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ABSTRACT 

 

Surface water exchange with groundwater has become an increasingly active area of 

investigation since the 1980’s, as researchers have recognized them as a hydrologic 

continuum.  Wide ranges of hydrologic setting have been investigated, though very few 

studies have investigated these exchanges in coastal streams in semi-arid environments.  

This study’s objective is to improve the understanding of groundwater-surface water 

interaction in a coastal low-flow streambed, characterized by relatively high clay 

contents, by implementing a combination of analytical, mathematical, statistical, and 

geophysical methods. 

 

Thermal responses resulting from heat transfer due to conduction (no groundwater 

movement) and advection (by groundwater transport) are analyzed in a streambed 

characterized by low hydraulic gradients and conductivity sediments with possibly 

diffusive and small-scale flow paths. These characteristics provide a challenge when 

attempting to quantify surface and groundwater fluxes utilizing traditional methods. A 

new approach to separate heat advection from conduction through decomposition of 

temperature time-series data is proposed. 

 

The estimates provided by the numerical and analytical solutions are consistent and 

indicate that groundwater upwelling is occurring in the streambed during the summer and 

winter periods at an average of 9 mm d-1 and 3.5 mm d-1, respectively. However, there 

were discrepancies in specific discharge with depth, indicating multi-dimensional flow in 

the hyporheic zone. The decomposition method results suggest it may not be applicable 
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to fine-textured coastal stream sediments. Resistivity results provided a good first order 

approximation of groundwater discharge and serves as a reliable validation tool for 

thermal methods. The overall results of this study confirm that thermal methods are 

capable of quantifying surface and groundwater interaction in a coastal low-flow stream. 

 

Because coastal streams flow into environmentally and economically sensitive bays and 

estuaries that serve as key ecosystems and breeding grounds for a large variety of species 

along coastal areas, improving scientific understanding of groundwater discharge is of 

significance since it can serve as a transport mechanism for contaminants into these 

environments. Further research should be conducted to quantify multi-dimensional flows 

in the hyporheic zone.   
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1. Introduction 

Although surface water (i.e. streams, lakes, estuaries) and groundwater are often referred 

to as separate hydrologic systems, they are intimately related as a change in one can 

ultimately affect the other [Constantz and Stonestrom, 2003]. Since these two entities act 

as linked pathways for contaminant transport in the hydrologic cycle, a comprehensive 

understanding of the groundwater-surface water relationship is essential for improved 

water resource management practices. Exchanges occur whenever a hydraulic gradient 

exists between the two components; a positive gradient, when the water table elevation is 

higher than that of surface water, results in a gaining stream, while a negative one, when 

the water table elevation is lower than that of surface water, favors groundwater recharge 

through a losing stream [Constantz and Stonestrom, 2003]. Examination of differences in 

water elevations between the two hydrologic domains yields information on the direction 

of flow. However this method may not be practical in some environments with low 

topographic relief and low conductivity sediments that can result in low-rate, small-scale 

surface and groundwater exchanges [Freeze and Cherry, 1979]. 

 

1.1. Use of Tracers and Analytical and Numerical Techniques 

Environmental tracers, natural or man-made compounds or isotopes,, among others, are 

widely used to characterize water movement and transport mechanisms, recharge zones, 

and quantify groundwater-surface water exchange. Ionic species such as chloride and 
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bromide, which may occur in water as the result of anthropogenic or natural processes, 

are commonly used tracers and sometimes. Tracing background concentrations of these 

constituents as well as injection in high concentrations enables the delineation of surface 

and groundwater interaction [Nishikawa et al., 1999; Constantz et al., 2003; Cox et al., 

2007]. Stable isotopes of water (i.e. deuterium and oxygen) are also used but their utility 

is limited due to cost and extensive lab analysis while the use of radiogenic isotopes such 

as tritium is often met with opposition due to its inherent hazards [Davis, 1980].  

However, Constantz et al. [2003] and Cox et al.[2007] showed that some natural and 

injected tracers are well suited for exploring surface and groundwater interactions 

especially when combined with other types of tracers such as natural heat. 

While some of the aforementioned are good examples of tracers suitable for surface and 

groundwater interaction analysis, the use of injected chemicals is often limited spatially 

and temporally and is frequently constrained by other factors. These tracers are usually 

restricted to small areas and in most cases are only traceable for a short time after 

injection. Factors affecting tracer performance include reactivity with and adsorption to 

the medium through which they flow, pre-existing background concentrations that mask 

the injected concentration, and public concerns regarding the injection of chemicals into 

the environment, to name a few of the more prominent issues [Davis, 1980; Constantz 

and Stonestrom, 2003]. 
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Because water carries measurable amounts of heat, analysis of temperature changes or 

heat fluxes can be used as a proxy for surface and groundwater interaction. Heat has 

many advantages over injected or other naturally-occurring tracers. For instance, as a 

naturally-occurring tracer, heat is free from many of the concerns related to introducing 

chemical and/or harmful constituents into the environment. Substantial daily and seasonal 

temperature fluctuations impart distinct thermal profiles that enable intuitive assessments 

for exploring groundwater-surface water interactions [Constantz, 2008]. In addition, 

temperature is an instantaneous and easily measurable parameter that does not require 

extensive filed labor and computer processing, thus greatly reducing costs and increasing 

time-efficiency [Constantz, 2008].  Analyses of temperature variation may be well suited 

for areas with low water exchange rates and numerous small-scale flow paths as indicated 

by Constantz and Stonestrom [2003]. The basis behind the use of heat as a tracer for 

surface and groundwater interaction analysis is based on the concept of conduction and 

advection processes which are responsible for the transmission of heat in the shallow sub-

surface. Conduction is the diffusive transmission of solar-generated heat from the surface 

to the sub-surface in the absence of flowing groundwater while advection is defined as 

the heat carried by flowing groundwater in the sub-surface [Anderson, 2005]. 

Quantification of these heat transfer processes is based on Stallman’s [1963] equation for 

the three-dimensional coupled transport of water and heat through saturated sediments. 

Time-series daily and seasonal temperature variations produce temperature profiles in the 

surficial zone (or depths less than 1.5 meters) that can be used to deduce surface and 
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groundwater interaction [Anderson, 2005]. Applying this fundamental principle to time-

series temperature data from various depths in a shallow subsurface profile can be used to 

quantify the advective groundwater flux. With the advent of low cost, easily deployable 

temperature loggers, researchers have benefited greatly from using temperature profiles 

to study surface and groundwater interaction by applying it to a wide range of settings. 

Using analytical or numerical solutions of Stallman’s [1965] equation, many researchers 

have demonstrated the utility of thermal streambed temperature profiles to understand 

surface and groundwater interactions [Constantz, 2008; Constantz et al., 2013; Rau et al., 

2012; Briggs et al., 2014; Constantz et al., 2016]. 

The benefit of using the analytical solution for groundwater discharge to streams has 

been demonstrated for a variety of environments. Bredehoeft and Papadopulos [1965] 

provided an analytical solution to Equation 1 for the one-dimensional vertical flow of 

water through the saturated streambed while others have validated it by comparison with 

direct measurements from seepage meters [Schmidt et al., 2007; Jensen and Engesgaard, 

2011; Briggs et al., 2014]. Additionally Lu and Ge [1996] extended the analytical 

solution by adding a source/sink term to account for hyporheic flow which  is negligible 

when less than 10% of the vertical flow. Bhaskar et al. [2012] verified that the analytical 

solution was capable of detecting hyporheic flow while Hatch et al. [2006] shows that 

groundwater flux could be determined from changes in amplitude and phase shift of the 

diurnal temperature signal with depth. 
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Healy and Ronan [1996] provided a numerical solution to Equation 1 for determining the 

flow of water and heat through the variably saturated streambed in one or two dimensions 

(VS2DH). The validity of VS2DH was first confirmed by estimating recharge in a 

Nevada stream [Ronan et al. 1998].   More recently, Essaid et al. [2008] applied thermal 

methods to four different stream reaches and reported the VS2DH numerical results 

agreed well with seepage meter estimates. Briggs et al. [2014] compared VS2DH, 

analytical, and seepage meter estimates for a river in Massachusetts, reporting VS2DH 

and seepage meter estimates agreed well but discrepancies were evident when compared 

to the analytical results.  

More recently, electrical resistivity (the inverse of conductivity) methods have been used 

to quantify advective groundwater fluxes. The premise behind this method is that most 

minerals in the subsurface are poor conductors of electricity and ionic fluids occupying 

pore spaces are electrically conductive. Temporal changes in conductivities have been 

associated with zones of groundwater flux [Nyquist et al, 2008] and specific discharge 

rates have been estimated using a salinity mass balance approach [Bighash and Murgulet, 

2015; Dimova et al., 2012].  

Time-series decomposition [Cleveland et al., 1990] was proposed as an alternative 

approach for analyzing thermal profiles in the streambed by decomposing (separating) 

the temperature into three components representing the annual temperature trend, a 

seasonal  component representing heat conduction, and a random component representing 
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advection. It is assumed that finding lag correlations between the random components 

among different depths in the temperature profile would allow direct estimation of 

advective flux.  Figura et al. [2015] used time-series temperature decomposition to 

predict future groundwater temperature changes in Switzerland by finding the 

temperature signal travel time between the de-trended seasonal components of air and 

groundwater temperatures while Shamsudduha et al. [2009] used the annual trend and the 

de-trended seasonal components to characterize long and short term trends in 

groundwater levels in Bangladesh. However, to my knowledge no research has attempted 

to estimate the advective groundwater flux using the random component 

1.2. Unique Hydrology and Ecology of Texas Coastal Low-Flow Streams. 

For the purpose of the study, Texas low-flow coastal streams are defined as streams 

whose headwaters originate in relative close proximity to the coast (i.e. approximately 50 

km). The majority of Texas coastal streams and their tributaries are ephemeral however a 

small number have perennial flow. Perennial stream flow in the main stems of coastal 

low-flow streams generally results from springs and/or municipal wastewater discharge 

and a small fraction due to groundwater discharge where the majority of the latter is 

considered to occur as bank storage releases after storm events [TCEQ, 2005]. These 

coastal streams channels are generally poorly defined and are shallowly entrenched into 

the low permeability clay rich marine sediments of the Beaumont Formation, which were 

deposited on the shallow continental shelf and sub-aerially exposed in recent geologic 
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time as sea levels subsided.  Texas coastal stream watersheds are characterized by nearly 

flat topography and consequently very low surface-water gradients [TCEQ, 2005]. 

Coastal streams are also affected by fluctuating tides, the effects of which can be 

increased due to wind velocity and direction, which under certain conditions help to drive 

sea-water further upstream [Nicolau, 2001]. The combined effects of fine-textured low-

permeability sediments, tidal fluctuations, and low stream gradients make examining 

surface and groundwater interactions in these coastal streams particularly challenging.    

