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A new method is developed to estimate daily turbulent air–sea fluxes over the global
ocean on a 0.25◦ grid. The required surface wind speed (w10) and specific air humid-
ity (q10) at 10 m height are both estimated from remotely sensed measurements.
w10 is obtained from the SeaWinds scatterometer on board the QuikSCAT satellite.
A new empirical model relating brightness temperatures (Tb) from the Special Sensor
Microwave Imager (SSM/I) and q10 is developed. It is an extension of the author’s pre-
vious q10 model. In addition to Tb, the empirical model includes sea surface temperature
(SST) and air–sea temperature difference data. The calibration of the new empirical q10

model utilizes q10 from the latest version of the National Oceanography Centre air–sea
interaction gridded data set (NOCS2.0). Compared with mooring data, the new satel-
lite q10 exhibits better statistical results than previous estimates. For instance, the bias,
the root mean square (RMS), and the correlation coefficient values estimated from com-
parisons between satellite and moorings in the northeast Atlantic and the Mediterranean
Sea are –0.04 g kg−1, 0.87 g kg−1, and 0.95, respectively. The new satellite q10 is used in
combination with the newly reprocessed QuikSCAT V3, the latest version of SST anal-
yses provided by the National Climatic Data Center (NCDC), and 10 m air temperature
estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalyses (ERA-Interim), to determine three daily gridded turbulent quantities at 0.25◦
spatial resolution: surface wind stress, latent heat flux (LHF), and sensible heat flux
(SHF). Validation of the resulting fields is performed through a comprehensive compar-
ison with daily, in situ values of LHF and SHF from buoys. In the northeast Atlantic
basin, the satellite-derived daily LHF has bias, RMS, and correlation of 5 W m−2,
27 W m−2, and 0.89, respectively. For SHF, the statistical parameters are –2 W m−2,
10 W m−2, and 0.94, respectively. At global scale, the new satellite LHF and SHF are
compared to NOCS2.0 daily estimates. Both daily fluxes exhibit similar spatial and
seasonal variability. The main departures are found at latitudes south of 40◦ S, where
satellite latent and sensible heat fluxes are generally larger.
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1. Introduction

Accurate turbulent air–sea fluxes (i.e. momentum, latent heat, and sensible heat) are of great
interest in regard to a wide variety of air–sea interaction issues. The main sources of such
fluxes over the global ocean are numerical weather prediction (NWP) models, voluntary
observing ships (VOSs), and remotely sensed data.

For over a decade, several scientific groups have been developing direct and inverse
methods, algorithms, and procedures to calculate long time series of surface winds, wind
stress, specific air humidity, and latent and sensible heat fluxes; representative data sets
include the Japanese Ocean Flux data sets with the Use of Remote sensing Observations
(J-OFURO) (Kubota et al. 2002), the Goddard Satellite-based Surface Turbulent Fluxes
(GSSTF) (Chou et al. 2003), the Objectively Analysed Air–Sea Fluxes (OAFLUX) (Yu,
Weller, and Sun 2004), the Institut Français pour la Recherche et l’Exploitation de la Mer
(IFREMER) (Bentamy et al. 2003, 2008), and the Hamburg Ocean Atmosphere Parameters
and Fluxes from Satellite Data (HOAPS) (Anderson et al. 2010). These satellite fluxes are
widely used by the scientific community for various purposes such as forcing ocean circula-
tion models (e.g. Ayina et al. 2006), studying the spatial and temporal variability associated
with the El Niño Southern Oscillation (ENSO) (e.g. Mestas-Nuñez, Bentamy, and Kristina
2006), or employing an enhanced spatial and temporal sampling provided by remote tech-
niques to evaluate intra-seasonal variability (e.g. Grodsky et al. 2009). Even though the
results of these investigations have increased our understanding of air–sea interactions,
further improvements of satellite-based fluxes are still required.

A number of studies assessing the quality of turbulent fluxes have been published in
recent years. By comparing latent heat fluxes (LHFs) from buoys and satellites, Bourras
(2006) has found that the overall accuracy is of the order of 20–30%, whereas the required
error for a quantitative use over the global oceans should be lower than 10%. He has con-
cluded that the main LHF error sources are related to the accuracy of the specific air
humidity (q) and surface wind speed (w). Tomita and Kubota (2006) have investigated
the accuracy of satellite-based LHF through comparisons with buoy and NWP estimates.
In the tropics, the main source of buoy and satellite LHF discrepancy is attributed to the
accuracy of satellite q, whereas around Japan the LHF discrepancy is associated with the
accuracy of both w and q. They both have concluded that the improvement in satellite
LHF estimation requires improvements in remotely sensed w and q at global and regional
scales. Santorelli et al. (2011) have conducted detailed investigations on the accuracy of
IFREMER and OAFLUX latent and sensible heat fluxes, as well as of basic bulk variables
(10 m wind speed, w10; 10 m specific air humidity, q10; 10 m air temperature, t10; and
SST) using standard moored buoy and scientific data from dedicated experiments. Their
conclusions generally agree with the studies mentioned earlier. In particular, they empha-
sized that improvement in satellite fluxes should include improvement in the interpolation
method used to calculate gridded fields over the global ocean to better reflect conditions
during synoptic-scale storms and fronts.

Following the suggested recommendations for improving fluxes, the present study aims
to enhance the following three aspects: the determination of q10 retrievals over the global
oceans, the accuracy of bulk variables and associated turbulent fluxes, and the spatial and
temporal resolutions of the flux fields. This study takes advantage of the availability of
new air–sea interaction data sets estimated from the updated International Comprehensive
Ocean–Atmosphere Data Set (ICOADS) (Berry and Kent 2011), and of the new QuikSCAT
wind retrievals (Fore et al. 2011).

