developing urban areas. Previous studies have suggested that marine predators
may be valuable bio-indicators of environmental health [2]. As top-level predators, marine mammals
may be particularly prone to effects of climate change and deteriorating environmental conditions;
serving as the proverbial canary in the coal-mine, indicating significant changes at lower trophic levels
and showing the impact those changes could have on other mammalian species, including humans, that
share the same water, air and fish.

An essential aspect of understanding the ecology and distribution of any species is to define
their resource and energy requirements. While considerable work has been done on the bioenergetics
and respiratory physiology of seals and sea lions, technical and logistical limitations have prevented
comparable measurements in wild cetaceans. One approach to estimate field metabolic rate in large
whales has been to measure their breathing frequency [3-8]. The assumption is that increased breathing,
as occurs during active foraging or travel, is tightly linked to the energy requirements of the activity
state and can be used to assess the field metabolic rate for different activities, e.g. resting or swimming at
the surface and diving. While this method is attractive in its simplicity, it assumes that the average tidal
volume (V1) and O, exchange fractions are known, and that they remain constant over the measurement
period. This is not always the case [9], and improved knowledge of the cardiorespiratory physiology, and
the temporal patterns of respiration and gas exchange following exercise or diving would significantly
improve the estimate of metabolic cost [10-12]. There are also other techniques that can provide proxy
estimates of field metabolic rate, such as the dilution of doubly labelled water in the body water pool,
activity records or heart rate monitoring, but these techniques require careful validation to assess how
changes in their relationships may change over different seasons, years, activities, life stage, etc. Still,
the resting metabolic rate (RMR) is often used as a tool to provide an estimate of the minimum energy
requirements for a species.

Our objective was to measure lung function and estimate RMR for common bottlenose dolphins
(Tursiops truncatus), using breath-by-breath respirometry in wild animals. Understanding metabolic and
respiratory requirements is of particular interest because it is vital to identifying and understanding the
physiological limitations for survival of a species. In addition, respiratory disease is a major cause for
morbidity and mortality in wild cetaceans, and increasing environmental stressors, such as exposure to
pollutants, is likely to exacerbate this problem [13,14]. Despite significant advances in technology, we still
know very little about the respiratory physiology of marine mammals. Because respiratory physiology
is difficult to study in free-ranging dolphins, normal lung function data for wild animals are limited
[15,16]. We therefore compared data collected from wild animals with data from healthy dolphins and
cetaceans managed under human care [17-21] to assess if respiratory physiology measurements may
provide information that is relevant to both populations.

2. Material and methods

2.1. Animals

The free-ranging bottlenose dolphins were long-term residents of Sarasota Bay (Lat: 27°22/40.31” N
Long: 82°35'9.40” W) and were sampled during 5-9 May 2014; 12-20 May 2015; 6-11 May 2016 and
8-12 May 2017. Juvenile and adult bottlenose dolphins of both sexes, and varying sizes (table 1)
were used for the experiments. These animals were measured during periodic capture-release health
assessments by the Sarasota Dolphin Research Program (SDRP), and were briefly encircled with a net,
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Table 1. Year tested, animal identification (freeze-brand number), sex (M-male, F-female), body mass (My), straight length (SL),
maximum girth (G), approximate age, breathing frequency and (V) number of breaths collected while in air or in water. Symbols ‘—’
indicate no data available.
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3@as analyser not working.

examined and sampled before being released on site [2]. All spirometry trials (breath-by-breath lung
function and end-expired O,) were measured from voluntary breaths while the dolphin laid on a shaded,
padded mat on the deck of a boat or was gently restrained while partially submerged in water. All work
was approved by the IACUC at Texas A&M University Corpus Christi (TAMUCC-IACUC AUP#04-11)
and by a research permit issued by the National Marine Fisheries Service (Scientific Research Permit No.
15543).
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2.2. Respiratory flows (lung function)

The procedures and equipment used were identical to those used in our previous study on the
same species under human care [19], which are briefly summarized below. Respiratory flows were
measured using a custom-made Fleisch type pneumotachometer (Mellow Design, Valencia, Spain;
or Micah Brodsky, VM.D. Consulting, Miami, FL, see fig. 1 in [19]), using a low-resistance laminar
flow matrix (Item # Z9A887-2, Merriam Process Technologies, Cleveland, OH). A differential pressure
transducer (Spirometer Pod, ML 311, ADInstruments, Colorado Springs, CO) was connected to the
pneumotachometer with two, 310 cm lengths of 2mm 1.D., firm-walled, flexible tubing. The differential
pressure transducer was connected to a data acquisition system (Powerlab 8/35, ADInstruments,
Colorado Springs, CO), and the data were captured at 400 Hz and displayed on a laptop computer
running LabChart (v. 8.1, ADInstruments, Colorado Springs, CO). The differential pressure was used
to determine flow and was calibrated using a 7.01 calibration syringe (Series 4900, Hans-Rudolph Inc.,
Shawnee, KS). The signal was integrated and the flow determined as detailed previously [19].