The ecology of streams can be greatly influenced by surface water exchanges with 

groundwater. However, surface and groundwater in Texas coastal low-flow streams are 

typically moderately-saline to saline, therefore the number of species of organisms 

generally differ only in population density from the headwaters to the mouth of the 

stream [Nicolau, 2001]. 

1.3. Research Objectives. 

The main objective of this study is to determine if the decomposition method applied to 

temperature time-series data can be used with confidence in deriving groundwater 

discharge rates to a low-flow stream in a semi-arid area. A combination of analytical, 

numerical, and electrical resistivity methods were employed to validate the proposed 

method by comparing groundwater flux estimates. 
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2. Data and Methods.  

2.1. Study Site 

The study site (Figure 1) is located in the Oso Creek watershed, adjacent to the Texas 

Gulf Coast near Corpus Christi. Oso Creek begins west of Corpus Christi and flows 

appoxiamtely 40 kilometers (km) where it discharges to Oso Bay. The main stream flows 

year round mainly due to municpal wastewater discharge while its tributaries are 

ephemeral and combined they drain an area of approxiamtely 600 square km (km
2
) 

[Ockerman and Fernandez, 2010]. The relief in the basin is relatively low with an 

average gradient of 0.7 meters (m) per km [Ockerman and Fernandez, 2010]. The basin 

is characterized by unconsolidated low permeability clays and muds of the Beaumont 

Formation [Bureau of Economic Geology, 1975]. The mean annual temperature in the 

region is 21.9ºC and the average annual precipitation is 83.6 cm [Ockerman and 

Fernandez, 2010]. 

 

Temperature data was collected from 17 sites in the Oso Creek watershed. Of the 17 

original sites only 3 were selected along Oso Creek, site SB-GW08, SB-GW19, and SB-

GW04 (Figure 1) based on continuous/consistent time-series data. The site used in this 

analysis (SB-GW08) was selected given its proximity to the USGS stream gauging 

station #08211520 and its location outside the tidal influence as well as constant water 

flow. 
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Figure 1: Geographic location of Oso Creek and study sites. The color scheme represents 

soil electrical conductivity and the black-labeled contour lines are the water table 

elevations. Site SB08 (SB-GW08) was the final site selected for this study. 

2.2. Data Acquisition 

Temperature data was collected from five temperature loggers installed at each site. Four 

of the temperature loggers are installed vertically in a profiler inserted into the streambed. 

The temperature profiler is constructed from 5.1 cm O.D. PVC pipe with a length of 150 

cm fitted with four Maxim Integrated DS1922L iButton temperature loggers. 16.25 mm 

holes were bored in the PVC pipe and spaced at 0.0 m, 0.33 m, 0.66 m and 1.0 m 

intervals along the length of the profiler, the loggers were inserted into the holes and 

epoxied into place. The profiler was inserted vertically into the streambed such that the 
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uppermost logger (0.0 m) is situated approximately 5 cm above the sediment-water 

interface (Figure 2) and the loggers were set to record data at 15 minute intervals. The 

fifth logger is placed in a nearby groundwater well (Figure 2) and is set to record at the 

same interval. Data for the SB08 site was collected from June of 2009 to May of 2010. 

 

 
Figure 2: Generalized stream cross-section showing logger placement. (Not to scale) 

Porewater, saturated streambed sediment, and surface water samples were collected for 

resistivity analysis using a resistivity test box (RTB). The RTB design is discussed in in 

the Geophysical Method section (2.4.4). Porewater was collected below the stream by 

means of a 5.1 cm x 1.5 m PVC well point with a 10 cm screened interval and 0.25 mm 

slots (Campbell Manufacturing BBP200-5). Because of the fine sediments at the study 

site, conventional methods of collecting porewater samples are often confounded by 
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clogging of the screen when attempting to force water out of the formation or by simply 

inserting extraction tools into the sediment.  

To minimize clogging, a balloon was attached to a 2 m length of flexible poly-vinyl 

tubing with a valve attached at the opposite end and then inserted into the well point. The 

balloon was then inflated to seal the pores in the well point screen prior to insertion into 

the streambed. The well point was inserted by hand until resistance was felt at 

approximately 70 cm below the streambed and the exposed end of the pipe was sealed 

and allowed to stabilize for 48 hours. After stabilization, the balloon was deflated and the 

tubing assembly removed and the pipe was fitted with a vented cap to prevent 

contamination and pressure buildup in the pipe.  Water was allowed to migrate naturally 

into the pipe for a period of 6 days after which the porewater was extracted.  

Porewater samples were collected in a clean container for transfer to the RTB. No 

abnormal stream stage events occurred during the collection period that would cause 

contamination from surface water. Surface water and streambed sediments were collected 

by grab sample and placed in clean intermediate containers for transfer to the RTB. 

Resistivity values were determined using the RTB and a Fluke Model 87 digital volt-ohm 

meter. 
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2.3. Raw Data Pre-processing with R 

Temperature data at the 17 sites was collected from mid-June 2009 through mid-May of 

2010 resulting in 68 individual time-series consisting of approximately 32,600 records 

each.  The length of the records varied due to the logistics of deploying and retrieving the 

temperature loggers from the various sites throughout the entire Oso Creek Watershed. 

The raw temperature data was compiled in a data base for later processing with R open 

source statistical software. Before any analysis of the raw data could begin the data 

needed to be extracted from the data base (Appendix A1.1-A1.2) and placed in an R 

recognizable format for ease of processing (Appendix A1.3-A1.4). Appendix A includes 

the scripts used in processing the data. The following text briefly outlines the general 

steps to process the data from one profiler. Data from the remaining 16 profilers was 

processed in a similar fashion. 

First a table was created in R for the individual profiler where each row represents one 

record arranged chronologically and five columns representing timecode and 

temperatures at 0.0, 0.33, 0.66 and 1.0 meters. Next the timecode was arranged into an R 

recognizable format. The timecode of each record was arranged by the following 

convention: year, month, day, hour, minute and second (Appendix A1.3). Data was then 

exported for further processing (Appendix A1.4). 

Because the individual sensors in each profiler started recoding data at slightly different 

times, the 15-minute time records did not correspond between the four sensors of each 
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profiler. A function was developed to automatically round the timecode to the nearest 15-

minute interval creating a new data frame, which was then checked for corresponding 15-

minute intervals (Appendix A2.4).  

Due to sensor failure or other unforeseen circumstances some temperature records were 

missing or were noticeably above or below the expected temperature range. The function 

“fix.missing” was applied to automatically scroll through the data looking for NA values. 

Once identified, the missing value is replaced by the previous day’s temperature value 

corresponding to the same time (Appendix A2.7-A2.11). To fix the out-of-range values a 

script was created that allowed scrolling through time averaged weekly plots (Appendix 

A3.1) of the temperature data and visually inspect for suspect data (Appendix A3.6). A 

user-defined time determines the length of time the plot is displayed (Appendix A3.5).   

The temperature limit used to identify flawed data was set at a +/- 1.0 ºC, since it was 

expected that this amount of change in a 15 minute period is abnormal and therefore, 

warranted replacement (Appendix A3.2). Out-of-range data is detected and the flawed 

data is replaced with an “x” (Appendix A3.7). Next the data is listed to visually 

determine the record number associated with the “x” (Appendix A3.8). The “x” is then 

manually replaced with NA (Appendix A3.9). The function, “fix.missing” is then run 

again to replace the NA with the previous day’s value (Appendix A3.10). Once the 

missing and outlier data have been replaced, plots for each sensor depth were visually 

checked for consistency and then merged into the original data set (Appendix A3.11-
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A3.13). Duplicate records sometimes resulted from merging the data sets. To overcome 

this, a function was created to check for and remove duplicate records (Appendix A4.2-

A4.3). After removal of duplicate records the data is again checked for consistency and 

then exported as filtered data (Appendix A4.4-A4.8). 

The filtered data set was then merged with USGS stream discharge data, based on time, 

to enable plotting discharge with temperature data and look for correlations between high 

discharge events and outliers in the random component. The new data set was again 

checked for duplicate records and plotted for visual inspection (Appendix A5.1-A5.10). 

The final preprocessing steps entailed converting the filtered data set into an R time-

series class with a frequency of one day (96 records) for further analysis by the various 

methods utilized in this study (Appendix A6.1-A6.5). 

2.4. Data Analysis 

2.4.1. Analytical Method: Type Curves 

Stallman [1963] suggested that subsurface groundwater temperature profiles could be 

used to estimate groundwater flow. He further recognized that groundwater temperatures 

when used in conjunction with hydraulic head data could be used to estimate the 

hydraulic conductivity of the sediments. Following this reasoning he proposed a three-

dimensional conduction-advection equation (Equation 1) describing the flow of heat and 

fluid in the sub-surface; 
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𝐾𝑇 [
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
] − 𝐶𝑤 (𝑣𝑥

𝜕𝑇

𝜕𝑥
+ 𝑣𝑦

𝜕𝑇

𝜕𝑦
+ 𝑣𝑧

𝜕𝑇

𝜕𝑧
) = 𝐶𝑠

𝜕𝑇

𝜕𝑡
, (1) 

where KT is the thermal conductivity of the bulk streambed sediments in W m
-1

 ºC
-1

, T is 

temperature in ºC at points x, y and z, Cw is the product of specific heat and density of 

water and termed the volumetric heat capacity with units of J m
-3

 ºC
-1

, v is the fluid 

velocity in the x, y, and z directions with units of m s
-1

, Cs is the product of the specific 

heat and density of the saturated sediments and termed the sediment volumetric heat 

capacity with units of  J m
-3

 ºC
-1

, and t is time in seconds. The first term on the left of 

Equation 1 accounts for the three-dimensional conduction of heat in the subsurface with 

respect to time as a function of thermal properties of the sediment. Similarly, the second 

term on the left describes the three-dimensional advective flow of heat in the subsurface 

with respect to time as a function of thermal properties of the fluid. The term on the right 

describes the change in temperature of the sediments with respect to time as a function of 

the volumetric heat capacity of the saturated sediments. 

Stallman [1965] later extended his work to derive a one-dimensional steady state 

advection-conduction equation for vertical flow in the subsurface. Equation 2 formed the 

foundation for the use of heat as a tracer of groundwater flow [Constantz, 2008]. 

𝐾𝑇

𝐶𝑠

𝜕2𝑇

𝜕𝑧2
−

𝑞𝐶w

𝐶𝑠

𝜕𝑇

𝜕𝑧
=

𝜕𝑇

𝜕𝑡
 (2) 
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In Equation 2, q is specific discharge with units of ms
-1

 and z is the depth below the 

streambed in the direction of water movement in meters. This equation can be used to 

calculate GW temperature T at any depth z at any time t.  All other variables are the same 

as outlined previously for Equation 1. The first term on the left hand side of the equation 

represents heat conduction while the second term represents advection. Analyzing 

Equation 2 reveals that when q is large, heat transfer by advection will dominate.  

