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ABSTRACT  

 

The ocean plays a vital role in making up 70% of the Earth’s surface, producing over half of 

oxygen globally, and absorbing approximately 30% of anthropogenic CO2 since the industrial 

revolution. Ocean acidification (OA) is a direct threat to many organisms living in the oceans 

across the globe, yet the state of carbonate chemistry and the rate of OA vary in different parts of 

the world’s oceans. Although current data suggest that the open Gulf of Mexico (GOM) surface 

waters have relatively high pH (> 8) and aragonite saturation state (ΩArag > 3), the GOM could 

still experience ecological impacts of OA. In addition, the combination of increasing atmospheric 

CO2, upwelling, and increasing terrestrial nutrient export may acidify the coastal waters even 

further.  

Acidifying ocean waters have decreasing ΩArag, posing serious threats to calcifying 

organisms, affecting their populations, growth patterns, and shell or skeletal density. The GOM 

is home to the northernmost tropical coral reefs around the contiguous United States as well as 

prominent shellfish industry. Historical water column carbonate measurements are scarce, so the 

progression of OA in the GOM is poorly understood. Research regarding OA in the GOM is 

needed to manage and protect these resources. In the literature, multiple linear regression (MLR) 

models have been created to fill data gaps in different ocean regions such as the Gulf of Alaska, 

the Southern Ocean, the Sea of Japan, and coasts of the northeastern and northwestern United 

States. Prior to this study, no statistical model existed for carbonate chemistry parameters (i.e., 

pH and ΩArag) in the GOM. By creating models built upon the relationships between commonly 

measured hydrographic properties (salinity, temperature, pressure, and dissolved oxygen (DO)) 
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and pH as well as ΩArag, data gaps can be filled in areas that do not have sufficient sampling 

coverage.  

In this study, I created statistical models for the estimation of ΩArag and pH in the 

northwestern GOM (NWGOM) from latitudes 27.1-29.0˚N and longitudes 91.5-95.0˚W. The 

calibration data used in the models include depth, salinity, temperature, pressure, and DO 

collected from four cruises that took place in July 2007, July 2017, and April and August of 

2021. The models predict ΩArag with R2 ≥ 0.98, RMSE ≤ 0.14 and pH with R2 ≥ 0.93, RMSE ≤ 

0.02 for four different subsets of the data depending on depth (with and without removal of upper 

20 m) and geographic location (with and without removal of stations to the east). 

The data used to create the models are also used to create contour plots that show 

variation of ΩArag and pH over the timeframe of the study from 2007 to 2021. Relatively low 

ΩArag (ΩArag ≤ 2) values are present in the depths ≥ 180 m. The depth range of the water column 

between ΩArag = 2-1.5 decreased over this period. The depths for ΩArag = 2 and ΩArag = 1.1 vary 

±20 and ±50 m respectively, while the depth for ΩArag = 1.5 decreased 50 m from 2007 to 2021. 

Depth profiles for pH revealed consistent patterns over all four cruises with highest values over 

the shelf and upper 125 m, and minimum values around 500 m. The pH = 7.9 isopleth remained 

around 265 m for all cruises, while the pH = 8 isopleth showed fluctuation of ±10 m (from 2007 

to 2021). On the shelf, the maximum and minimum pH values were 0.0356 and 0.0133 units 

lower in 2021 than in 2007, respectively. This resulted in the range of pH values experienced 

narrowing by 0.0223 and transitioning to lower pH values overall. 