2.3. Respiratory gas composition

The concentration of expired O, was subsampled via a port in the pneumotachometer and passed
through a 310 cm length of 2mm L.D., firm-walled, flexible tubing and a 30 cm length of 1.5mm I.D.
Nafion tubing, to a fast-response O, and CO, analyser (Season 2016-2017: Gemini respiratory monitor,
CWE Inc.; Season 2014-2015: ML206, Harvard Apparatus, Holliston, MA, USA) at a flow rate of
200 mlmin~!. However, the CO, analyser was only working during the experiments in 2016 and we
therefore do not report these data. The gas analyser was connected to the data acquisition system and
sampled at 400 Hz. The gas analyser was calibrated before and after the experiment using a commercial
mixture of 5% Oy, 5% CO; and 90% Nj (Product No. 17 L-340, GASCO, Oldsmar, FL). Ambient air
was used to check the calibration before and after each experimental trial. Mean air temperature
and humidity during trials were 28.2+3.3°C (1 =74, range 22.6-35.4°C) and 75.3+17.5% (44-99%).
The average (+s.e., n=19) surface water temperature around the sampling boat was 26.5+0.5°C
(range: 22.7-29.7°C).

2.4. Metabolic rates

The metabolic rates were estimated as previously detailed [19], and the methods are briefly summarized
here. The respiratory gas signals were phase-corrected for O, to match the respirations, and the
expiratory flow rate and expired O content were multiplied to calculate the instantaneous volume of
oxygen rate (VOy). The instantaneous VO, was integrated over each breath to yield the total volume
of Oy exchanged during each breath. The O, volumes were summed for each trial period and divided
by the duration of the trial to provide an estimate of the oxygen consumption rate for that time period.
All dolphins were calm for at least 20 min before sampling commenced. Sampling for respiratory flow
and expired gas content continued during most of the duration on the deck and up to 15min in water.
Data were selected to include sections with continuous measurements of at least 3min. For example,
if there were concerns that the flow meter did not seal correctly around the blow-hole, the breath
was excluded and the duration started over. Thus, while 3min may be a shorter duration to collect
data than some studies, the total duration of measurement was considerably longer, ranging from
20 to 60 min.

2.5. Data processing and statistical analysis

All gas volumes were converted to standard temperature pressure dry (STPD, [22]). Exhaled air was
assumed saturated at 37°C, inhaled air volume was corrected for ambient temperature and relative
humidity.

Metabolic data are reported as the average O, consumption rate for an entire trial. The relationship
between a dependent variable and experimental covariates was analysed using linear-mixed effects
models (Ime, R: A Language and Environment for Statistical Computing, R Foundation for Statistical
Computing, version 3.1.0, 2014). The individual animal was treated as a random effect, which accounted
for the correlation between repeated measurements on the same individual [23]. Initially, a univariate
analysis was used to determine which variables to consider in a multivariate model. Variables with
a p <0.2, using the Wald test and log-likelihood ratio test, were considered in a multivariate model.
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Figure 1. Expiratory or inspiratory respiratory flow (I's~") versus body mass (M,, kg) for dolphin either in air or in water.

We used the log-likelihood ratio test and the Akaike information criterion (AIC) to determine which
parameters warranted inclusion in a nested model. In this study, p-values p <0.05 and p <0.01 were
considered significant and highly significant, respectively, and p <0.1 was considered a trend. Data are
presented as the mean =+ standard deviation (s.d.), unless otherwise stated.

Initially we analysed all age groups together, but we also separated animals into juveniles (less than
10 years) and adults (greater than or equal to 10 years) in order to compare allometric changes for the
entire dataset and for each age class separately.

3. Results

Data from 2475 spontaneous breaths were collected over 4 years (2014-2017) from 32 male and
female juvenile and adult bottlenose dolphins (table 1), living in and around Sarasota Bay, Florida.
Measurements on the deck occurred over 20-60min, and in water 15-20min, with continuous
measurements for at least 3 min.