The statistical parameters defined by Bentamy, Katsaros, and Queffeulou (2011),
aiming to characterize differences between in situ and satellite data, are used to assess
the quality of satellite bulk variables and fluxes.
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2. Data

The main basic bulk variables required for turbulent flux estimations are surface wind speed
(w), specific air humidity (q), specific surface humidity (s), air temperature (t), and sea sur-
face temperature (SST). Moored buoys, ships, and NWP models provide valuable estimates
of these variables with various spatial and temporal resolutions. They are used in this study
for the calibration and/or validation of satellite retrievals at local, regional, and global
scales.

2.1. Scatterometer data

To ensure homogeneity of w and its variability, this study employs only wind retrievals
from the SeaWinds scatterometer on board QuikSCAT. The QuikSCAT scatterometer is
described in many scientific papers; readers may find a complete description in JPL (2006),
including instrument physics, retrieval and ambiguity removal methods, rain detection
and flagging techniques, and quality control procedures. Briefly, QuikSCAT is a rotating
antenna with two emitters of different polarity: H-pol with an incidence angle of 46.25◦ and
V-pol with an incidence angle of 54◦. The inner beam has a swath width of about 1400 km,
while the outer beam swath is 1800 km in width. Since the QuikSCAT scatterometer is
a Ku-band radar, rain has a substantial influence on its measurements. Previous studies
showed that the rain impact may attenuate the scatterometer signal resulting in wind speed
underestimation, or raindrop impacts may change the sea surface shape resulting in over-
estimation of the retrieved winds. Results from Portabella et al. (2012) indicate that rain
backscatter contributes to the scatterometer signal, resulting generally in wind speed over-
estimation; intense rain causes overestimates of 15–20 m s−1 for cross-track winds. So, rain
attenuation dominates over rain backscatter in regard to extreme winds. QuikSCAT wind
products include several rain flags determined from the scatterometer’s observations and
from the collocated radiometer rain rate on board other satellites.

This study uses QuikSCATV3, the latest version of QuickSCAT wind retrievals (ftp://
podaac.jpl.nasa.gov/OceanWinds/quikscat/preview/L2B12/v3/). They have been made
available by the Jet Propulsion Laboratory (JPL)/Physical Oceanography Distributed
Active Archive Center (PODAAC) scientific team (Fore et al. 2011). QuikSCAT V3 prod-
ucts are calculated through use of a geophysical model function ensuring consistency with
winds retrieved from microwave radiometers such as the Special Sensor Microwave Imager
(SSM/I) and WindSat (Ricciardulli and Wentz 2011). QuickSCAT wind retrievals are pro-
vided over swaths at a wind vector cell (WVC) of 12.5 km spatial resolution. This new
scatterometer product is assumed to improve wind speed performance in rain and at high
wind speeds.

The accuracy of QuikSCATV3 data is determined through various comparisons with
buoy wind measurements, QuikSCATV2 retrievals, and remotely sensed winds derived
from the C-band, ASCAT scatterometer aboard the Metop-A satellite. The main findings
(not shown) are the results of the comparisons and are similar to those obtained previ-
ously (Bentamy et al. 2012). QuikSCATV3 and QuikSCATV2 exhibit similar comparison
results versus buoys. ASCAT and QuikSCATV3 statistics are of the same order as ASCAT
and QuikSCATV2. Similar discrepancies characterizing ASCAT and QuikSCATV2 com-
parisons are found for ASCAT and QuikSCATV3. For instance, the most significant
discrepancies are found at tropical and high latitudes. QuikSCATV3 are improved when
compared with the earlier results reported by Bentamy et al. (2012). We expect that the
remaining discrepancies between C-band radar and Ku-band radar wind retrievals are inher-
ent in their characteristics, including the radar’s penetrating wavelengths and backscatter
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interactions with surface waves at different wavelengths. Such effects would be pronounced
in low wind speed regimes and at certain values of SST.

2.2. Radiometer data

The SSM/I measurements used in this study are the same as those in Bentamy et al. (2003,
2008). The SSM/I radiometers on board the Defense Meteorological Satellite Program
(DMSP) F11, F13, F14, and F15 satellites provide measurements of surface brightness
temperatures (Tb) at frequencies 19.35, 22.235, 37, and 85 GHz (hereafter referred to as
19, 22, 37, and 85 GHz), respectively. Horizontal and vertical polarization measurements
are taken at 19, 37, and 85 GHz. Only vertical polarization is available at 22 GHz. Owing
to the choice of channels operating at frequencies outside strong absorption lines (for water
vapour 50–70 GHz), the detected radiation is a mixture of radiation emitted by clouds, water
vapour in the air, and the sea surface, as well as radiation emitted by the atmosphere and
reflected at the sea surface. Brightness temperature measurements as well as the associated
geophysical parameters are provided by the Global Hydrology Resource Center (GHRC)
(http://ghrc.msfc.nasa.gov/).

2.3. Buoys

Data from a number of moored buoys located in different basins are used for ground truth
validation. These include eight Atlantic moorings off the French and English coasts, main-
tained by the UK Met Office and/or Météo-France (MFUK), 96 moorings off the Atlantic
and Pacific US coasts, maintained by the US National Data Buoy Center (NDBC), 66 moor-
ings of the Tropical Atmosphere Ocean (TAO) array in the equatorial Pacific, 13 moorings
of the Prediction and Research Moored Array in the Atlantic (PIRATA) network in the
equatorial Atlantic, and 9 moorings of the Research Moored Array for African-Asian-
Australian Monsoon Analysis and Prediction (RAMA) project. TAO, PIRATA, and RAMA
will be hereafter referred to as tropical buoys. Meteorological buoy data are provided as
hourly averages. Measurement height varies between 3 and 10 m depending on mooring
configuration. Buoy wind, specific air humidity, and air temperature are converted to the
standard height of 10 m using the COARE3.0 algorithm of Fairall et al. (2003). The latter
is also used to estimate buoy turbulent fluxes.