These MLR models are valuable tools for reconstructing ΩArag and pH data where direct 

chemical observations are absent but hydrographic information is available. These models can be 

applied to the NWGOM within ±10 years of 2014, although observations of potential shifts in 
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circulation, water mass composition, and anthropogenic CO2 should be monitored to improve or 

revise these models in the future.   
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CHAPTER I. INTRODUCTION 

I.1 Anthropogenic CO2 buildup and ocean acidification 

Ocean acidification (OA) has become a household name in the discussion of climate 

change. OA caused by the uptake of atmospheric CO2 results in a reduction in both pH (i.e., 

increase in acidity) and carbonate saturation state, along with its biological and ecological 

impacts. These changes in the ocean occur over timescales of decades or longer. The 

anthropogenic CO2 in the atmosphere since the preindustrial period is a direct consequence of 

fossil fuel burning, deforestation, cement production, and other processes. When averaged 

between 1859-2019, 81% of emissions resulted from fossil fuels (energy and cement production) 

and 19% from land-use changes. These activities pushed 11.5 ± 0.9 Gt-C yr−1 into the 

atmosphere in 2019 alone (Friedlingstein et al., 2020). Of this influx of anthropogenic CO2, less 

than half remains in the atmosphere while the rest is reabsorbed by the land and ocean (Sabine et 

al., 2004). CO2 absorbed by the ocean has resulted in pH decrease by 0.1 units since pre-

industrial levels, representing a 30% increase in proton concentration (Orr et al., 2005). Studies 

indicate current pH changes from - 0.0010 to - 0.0068 yr-1 with an ultimate 0.4-0.5 unit decrease 

projected in the “business-as-usual” scenarios by end of this century (García-Ibáñez et al., 2016; 

Ishida et al., 2021; Orr et al., 2005).  

Despite increased awareness of the alarming trends, CO2 emissions grew at a rate of 1.2% 

yr-1 in the last decade (Friedlingstein et al., 2020). Under these circumstances as the oceanic sink 

continues to mitigate the buildup of atmospheric CO2, it will result in continuing acidification 

and further reductions of pH and carbonate saturation (Ω). This change in pH will be 

accompanied by an average Revelle Factor increase of 3.7 ± 0.9 from 2000 to 2100 (Jiang et al., 

2019). Decreases in pH and buffering capacity thus are expected to cause an acceleration in 
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acidification and decrease in the ocean’s ability to absorb and mitigate further atmospheric CO2 

buildup. It is expected in business-as-usual scenarios there will be an observed pH change of -

0.02 units decade−1 at the beginning of the century, accelerating toward an average of about -0.04 

units decade−1 due to decreasing buffer towards the end of the century (Orr et al., 2005, Jiang et 

al., 2019). 

I.2 The marine carbonate system 

The capability of oceans to store absorbed CO2 is attributed to seawater’s buffering 

capability. Through a chain of processes, from dissolution to dissociation, only a small amount 

of absorbed CO2 remains undissociated (i.e., aqueous CO2, or CO2
*). Due to this reaction, CO2 

invasion into seawater results in changes to the speciation of the carbonate system. Thus, 

increase in CO2
* is proportional to the CO2 increase in the atmosphere however, the increase of 

total dissolved inorganic carbon (DIC) concentration in the water is lower than that in the 

atmosphere. This is a result of CO2 being transformed into other carbonate species (HCO3
-, CO3

2-

) in part by the release of H+ ions. 

���  = ��	
�����

��/ ����   .       (1)   

In equation (1), [Ca2+] is the concentration of calcium ion, [CO3
2-] is the concentration of 

carbonate ion, and Ksp’ is the stoichiometric solubility product (Zeebe and Wolf-Gladrow, 2001). 

The solubility product is a function of the mineral phase (calcite or aragonite), pressure, salinity, 

and temperature. Based on thermodynamics, when the value of Ω > 1 (supersaturation), it allows 

for calcification to occur while values of Ω < 1 (undersaturation) lead to dissolution. Though this 

varies in real world, experimental studies have shown dissolution and zero net calcification 

where Ω ≥ 1 (Bednarsek et al., 2012; Anthony et al., 2008).  

I.3 Effect of OA on marine organisms 
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The alteration of the carbonate system causes pressing changes, specifically decreasing 

ΩArag and pH can lead to unfavorable conditions for calcareous organisms such as corals, 

shellfish, calcareous algae, and important species on the ocean food chain (such as pteropods) by 

affecting calcification. Calcification is the process used by calcifying organisms to produce 

shells, skeleton and exoskeletons, and is necessary for growth and reproduction. Calcifying 

organisms precipitate calcium carbonate material for their needs using bicarbonate and calcium 

ions dissolved in the seawater (Equation 2). Calcification can be influenced by size and age of 

the organism, temperature, pH, salinity, and Ω. 