Conversely for small values of q the transfer of heat by conduction will dominate which 

inhibits the determination of small water fluxes [Rau et al., 2012]. In the absence of any 

vertical groundwater flow (when q equals zero), the second term on the left vanishes and 

Equation 2 reduces to the purely conductive state: 

𝐾𝑇

𝐶𝑠

𝜕2𝑇

𝜕𝑧2
=

𝜕𝑇

𝜕𝑡
 (3) 

These equations are only valid if the following circumstances are met [Stallman, 1965].  

 Water flow is steady-state and parallel to the z axis. 

 Heat propagates parallel to the z axis 

 Thermal parameters of the water and matrix are temporally and spatially constant. 

 The temperature of the pore water is equal to the temperature of the matrix. 

Numerous researchers have developed analytical solutions and numerical models based 

on Stallman’s equations. Bredehoeft and Papadopulos [1965] were some of the earliest 

researchers to recognize the utility of Stallman’s work and proposed an analytical 
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solution to quantify vertical groundwater flow. Their analytical equation for advection 

and conduction vertically through streambed is as follows:  

𝑇𝑧 − 𝑇𝑠𝑤

𝑇𝑔𝑤 − 𝑇𝑠𝑤
=

𝑒𝑥𝑝[𝑁𝑝𝑒(𝑧
𝐿⁄ ) − 1]

𝑒𝑥𝑝(𝑁𝑝𝑒 − 1)
, (4) 

where 𝑇𝑧 is the temperature at any depth z in ºC, 𝑇𝑠𝑤 is the temperature of the surface 

water in ºC, 𝑇𝑔𝑤 is the temperature of the groundwater in ºC, L is the vertical distance 

between surface (𝑇𝑠𝑤) and groundwater (𝑇𝑔𝑤) temperatures in meters, z is the distance 

between surface temperature (𝑇𝑠𝑤) and the point being estimated (𝑇𝑧) and 𝑁𝑝𝑒 is the 

thermal Peclet number given by: 

𝑁𝑝𝑒 =
𝑞𝑧𝐶𝑤𝐿

𝐾𝑇
. (5) 

The thermal Peclet number describes the ratio of advection to conduction. Bredehoeft and 

Papadopulos [1965] demonstrated using type curves (Figure 3) that positive Peclet values 

indicate losing stream conditions while negative values indicate a gaining stream. Rau et 

al. [2012] extended this reporting that advection dominates when thermal Peclet absolute 

values are greater than one (|𝑁𝑝𝑒| > 1) while values less than one (|𝑁𝑝𝑒| < 1) are 

conduction dominated. Following this reasoning it may be difficult to ascertain which 

process dominates for Peclet values close to one.   
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To calculate the flow specific discharge q at a specific point in time using the analytical 

solution, a minimum of three subsurface temperature values are required, namely 𝑇𝑧, 𝑇𝑔𝑤, 

and 𝑇𝑠𝑤 [Schmidt et al. 2007]. Figure 4 is a conceptual view describing the application of 

the analytical method. Field data of 
𝑇𝑧−𝑇𝑠𝑤

𝑇𝑔𝑤−𝑇𝑠𝑤
 is plotted against the depth factor 𝑧 𝐿⁄  which 

are then superimposed over type curves (Figure 3) for various values of 𝑁𝑝𝑒 developed 

by Bredehoeft and Papadopulos [1965]. The value of 𝑁𝑝𝑒 is determined from the type 

curve that best matches the field data. The specific discharge q is then calculated by 

𝑞 =
𝐾𝑇𝑁𝑝𝑒

𝐶𝑤𝐿
. (6) 

Temperature data was collected at four different depths/elevations (one in the stream and 

three in the streambed) in the vertical streambed profile making it possible to estimate the 

vertical specific discharge during the summer and winter periods at the 33 cm and 66 cm 

depths (see Figure 4). The daily surface temperature at 0.0 cm was used as the upper 

boundary (𝑇𝑠𝑤) and the 100 cm depth temperature as the lower boundary (𝑇𝑔𝑤).  Schmidt 

et al. [2007] used the average surface and groundwater temperatures as boundary 

conditions. Jensen and Engesgaard [2011] chose the average maximum surface 

temperature as the upper boundary and a constant groundwater temperature for the lower 

boundary. For this study the instantaneous daily surface and groundwater temperatures 

were used as boundary conditions to obtain a better estimate of q throughout the period 

and thus enable direct comparison to the numerical model results. 
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Figure 3: Type curves plotted for values of Npe ranging from 5 to -5. The black linear plot 

represents pure conduction. Increasing groundwater discharge bends the plot 

progressively upward and increasing surface water discharge into the stream sediments 

bends the plot progressively downward. Modified from Bredehoeft and Papadopulos 

[1965].    
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Figure 4: Conceptual view of a stream and the underlying sediments describing the 

analytical method boundary conditions and relative locations of the temperature inputs. 

 

The analytical solution outlined above is most accurate during periods with reasonably 

steady temperatures, which occur mainly during the summer and winter [Schmidt et al., 

2007; Jensen and Engesgaard, 2011; Anibas et al. 2009]. Therefore the time series was 

divided into periods considered to represent summer and winter where the temperature 

fluctuations are the most stable. For this study, steady conditions are defined as periods 

when the temperature of any sensor does not frequently equal the temperature of another 

sensor. The effect of converging temperatures at different depths can be seen when 

looking at the left side of Equation 4. As the temperatures converge the values obtained 
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from this term can result in extremely large or small numbers or division by zero errors. 

These values can significantly skew the value of  𝑁𝑝𝑒  obtained from the type curve 

match and result in unrealistic estimates of specific discharge. Therefore periods of time 

when the temperature profiles exhibited this behavior were omitted from calculations 

[Schmidt et al., 2007; Jensen and Engesgaard, 2011; Anibas et al. 2009].  

 

Figure 5: Thermograph of temperatures for all depths for site SB8 showing summer and 

winter periods. Shaded areas represent periods not used in the calculations. 

 

Steady periods were determined by visually inspecting the thermographs. The 

temperature profiles were reasonably steady from the beginning of the record on June 11, 

2009 through September 1, 2009 and began to decrease significantly after. The summer 

WINTER 

SUMMER 
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period is considered to begin June 18, 2009 and continue through August 28, 2009. The 

winter period is considered to begin after September 1, 2009 and continue until January 

14, 2010 (Figure 5). For comparison purposes this convention is also used in the 

numerical method. 

 

2.4.2 Numerical Method: VS2DH 

VS2DH represents an alternative to the analytical solution outlined previously for 

estimating groundwater flow. VS2DH is a numerical model developed by the U.S. 

Geological Survey (USGS) that simulates the flow of energy and water in the subsurface 

[Healy and Ronan, 1996]. The model solves coupled energy and water flow equations in 

one or two dimensions. The energy equation (Equation 7) solved by VS2DH is the three-

dimensional form of the advection-dispersion equation for the transfer of thermo-

mechanical energy [Ronan et al., 1998; Constantz, 2008]: 

𝜕[ 𝜃𝐶𝑤  +  (1 −  𝜙)𝐶𝑠]𝑇

𝜕𝑡
= ∇ ∙  𝐾𝑇(𝜃)∇𝑇 +  ∇ ∙  𝜃𝐶𝑤𝐷𝐻∇𝑇 − ∇ ∙  𝜃𝐶𝑤𝑇𝑞 + 𝑄𝐶𝑤𝑇𝑠 (7) 

  

where 𝑡 is time in seconds, 𝜃 is the moisture content by volume,  𝐶𝑤 is the volumetric 

heat capacity of water in J m
-3

 ºC
-1

, 𝜙 is porosity, 𝐶𝑠 is the heat capacity of the sediments 

in J m
-3

 ºC
-1

, 𝑇 is temperature in ºC, 𝐾𝑇 describes the three-dimensional thermal 

conductivity of the saturated sediments in W m
-1

 ºC
-1

,  𝐷𝐻 accounts for three-dimensional 
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hydrodynamic dispersion with units of m
2
 s

-1
, 𝑞 is water specific discharge in ms

-1
, 𝑄 is 

the rate of the water source in s
-1

 and 𝑇𝑠 is the temperature of the water source [Healy and 

Ronan, 1996; Constantz, 2008]. 

The term on the left side of Equation 7 describes the change in temperature of variably 

saturated sediment over time.  The first term on the right of Equation 7 describes heat 

conduction, the second term accounts for thermo-mechanical dispersion through the 

sediments, the third term represents heat advection, and the fourth term represents heat 

sources or sinks into or out of the model [Constantz, 2008]. The numerical solution 

incorporates heat source/sink and thermo-mechanical dispersion terms into the equation, 

which do not appear in the analytical solution. The heat source/sink term accounts for 

time varying temperature boundary conditions and variable water flow rates whereas the 

analytical solution assumes steady state boundary conditions and a constant flow of 

water. As opposed to the analytical solution which assumes straight flow and transport 

paths for water and heat through the porous media, the thermo-mechanical dispersion 

term accounts for tortuous/preferential paths caused by subsurface heterogeneities. 

Water flow through the subsurface is described by Richard’s equation with the total head 

form solved by VS2DH as follows [Constantz, 2008]: 

𝐶(ℎ, 𝑥)
𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
= ∇[𝐾(ℎ, 𝑥) ∙ ∇𝐻(𝑥, 𝑡)], (8) 
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Where 𝐶 is the specific moisture capacity in m
-1

, h is the water pressure in m, x is length 

in m, t is time in s, K is the hydraulic conductivity in ms
-1

 and H is the total head in m 

[Constantz, 2008]. 

VS2DH first calculates the pore water specific discharge (Equation 8) which is then used 

to determine heat advection and dispersion (Equation 7) [Ronan et al., 1998]. This 

process is repeated until the change in specific discharge between iterations converges on 

a predetermined value. VS2DH was implemented through the USGS graphical user 

interface 1DTempPro [Voytek, et al., 2014] which allows for manual calibration of the 

coupled energy and flow solutions from VS2DH to measured thermal profiles in one-

dimension and it is particularly well suited for analyzing vertical flux when no head data 

is available [Voytek, et al., 2014, Koch et al., 2015]. Since data were available only in 

vertical direction and no head measurements were acquired, 1DTempPro was a logical 

choice for analyzing the data. 

The specific discharge is calculated through 1DTempPro analysis using specified 

parameters and the best fit of observed and calculated temperature data. Before analysis 

the with 1DTempPro the filtered temperature data from all four levels of the SB8 profiler 

and their associated dates and times were exported from R and compiled into a comma 

delimited file following the format suggested by Voytek, et al. [2014]. The temperatures 

of the upper (0.0 cm) and lower (100 cm) sensors were used to define the models upper 

and lower boundaries respectively and the temperature at the 33 and 66 cm depths were 
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used for model calibration. Fixed parameter values were used in the calibration of 

specific discharge. The calibration parameter, specific discharge, was determined from 

the analytical solution results and an initial value of -7 mm d
-1

 was used. Model 

calibration was achieved by adjusting the value of specific discharge until a best fit 

between modeled and observed temperature was achieved. Since the temperature logger 

precision used in this study is 0.0625 ºC, the RMS target (a measure of the goodness of fit 

of modeled versus observed data) was chosen around this value [Briggs et al., 2014; 

Koch et al, 2015].  