3.1. Respiratory flows and timing

The average respiratory frequency (fr) during trials was 2.7 £ 1.3 breaths min~! (range: 0.8-6.5), and did
not differ among years, sex, with body mass (M) or position (whether held in or out of the water; all
p> 0.1, t-value: 0.8).

The average maximum inspiratory flow of spontaneous breaths was 13.8+3.81s! (range:
6.4-2191s7'), which was significantly lower than the maximum spontaneous expiratory flow
of 20.0+751s7! (range: 7.5-39.41 s71 t-ratio=10.9, p<0.01, paired-t test). The logjo-transformed
inspiratory (Inspflow, x> =20.6, 1 d.f., p <0.01) and expiratory flow (Expflow, x?>=14.2, 1 d.f.,, p <0.01)
correlated with logyo-transformed M, (logig [Myp], figure 1), but neither sex nor position (in-water versus
out of water) affected inspiratory or expiratory flow. When separating animals into juveniles and adults,
M,, did not correlate with respiratory flow (x%>=2.9, 1 d.f.,, p > 0.05).

There were no differences in inspiratory (5.3 & 1.81, range: 2.2-10.4) or expiratory (5.2 +1.81, range:
2.3-10.4) VT (p > 0.05, t-stat: 1.9). For all age groups, only My, correlated with V (X2 =228,1d.f,p<0.01,
figure 2). When separating animals into juveniles (less than 10 years) and adults (greater than or equal to
10 years), log1p [Mp] warranted inclusion for adults (p < 0.05, x2=52,1d.f):

logo[ VTl = —0.18 (£0.22) + 0.41 (£0.17) - log, o [My], 3.1)

The duration of the expiratory phase (0.43740.136s) was significantly shorter than that of the
inspiratory phase (0.51240.112s), and neither inspiratory nor expiratory durations changed with sex,
My, or whether animals were in water or out of water (p > 0.1 for all).
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Figure 2. Inspiratory tidal volume (V/7, I) versus body mass (My, kg) for dolphins either in air or in water. Solid line is the estimated V7
for adult dolphins (equation (3.1)) and the dotted line the regression equation for terrestrial mammals [24].
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Figure 3. Rate of 0, consumption (VOZ, 10, min~") versus body mass (My, kg) for () dolphins in air and in water from the current study.
(b) For a range of cetaceans from the following studies: harbour porpoise [25,26], Pacific white-sided dolphin [27,28], bottlenose dolphin
[17-20], beluga whale [29], killer whale [30,31].

3.2. Gas exchange

The average (n = 56) end-expiratory O, was 10.4 + 1.4%, and was significantly higher in female dolphins
(10.8 £1.4%, n=35) as compared with males (10.0+1.4%, n=21, p < 0.05, Wald test). In addition, there
was a trend that females or being positioned in the water had higher end-expired O, compared with
males or animals positioned out of water ( X2 =3.08,1d.f, p <0.08).

3.3. Metabolic rates

Resting VO, (RMR) was estimated for periods during which the dolphin had remained calm for
a minimum of 20min. The sample duration used for calculating the VO, ranged from 3 to 15min
(figure 3a). The estimated RMR varied substantially within and among animals and the mass-specific
VO, (sVO,) ranged from 0.76 ml min~! kg*1 t09.45m] O, min—! kg*1 (figure 3a). There was a correlation
between logo-transformed VO, (loglo[VOz]), My, (log19[Mp]) and whether animals were positioned in
(position =1) or out of the water (position =0, figure 3a, p < 0.05, x2=57,1 d.f.)

10go[VO2] = —1.15 (+0.40) + 0.43 (£0.18) - log;o[Mp] — 0.13 (:0.05) - position. (3.2)

but neither year nor sex were significant.
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When separating animals into juveniles and adults, both position and logio[M},] warranted inclusion
for juveniles (p < 0.01, x>=9.0,1d.f.)

loglo[VOz] =—2.75(£0.71) 4+ 1.25 (£0.35) - log;,[Mp] — 0.23 (£0.08) - position. (3.3)

but neither position or My, warranted inclusion for adults (p > 0.1, x2=21,1d.f).

4. Discussion

We estimated RMR and measured lung function parameters across 2 age classes of bottlenose dolphins
(juvenile and adult) over a 4-year period. When both age groups were analysed together, RMR and V't
rate scaled with My,. When the groups were separated into juveniles and adults, RMR only correlated
with My, for juveniles. VT scaled with My, for adults with an allometric mass-exponent of 0.4140.17.
These results are similar to those measured in bottlenose dolphins under human care, suggesting that
data from the latter group provide physiological information of relevance for wild dolphins.