�	
� + 2���
�

 
→ �	�� + �
 + �
   .     (2) 

The effects of OA on marine organisms are diverse and still largely unexplored, 

especially on the ecosystem level and in conjunction with other stressors (such as warming and 

deoxygenation). Nevertheless, the most common results related to OA in the literature are 

detrimental. For example, numerous studies have linked OA to deleterious effects on corals, 

plankton, bivalves, sponges, fishes, and echinoderms (Anthony et al. 2008; Wood et al. 2008; 

Perry et al., 2013; Schneider and Erez, 2006; Albright et al., 2018). On the other hand, some 

studies showed that certain species of fish and corals are unaffected by OA (Clark et al., 2020; 

Comeau et al., 2019), and other species can benefit from the CO2 enrichment (Zimmerman, 

2021; Liu et al., 2020; Takahashi et al., 2016). 

Previous studies showed that calcifiers such as corals and some sponges have varied 

responses to OA by species including bleaching, lower calcification ability, weaker structures, 

net erosion, and dissolution under OA conditions (Anthony et al. 2008; Wood et al. 2008; Perry 

et al., 2013; Schneider and Erez, 2006; Albright et al., 2018). Decreased calcification rates can 

result in distorted energy allocation, lower growth rates, reduced reproductive output, and 
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decreased survival (Wood et al. 2008). Elevated CO2 can act as a bleaching agent for corals and 

crustose coralline algae (Anthony et al. 2008). Vulnerability to these effects may be increased in 

larval organisms as well as organisms using the more soluble form of carbonate, i.e., aragonite. 

Caribbean corals at current CO2 levels have shown a 50% reduction in carbonate production 

since the Holocene and 30% of sites had even become net erosional (Perry et al., 2013). A study 

on Acropora eurystoma showed a 30% decrease in carbonate concentration, equivalent to 

approximately 0.2 pH units decrease in seawater, caused a calcification rate decrease of 50% 

(Schneider and Erez, 2006). Other studies have shown that a decrease of ΩArag by 0.79± 0.03 

μmol·kg−1 from a background value of 3.70± 0.08 to 2.91 ± 0.08 μmol·kg−1 causes a 34% 

decrease in net community production in a semi enclosed Australian lagoon (Albright et al., 

2018). Even at supersaturated ΩArag between 1.5-2, crustose coralline algae already exhibit net 

dissolution (Anthony et al., 2008). 

Although the chief concern of OA lies with calcifiers, non-calcifying organisms are not 

immune to the effects of OA and whole ecosystems may experience changes. Decreases in pH or 

CO2 partial pressure (pCO2) have been observed increasing late-stage loss of embryos in squid 

species and affecting the biochemical composition of seaweed species (Velez et al., 2021; 

Zakroff and Mooney, 2020). Studies have documented correlation between pH and the size of 

otoliths developed in clownfish larvae (Munday et al., 2011b). Although direct threats to the 

survival of non-calcifying species have not been widely reported (Munday et al., 2011a; Porzio 

et al., 2011), these findings may be indicative of other unstudied changes with potentially 

detrimental effects.  

With impacts reaching from species to kingdoms, the effects on entire ecosystems will no 

longer be exclusively an environmental loss but an economic loss as well. It is predicted that the 
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variability in responses of corals and sponges will lead to vast differences in the assemblages 

seen in the future. As coral reefs may become dominated by small robust species, deep-water 

sponge populations in the Gulf of Mexico (GOM) could also see a changes in dominant species 

and cover (Goodwin et al., 2014; Madin et al., 2008). Studies have shown speciation and coral 

cover to be significantly and positively correlated with coral reef fish species diversity and 

abundance (Bell and Galzin, 1984; Komyakova et al., 2013). Predicted decreased calcification, 

speciation, and cover of corals will likely negatively impact reef fish populations. 