2.4.3. Statistical Method: Seasonal-trend decomposition (STL) 

Seasonal-trend decomposition using Loess (STL) decomposes a temperature time series 

(Yt) into trend (Tt), seasonal (St) and random (Rt) components [Cleveland et al., 1990]: 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡. (9) 

Carslaw [2005] used the decomposition trend and seasonal components to analyze 

monthly and annual trends in ozone levels in Ireland while Jiang et al. [2010] used the 

same components to model and predict temporal and spatial changes in land surface 

vegetation. However, no evidence has been found using analysis of the random 

component. 

 

The hypothesis is that STL can separate the conductive and advective components of heat 

transfer. The vertical conduction of heat in the streambed is assumed to result from 
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periodic diurnal temperature fluctuations at the surface, therefore the conduction can be 

modeled by the seasonal component (St). Conversely it is assumed that heat advection is 

not periodic and can be represented by the random (Rt) component. The objective using 

the STL method is to directly derive a flux using the random components between two 

depths in the streambed. Since it is assumed that outliers in the random component will 

characterize periods of advection; the time lag between outliers is then divided by the 

distance between the two depths to directly achieve a velocity which can be converted to 

specific discharge. 

 

STL decomposition uses locally weighted regression (Loess) to model the seasonal and 

trend components based on observed data. For a specific record in the time-series, Loess 

applies a weighted value to every neighboring record in a local subset of data based on its 

distance from the record being scrutinized [Cleveland et al., 1990]. For accurate 

modeling of the data, it is critical that the number of records included in the local subset 

match the fundamental frequency in the data (e.g. daily, weekly, or monthly) [Cleveland 

et al., 1990]. Because the frequency in this study is daily, a subset size of 96 records (the 

number of 15 minute records in one day) was used. Local subsets larger or smaller than 

the frequency in the data circumvent the decomposition procedure and result in too much 

or too little temperature information in the random component [Cleveland et al., 1990] 

which would adversely affect any flux calculations.  
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The Loess method is applied in a series of recursive inner and outer loops to extract the 

trend and seasonal components. The inner loop applies Loess to a daily subset (96 

records) of the time-series to estimate the seasonal component and is then applied again 

to the daily subset to estimate the trend component [Cleveland et al., 1990]. Using the 

outer loop, the locally weighted fitted values for the trend and seasonal components are 

computed. The resulting values will be used in the next iteration of the inner loop to 

better estimate the trend and seasonal components. Convergence is typically attained in 

less than 10 iterations of the outer loop [Cleveland et al., 1990]. Upon convergence the 

trend and seasonal components are removed from the original time-series where the 

random component (Rt) is given by: 

𝑅𝑡 = 𝑌𝑡 − 𝑆𝑡 − 𝑇𝑡 (10) 

STL was implemented using R open source statistical software. 

2.4.4 Geophysical Method: Electrical Resistivity  

Resistivity profiles (tomographs) were acquired with an Advanced Geosciences, Inc. 

(AGI) SuperSting® R8/IP eight channel induced polarization resistivity instrument [AGI 

unpublished material]. Resistivity tomographs were analyzed to identify zones of 

interaction between surface and groundwater by comparing the SuperSting resistivity 

(ERT) values to test box resistivity (TBR) values of surface and groundwater and 

saturated streambed sediments acquired from field samples using a fabricated resistivity 

test box. Since the ERT-derived resistivities are indirect measurements and the TBR are 
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direct measurements and since it is assumed that the saturated sediments, surface water, 

and groundwater have different electrical conductivities (inverse of the resistivity) 

[Samouelian et al., 2005], the TBR data will facilitate identification of the composition of  

contrasting zones in the ERT tomography  Using tomographs acquired at different times, 

the change in bulk resistivity over time in the zones of interest was used to estimate flux 

rates. 

 

The SuperSting is an 8-channel instrument capable of estimating the resistivity at 8 

depths simultaneously which greatly increases acquisition time. Data is acquired by 

means of a multi-conductor cable containing 56 hard graphite electrodes spaced 2 meters 

apart resulting in an estimated imaging depth of 22 meters.  Data was collected using an 

8-channel dipole-dipole array where a pair of electrodes injects current and the voltage 

difference is measured by 9 electrodes comprising 8 pairs of potential electrodes [AGI 

unpublished material]. This sequence is repeated until all 56 electrodes have been utilized 

as determined by a user-created command file. To acquire resistivity data the cable is 

positioned in a straight line on the ground surface and the 56 electrodes are attached to 

stainless steel stakes driven into the ground. Collected resistivity data is processed using 

the 2D AGI EarthImager software, which uses a maximally smooth least squares 

algorithm to provide initial estimates of resistivity.  The initial estimates are iteratively 

adjusted until a best fit model is obtained using the root mean square (RMS) error and L-

2 norm values as indicators of best fit. In land-based surveys, high RMS and L-2 norm 
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values typically result from poor connections between the electrodes and the ground or 

the SuperSting injection current is near background levels in the subsurface [AGI 

unpublished material]. Ensuring good connections at the electrodes or increasing the 

injection current generally helps resolve these issues.  

 

To verify the accuracy of analytical and mathematical techniques used in this study, ERT 

data were collected at the selected investigation site over a 3.5-hour time span on May 

21, 2014.  The cable was deployed perpendicular to the stream on a north-south trending 

transect with the 25
th

 electrode placed on the streambed. During the inversion process, 

EarthImager assumes a flat ground surface therefore the spacing between electrodes is 

constant. However topographic relief essentially changes the spacing between electrodes 

which results in miscalculations. Due to surface irregularities at the study site the 

elevation of every electrode was surveyed and the derived terrain file was imported in 

EarthImager to minimize these errors. 

TBR resistivity values were calculated directly using a fabricated resistivity test box. The 

dimensions for the TBR were determined by applying the definition of resistivity for an 

idealized cylinder [Samouelian et al., 2005]. 

𝜌 = 𝑅 (
𝑆

𝐿
) (11) 

where R is resistance in ohms (Ω), L is the length in meters of the cylinder, and S is the 

cross sectional area of the cylinder in m
2
. The inverse of resistivity is electrical 
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conductivity (σ) or specific conductance and is given by 𝜎 =  𝜌−1 with units of Siemens 

per meter (S m
-1

) [Samouelian et al., 2005].    The box was constructed of non-

conducting plastic with a cross sectional area (S in equation 11) of 12 cm
2
 and an inside 

length of 22 cm. An electrode is affixed to each end of the box and two electrodes are 

centered along the length of the box between the outer electrodes with a spacing of 12 cm 

(L in equation 11). Passing current through the two outer electrodes and reading the 

potential difference between the two center electrodes gives a direct resistivity value in Ω 

cm. These direct measurements are compared to the ERT derived resistivities and used as 

ground-truthing data and the only fundamental differences are spatial.  

 

Time-difference inversion algorithms were used to calculate the percent difference in 

bulk resistivity between two consecutive images collected 3.5 hours apart using the AGI 

EarthImager software. EarthImager derives a time-difference inversion using the first and 

last ERT as the initial (base) and final (monitor) conditions image and produce an image 

representing percent change in bulk resistivity during the 3.5-hour time-span. Boxes 

representing the vertical area in m
2
 of potential zones of surface water groundwater 

exchange were superimposed on the base, monitor and difference images [Dimova et al., 

2012; Bighash and Murgulet, 2015]. Only those areas with percent changes exceeding the 

RMS error are selected for groundwater discharge estimates. 
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To reduce the effect of clay in resistivity measurements, porewater salinities were 

corrected using the formation factor (𝐹∗) for water saturation of the sediments [Lee and 

Collett, 2006]: 

𝐹∗ = 𝑎∗𝜙−𝑚∗
 (12) 

Where 𝜙 is porosity and a
*
 and m

*
 are the clay corrected constants. Lee and Collett 

[2006] derived clay corrected constants using a least-squares fitting of log-porosity and 

log-resistivity values for sediments with clay contents up to 75%. The clay corrected 

constants for a
*
 and m

*
 are given as 1.09 and 1.70 respectively and assume a 75% clay 

content [Lee and Collett, 2006]. The clay corrected porewater resistivity (𝜌𝑤
∗ ) in Ω m is 

then calculated using the formation resistivity (𝜌𝑓) in Ω m by: 

𝜌𝑤
∗ =

𝜌𝑓

𝐹∗
 (13) 

Salinity (S) values for each superimposed zone are then calculated using: 

𝑆 = 7.042𝜌𝑤
∗−1.0233 (14) 

Using Equation 3 allows the ERT derived porewater resistivity (𝜌𝑤
∗ ) is converted to 

salinity (in units of parts per thousand (ppt)) [Manheim et al., 2004]. Salinity (S) 

estimates for the zones in the base (S1) and monitor (S2) images, the volume of 

groundwater discharge (V𝑔𝑤𝑑) is calculated using a salinity mass balance approach as 

explained below: 

V𝑔𝑤𝑑  =  V𝑠𝑎𝑙 [
𝑆1 − 𝑆2

𝑆2
] (15) 
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The mass balance approach applies the conservation of both mass and salt principles. For 

steady-state conditions over a specified time, the groundwater discharge rate is calculated 

as the difference between the salinity inputs and outputs, neglecting dispersion (or 

diffusion). The mass balance is based on time-varying salinity concentrations at the study 

site. For a detailed description of this method refer to Dimova et al. [2012]. Equation 4 is 

based on the assumption that the entire volume of groundwater identified in the zones 

will eventually discharge into surface waters under hydrologic conditions favoring 

groundwater discharge to surface water (i.e. upward hydraulic gradients).  

3. Results and Discussion 

3.1. Analytical Method: Type Curves 

Vertical groundwater specific discharge was calculated using the methods developed by 

Bredehoeft and Papadopulos [1965] (see Section 2.4.1 for details of this method). The 

normalized stream temperatures used to interpret the thermal Peclet number were 

calculated for each record to avoid errors caused by non-steady state boundary conditions 

resulting from daily and seasonal temperature changes [Anderson, 2005; Schmidt et al., 

2007; Anibas et al., 2009; Jensen and Engesgaard, 2011; Rau et al., 2012]. The specific 

discharge was estimated at the 33 cm and 66 cm depths for the summer and winter 

periods. Thermal parameters used in the calculations were as follows: The thermal 

conductivity (KT) of saturated clay was 0.837 W m
-1

 ºC
-1

 [Stallman, 1965]. The 
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volumetric heat capacity (Cw) of water was 4.2 x 10
6
 J m

-3
 ºC

-1
 [Constantz, 2008]. The 

specific discharge results are given in Table 1. 