2.4. NOCS data

A new daily mean air–sea interaction gridded data set (Berry and Kent 2011) is provided
by the National Oceanography Centre, Southampton, and is referred to as the NOCS Flux
Data set v2.0 (NOCS2.0). The gridded values are available over the global ocean with a
spatial resolution of 1◦ × 1◦. Daily parameters such as w10, q10, t10, SST, LHF, and SHF are
provided with uncertainty estimates. The accuracy of NOCS2.0 gridded parameters was
investigated through various comparisons including buoy, satellite, and numerical model
data. For instance, comparison with buoys deployed and maintained by the Woods Hole
Oceanographic Institution (WHOI) Upper Ocean Processes Group (UOP) indicates that
the mean differences (NOCS2.0–WHOIUOP) of w10 and q10 are about 0.30 m s−1 and
0.40 g kg−1, respectively (Table II of Berry and Kent 2011).

2.5. ERA-Interim

ERA-Interim (Simmons et al. 2006) refers to the reanalyses of atmospheric parameters
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). It uses
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4D-variational analysis on a spectral grid and covers 1989 to the present. The ERA-Interim
data used in this study were obtained from the ECMWF data server on a fixed grid of
0.75◦. The main parameters used in this study are specific air humidity and air temperature
at 2 m, available at synoptic times (00:00:00, 06:00:00, 12:00:00, 18:00:00 UTC), which
are converted to q10 and t10, respectively, utilizing the COARE3.0 model (Fairall et al.
2003). The quality of q10 and t10 is checked through comparisons with MFUK, TAO, and
PIRATA buoy estimates. The main finding of interest for this study is that ERA-Interim t10

is underestimated for buoy t10 exceeding 20◦C. A bias correction is determined from linear
regression between ERA-Interim and buoy t10 estimates.

2.6. Collocation

For q10 calibration purposes, values of q10 and SST from the SSM/I, NOCS2.0, and ERA-
Interim are collocated in space and time. SST data are from version 2 of the optimum
interpolated (OI) daily SST analyses (Reynolds et al. 2007) with a spatial resolution of
0.25◦. A common collocation procedure is utilized. ERA-Interim q10 and t10 occurring
within 50 km and three hours of a SSM/I cell location and time, respectively, are bi-linearly
interpolated in both space and time at the SSM/I cell. SSM/I brightness temperatures and
NOCS2.0 q10 occurring on the same day are matched if the spatial difference is less than
100 km. The same collocation approach is used for SSM/I Tb and daily SST, except that
the spatial difference criterion is 25 km.

3. Specific air humidity improvement

3.1. Retrieving specific air humidity from satellite measurements

Based on collocated SSM/I and ICOADS data, several authors have assessed the relation-
ship between satellite brightness temperature (Tb) and in situ specific air temperature (e.g.
Kubota et al. 2008; Jackson, Wick, and Robertson 2009). The former is mainly related to
the linear relationship between specific air humidity and column integrated water vapour
content (v) obtained from satellite microwave radiometers (Schulz, Schlussel, and Grassl
1993). SSM/I Tb measurements are sensitive to v especially in the 19V, 19H, 22V, and
37V channels. In Bentamy et al. (2003), the development of a SSM/I-based method for
the retrieval of q10 from brightness temperatures is based on a model determined from
collocated SSM/I Tb and COADS q10 over limited oceanic areas of the North Atlantic
and eastern equatorial Pacific, and during a limited period (1996–1998). This model was
successfully used by several groups for q10 estimation from either SSM/I or AMSRE mea-
surements, as well as to assess the development of new q10 models (e.g. Anderson et al.
2010; Kubota et al. 2008; Jackson, Wick, and Robertson 2009). However, Grodsky et al.
(2009) and Santorelli et al. (2011) underlined the need for improvement in remotely sensed
specific air humidity. To achieve such enhancement, the newly updated and enhanced
NOCS2.0 data are used as references for new q10 modelling. For instance, Figure 1 shows
the difference between NOCS2.0 and the previous version of satellite q10 of Bentamy et al.
(2003) as a function of satellite-derived q10 and for five NOCS2.0 SST ranges. The find-
ings (Figure 1) suggest inclusion of SST as a variable in a satellite q10 model. Furthermore,
investigation of NOCS2.0 and satellite q10 differences indicates a stratification dependency.
The latter would be an indication of the modification of the relationship between v and q as
a function of stratification variability. Therefore, the new q10 model includes terms related
to SST and to differences between 10 m air and SSTs (�T):
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Figure 1. NOCS2.0 minus satellite q10 difference as a function of satellite q10. Lines are average
difference in 1 g kg−1 satellite q10 bin for data grouped in the five SST bins. Satellite (IFREMER) q10

is from Bentamy et al. (2003).

q10 = f1
(
Tb, 19V

) + f2
(
Tb, 19H

) + f3
(
Tb, 22V

) + f4
(
Tb, 37V

) + g(SST) + h(�T). (1)

The functions f 1, f 2, f 3, f 4, g, and h are determined through a maximum likelihood
procedure based on the use of collocated data: SSM/I F11Tb, NOCS2.0 q10, SST, and
ERA-Interim t10. Only matchups occurring during January, April, August, and September
2005 are used for q10 model calibration, thus leaving the remaining in situ data for veri-
fication purposes. Owing to the strong correlation between v and brightness temperatures,
and the correlation between specific air humidity and SST, q10 in Equation (1) is mainly
weighted by functions f 1, f 2, f 3, f 4, h, and g. Overall, although the term h(�T) has a small
impact, it maintains the bias between NOCS2.0 and satellite q10 close to zero with respect
to the air–sea temperature difference.