The impact of OA on calcifying organisms could total up to significant costs to the 

marine ecosystem. Reefs provide ecosystem services protecting coasts from hurricanes, erosion, 

and waves. The reefs also provide tourism, recreational and commercial fishing in adjacent 

waters. Although economic values specific to the GOM are scarce, in 2007 the total primary 

value of US commercial fishing harvests was nearly $4 billion, of which 49% came from 

calcifying organisms alone (19% mollusks and 30% crustaceans) and an additional 24% from 

fishes that feed directly on calcifying organisms (Narita et al., 2012). Commercial fish 

processing and wholesaling also supported 63,000 jobs in the same year (Cooley & Doney, 

2009). Although data predicting the impact of OA on populations of many species is minimal or 

entirely missing, data for mollusks predict decreases in yield between 35%-43% translating to a 

$400 million dollar loss per year (Narita et al., 2012). In addition to future economic losses due 

to declining populations, currently 80%-85% of oyster reef habitats and 50% of coral habitats 

have been lost over the last 130 years and projected costs to repair damaged reefs is between 

$52,000-$260,000 and $6,000-$4,000,000 USD per hectare respectively (Beck et al. 2011; 

Grabowski et al. 2012; Bayraktarov et al., 2019).  

I.4 Hydrography of the GOM 
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The surface circulation and variability in the GOM is primarily dominated by the Loop 

Current and its ring separations, while the coastal waters are influenced by freshwater inputs, 

wind, and upwelling (Sturges and Leben, 2000; Oey et al., 2005). Loop Current intrusion varies 

temporally. The influence of Loop Current eddies in the northwestern GOM (NWGOM) is less 

likely to occur in autumn and winter and more likely to occur in spring and summer. In summer, 

the Loop Current can intrude as far as ~28°N and 90.5°W (Delgado et al., 2019). The Loop 

Current and its rings contain water with physical and chemical properties that differ from 

ambient seawater. When ring separations occur, they persist until complete transformation into 

Gulf Common Water occurs on the western slope of the GOM where the Loop Current eddies 

break and mix with the surrounding seawater (Vidal et al., 1992, 1994).   

Circulation variability in the GOM, in addition to the effects of the Loop Current and ring 

separations, is attributed to the Mississippi-Atchafalaya River System. Due to this influence, 

NWGOM may be susceptible to changes in enhanced hydrological cycles (Huang et al. 2015). 

The Mississippi-Atchafalaya River system influences the upper 50 m of the water column with 

low salinity waters found hundreds of kilometers from its discharge zone, above the 26 kg·m−3 

isopycnal (Morey et al., 2003; Jochens and DiMarco, 2008; Portela et al., 2018). The spatial 

effect of this river system is dependent on the seasonal freshwater budget, heat fluxes, and wind 

stress (Morey et al., 2003; Müller-Karger et al., 2015). Due to global climate change and 

enhanced hydrological cycles the freshwater budget varies greatly. For example, between 1951 

and 2000, the Mississippi River experienced a 31% increase in its cumulative discharge 

(Milliman et al., 2008). It is predicted that the discharge of the Mississippi will increase an 

additional 20% under the scenario with doubling atmospheric CO2 (from around 350 to 700 

ppm), which will further increase the frequency of the hypoxic zone by 32% (Milliman et al., 
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2008; Miller and Russell, 1992; Rabalais et al., 2009). Expected precipitation increase in the 

Mississippi-Atchafalaya watersheds will cause increased discharge hence terrestrial nutrient 

export, enhanced shelf water stratification, and summer hypoxia in nearby coastal waters 

(Cloern, 2001). Recent studies have linked coastal acidification to eutrophication in the Long 

Island Sound, the East China Sea, and the northern GOM shelf (Wallace et al., 2014; Chou et al., 

2013; Cai et al., 2011; Sunda and Cai, 2012), as excess nutrients stimulate algal blooms and the 

decomposition of the latter in bottom water consumes oxygen and produces CO2 (Chou et al., 

2013; Rabalais et al., 2002; Cai et al., 2011).   