Table 1: Analytical Method Estimated Specific Discharges 

Period q (mm d
-1

) Depth (cm) 
Flow 

Direction 

Summer 6.9 33
 

Upward
 

Winter 1.7 33 Upward 

Summer 6.5 66 Upward 

Winter 4.3 66 Upward 

 

The thermal Peclet numbers for summer and winter periods were all below one with a 

maximum value of 0.38 indicating conduction was primarily responsible for heat transfer 

into the streambed [Anderson, 2005, Rau et al., 2012]. The average specific discharges 

for the summer 33 and 66 cm depths were depth 6.9 mm d
-1

 and 6.5 mm d
-1

, respectively 

and indicated that groundwater discharge was occurring. The average specific discharges 

for the winter 33 and 66 cm depths were depth 1.7 mm d
-1

 and 4.3 mm d
-1

, respectively 

also indicating groundwater discharge. The specific discharge estimates obtained during 

the summer period for both depths were in relatively close agreement. The slightly lower 

specific discharges estimated during the winter could be explained by the higher stream 

stage during the winter period. The average stream stage in close proximity to the study 
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site was 1.5 m and 1.9 m for the summer and winter periods, respectively [USGS, 2015]. 

Higher pressure gradients resulting from higher stream stage could force water into the 

streambed, thus offset opposing flows [Cox et al., 2007, Cuthbert and Mackay, 2013] 

reducing the overall upward vertical component of groundwater specific discharge. 

The idea that the flow of heat and water is strictly vertical is an assumption of the 

analytical one-dimensional solution. Violations of this assumption can lead to 

discrepancies in specific discharge at different depths when hyporheic and vertical flow 

occur simultaneously [Jensen and Engesgaard, 2011; Bhaskar et al., 2012]. Hyporheic 

flow occurs when stream water flows into the streambed sediments and then back to the 

stream [Swanson and Cardenas, 2010]. This non-vertical flow component may explain 

the differences in specific discharge with depth realized during the winter where the 

specific discharge at the 33 cm depth is roughly half of the specific discharge at the 66 

cm depth. Bhaskar [2012] suggests that when one temperature sensor is in the hyporheic 

zone and stream discharge is higher relative to another point in time at the same location 

and depth, specific discharges estimated using the analytical method do not account for 

hyporheic flow and result in lower estimates at shallow depths typical of the hyporheic 

zone. For the Oso Creek study site, the average stream discharge for the summer and 

winter periods were 0.04 and 1.3 m
3
 s

-1
, respectively [USGS, 2015]. This higher stream 

discharge in winter likely explains the observed differences in groundwater specific 

discharge between the two depths and indicates that the shallow senor is located in the 
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hyporheic zone where horizontal exchange is likely to dominate under high flow 

conditions. Deriving a better estimate of the vertical specific discharge requires 

knowledge of the hyporheic to vertical flow ratio generally accomplished with additional 

temperature data acquired horizontally in relative close proximity to the vertical sensors 

[Bhaskar et al., 2012]. 

3.2. Numerical Method Results and Discussion: VS2DH/1DTempPro 

The numerical solution was implemented using 1DTempPro for the one-dimensional case 

of vertical fluid flow through the streambed (see Section 2.4.2 for details of this method). 

Specific discharges were calculated at the 33 and 66 cm depths for summer and winter 

periods as described in the analytical section 2.4.1. Four fixed parameters were used in 

1DTempPro. A sediment heat capacity (Cs) of   2.3 x 10
6
 in Joules m

-3
 ºC

-1
 
 
was estimated 

using an experimentally derived dry bulk density of 2.2 grams cm
-3

 [Lapham, 1989, 

Gealy, 2007]. The value used for dispersivity (a) was 1.0 m [Niswonger and Prudic, 

2003]. The experimentally derived average porosity (𝜙) was determined to be 0.64 

[Gealy, 2007], and the thermal conductivity (KT) of saturated clay was 0.836 (W m
-3

 ºC
-1

) 

[Stallman, 1965]. Table 2 reports the final parameter values used as inputs for 

1DTempPro. Values used for calibration of specific discharge ranged from ±20 mm d
-1

.  
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Table 2: Parameters Used in VS2DH Modeling. 

Description Symbol Units Value Source 

Sediment Heat Capacity Cs J m
-3

 ºC
-1 

2.3 x 10
6 

Lapham [1989] 

Dispersivity 𝛼 meter 1.0 
Niswonger and 

Prudic [2003] 

Porosity 𝜙 ─ 0.64 Lab analysis 

Thermal Conductivity KT W m
-1

 °C
-1

 0.836 Stallman [1965] 

 

The summer 33cm depth shows a best-fit RMS of 0.076 °C which is slightly above the 

target value of 0.0625 °C (Figure 6) and simulation results indicate an upwelling specific 

discharge of 16 mm d
-1

. The winter 33cm depth shows an excellent fit RMS of 0.057 °C 

(Figure 7) which is below the target value and indicated upwelling specific discharge at 

3.5 mm d
-1

. Figure 8 shows an excellent fit for the summer 66cm depth data with an RMS 

of 0.042 °C and indicating an upwelling specific discharge of 7.0 mm d
-1

. The best fit 

RMS for the winter 66cm depth was 0.054 °C (Figure 9) and an upwelling specific 

discharge of 4.5 mm d
-1

. The 1DTempPro results are listed in Table 3. 
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Table 3: 1DTempPro Model Results 
 

Period q (mm d
-1

) Depth (cm) 
Flow 

Direction 
RMS 

Summer 16.0 33
 

Upward
 

0.076 

Winter 3.5 33 Upward 0.057 

Summer 7.0 66 Upward 0.042 

Winter 4.5 66 Upward 0.054 

 

Similar to the analytical method results, the VS2DH estimates show that groundwater 

upwelling was occurring throughout both seasons at both depths with slightly higher 

specific discharge during the summer period (Table 3). Specific discharge estimates at all 

depths using the numerical method were slightly higher than those obtained using the 

analytical method, but vary with depth for both summer and winter. In particular the 

summer period numerically- estimated specific discharge values were markedly different 

between the 33 and 66 cm depths with magnitudes of 16 and 7 mm d
-1

, respectively. This 

observation suggests possible heterogeneity in the streambed. However the analytical 

method results were in relatively close agreement at 6.9 and 6.5 mm d
-1

, which would 

indicate overall homogeneity as also indicated by streambed core sample 

characterizations.  
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Another possible explanation for the discrepancies observed between the two depths 

during the summer period using the numerical method is non-vertical groundwater flow 

(i.e. hyporheic flow) [Jensen and Engesgaard, 2011; Bhaskar et al., 2012; Voytek et al., 

2014]. As mentioned in the analytical section, the stream stage and discharge were both 

lower during the summer period resulting in steeper hydraulic gradients that may enhance 

the potential for groundwater discharge to the stream [Cox et al., 2007, Cuthbert and 

Mackay, 2013]. In addition Capuano and Jan [1996] showed that horizontal hydraulic 

conductivity in the Beaumont Clay sediments is 3 to 6 orders of magnitude larger than 

the vertical hydraulic conductivity. Thus horizontal flow likely dominates vertical flow 

and supports the non-vertical groundwater discharge to the stream assumption. The 

observation of numerous small seeps occurring at different elevations along the south 

bank of the creek also suggests preferential horizontal flow. The mixing of hyporheic 

flow and groundwater discharge can also be a factor when discrepancies in specific 

discharges occur at different depths [Jensen and Engesgaard, 2011; Bhaskar et al., 2012]. 

Shope et al. [2012] suggested that hyporheic mixing includes vertical surface and 

groundwater exchanges as well as lateral bank storage exchanges, a complex mixing 

scenario significantly violating the vertical flow assumptions of the one-dimensional 

model. Field observations during sediment core retrieval support the potential for 

hyporheic mixing. Minimal resistance was encountered when a 10.4 cm OD PVC pipe 

was inserted by hand to a depth in excess of 60 cm below the streambed revealing very 

loose sediment and the likely existence hyporheic mixing. Thus it is assumed that 
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hyporheic mixing is responsible for changes in specific discharge reported at different 

depths for both the summer and winter periods. However, the overall decrease in vertical 

specific discharge during winter is assumed to also be the result of gentler hydraulic 

gradients caused by higher stream stage levels described in the analytical methods 

section. 

 

Figure 6: summer 33 cm; best fit of modeled versus measured (bold dots) temperature. 
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Figure 7: winter 33 cm; best fit of modeled versus measured (bold dots) temperature. 

 

Figure 8: summer 66 cm; best fit of modeled versus measured (bold dots) temperature. 



 
 

 

41 
 

 

Figure 9: winter 66 cm; best fit of modeled versus measured (bold dots) temperature. 

 

3.3. Statistical Method: STL 

STL decomposition was applied to all levels of the SB08 data (see Section 2.4.3 for 

details of this method). Figure 10 shows the plot resulting from the decomposition at the 

66 cm depth. The value selected for the seasonal subset is 96 records (daily data). Panel 

A plots the raw temperature time series data (Yt), panel B is the seasonal component (St), 

panel C plots the annual trend (Tt) in the data and panel D represents the random 

component (Rt).  
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Figure 10: Decomposition of temperature of the SB08 data at 66 cm depth. Panel A is the 

raw data, panel B is the daily temperature oscillation, panel C is the trend over 300 days 

and panel D is the remainder or random component. The time displayed on the x-axis is 

in Julian days. R uses an arbitrary start date of January 1, 1970. 

 

After removing the trend from the time-series, the seasonal and random oscillate around 

zero (Figure 10). The positive and negative values of the seasonal represent modeled 

A 

B 

C 

D 

SB08: 66 cm 
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temperatures above or below the trend line while the random are the residuals of modeled 

and observed temperature data. Figure 11 is a conceptual diagram showing how the 

random component is created from the de-trended seasonal component.  

 

 

Figure 11: Conceptualized view shows generation of the random component from the de-

trended seasonal component. Vertical bars in panel (A) represent the differences in 

temperature between modeled (red) and the de-trended observed temperature (blue). 

Panel (B) displays the resulting random component resulting from the differences plotted 

as vertical bars; positive temperature values result when the modeled data is below the 

observed data (positive residuals) and negative temperature values result when the 

observed data is below the modeled data (negative residuals). 

 

Essentially the random component explains how well the model fit the observed data.  

Large values indicate a poor fit to the model and small values indicate a good fit. Outliers 
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occur in the random component when there are abnormal temperature changes in the 

observed data. Outliers caused by anomalous temperatures are indicated in Figure 10D. 

Similar outliers were evident at all depths also owing to abnormalities in the observed 

data. The overall magnitude of the random component and frequency of outlier’s 

decreases with depth as a result of the natural attenuation of the surface signal with 

increasing depth as the heat capacity of the saturated sediments disperses thermal energy 

[Constantz, 2008]. This natural smoothing of the temperature profile enables more 

precise modeling with STL and subsequently less randomness with depth. 