3.2. Daily analysis

This study aims at estimating daily 10 m specific air humidity from radiometer retrievals.
However, one should assess the meaning of daily averaged q10 based on the use of lim-
ited remotely sensed observations. Indeed, local equator crossing times of the SSM/I at the
ascending node are about 19 hours for F11, 18 hours for F13, 20 hours (1999) and 17 hours
(2009) for F14, and 21 hours (2000) and 18 hours (2009) for F15. Such radiometer orbit
characteristics lead to limited observations during morning and evening local times. The
impact of the radiometer sampling scheme on the accuracy of the calculation of q10 daily
estimates is evaluated using hourly buoy q10 data. For each buoy, two kinds of daily aver-
aged estimates are calculated. The first (qb

a) is determined as an arithmetic mean of all
available daily measurements (generally 24-hourly data), whereas the second (qs

a) is cal-
culated as an arithmetic mean of hourly buoy q10 collocated in space (distance less than
25 km) and time (separation time less than 1 hour) with radiometer passes. Differences
between qb

a and qs
a are investigated based on the use of MFUK and tropical buoy q10 mea-

surements (figures not shown). In the Eastern Atlantic and Mediterranean Sea, qb
a and

qs
a differences, estimated at each buoy location, exhibit a similar behaviour. The mean
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differences are low (0.18 g kg−1), indicating that qs
a are slightly underestimated when com-

pared with qb
a. The associated root mean square (RMS) values are lower than 0.40 g kg−1.

In the tropical basins, where specific air humidity values are maximal, the mean differences
are close to zero, and RMS values do not exceed 0.40 g kg−1. The results characterizing
qb

a and qs
a differences do not exhibit any significant geophysical patterns, except at a buoy

located off the coast of the Mediterranean Sea. Therefore, we conclude that daily average air
humidity based on the particular temporal sampling of satellite observations deviates from
the ‘true’ daily mean by less than 0.18 g kg−1. The magnitude of this bias is considered as
the characteristic error of satellite q10, as can be seen below.

These results allow the determination of daily averaged 10 m specific air humidity from
radiometer brightness temperature measurements. They are estimated as gridded fields with
the same spatial resolution as the gridded daily wind fields (see the following section).
All available and valid brightness temperature measurements from F11, F13, F14, and
F15 satellites during 2005–2007 are used. For each day and for each individual SSM/I
swath cell, valid brightness temperatures (instantaneous) and the spatially closest daily
averaged SST and 6-hourly 10 m air temperature are selected. Specific air humidity is
estimated based on Equation (1). Time differences and accuracy characteristics (Meissner,
Smith, and Wentz 2001) of brightness temperatures derived from various instruments may
contribute to an inconsistency between q10 derived from Equation (1) and actual values
expected to be used for the daily gridded specific air humidity calculation. To reduce the
non-consistency impact, auxiliary information providing a mean description of q10 during
a given day is also used. It is derived from 6-hourly ERA-Interim q10 estimates (qmod). The
following linear relationship between retrievals (q10) and auxiliary data qmod is assumed:

E(q10 (x, y, t)) = α0 + β1qmod (x, y, t) , (2)

where x, y, and t represent spatial and temporal coordinates, and α0 and β1 are coefficients
to be estimated. The operator E is the mathematical mean (conventional first moment), and
qmod indicates Era-Interim q10 collocated in space and time with each individual satellite
retrieval. Equation (2) is known as the external drift constraint (Wackernagel 1998).

The objective method aiming to calculate gridded daily specific air humidity from
retrievals is similar to the method used for daily ASCAT wind field analyses (Bentamy
and Croizé-Fillon 2011). Daily satellite q10 (qsat) is estimated based on the following
assumption:

qsat = 1

(tb − ta)

tb�
ta

⎛
⎝

N∑
j=1

λj(q10 (xj, yj, t)

⎞
⎠ dt + ε, (3)

with unbiased constraint
j=N∑
j=1

λj = 1 and external drift constraint (Equation (2)), where q10

(xj, yj, t) indicates the jth q10 retrieval available over a given satellite swath cell with geo-
graphical coordinates (xj, yj) and at time t. ta and tb indicate the time interval falling
between 00:00:00 and 23:59:59 (UTC) when retrievals are available. N is the retrieval num-
ber selected for daily analysis calculation; λ is the weighting vector to be estimated and is
the solution of the following linear system:

j=N∑
j=1

λjCij − μ1 − μ2qmodi = Ci0 for i = 1, 2, 3, . . . , N
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j=N∑
j=1

λj = 1 (4)

j=N∑
j=1

λjqmod,j = qmod,0,

where Cij stands for the covariance matrix between q10 observations, while μ1 and μ2 are
the Lagrangian terms used to take into account the unbiased and external drift constraints.
Index 0 indicates the grid point where daily analysis is performed.

The objective method requires parameterization of the spatial and temporal covariance
structure of specific air humidity. It is determined from retrievals occurring during January,
April, July, and October 2005 over the global ocean between 55◦ S and 55◦ N.

3.3. Accuracy of satellite daily specific air humidity

The quality of the resulting daily satellite q10 estimates (qsat) is mainly investigated through
comprehensive comparisons with daily averaged 10 m specific air humidity (qbuoy) from
buoys during 2005–2007, for which period both new (qsat) and old (qsat_old) values are avail-
able. Daily buoy estimates are calculated as an arithmetic mean of all valid hourly data. For
each day within the period, all daily buoy and satellite data separated by less than 25 km are
selected. Consequently, 2910 collocations from MFUK and 16,999 from tropical networks,
with specific air humidity ranging from 2 to 25 g kg−1, met all the collocation quality con-
trol criteria. The buoy–satellite comparisons are complemented by comparisons with daily
ship data from NOCS2.0 for two regions: a low-humidity region in the mid-latitude North
Atlantic and Mediterranean Sea (20◦ W–10◦ E, 35◦ N–60◦ N) and a more humid region
in the tropical Atlantic (70◦ W–10◦ E, 15◦ S–15◦ N). These regions are selected based
on ground truth mooring locations. The northern region hosts the MFUK moorings while
the tropical region hosts the PIRATA mooring array. In addition, the quality of the daily
satellite q10 analysis is investigated on global scales through comparisons with daily esti-
mates from NOCS2.0 and ERA-Interim. Only the 2007NOCS2.0 q10 are used for the global
comparisons because these data were excluded from the calibration of the q10 model (1).