I.5 Analytical and model methods for the marine carbonate system  

Although OA is quickly increasing in popularity as a research topic, with 76.1% of all 

publications being in the span from 2013 to 2019, most datasets collected before this time are 

lacking measurements on the carbonate system (Sahoo and Pandey, 2020). Current spatial and 

temporal coverage of carbonate chemistry data for the GOM is sparse. Available data that cover 

large swarth of areas in the Gulf is limited to those obtained from the Gulf of Mexico and East 

Coast Carbon cruises 1 & 2, and the Gulf of Mexico Ecosystem and Carbon Cycle cruise (Peng 

& Langdon, 2007; Wanninkhof et al., 2012; Barbero et al., 2017). Some regional datasets 

encompassing spatial and depth subsets do exist from individual research studies but mostly in 

relatively shallow coastal waters (Hu et al., 2018; Cai et al., 2011; Cai et al., 2020; Huang et al., 

2015). The current state-of-the-art analytical techniques can accurately quantify carbonate 

system parameters in the lab with excellent precision (±0.2-0.4 μmol·kg−1 for total dissolved 

inorganic carbon or DIC and total titration alkalinity or TA, and ±0.0004 for pH) (Fajar et al., 

2015; Douglas & Byrne, 2017). However, the ability to make direct carbonate system 

measurements in situ is restricted to select variables. For example, five (pCO2, pH, DIC, TA, 
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CO3
2-) out of the six (which also include HCO3

-) carbonate system variables can be directly 

measured in lab. Although of these five parameters, only pH and pCO2 have reached accessible 

autonomous measurements while autonomous TA and DIC measurements remain largely in 

experimental stages (Bresnahan et al., 2014; Takeshita et al., 2018; Seelmann et al., 2019; Byrne 

et al., 2011). However, pH and pCO2 as the input variables for speciation calculations typically 

produce large errors (Orr et al., 2018). Regardless, directly measured carbonate system 

parameters are constrained across time and space, and this constraint hinders our understanding 

of the state and evolution of carbonate chemistry in many areas.  In recent years, statistical 

modeling based on hydrographic data has been proposed as a viable and convenient alternative to 

fill in data gaps (Juranek et al., 2009), as such data (including salinity, temperature, DO) are 

much more widely available compared to the carbonate chemistry data (Table 1). 

By creating models using commonly measured hydrographic data, information such as 

ΩArag and pH can be calculated or estimated for both the current and potentially historical times. 

This was first done for ΩArag on the continental shelf of central Oregon (Juranek et al., 2009), 

where a multilinear regression (MLR) model using temperature and oxygen was developed to 

estimate ΩArag with excellent fit (R2 = 0.987, with relative mean standard error or RMSE of 

0.053). The model was used for construction of a comprehensive water-column ΩArag values and 

led to the application of models for ΩArag determination using historical datasets in other studies. 

A study on the Sea of Japan (East Sea) applied a similar model to a historical dataset lacking 

ΩArag. This resulted in a comprehensive set of ΩArag data from 1960 to 2000 (Kim et al., 2010). 

Similar models have been proven effective and accurate for the prediction of ΩArag using other 

hydrographic parameters (McGarry et al., 2021; Alin et al., 2012; Bostock et al., 2013).  
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This study created MLR models for pH and ΩArag in the NWGOM by fitting these 

parameters using measured values of temperature, depth, pressure, salinity, and dissolved 

oxygen. This study will also serve as a valuable baseline of data for future research in the 

NWGOM. 
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CHAPTER II. METHODS 

II.1 Data source/study area 

Historical data describing the carbonate chemistry system in the GOM begins with the 

first and second GOMECC cruises in 2007 and 2012 (Table 2). These studies covered both the 

northern GOM coast and the U.S. East Coast with three and two transects, respectively, in the 

GOM (GOMECC-1 and GOMECC-2) (Peng & Langdon, 2007; Barbero et al., 2017). The third 

GOMECC cruise in 2017 encompassed the entire GOM coast across 10 transects which extended 

in part to deep waters beyond the shelf. In addition to these expeditions, some regional datasets 

that include carbonate chemistry in the GOM encompassing spatial and depth subsets also exist 

for individual research studies but focus largely on the shelf and northern to northeastern GOM 

coast (Hu et al., 2017; Cai et al., 2011; Cai et al., 2020; Huang et al., 2015). 