It is assumed that time lags between outliers at two different/consecutive depths will aid 

into the direct calculation of water velocity using the depth to time relationship. Figures 

12 and 13 depict the random components at the 33 and 66 cm depths for the summer and 

winter periods respectively. Only values exceeding the sensor precision of ±0.0625 °C 

are deemed significant in the selection of outliers. Velocity estimates were derived using 

the time lag between the selected outliers at the 33cm and 66 cm depths. Summer and 

winter values derived from the largest outliers, were 11 and 45 mm d
-1

, respectively 

(Figures 12 and 13). However, as discussed below, it was not possible to derive an 

average rate using all the outliers for the summer and winter periods. Velocities were 

converted to specific discharge and for comparison purposes are listed in Table 4. 
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Figure 12: Random components for the 33cm (red) and 66 cm (blue) depths during 

summer period. Horizontal bars at ±0.0625 °C are the sensor precision. Time lag is 

calculated using outliers greater than sensor precision. 

 

Figure 13: Random components for the 33cm (red) and 66 cm (blue) depths during winter 

period. Horizontal bars at ±0.0625 °C are the sensor precision. Time lag is calculated 

using outliers greater than sensor precision. 
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Table 4: Decomposition Derived Specific Discharge 

Period  q (mm d
-1

) 

Summer 7.0 

Winter 29.0 

 

In theory, if the modeled and observed data fit is perfect, the random component will be 

zero and, based on the hypothesis, this would imply that heat transfer due to advection is 

zero. However the lack of a random component does not guarantee that advection is 

nonexistent as it may be occurring simultaneously with conduction suggesting that 

advection and conduction can’t be separated using the STL method. A visual inspection 

of the one-dimensional steady state advection-conduction equation (Equation 2) reveals 

why it may not be physically possible to separate them. When the specific discharge (q) 

in the second term on the left is equal to zero, changes in temperature over time are due 

strictly to conduction giving the impression that heat advection and conduction can be 

physically separated. However the conductive term on the left can only be cancelled if 

the thermal conductivity (KT) is zero, which assumes that the streambed sediments are 

perfect insulators. This suggests that advection cannot occur without conduction and it’s 

not possible to separate them physically thus making the hypothesis using the 

decomposition method irrelevant.  
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Assuming that it was possible to separate advection and conduction, velocity estimates 

from the time lag in outliers between two depths is unreliable because the overall 

magnitude of the random component depends on the ability of STL to model the daily 

temperature. Furthermore, if the subset size does not match the fundamental daily 

frequency of 96 records the model will not approximate the observed daily data well and 

will result in artificially over or under-estimating the magnitude of the random 

component [Cleveland et al., 1990] and subsequently any velocity estimates determined 

using the time lag and depth. As the size of the subset decreases below 96 records, the 

larger the random component will become and eventually the random component is 

transformed into an averaged representation of the raw data as the subset approaches one. 

This suggests that using the lag time between two outliers at different depths of the 

random component to derive a water velocity is equivalent to applying the time-lag 

method to the maximum or minimum temperatures observed in the raw data which 

results in a rate of heat transfer. However this rate of heat transfer between two depths 

does not indicate if it is owing to heat advection or conduction and thus any derived water 

velocities using this method are purely speculative. Support for this can also be seen 

when looking at the summer and winter periods (Figures 12 and 13). Prominent negative 

outliers appear that occur at or near the same time (i.e. t=0), if we apply the time lag 

method, the velocity approaches infinity as the time approaches zero.  When these 

outliers are included in the calculation the resulting velocity is unrealistic and since there 
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is no basis for excluding them, it is assumed that water velocity can’t be estimated using 

the decomposition method. 

Additionally if the trend and seasonal components that created the random components in 

Figures 12 and 13 are added back together and plotted the resulting temperature profile 

should result from pure conduction if the STL method is capable of separating advection 

and conduction. If we plot these recomposed components against a VS2DH modeled 

temperature profile for the purely conductive state (q=0) then the VS2DH and the 

recomposed STL components should be in relatively close agreement. However, the 

contrary is observed for these data sets, implying that the recomposed components still 

contain advective information thus supporting the conclusion that it is not possible to 

separate advection and conduction with STL. 

However there may be some utility of a random component using a method other than 

STL. If the random component was derived using the fit of a harmonic function to the 

raw data, it may represent changes in amplitude and phase shift. Hatch et al. [2006] 

exploited this idea as it relates to the original work by Stallman [1965]. In this work, 

Hatch et al. [2006] showed that groundwater fluxes could be derived by analyzing phase 

shift and amplitude changes between harmonic signal fit to the daily observed data of the 

temperature profiles of two different depths. However, since STL fits a smoothed model 

to the observed data it is not capable of modeling harmonic functions and would not be a 
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good candidate for such analysis [Pickers and Manning, 2015]. Consequently using the 

methods employed by Hatch et al. [2006] may be simpler and more reliable. 

3.4. Geophysical Method: Electrical Resistivity 

The ERT-derived resistivity ranged from 0.10–41.8 Ω m (Figures 1A and B) showing the 

presence of an overall less conductive media (i.e. green range) [Samouelian et al., 2005]. 

Table 5 lists the TBR derived resistivity values used to help identify the composition of 

zones of interest in the ERT tomographs. TBR measurements show that the bulk of the 

imaged surface (i.e. green range, Figure 14A and B) is equivalent to the resistivity of 

saturated stream sediments. ERT images show several areas near ground surface that 

appear to have a preferential horizontal orientation. These features could be the results of 

preferential horizontal groundwater flow in the clay sediments or a characteristic of the 

dipole-dipole array [Samouelian et al., 2005]. Low resistivity zones (0.375 Ω m; depicted 

by intermediate to dark blue colors) are likely low conductivity sediments 

(semipermeable) while higher resistivity (5 to 42 Ω m; yellow to red colors) zones at 

shallower depths (right side Figure 14A and B) are depicting more conducting sediments. 

The resistivity of porewater between the different zones is not expected to vary to such a 

degree that would result in such large differences in resistivity. 
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Table 5: TBR Derived Resistivities 

Medium  ρ (Ω m) 

Surface Water 1.77 

Pore Water 0.375 

Saturated Stream Sediments 2.79 

  

Buried concrete and other construction materials were evident throughout the study site 

and may be the remnants of bridge construction. This may explain the large lower 

electrical conductivity zone (red) about 3 m below the streambed (Figures 14A and B). It 

was originally thought this zone might represent fresher water (less conductive); however 

considering the electrically conductive nature of the surface water, groundwater and the 

clay sediments, this is unlikely (AGI unpublished material). Since the difference-image 

indicates this zone is becoming less electrically conductive with time, an alternative 

explanation for this anomaly is possibly a leaking 10.2 cm PVC municipal water main 

buried below the streambed and crossing a few meters upstream from and parallel with 

the resistivity transect. Personal communications with the landowner confirmed the burial 

depth and the likelihood of water leaking as the water main is often damaged during 

flood events. The slow introduction of fresh water into the streambed sediments from the 

pipe is a plausible explanation for this anomaly.  
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Little differences (up to 8% changes in resistivity/conductivity) were noted between base 

and monitor images indicating water migration is slow [Nyquist et al., 2008].  Figure 14A 

(black rectangle) depicts some areas that are becoming more electrically conductive with 

time. Field observations during the survey identified water saturated depressions in the 

sediments near these locations. The increase in conductivity here may be explained by the 

increase in saturation of the clay-rich soils due to infiltrating surface water thus making 

them more electrically conductive [Samouelian et al., 2005]. Furthermore, evaporation 

likely affects the stagnant water at the ground surface, increasing salt contents, thus 

resulting in a more conductive infiltrating fluid [Nyquist et al., 2008]. 
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Figure 14: ERT inversion images depicting: (A) base data, is the resistivity collected at time step 0; (B) monitor data, resistivity data 

collected at the 3.5 h interval; (C) percent change in bulk resistivity during the 3.5 hour time-span. The red box indicates the location 

of groundwater discharge below the streambed. In A and B, red colors (black box) define less electrically conductive sediments while 

blue colors indicate sediments with greater electrical conductivity. RMS errors for the base, monitor data, and time-difference image 

were 9.8, 9.7, and 1.68%, respectively and corresponding L2-norm of 0.87, 0.88, and 0.22, respectively. 
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A groundwater flux was derived using the salt mass balance method using a 4 m
2
 area,   

just below the stream (Figure 15). The plume selected showed a % change in bulk 

resistivity (up to +/-7%) exceeding the time-lapse inverted image RMS error of 1.7%.  

Using the percent change and the values for salinity obtained from the boxed zones in the 

images, (S1 and S2 were 16.7 ppt and 16.3 ppt respectively) the daily groundwater 

average exchange rate is 162 mm d
-1

 per 100 cm of streambed (or 16.2 mm d
-1 

per 10 cm 

of streambed) (Table 6).  

Table 6: ERT Derived Specific Discharge 

Period 
q (mm d

-1
 per 0.01 m

2
 

of streambed) 

q (mm d
-1

 per 1.0 m
2
 of 

streambed) 

Summer 16.2  162.0 

 

It should be noted that a salt-mass balance approach does not differentiate between the 

vertical or horizontal input of salts in the box model.  Since a horizontal conduit of water 

flow is visible from the ERT images, it is likely that the larger estimate includes a 

hyporheic component in addition to vertical upwelling. When extrapolating the thermal 

method-estimated fluxes to a 100 cm streambed length, assuming a 10 cm diameter of the 

thermal sensors, the ERT measurements are in good agreement with results of other 

methods. Resistivity data were collected during the summer season, outside the thermal 

monitoring dates. While streamflow conditions are similar and characteristic to the 

summer season, given the long drought record experienced by South Texas, hydrologic 
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conditions may have changed substantially [USGS, 2015]. Nevertheless, the electrical 

resistivity method serves as a validation tool for the estimates derived from thermal 

profiling, confirming the interaction between groundwater and surface water in a coastal 

low-flow stream. 

 

Figure 15: Zoomed in image of the base data set. The arrow indicates the stream location. 

The red box indicates the zone in the underlying sediments used to estimate groundwater 

discharge. The blue color indicates saline water below the stream based on the TBR 

results. 
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4. Conclusions 

As is common with fine textured material, the conduction of heat appears to be the 

dominant thermal transport process occurring along the study reach in this investigation 

during the study period; however, it is evident that groundwater discharge to the stream is 

occurring to some extent for both winter and summer periods.  Analysis of the data from 

the analytical and numerical methods suggests that during the summer period 

groundwater discharge to the stream was slightly higher when compared to winter. These 

differences may bear the result of mixing in the hyporheic zone caused by a combination 

of increased stream flow and stage during the winter period. Alternatively, the specific 

discharge resulting from the STL method indicates upwelling is greater during the winter, 

which is likely the result of large air temperature fluctuations that frequently occur in 

South Texas during the winter.  