Even though buoy as well as ship q10 data are used as ground truth references, both
sources may have uncertainties mainly related to hygrometer type, measurement height,
and solar radiation contamination (Kent, Woodruff, and Berry 2007). The assessment of
the quality of the reference data is beyond the scope of this article.

To limit possible impacts of sampling errors of in situ data, comparisons are limited to
q10 with relative random error less than 10%. Most of the cases (>95%) when this error
exceeds 10% occur in dry conditions (q10 < 4 g kg−1) at the MFUK buoys. The statistics
established for these specific cases yield an overestimation of satellite q10.

Figures 2(a) and (b) illustrate validation results obtained for MFUK and tropical
moorings, respectively. The statistics characterizing buoy and satellite comparisons are
estimated. Table 1 provides the biases and standard deviations (STDs) of buoy and satel-
lite differences (in that order), and correlation coefficients (r). The statistics associated
with the performance of daily q from Bentamy et al. (2003) indicated as qsat_old are also
provided. The updated daily satellite qsat gives a good representation of daily in situ q10

estimates. Correlation coefficients between tropical and satellite and between MFUK and
satellite daily q10 are 0.85 and 0.95, respectively. At MFUK buoy locations, correlation
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Figure 2. Daily averaged specific air humidity from buoys (MFUK (a) and tropical (b)) and satel-
lites. Panels (c) and (d) show companion comparisons with daily NOCS2.0 q10 from the two areas
surrounding MFUK and tropical arrays, respectively. Black and red lines are perfect and symmetrical
linear fits, respectively. Inner and outer dashed lines show one and two standard deviations of in situ
minus satellite q10, respectively. Numbers in the colour bars represent the number of collocated data
per 0.50 g kg−1 bins. Only bins with the number of collocated data exceeding a threshold (30 for
mooring and 100 for NOCS2.0 comparisons) are shown in colour. The rest of the collocated data are
shown as grey dots.

coefficient varies between 0.92 and 0.95 leading to no significant location dependence.
Even though correlation coefficients are quite high at tropical locations, better results are
found at buoys moored off the Equator, where polar-orbiting satellite sampling is better than
at low latitudes. NOCS2.0 and satellite q comparisons (Table 1) indicate similar correlation
results.

The biases for the new q10 are low (Table 1) and are not statistically significant. Biases
increase for low and high q10 (Figures 2(a) and (b)), indicating slight overestimation and
underestimation, respectively, which is also evident from the regression fit lines in Figure 2.
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Table 1. Statistical parameters of differences between daily buoys (MFUK, TAO, PIRATA, RAMA)
and satellite specific air humidity estimated for 2005–2007. Bias, STD, and r stand for mean and
standard deviation difference (buoy minus satellite) values, and correlation coefficients, respectively.
Bias and STD are in g kg−1 units.

qsat qsat_old

Length Bias STD r Bias STD r

MFUK 2910 −0.04 0.87 0.95 −0.20 1.43 0.90
TAO/PIRATA/RAMA 16,999 −0.10 1.05 0.85 0.88 1.62 0.75
NOCS2.0 (MFUK) 67,104 0.23 0.79 0.95 0.42 1.57 0.88
NOCS2.0 (Tropical) 129,341 0.27 1.05 0.83 0.74 1.55 0.73

However, the bias always stays within one STD. Therefore, the bias behaviour as a func-
tion of buoy q10 ranges may be partly related to the collocation procedures (satellite data
coverage and q10 latitude dependency), to differences in estimates of daily averaged buoy
and satellite q10, and to differences in the buoy and satellite temporal and spatial sam-
pling schemes. The highest departure between daily averaged buoy and satellite q10 is
depicted in the Pacific warm pool region. Satellite q10 tends to be overestimated com-
pared with in situ estimates. Furthermore, buoy q10 exhibits higher temporal variability
than that reported from satellite q10. Similar bias dependencies on q10 are present in com-
parisons with NOCS2.0 q10 (Figures 2(c) and 2(d)). Biases at buoy locations (where at
least one year of collocated data are available) display weak geographical variations. Air
humidity bias varies from –0.10 to 0.10 g kg−1 at the mid-latitude MFUK locations, but
the bias range increases in more humid tropical conditions where it varies from –0.30 to
0.30 g kg−1 at the tropical mooring locations, except at the 125◦ W, 2◦ S TAO mooring
where the bias is anomalously strong, reaching 0.90 g kg−1. The bias analysis indicates that
the q10 model (Equation (1)) works better in extra-tropical areas where most of the water
vapour is trapped near the surface and when assessing the relationship between v and q.
However, the q10 model is less accurate in regions of active convection where water vapour
may exist aloft, and this is related to atmospheric processes that are not highly correlated
to surface fluxes, especially at a daily scale.

STD of daily satellite and in situ (buoy and ship) specific air humidity is also weaker at
mid-latitudes and increases in the tropics (Table 1); STD increases from 0.79 to 1.05 g kg−1.
It depicts weak changes among buoy locations with the exception of higher values in the
Mediterranean Sea, where STD is about 1.10 g kg−1. At the two Mediterranean MFUK
locations, atmospheric conditions are strongly variable. For instance, STD of specific air
humidity measured by MFUK buoys moored in the Mediterranean Sea is twice as strong as
that at the Atlantic MFUK moorings. Better satellite data sampling is needed to decrease
STD between satellite and buoy data in the Mediterranean Sea.

The newly developed algorithm used for estimating satellite daily specific air humid-
ity provides significant improvements over the previous example (Bentamy et al. 2003).
Indeed, statistics characterizing comparisons between buoy and satellite, as well as
NOCS2.0 and satellite, clearly show that results are better for the updated qsat in various
study regions (Table 1). For instance, RMS difference values between the new and old daily
satellite q10 estimates (estimated from bias and STD values) are reduced by more than 50%.