A substantial portion of data used for this study were collected from the Galveston 

transect in the NWGOM taken during the GOMECC cruises 1 and 3 in July of 2007 and 2017, 

respectively (Figure 1) (Peng & Langdon, 2007; Barbero et al., 2017). More focused samples 

were collected on board the R/V Pelican and the cruises took place in April 20-24 and August 10-

15, 2021 (Figure 2), on a project called “Ocean Acidification at a Crossroad” (XR), which was 

funded by NOAA’s Ocean Acidification Program. The combined data set includes 481 data 

points from 23 stations. 

II.2 Sampling approach and analytical methods 

Seawater sampling was done according to the best practices for carbonate chemistry 

(Dickson et al., 2007). Samples were taken from the Niskin bottles into 250-ml ground-neck 

borosilicate glass bottles. Preservation of samples for carbonate chemistry analyses was done by 

the addition of 100 μL of a saturated HgCl2 solution. Glass stoppers with the aid of Apiezon®L 
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grease and rubber bands were used to seal the samples. The GOMECC samples were analyzed 

on board the ship, including DO, DIC, and TA; nutrient samples were analyzed at the Atlantic 

Oceanographic and Meteorological Laboratory (AOML). For the two cruises in 2021, only 

dissolved oxygen was analyzed on board the ship. All other samples were brought to the lab at 

Harte Research Institute, and analyzed for DIC, pH, and TA. Nutrient samples were analyzed at 

Geochemical and Environmental Research Group at Texas A&M University.  

For the GOMECC samples, DO was determined using an automated oxygen titrator with 

amperometric end-point detection (Culberson and Huang 1987). DIC was determined using 

coulometry with gas calibrations and Certified Reference Material (CRM) stability checks to 

ensure proper performance (with precisions of ± 1.37 µmol/kg) (Johnson et al., 1985). For the 

XR samples collection, DO was determined using Winkler titration (Winkler, 1888). DIC was 

determined using infrared spectrometry on a DIC analyzer (Apollo SciTech Inc.) with CRM to 

ensure the proper performance (with precisions of ±0.1%) (Chen et al., 2015). For all cruises, TA 

was analyzed using open-cell Gran titration; and pH was analyzed using a spectrophotometric 

method with purified m-cresol purple (Gran, 1952; Liu et al., 2011).  

II.3 Modeling approach 

This study created reliable region specific MLR models for ΩArag and pH using some 

combination of predictor variables (temperature, salinity, DO, and depth/pressure) determined by 

known relationships. All calculations and modeling were done using the software R (Ver. 4.1.2) 

and MatLab (Ver. R2021b). First, carbonate speciation was calculated with TA and DIC as the 

input variables (GOMECC) or DIC and pH as the input variable (XR as TA analysis was not yet 

completed at the time) using the MatLab version CO2SYS software (van Heuven et al., 2011) 

with carbonate dissociation constants from Mehrbach et al. (1973) refit by Dickson and Millero 
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(1987), the dissociation constant of bisulfate reported in Dickson (1990), the total boron 

concentration provided in Uppström (1974), and aragonite solubility constant from Mucci (1983) 

were used. Differences in calculated pH and ΩArag values due to omission of nutrient parameters 

have previously been negligible in the NWGOM, nutrient input was not used in calculations of 

carbonate speciation in the XR samples (Hu et al., 2018).  

Regression analysis was done using R following the steps below. First, the data were 

duplicated and modified into a set containing all depths and a set containing only depths greater 

than 20 m, below the summer mixed layer depth (Muller-Karger et al., 2015). Second, each set 

was duplicated and modified again into a set containing all stations and a set containing only 

stations along the Galveston line (west of -94.3W longitude line) (Figure 2). This resulted in a 

total of four different subsets of the data (Model 1 = 327 observations, all stations, and depths > 

20, Model 2 = 392 observations, all stations, and all depths, Model 3 = 190 observations, 

Galveston stations, and depth >20, Model 4 = 232 observations, Galveston stations, and all 

depths) (Table 3) to train four different models for each ΩArag and pH.  