The measured VT collected in this study agree well with previous measurements in cetaceans
[16]. The average mass-specific V1 (sV1) recorded in the current study was 30.9 mlkg™! (range: 13.6—
67.5ml kgfl), which is similar to previous data for the bottlenose dolphin (27.5-58.8 ml kgfl, [9,19,32]),
the harbour porpoise (39.3-52.6 ml kg_1 in [25]) and grey whale (12.0-35.3ml kg_l, [33]). Results from
these past studies are from a range of experiments with animals positioned on land or in water, and from
voluntarily participating animals in human care to restrained free-ranging animals. For all data, both the
respiratory flow and Vt scaled with My, but when separated into juveniles and adults, only V1 from the
latter group correlated with size. Unlike terrestrial mammals, where the mass-exponent is close to 1 (table
1 in [24]), VT scaled allometrically with a mass-exponent of 0.41 (equation (3.1)). Consequently, the sVt
decreased with M}, and for a 150 kg and a 300 kg dolphin was 34 mlkg™! and 23 mlkg~!, respectively.
Similarly, the VT as a percentage of the estimated total lung capacity (TLCest) decreased from 38% for a
150 kg dolphin, to 27% for a 300 kg animal [16,34]. The VT in the dolphin was greater when compared
with terrestrial mammals of comparable size, but the relative difference decreased with size.

The breathing strategy of adult terrestrial mammals involves a high respiration frequency fr, low
V1, and a brief respiratory pause following expiration. Aquatic mammals, on the other hand, have a
lower fR, a greater VT and a respiratory pause that often lasts for several seconds to minutes following
inhalation [16,35]. It has been hypothesized that the aquatic breathing strategy may enhance buoyancy
management [35], or help keep the arterial partial pressure of CO, (PACO,) at levels similar to that
of land mammals [36]. Minute ventilation, the product of VT and fR, is regulated to deliver O, to and
remove CO; from the alveoli. In terrestrial mammals, V1 (1.04) scales isometrically while fr (—0.26) is
inversely related to My, resulting in a mass-exponent for minute volume that scales with the metabolic
rate [24]. Thus, the allometric changes in minute ventilation in terrestrial mammals are governed by an fr
that decreases with Mj,. The data reported in the current study suggest that the decrease in mass-specific
minute ventilation with size is governed by a reduction in V1, while fr seems to remain constant. This
agrees with other data reported for cetaceans, where the mass-exponent for fgr was not different from 0
(see data on cetaceans in table 1 in [35]). Thus, as mass-specific RMR decreases with size, the reduction
in minute ventilation is caused by a reduction in mass-specific V1. Variation in VT is more efficient to
alter alveolar ventilation as it reduces the dead space ventilation. Consequently, the allometric changes
in cetaceans may be an evolutionary consequence that helps reduce the work of breathing and enhances
gas exchange in the aquatic environment.

The basal metabolic rate (BMR) of an animal is an estimate of the energetic cost of the basic
functions required to sustain life, and it is measured under highly specific and controlled conditions,
e.g. adult animals in a thermoneutral environment. In field situations, it is logistically challenging
to meet these conditions, and RMR often serves as a proxy for BMR. Relatively few measurements
of RMR have been made in marine mammals, and most of these have been made on animals in
managed care or with animals held under quasi-natural conditions [17-21,25,37-43]. Many of the
older studies concluded that the mass-specific RMR is considerably higher in aquatic species than in
their terrestrial counterparts. Possible explanations for the higher RMR in dolphins include increased
energetic demands due to thermoregulation or a high protein diet [44-47]. More recent studies, where
the sample techniques have been refined for marine mammals, have measured RMRs that are at or
near basal levels [18,21,27,29,30]. Thus, there is currently considerable controversy whether estimated
BMR/RMR in marine mammals is truly elevated as compared to terrestrial species, and criticisms
include limitations with experimental design (e.g. duration of measurements) and analysis of collected
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data [48-50]. Studies have shown that variation in RMR is affected by body condition, the thermal
environment, desensitization through training and psychological state [18,19,29,30,51,52]. These past
studies indicate that experimental design and conditions may significantly alter the results and could
explain the large variability in RMR reported across published studies. In past studies, the mass-
specific RMR for bottlenose dolphins in water ranged from 3.0 to 7.0ml Oy min~'kg~! (M, range
125-250kg, [10,17-20,53]), and were in the same range as the values reported in the current study
(figure 3b).