At a global scale, the updated qsat are compared with daily averaged 10 m q from
NOCS2.0 (qnocs). The two q10 sources are collocated in space and time. For each day, qsat

values are linearly interpolated over a qmod gridded map. The resulting collocated daily data
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are used to estimate monthly, seasonal, and annual statistical parameters, such as mean and
STD of each q product, mean and STD differences, and correlation coefficient between
qnocs and qsat (in this order). Only results derived from collocated data occurring during
2007 are shown. They are not used for calibration dealing with the determination of the
retrieval model (Equation (1)).

The spatial variability of specific air humidity from the two products exhibits very
similar features for both monthly and seasonal and annual scales. The former are highly
related to spatial patterns of SST and precipitation and the major spatial patterns of specific
air humidity (Jackson, Wick, and Robertson 2009). For instance, Figure 3 illustrates qsat

spatial patterns estimated for the northern hemisphere (NH) winter (December–January–
February, DJF), spring (March–April–May, MAM), summer (June–July–August, JJA), and
autumn (September–October–November, SON). q10 values exceeding 18 g kg−1 are mainly
found along the convergence zones in the tropical Atlantic, Pacific, and Indian oceans.
High values reaching or exceeding 19 g kg−1 are depicted in the western Pacific warm pool
throughout the year, in the tropical and northeastern Indian Ocean areas during spring and
summer seasons, respectively, and in the Caribbean and Gulf of Mexico during summer-
time. Seasonal variations result in significant differences in specific air humidity estimates
between NH winter and summer. They reach 6 g kg−1 in northeastern oceanic regions, north
of the Indian Ocean, the Gulf of Mexico, over the entire Mediterranean Sea, off the north-
western African coasts, and over the southeastern Indian Ocean. Such spatial and seasonal
patterns are likely closely related to those of SST.

The spatial differences between NOCS2.0 and satellite q10 during NH winter and
summer seasons are shown in Figure 4. Upper and lower panels illustrate bias and STD
differences, respectively. The new qsat daily estimates reduce the discrepancies between in
situ and satellite in terms of both mean difference and variability. Indeed, previous stud-
ies reported that the IFREMER (old version) specific air humidity was underestimated
by 1 g kg−1 compared with ICOADS over the inter-tropical ocean (Jackson, Wick, and
Robertson 2009), while it was slightly overestimated over subtropical oceanic areas. Both
statistical parameter spatial distributions (Figure 4) do not exhibit significant geophysical
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Figure 3. Northern hemisphere winter (December–January–February (DJF)), spring (March–
April–May (MAM)), summer (June–July–August (JJA)), and autumn (September–October–
November (SON)) mean q10 patterns estimated from daily satellite analyses for the period 2005–2007.
Colour indicates q10 values in g kg−1.
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Figure 4. Mean difference (top) and standard deviation (bottom) between daily NOCS2.0 and satel-
lite q10 for boreal winter (DJF) and summer (JJA) during 2005–2007. Colour indicates mean and STD
values in g kg−1.

pattern dependency. More than 84% (DJF) and 95% (JJA) of q difference values are lower
than 1 and 1.5 g kg−1, respectively, whereas the associated STDs are lower than 2 g kg−1

for 95% of total grid points. Most of the differences exceeding 1 g kg−1 are found in the
southern ocean and/or in regions where NOCS2.0 q error exceeding 1.3 g kg−1 is asso-
ciated with issues related to sampling by ships (Berry and Kent 2011). Excluding these
poorly sampled regions leads to an improvement in NOCS2.0 and satellite comparisons:
more than 95% of differences do not exceed 1.20 g kg−1. At regional scales, two areas
located in the northwestern Atlantic and Pacific oceans, likely related to Gulf Stream and
Kuroshio currents, are depicted during NH winter season. Specific air humidity is assumed
to be low (Figure 4) due to continental cold air outbreaks. These discrepancies might be
partly related to the uncertainties of the retrieval model (Equation (1)) at some specific
locations and for some local atmospheric and oceanic conditions.

4. Daily wind fields

Surface wind speeds and directions may be retrieved from scatterometers and radiome-
ters. In this study, only QuikSCATV3 retrievals are used. As mentioned in Section 2, these
are corrected with respect to the results of Bentamy et al. (2012). The calculation of daily
gridded wind fields from scatterometer wind observations is performed using the same
objective method as that for the estimation of daily ASCAT wind fields (Bentamy and
Croizé-Fillon 2011). The resulting wind field accuracy is investigated through comparison
with daily averaged winds from MFUK, NDBC, PIRATA, RAMA, and TAO moored buoy
estimates. The main statistics characterizing scatterometer and buoy daily wind speeds and
direction comparisons are summarized in Table 2. Bias and STD are mean and STD values
of differences between buoy and satellite data, respectively. r is the correlation coefficient,
and for wind direction, it is estimated as vector correlation (Bentamy and Croizé-Fillon
2011b). It varies between –2 and +2. The overall statistics indicate that the daily scat-
terometer wind fields compare well to daily averaged buoy data. RMS differences do not
exceed 2 m s−1 and 20◦, which are the scatterometer specifications for wind speed and
direction, respectively. For in situ and scatterometer daily winds higher than 3 m s−1, no
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Table 2. Statistical parameters of differences between daily buoys (MFUK, NDBC, TAO, PIRATA,
RAMA (tropical)) and satellite wind speeds (m s−1), wind directions (◦), wind stress amplitude
(dyn m−2), latent heat flux (LHF) (W m−2), and sensible heat flux (SHF) (W m−2). Numbers to
the right of mooring names are sampling lengths of buoy and satellite-collocated daily data.