All models were trained using the following procedure. Z-scores (standardized values) of 

all independent variables were used in place of non-standardized values (Quinn and Keough, 

2002). To avoid including outliers due to error, calculation of standardized residuals was 

performed for each observation. Observations with standardized residuals with absolute values 

larger than 3 were examined and removed on a case-to-case basis. Three data points resulted in 

standardized residuals of >3 and those observations were removed for suspected sampling or 

analysis error. A full model was created composed of all potential variables (salinity, 

depth/pressure, DO, temperature). The MuMIn package (Ver 1.46.0) was used in R to preform 

two dredges, one to rank models by corrected Akaike Information Criterion (AICc) and another 
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to rank by predicted residual error sum of squares (PRESS) (Barton, 2022). The final models 

were selected by AICc, PRESS, interpretability, parsimony, and applicability from comparable 

models (within 2 AICc of one another) (Burnham and Anderson, 2004). Variables included in 

the top models were checked for problematic collinearity using Variance Inflation Factor (VIF). 

Models with any variable scoring VIF > 10 were discarded and replaced with the next best model 

following the same criteria. The selected models were examined further for any potential errors 

using spline models, Shapiro-Wilkes test for normality, and RMSE. In general, the model with 

the lowest RMSE and PRESS values are considered to be the best. Some models had issues with 

curvature which were remedied in part with the addition of square terms. The package car (Fox 

& Weisberg, 2019) was used to visualize, illustrate, and transform data throughout this process. 

For model validation it is ideal to compare the accuracy of the created models on novel 

data or data removed from the original dataset before training the model (Quinn and Keough, 

2002). Due to the limited amount of data available to this study, it was not realistic for this 

project to pursue either of these methods of validation. Instead, PRESS statistics was applied to 

the models as it provides similar quantification of the model’s ability to predict new data as 

PRESS quantifies the difference between the observed (one datapoint (i) at a time) and predicted 

value by the model when fitted to all observations except i (Quinn and Keough, 2002).  
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CHAPTER III. RESULTS 

III.1 Water Masses 

The GOM is composed of water bodies originating outside of the GOM, including 

Caribbean Surface Water (CSW), Subtropical Underwater (SUW), and Tropical Atlantic Central 

Water (TACW), as well as riverine discharges mainly from the Mississippi-Atchafalaya River 

system. These bodies of water reside in the upper 300 m of the GOM and can be distinguished 

from Gulf Common Water (GCW) by T-S relationships, apparent oxygen utilization (AOU), 

nitrate, and DIC (Cervantes-Díaz et al., 2022). As seen in Figure 3 there was variation in the 

water masses seen over the 4 cruises. The CSW characterized by potential temperature (θ) >22 

˚C, salinity between 36.0-36.6, and potential density (σθ) values <25.3 kg⋅m-3 was encountered 

much more in 2017 than other years. Data from the 2017 cruise displayed a particularly clear 

signature with a grouping of measurements with σθ values <23 kg⋅m-3, θ of >28 ˚C, and salinity 

around 36.5, which was not encountered in any other cruises. Data from July 2007 and August 

2021 include some data points that are classified as CSW on the lower half of the salinity and 

temperature boundaries. In April of 2021, there was very minimal presence of the CSW with a 

group of measurements with salinity around 36.4 and θ around 25 ˚C. As expected, many data 

points from all cruise periods fell into what is classified as the GCW with θ from 18-22 ˚C, 

salinity between 36.3 and 38.8, and σθ values from 25.3-26.3 kg⋅m-3 as well as TACW with θ 

from 7.9-20 ˚C, salinity between 34.9 and 36.6, and σθ values from 26.2-27.2 kg⋅m-3. The SUW 

was not encountered in any of the cruises in this study. An unclassified portion of water column 

seen in this dataset displays characteristics of low salinity, high temperature, and σθ values <23 

kg⋅m-3, likely due to mixing waters with nearby freshwater discharge. This signature was not 
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seen in April 2021 and seen only in 5 measurements in July 2017 but seen in greater quantity and 

extremes in July 2007 and August 2021. 