These temperature fluctuations, driven by cold fronts from the north, rapidly reduce 

surface temperatures and these affects usually subside after a few days when the surface 

temperature rebounds rapidly as the wind shifts to a more southerly direction. The 

resulting surface temperature fluctuations make modeling the temperature with STL more 

difficult, which consequently increases the magnitude and frequency of outliers in the 

random component during the winter. Also, as mentioned in Section 3.3, using the 

correlation of outliers in the random component to derive a flux is purely speculative as 

there is no basis for correlating the outliers since they simply represent the ability of STL 

to model the data. Furthermore, the underlying hypothesis that decomposition using STL 
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can physically separate advective from conductive heat transfer may not be possible since 

advection and conduction cannot be recognized uniquely [Jobmann and Clauser, 1994].  

Resistivity-derived groundwater fluxes although considerably larger, are indicating that a 

horizontal flow component exists. This suggests that the vertical flow assumption of the 

analytical and numerical methods may be violated. Table 7 summarizes the results from 

all methods. 

Table 7: Summary of Results from the Different Methods 

Method 

Summer q  

(mm d
-1

 per 

0.01 m
2
 of 

streambed) 

Summer q  

(mm d
-1

 per 1 

m
2
 of 

streambed) 

Winter q 

(mm d
-1

 per 

0.01 m
2
 of 

streambed) 

Winter q 

(mm d
-1

 per 

1 m
2
 of 

streambed) 

Flow 

Direction 

Thermal: 

Numerical 
11.5  115.0 4.0 

 
40.0  Upward 

Thermal: 

Analytical 
6.7  67.0 3.0  30.0  Upward 

Thermal: 

STL 
7.0 70.0 29.0 290.0 

Assumed 

Upward 

Geophysical:

ERT 
16.2  162.0 N/A N/A 

Assumed 

Upward 

Note on Table 7: For comparison purposes the analytical and numerical results between 

depths were averaged. The STL results are based on the largest outliers and velocities 

have been converted to specific discharge while the ERT-derived flux is based on the 

maximum percent change in porewater salinities. Since the STL and ERT methods do not 

indicate a flux direction, the direction is not indicated in the table although we assume 

upwelling is occurring based on analytical and numerical results.  No ERT data was 

available for the winter period. 
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It is important to mention that uncertainty in parameters can lead to uncertainty in 

specific discharge. However due to the unique conditions encountered in Texas coastal 

streams (high percentage of water, fine-textured streambed sediments, and flat 

topography), most of the parameters used in this study are outside the typical ranges 

explored by other researchers. For example; if typical sediment values are used for 

thermal conductivity in the numerical and analytical thermal estimates, the resulting 

specific discharge is near zero. This would not be a good estimate of specific discharge 

since these ‘typical’ values do not well represent conditions at the site. Furthermore, 

quantitative differences between the analytical and numerical method estimates of 

specific discharge can be explained by how each addresses boundary conditions. The 

analytical method assumes boundary conditions are steady-state while the numerical 

solution allows for time varying boundary conditions. Consequently the analytical 

solution will typically overestimate specific discharge however the opposite was realized 

in this study. Uncertainty in the STL decomposition method depends on which outlier is 

used in the calculation and can result in specific discharge ranging from very small values 

to infinity. Uncertainty in the ERT specific discharge mainly stems from target size 

estimates and the RMS errors associated with the percent difference. Larger target size 

and larger percent difference would increase specific discharge and the converse is true 

for a smaller target size and percent difference. 
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5. Summary 

The four methods examine surface water exchanges with groundwater from different 

approaches, and are not fully comparable in some cases. Estimates provided by the 

numerical and analytical solutions indicate upwelling is occurring at an average of 9 mm 

d-1 and 3.5 mm d-1 during the summer and winter periods respectively. STL 

decomposition results are more hypothetical and lack agreement with the first two 

methods, indicating more work needs to be done for this method to be useful; for 

example, this method should be applied to streambed temperature time series data for 

course material, where advective heat transport often dominates, and then compared with 

the first two methods for the same course-material data. Resistivity results provided a 

good first order approximation of flux considering inherent error. Thus numerical, 

analytical, and geophysical estimates of groundwater discharge provide good insight into 

streambed hydrologic processes for the study reach along this low gradient, low flow 

coastal stream. However, decomposition methods are not capable of separating heat 

advection from conduction, thus likely not serving as realistic tools for characterization 

of surface-groundwater water interaction for fine-textured streambeds and low gradients. 
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Appendices: 

Appendix A: Temperature Data Pre-processing. 

A1. Create function to acquire data for a specific station and depth from the 

database 

get.profiler <- function(station.id,end.depth) { 

Query.1 <- "select station_id,enddepth,r.enddate,r.remarks,r.storet,value from a_events e, 

a_results r 

      where e.tag_id = r.tag_id 

      and station_id like '" 

  Query.2 <- station.id 

  Query.3 <- "' and enddepth = " 
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  Query.4 <- end.depth 

  Query.5 <- " order by to_date(r.enddate,'MM/DD/YYYY'),r.remarks" 

  myQuery <- paste(Query.1,Query.2,Query.3,Query.4,Query.5,sep="") 

  return(myQuery) 

  } 

A1.2 Execute query for specific profiler and depth (example is for SB08) 

temp_1 <- sqlQuery(oracle,paste(get.profiler(8,1)),as.is=TRUE) 

temp_0 <- sqlQuery(oracle,paste(get.profiler(8,0)),as.is=TRUE) 

temp_66 <- sqlQuery(oracle,paste(get.profiler(8,.666)),as.is=TRUE) 

temp_33 <- sqlQuery(oracle,paste(get.profiler(8,.333)),as.is=TRUE) 

A1.3. Convert dates to R format dates 

temp_1$timecode <- 

strptime(paste(temp_1$ENDDATE,temp_1$REMARKS),"%m/%d/%Y %H:%M") 

temp_0$timecode <- 

strptime(paste(temp_0$ENDDATE,temp_0$REMARKS),"%m/%d/%Y %H:%M") 

temp_33$timecode <- 

strptime(paste(temp_33$ENDDATE,temp_33$REMARKS),"%m/%d/%Y %H:%M") 

temp_66$timecode <- 

strptime(paste(temp_66$ENDDATE,temp_66$REMARKS),"%m/%d/%Y %H:%M") 

A1.4. Export temperatures as data files 

export.profiler <- function(profiler){ 

  write.table(temp_0,file=paste(profiler,"_d00.dat",sep=""),sep="|") 

  write.table(temp_33,file=paste(profiler,"_d33.dat",sep=""),sep="|") 

  write.table(temp_66,file=paste(profiler,"_d66.dat",sep=""),sep="|") 
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  write.table(temp_1,file=paste(profiler,"_d10.dat",sep=""),sep="|") 

} 

 

A2. Fix time series so that it has one row for each time interval and replace missing 

dates with NA’s. Example script is for SB08 at the 0.0 meter level 

dir.name <- "export_data/" 

file.name <- "SB08_d00.dat" 

A2.1. Import data from pipe delimited file without row names. 

temp <- read.table(file = 

paste(dir.name,file.name,sep=""),sep="|",header=TRUE,as.is=TRUE) 

A2.2. Fix timecode in R format date time. 

temp$timecode <- strptime(temp$timecode,"%Y-%m-%d %H:%M:%S") 

A2.3. create new data frame to match the ts.fix function. 

temp.new <- subset(temp,VALUE > 0, select=c(timecode,VALUE,ENDDEPTH)) 

A2.4. Function to scroll through the timecode of temp.new and "round" minutes to 

the nearest 15 minute interval. 

fix.interval <- function(temp.new) { 

for (i in 1:dim(temp.new)[1]) { 

   if ((temp.new$timecode[i])$min == 0 | (temp.new$timecode[i])$min == 15 | 

(temp.new$timecode[i])$min == 30 | (temp.new$timecode[i])$min == 45) { 

      i = i 

   } else {  

      if ((temp.new$timecode[i])$min > 7 & (temp.new$timecode[i])$min < 23) 

round.time <- 15 
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      if ((temp.new$timecode[i])$min > 22 & (temp.new$timecode[i])$min < 38) 

round.time <- 30 

      if ((temp.new$timecode[i])$min > 37 & (temp.new$timecode[i])$min < 53) 

round.time <- 45 

      if ((temp.new$timecode[i])$min > 52 | (temp.new$timecode[i])$min < 8) round.time 

<- 0 

      temp.new$timecode[i]$min <- round.time   

#      print(paste("Count =",i,"Minutes =",(temp.new$timecode[i])$min,"Rounded 

to",round.time))  

   } 

} 

  return(temp.new) 

} 

A2.5. Check temp.new timecode for correct number days, rows and intervals 

temp.new.info <- ts.info(temp.new$timecode) 

A2.6. Check that temp.new intervals are 15 minutes.  

temp.new.info <- check.interval(temp.new.info,"mins",15) 

A2.7. Create new data set in POSIXct format and no missing dates 

new.ts <- data.frame(timecode = 

make.ts(temp.new.info$start,temp.new.info$end,temp.new.info$interval,units(temp.new.i

nfo$interval))) 

new.ts$timecode <- as.POSIXct(new.ts$timecode) 

A2.8. Convert temp.new to POSIXct format. 

temp.new$timecode <- as.POSIXct(temp.new$timecode) 

A2.9. Merge temp.new with new.ts. into new data set temp.fix. 
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temp.fix <- merge(temp.new,new.ts,all.y=TRUE,sort=TRUE) 

A2.10. Find NA values in temp.fix and replace with previous day value at same time 

using function fix.missing. 

temp.fix$VALUE <- fix.missing(temp.fix$VALUE) 

A2.11. Function (fix.missing) to fill in missing temperature data with the previous 

day’s value at the same time (96 records prior). 

fix.missing <- function(data){ 

    missing <- grep(TRUE,is.na(data)) 

    for (i in 1:length(missing)) { 

       data[missing[i]] <- data[missing[i]-96] 

    } 

    return(data) 

} 

 

A3. spike removal: Sequentially scroll through weekly plots of temp.fix and look for 

erroneous data (outliers) 

A3.1 Create a filter for the number of records averaged. Example filter is 3 days 

(288 records) 

filter.size <- 288 

A3.2. Create limit for maximum temperature change to warrant a replacement 

limit <- 1   

A3.3. Spike removal function. 

spikes.out <- function(data,filter.size=8,limit=2){ 

    f.spike <- rep(1/filter.size,filter.size) 
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    data.smooth <- filter(data,f.spike) 

    for (i in filter.size:(length(data)-filter.size)) { 

        if (abs(data[i]-data.smooth[i]) > limit) data[i] <- data.smooth[i] 

    } 

    return(data)  

} 

A3.4. Execute spikes out function on temp.fix 

test.filter <- spikes.out(temp.fix$VALUE,filter.size,limit) 

A3.5. The amount of time in seconds to pause between plots of weekly data. 

sleep.time <- 1 

A3.6. Function to automatically plot weekly data at 1 second intervals 

for (i in 1:(length(temp.fix$timecode)/96)){ 

x <- temp.fix$timecode[i*96*7] 

my.limits <- c(x,x+604800) 

plot(temp.fix$timecode,temp.fix$VALUE,type="l",lwd=2,col="grey50",xlim=my.limits,

main=paste("From",my.limits[1],"to",my.limits[2])) 

lines(temp.fix$timecode,test.filter,col="coral") 