MFUK (12146) NDBC (28048) Tropical (49843)

Bias STD r Bias STD r Bias STD r

Speed −0.36 1.58 0.92 −0.27 1.09 0.94 −0.25 1.25 0.85
Direction 0.00 19.00 1.76 −5.00 23.00 1.74 −4.00 17.00 1.65
Stress −0.01 0.07 0.92 −0.01 0.04 0.95 −0.01 0.03 0.85
Latent heat 5.00 27.00 0.89 13.00 37.00 0.89 2.00 31.00 0.79
Sensible heat −2.00 10.00 0.94 −2.00 10.00 0.96 −4.00 6.00 0.77

significant bias trend is found. For lower wind speed ranges, scatterometer winds tend to be
slightly overestimated compared with those estimated by buoys. The biases in wind direc-
tion are relatively small. Despite differences in buoy and scatterometer sampling schemes
used for the estimation of daily winds, correlation values attest that satellite daily winds
reproduce in situ estimates fairly well. The lowest correlation value is found for tropical
buoy and satellite wind comparisons, due to the low wind speed conditions within these
specific oceanic regions.

5. Turbulent fluxes

Daily surface wind stress and the associated zonal and meridional wind stress components,
and surface latent and sensible heat fluxes are estimated over global oceans from daily
winds (Section 4), specific air humidity (Section 3), SST, and air temperature utilizing the
COARE3.0 bulk parameterization algorithm (Fairall et al. 2003). SST are from the daily
OI analyses (Reynolds et al. 2007), while t10 are daily averaged estimates calculated from
Era-Interim analyses (Section 2). Calculations of gridded bulk variables and turbulent flux
fields are performed over global oceans with a spatial resolution of 0.25◦ in both longitude
and latitude. Spatial and temporal resolutions of the flux fields are consistent with SST
analyses.

The quality of the new flux fields is first examined through comparisons with turbu-
lent fluxes estimated from daily averaged, buoy bulk variables. Most NDBC buoys do not
provide measurements of specific air humidity (or relative humidity); these are calculated
from air and dew point measurements. Since daily turbulent fluxes are estimated utiliz-
ing COARE 3.0 parameterization, any departures between buoy and satellite daily fluxes
highlight differences in daily bulk variables. In this article, statistics related to comparisons
between buoy and satellite daily wind stress (τ ), latent (LHF), and sensible (SHF) heat
fluxes are provided (Table 2). These are calculated from collocated buoy and satellite data
for 2005–2007.

As expected, buoy and satellite daily wind stress exhibit similar comparison results to
those found for wind speed (Table 2). This is clearly illustrated by correlation coefficient
values. Furthermore, negative bias values are associated with a slight overestimation of
satellite wind speeds.

Daily satellite LHF is slightly underestimated in comparison with buoy data. Biases
from the MFUK, NDBC, and tropical moorings are 5, 13, and 2 W m−2, respectively, which
correspond to 7, 12, and 1% of mean buoy LHF. Again we find a somewhat high temporal



5256 A. Bentamy et al.

correlation of satellite and in situ turbulent fluxes (Table 2), which tends to decrease in the
tropics. Remaining sampling issues show moderately strong RMS errors, i.e. ∼30 W m−2

for MFUK and tropical moorings and 37 W m−2 in the Atlantic western boundary sampled
by NDBC moorings. The positive (buoy minus satellite) LHF biases at MFUK and NDBC
locations are mainly related to the underestimation of high LHF (>200 W m−2) at low
q and/or for high winds. In fact, the satellite q is higher than in situ q in dry conditions
(Figure 2) that leads to LHF underestimation. Excluding cases with buoy q < 3 g kg−1

reduces the satellite LHF biases down to 4 W m−2 (MFUK) and 6 W m−2 (NDBC) while
the RMS error reduces to 25 W m−2 (MFUK) and 29 W m−2 (NDBC).

Satellite daily SHF has high correlation with in situ data at extratropical locations and
somewhat reduced correlation in the tropics (Table 2). The biases at MFUK and NDBC
moorings are lower than 2 W m−2 in magnitude, which are negligible. In the tropics
where time mean SHF is weak, satellite SHF is overestimated by 4 W m−2. This depar-
ture is related to the underestimation of air temperature in warm and humid conditions (not
shown). These comparisons show improvements by the new satellite SHF. Indeed, the pre-
vious version of SHF (Bentamy et al. 2008) was biased by more than 10 W m−2 according
to Santorelli et al. (2011).

For global comparisons, we select NOCS2.0 daily LHF and SHF with uncertainties
lower than 40 and 20 W m−2, respectively. The above thresholds are the median values of
NOCS2.0 LHF and SHF errors. They are chosen in order to maintain sufficient in situ data
for comparison. Consequently, most selected NOCS2.0 data are located in northern basins.
The lowest NOCS2.0 data sampling is in the tropics and in southern latitudes. In particular,
there is a factor of 20 between sampling lengths at 40◦ N and 40◦ S. The spatial distribution
of the seasonal mean NOCS2.0 minus satellite LHF does not show any systematic basin-
scale patterns. The highest positive differences (NOCS2.0 – satellite > 30 W m−2) are
found in the Mediterranean Sea throughout the year, and in western boundaries during
local winter. To summarize, Figures 5 and 6 show NOCS2.0 and satellite LHF comparisons
of zonally averaged fluxes stratified by ocean basin. The two LHF products have similar
latitudinal dependencies, especially to the north, where in situ data coverage is better. For
both data sets the zonal mean LHF exceeds 100 W m−2 in the trade wind zones (Figures 5
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Figure 5. Latitudinal averages of NOCS2.0 (red) and satellite (blue) of LHF estimated over the
Atlantic (left), the Pacific (middle), and the Indian (right) oceans for 2005–2007 boreal winter.
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Figure 6. Latitudinal averages of NOCS2.0 (red) and satellite (blue) of LHF estimated over the
Atlantic (left), the Pacific (middle), and the Indian (right) oceans for 2005–2007 boreal summer.

and 6), where rather strong winds and dry air are both present. Seasonal variability, which
is pronounced in the Atlantic and Pacific, is associated with stronger winds in local winter.
Both NOCS2.0 and satellite LHF indicate maxima along 40 and 36◦ N in the Atlantic and
Pacific, respectively, during the winter season (Figure 5), reflecting contributions from high
LHF in the western boundaries associated with winter storms. These high LHF are absent
in local summer (Figure 6). Locally weak LHF is present throughout the year along the
equator in the Atlantic and Pacific due to lower winds and rather cold SST in the eastern
cold tongue regions. The lowest LHF is found at high latitudes due to cold SST and related
low air humidity. Owing to sampling issues, discrepancies between NOCS2.0 and satellite
LHF are stronger in southern oceans. For instance, near 40◦ S in the Atlantic and Indian
Oceans, these exceed 30 W m−2 in boreal summer (Figure 6). Lower ship-based LHF may
be linked to the need for ships to avoid stormy seas. Indeed, 90% of NOCS2.0 daily LHF
along 40◦ S in the Indian Ocean are lower than 50 W m−2, but this percentage is only 20%
for satellite daily LHF.