In the current study, the data from all age groups indicate that RMR scaled allometrically with a
mass-exponent that was significantly lower than those reported for terrestrial mammals (equation (3.2),
[54,55]. In land mammals, BMR in adults is well known to scale allometrically with body size over
several orders of magnitude, but may vary greatly within species or a narrow weight range. For example,
the mass-specific value may vary 2- to 3-fold, and the variation explained by My, is often low [56,57].
When the data were separated into juveniles and adults, RMR only correlated with M, for the juveniles
(figure 3a). The mass-exponent for juveniles was greater than the adult value in terrestrial mammals
(equation (3.3)).

There are a number of possible reasons for our findings. First, the measurements in the current study
do not fulfil the criteria for BMR; we studied juvenile and adult animals and had no control over whether
the animals were pre- or post-prandial. This may increase the variation, but we should also expect the
mass-specific RMR to be higher as younger animals tend to have greater energetic requirements as they
allocate considerable energy for growth. Second, breath-by-breath respirometry was used in the current
study, which is experimentally challenging [19]. These limitations have been discussed previously, and
it is unlikely that limitations in the experimental design would have significantly affected the results.
Factors such as stress and personality are known to alter metabolic rate, and while stress often causes
hypermetabolism, some species respond with a reduction in metabolic rate [56,58,59]. This may explain
the low RMR in the current study, and wild dolphins may respond by reducing metabolic rate in response
to any stress associated with capture. Fourth, in the current study the dolphins had been restrained
for at least 20 min before measurements began, followed by repeated measurements ranging from
3 to 15 min. In some previous studies, the resting period ranged from 40s to 4.5min [17,19,20]. As the
duration of measurement of RMR is important [21,27,60], it is possible that these extended measurement
periods helped calm the animals and reduce the RMR. In fact, studies where the dolphins were resting
for 1020 min in the respirometer have reported values that are similar to those predicted by Kleiber
[18,21,29,52]. Consequently, appropriately designed metabolic studies on marine mammals managed
under human care provide RMR values that are similar to those in wild populations.

Studies indicate that RMR is about 30-40% of daily energy requirement [61,62], and understanding
a species’ metabolic cost is important for assessing energy flow within populations and ecosystems. For
marine mammals, estimated or measured RMR values have been used in bioenergetics models [63-67].
Results vary greatly among models with varying assumptions, and the largest variation is generally
caused by uncertainty in energy requirements and diet [64]. The ingestion rates for animals under
human care have been used to provide estimates of energy requirements, but these studies are likely
to overestimate metabolic rates (see references in [50]). A number of studies have measured RMR in
dolphins under human care [17-21,68], but the current study is the first to provide estimates for wild
animals. Our results indicate that RMR overlaps (RMR in current study for all animals: 3.7 +1.8 ml
O, min"'kg™!, range: 0.8-9.4ml Oy min~!kg~!) with those in previous studies for animals under
human care (3.0-7.4ml O; min—! kg’l) [17-19,21]. These results are similar to the values estimated by
Kleiber’s equation and provide a measured value that can be used in bioenergetics models for dolphins
[69]. As RMR did not vary with My, (range: 141-291kg) in adult dolphins, the average VO, (592ml
O, min_l) can be used for an estimate of the RMR for this My, range. For a 150 kg dolphin under the
seasonal water temperature conditions of our study (spring in Sarasota Bay, FL), the RMR would be
3.9ml Oy min~! kg~!. Assuming a multiplier of 3-6 for the daily metabolic rate of active animals [63,70],
the metabolic rate would range from 11.7 to 23.4ml O, min~! kg*1 (126-252M]J kg*l yrfl). This value is
similar to the field metabolic rates estimated from a bioenergetics model in dolphins [63].

5. Conclusion

Numerous studies have tried to identify the energetic requirements of marine mammals, and recently
interest as to how anthropogenic disturbances may alter these requirements has increased. For models
that attempt to predict how disturbances may alter population levels, an understanding of the
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eco-physiology of a study species is crucial. These data are important for helping ecologists understand n
the flow of energy between different trophic levels. However, there is limited understanding about the
physiology of marine mammals and how physiological constraints limit survival. The data presented in
this paper provide estimates on the energy requirements and respiratory physiology in two age classes
(3-34 years of age) of briefly restrained wild bottlenose dolphins that had been free-ranging just prior to
measurement. These data will help improve estimates from bioenergetics models and contribute to our
understanding of how a changing environment may alter survival in this species.
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