Sys.sleep(sleep.time) 

} 

A3.7. Replace out of limit temperature values in temp.fix with x’s 

x <- temp.fix$timecode[(i-1)*96*7] 

my.limits <- c(x,x+604800) 

A3.8. List data and visually inspect to determine location of x values. 
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temp.fix[grep(my.limits[1],temp.fix$timecode):grep(my.limits[2],temp.fix$timecode),] 

A3.8. Manually replace x’s with NA’s. In this example script, x values are located 

from record 3453 to 3481. 

start <- 3453 

end <- 3481 

for (i in start:end){ 

  temp.fix$VALUE[i] <- NA 

} 

A3.9. Re-run function fix.missing to replace NA’s in temp.fix with previous days 

values. 

temp.fix$VALUE <- fix.missing(temp.fix$VALUE) 

A3.10. Visually inspect plot of time versus temperature of temp.fix 

plot(temp.fix$timecode,temp.fix$VALUE,type="l",lwd=2,col="grey25") 

lines(temp.fix$timecode,test.filter,col="orange") 

A3.11. If visual inspection looks good, replace temperature values in temp.fix with 

filtered data from spikes.out. 

temp.fix$VALUE <- spikes.out(temp.fix$VALUE,filter.size,limit)  

A3.12. Export new filtered data set (temp.fix). 

write.table(temp.fix,file=paste("filter_",file.name,sep=""),sep="|",row.names=FALSE) 

 

A4.0. Compile all temperature data for all depths into 1 data frame for each 

profiler. 

A4.1. Import profiler data. Example script is for SB08 

file.name <- "filter_SB08_d00.dat" 



 
 

 

73 
 

sbp.00 <- read.table(file = file.name,sep="|",header=TRUE,as.is=TRUE) 

sbp.33 <- read.table(file = 

paste(unlist(strsplit(file.name,"_d"))[1],"_d33.dat",sep=""),sep="|",header=TRUE,as.is=T

RUE) 

sbp.66 <- read.table(file = 

paste(unlist(strsplit(file.name,"_d"))[1],"_d66.dat",sep=""),sep="|",header=TRUE,as.is=T

RUE) 

sbp.10 <- read.table(file = 

paste(unlist(strsplit(file.name,"_d"))[1],"_d10.dat",sep=""),sep="|",header=TRUE,as.is=T

RUE) 

A4.2 Remove duplicate rows 

sbp.00 <- fix.dups(sbp.00) 

sbp.33 <- fix.dups(sbp.33) 

sbp.66 <- fix.dups(sbp.66) 

sbp.10 <- fix.dups(sbp.10) 

A4.3. Function to remove duplicate rows. 

fix.dups <- function(df) { 

  df$dup <- duplicated(df$timecode) 

  df.new <- subset(df,dup==FALSE,select=c("timecode","VALUE","ENDDEPTH")) 

  return (df.new) 

} 

A4.4. Fix timecode in R format date/time 

sbp.00$timecode <- strptime(sbp.00$timecode,"%Y-%m-%d %H:%M:%S") 

sbp.33$timecode <- strptime(sbp.33$timecode,"%Y-%m-%d %H:%M:%S") 

sbp.66$timecode <- strptime(sbp.66$timecode,"%Y-%m-%d %H:%M:%S") 
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sbp.10$timecode <- strptime(sbp.10$timecode,"%Y-%m-%d %H:%M:%S") 

A4.5. Change field names 

names(sbp.00) <- c("timecode","VALUE.00","ENDDEPTH.00") 

names(sbp.33) <- c("timecode","VALUE.33","ENDDEPTH.33") 

names(sbp.66) <- c("timecode","VALUE.66","ENDDEPTH.66") 

names(sbp.10) <- c("timecode","VALUE.10","ENDDEPTH.10") 

A4.6. Change timecode to POSIXct 

sbp.00$timecode <- as.POSIXct(sbp.00$timecode) 

sbp.33$timecode <- as.POSIXct(sbp.33$timecode) 

sbp.66$timecode <- as.POSIXct(sbp.66$timecode) 

sbp.10$timecode <- as.POSIXct(sbp.10$timecode) 

A4.7. Merge all depths into one data frame based on time 

sbp.all <- merge(sbp.00,sbp.33,by="timecode",all.y=TRUE) 

sbp.all <- merge(sbp.all,sbp.66,by="timecode",all.y=TRUE) 

sbp.all <- merge(sbp.all,sbp.10,by="timecode",all.y=TRUE) 

A4.8. Export data frame for each profiler with all depths 

write.table(subset(sbp.all,!is.na(timecode),select=c("timecode","VALUE.00","VALUE.3

3","VALUE.66","VALUE.10")),file=paste(unlist(strsplit(file.name,"_d"))[1],"_all.dat",se

p=""),sep="|",row.names=FALSE) 

 

A5. Visually inspect data using filtered thermal profiles and discharge. 

A5.1. Import 15 minute stream discharge values from Oso Creek 

discharge <- read.table("osodischarge.csv",sep=",",header=TRUE) 
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names(discharge)[3] <- c("timecode") 

A5.2. Fix discharge timecode to match R format. 

discharge$datetime <- strptime(discharge$timecode,format="%Y-%m-%d %H:%M:%s") 

A5.3. Import profiler data. Example is for SB08 

sbname <- "filter_SB08" 

sball<-read.table(file = paste(sbname,"_all.dat",sep=""),sep="|",header=T) 

 

A5.4. Create subset for the profiler 

sball$dup <- duplicated(sball$timecode) 

sball <- subset(sball,dup==FALSE,select=names(sball[1:5])) 

A5.5. Fix the time format to match R. 

sball$timecode <- strptime(sball$timecode,"%Y-%m-%d %H:%M:%S") 

A5.6. Merge discharge measurements with temperatures 

sball.discharge <- merge(sball,discharge,by=c("timecode"),all.x=TRUE) 

A5.7. Check and remove duplicate rows 

sball.discharge$dups <- duplicated(sball.discharge$timecode) 

sball.discharge <- subset(sball.discharge,dups == 

FALSE,select=c("timecode","VALUE.00","VALUE.33","VALUE.66","VALUE.10","P0

0060")) 

A5.8. Plot filtered data at all depths with discharge in stacked charts. 

op <- par(mfrow = c(5,1), mar = c(0.5,5,0.5,2)) 

plot((sball.discharge$VALUE.00),type="l", col="blue",ylab="sb08.00 filter") 

plot((sball.discharge$VALUE.33),type="l", col="blue",ylab="sb08.33 filter") 
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plot((sball.discharge$VALUE.66),type="l", col="blue",ylab="sb08.66 filter") 

plot((sball.discharge$VALUE.10),type="l", col="blue",ylab="sb08.10 filter") 

plot((sball.discharge$P00060),type="l",col="blue",ylab="Discharge") 

A5.9. Plot filtered data at all depths with discharge on 1 chart. 

plot((sball.discharge$VALUE.00),type="l", col="red",ylab="sb08 filtered temp",) 

lines((sball.discharge$VALUE.33),type="l", col="yellow",) 

lines((sball.discharge$VALUE.66),type="l", col="green",) 

lines((sball.discharge$VALUE.10),type="l", col="orange",) 

lines((sball.discharge$P00060),type="l",col="blue",ylab="Discharge") 

A5.10. Plot specific range of filtered data at all depth with discharge on 1 chart 

plot((sball.discharge$VALUE.00[3000:4000]),type="l", 

col="blue",ylim=c(23,32),ylab="sb08 filtered temp",) 

lines((sball.discharge$VALUE.33[3500:4500]),type="l", col="blue",) 

lines((sball.discharge$VALUE.66[3500:4500]),type="l", col="blue",) 

lines((sball.discharge$VALUE.10[3500:4500]),type="l", col="blue",) 

lines((sball.discharge$P00060[3500:4500]),type="l",col="blue",ylab="Discharge") 

 

A6. Create an R time-series class data set with a frequency of 1 day (96 records) for 

each depth of a profiler. Example is for SB08. Time code is in Julian days. R uses an 

arbitrary start date of January 01, 1970. 

A6.1. Function to extract start and times, number of records and interval 

ts.info <- function(v1){ 

    min.date <- summary.POSIXlt(v1)[1] 

    max.date <- summary.POSIXlt(v1)[6] 
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    date.diff <- summary.POSIXlt(v1)[6]-summary.POSIXlt(v1)[1] 

    ts.interval <- round(mean(diff(v1,lag = 1),na.rm=TRUE)) 

    ts.nrows <- length(v1) 

    ts.data <- 

data.frame(start=c(min.date),end=c(max.date),period.days=as.numeric(date.diff),interval

=ts.interval,records = ts.nrows) 

    rownames(ts.data) <- NULL 

    return ((ts.data)) 

} 

A6.2. Make time series of temperature for VALUE.00 

sball.discharge.info <- ts.info(sball.discharge$timecode) 

sball.discharge.ts <- 

ts(sball.discharge$VALUE.00,frequency=96,start=c(floor(as.numeric(julian(sball.dischar

ge.info$start))),96*(as.numeric(julian(sball.discharge.info$start)) %% 

1),end=c(floor(as.numeric(julian(sball.discharge.info$end))),96*(as.numeric(julian(sball.

discharge.info$end))) %% 1))) 

A6.3. Make time series of temperature for VALUE.33 

sball.discharge.info <- ts.info(sball.discharge$timecode) 

sball.discharge.ts <- 

ts(sball.discharge$VALUE.33,frequency=96,start=c(floor(as.numeric(julian(sball.dischar

ge.info$start))),96*(as.numeric(julian(sball.discharge.info$start)) %% 

1),end=c(floor(as.numeric(julian(sball.discharge.info$end))),96*(as.numeric(julian(sball.

discharge.info$end))) %% 1))) 

A6.4. Make time series of temperature for VALUE.66 

sball.discharge.info <- ts.info(sball.discharge$timecode) 

sball.discharge.ts <- 

ts(sball.discharge$VALUE.66,frequency=96,start=c(floor(as.numeric(julian(sball.dischar
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ge.info$start))),96*(as.numeric(julian(sball.discharge.info$start)) %% 

1),end=c(floor(as.numeric(julian(sball.discharge.info$end))),96*(as.numeric(julian(sball.

discharge.info$end))) %% 1))) 

A6.5. Make time series of temperature for VALUE.10 

sball.discharge.info <- ts.info(sball.discharge$timecode) 

sball.discharge.ts <- 

ts(sball.discharge$VALUE.10,frequency=96,start=c(floor(as.numeric(julian(sball.dischar

ge.info$start))),96*(as.numeric(julian(sball.discharge.info$start)) %% 

1),end=c(floor(as.numeric(julian(sball.discharge.info$end))),96*(as.numeric(julian(sball.

discharge.info$end))) %% 1)) 

 

 