Zonally averaged sensible heat fluxes from NOCS2.0 and satellite exhibit qualitatively
similar behaviour (Figures 7 and 8). Both SHF estimates do not exceed 20 W m−2 in the
tropics, and increase towards the mid-latitudes of the winter hemisphere. The highest sen-
sible heat loss occurs around 40◦ N in the Atlantic and Pacific in boreal winter due to high
winds and strong air–sea temperature difference (�T) in the western boundary regions.
The northern SHF amplification is not present in local summer, reflecting a significant
seasonal drop in storm track activity. Although the two SHFs are highly correlated, satel-
lite SHF is higher than NOCS2.0. The difference is apparent during local winter, when
it increases up to 25 W m−2 in the north Pacific between 30 and 40◦ N (Figure 7). Even
higher differences occur in the southern ocean in austral winter (Figure 8). Discrepancies
between NOCS2.0 and satellite SHF are more pronounced during the summer season in
regions located south of 40◦ S, where satellite SHF exhibits much more seasonal vari-
ation than that of NOCS2.0. Summertime departures found at high southern latitudes
are mainly associated with differences in wind speeds and with poor temporal and spa-
tial samplings of NOCS2.0 daily data and missing strong wind events, which are avoided
by ships.
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6. Conclusion

The presence of biases in the Bentamy et al. (2003) version of the IFREMER turbulent
fluxes required improvement of the product. The availability of the new air–sea interac-
tion gridded data set (NOCS2.0) calculated from height-adjusted ICOADS data allows for
enhancement of satellite-derived, turbulent fluxes over the global ocean. The new version of
the IFREMER satellite, turbulent air–sea fluxes is based on a synergy of remote-sensing and
atmospheric reanalysis data. It includes a newly improved air humidity retrieval scheme,
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new QuikSCATV3 scatterometer winds, and adopts t from the ECMWF Era-Interim
atmospheric reanalysis.

The core of the air humidity retrieval scheme remains unchanged. This is based on the
statistical relationship between microwave brightness temperature and q10, which in turn is
based on the quasi-linear relationship between q10 and integral atmospheric water vapour
content (Schultz et al. 1993). However, the direct application of this retrieval algorithm in
Bentamy et al. (2003) results in a SST-dependent q10 bias, which suggests the inclusion
of SST as an additional parameter in the satellite q10 retrieval algorithm. Furthermore,
the analysis of q10 bias reveals a dependence on atmospheric stratification that reflects
modifications in the relationship between water vapour content and q10 over ocean SST
fronts. Therefore, the new q10 retrieval algorithm developed in this article includes SST and
the air–sea temperature difference terms along with the traditional microwave brightness
terms. The retrieval algorithm parameters are fitted using the global in situ data from the
bias-corrected version of ICOADS (NOCS2.0). The new satellite q10 has a reduced bias
that no longer depicts the large-scale patterns (dry tropics and wet subtropics) found in the
previous IFREMER product.

All satellite observations are objectively mapped on a daily 0.25◦ × 0.25◦ grid follow-
ing Bentamy and Croizé-Fillon (2011). The validation of daily gridded q10 shows good
comparisons with in situ, daily mean mooring measurements in the North Atlantic and
tropics. The RMS values are about 1 g kg−1, while the correlation coefficients exceed 0.85.
Similar results are obtained from comparisons with daily NOCS2.0 data not used in the
development of the satellite retrieval model.

Daily satellite LHF is slightly underestimated in comparison with in situ buoy data. The
LHF bias (buoy minus satellite) is 5 W m−2 (or 7% of the mean buoy LHF) and 13 W m−2

(12%) at mid-latitudes locations (MFUK and NDBC moorings, respectively). It decreases
to 2 W m−2 (1%) at the tropical moorings. SHF is slightly overestimated by 2 W m−2 (11%)
at MFUK, by 2 W m−2 (7%) at NDBC, and by 4 W m−2 (51%) at the tropical moorings.
On a global scale, satellite-derived LHF and SHF exhibit similar spatial and temporal pat-
terns to those derived from NOCS2.0. Global comparisons between NOCS2.0 and satellite
suggest that both LHF and SHF exceed in situ values for storm track belts during local win-
ter, which are particularly evident at high southern latitudes. The increased difference in the
south is in part explained by the poor temporal and spatial samplings of NOCS2.0 daily data
and missing strong wind events, which are avoided by ships. Indeed, 90% of NOCS2.0 daily
LHF along 40◦ S in the Indian Ocean is lower than 50 W m−2, but this percentage is only
20% for satellite daily LHF.

Statistical comparisons between in situ (moorings and NOCS2.0) and satellite bulk
variables and turbulent fluxes assess the improvement of the new calculations with regard
to previous IFREMER satellite flux accuracy. In future, flux calculations will first be per-
formed for the whole QuikSCAT period (August 1999–November 2009). The spatial and
temporal patterns of the resulting flux fields will be investigated and compared with those
derived from satellite observations such as HOAPS, from blended data such as AOFLUX,
or from meteorological reanalyses such as ERA-Interim. The extension of the calculation to
the periods of the European Satellite Remote Sensing satellites ERS-1 and ERS-2 (March
1992–January 2001) and of ASCAT (February 2007–present) is expected.
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