III.2 MLR model statistics 

When all potential variables (temperature, depth, salinity, pressure, dissolved oxygen) 

were placed in linear combination, VIF results for most variables were greater than 10 due to 

their natural collinearity. However, when any combination of two independent variables alone 

was made VIFs were all less than 10, apart from depth and pressure as these two parameters 

provide near synonymous information and were not used in combination in any model. The VIF 

information suggests that there is no coupling between any of the predictor variables examined in 

this study in the NWGOM. All linear combinations of hydrographic parameters in the models 

presented here resulted in VIFs less than 10. All predictors tested were selected for use in one or 

more models.  

The models chosen to predict both ΩArag and pH included different combinations of the 

following parameters: depth, salinity, temperature, pressure, DO, and square terms (Table 3). 

The models for estimation of ΩArag were able to do so with adjusted R2 values ≥ 0.98, RMSE 

values ≤ 0.14, and PRESS values ≤ 0.14. The models for estimation of pH were able to do so 

with adjusted R2 values ≥ 0.93, RMSE values ≤ 0.02, and PRESS values ≤ 0.03. As seen in 

Figures 4-5, neither of the residuals for pH or ΩArag displayed depth-dependent bias. No clear 

pattern was seen in over- or underestimation relating to location in the water column by depth. 

Models for ΩArag were able to predict larger proportions of the variation than models predicting 

pH. However, RMSE and PRESS statistics indicate the models for pH displayed less deviation 

between predicted and actual values and may perform better when used with new data. These 
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model evaluative criteria indicate that both models produced reliable results across the range of 

observed values in the calibration dataset. 

 III.3 Spatial distributions of carbonate chemistry parameters (ΩArag, pH, DIC and TA) 

Data collected in this study were used to construct depth contour plots for ΩArag, pH, 

DIC, and TA over the Galveston transect study area in July of 2007, July of 2017, April of 2021, 

and August of 2021 (Figures 6-9). Data were also used to create depth profiles for DO over the 

same time periods (Figure 10). These data plots allow for visualization of the spatial and 

temporal variation that occurred during this study. 

All shelf and upper slope waters sampled were supersaturated (ΩArag > 1) with highest 

values of 4.39 and lowest values of 1.03 (Figure 6). The depth profiles reconstructed for July 

2007 show the ΩArag = 2.0 isopleth at ~200 m, the ΩArag = 1.5 isopleth at ~350 m, and a portion of 

the water column at or below the ΩArag = 1.1 isopleth at 600 m. The depth profiles for July 2017 

show the ΩArag = 2 isopleth at ~180 m, the ΩArag=1.5 isopleth at 330 m, and a portion of the water 

column at or below the ΩArag = 1.1 isopleth at 550 m. The depth profiles reconstructed for April 

2021 show the ΩArag = 2 horizon at 200 m, the ΩArag = 1.5 isopleth at 320 m, and a portion of the 

water column at or below the ΩArag = 1.1 isopleth at 570 m. The depth profiles for August 2021 

show the ΩArag = 2 horizon at 180 m, the ΩArag = 1.5 isopleth at 300 m, and a portion of the water 

column at or below the ΩArag = 1.1 horizon at 570 m. The variation in ΩArag experienced over the 

shelf (less than 100 m) over the four cruises remained relatively consistent (±0.05). In all depth 

profiles the locations of the ΩArag = 1.5 and ΩArag = 1.1 isopleths coincide very closely with the 

upper and lower boundaries of the portion of the water column displaying DO values ≤ 125 µmol 

kg-1. The ΩArag = 2 and ΩArag = 1.1 horizons varied ±20 and ±50 m, respectively. The ΩArag = 1.5 

isopleth decreased 50 m over the course of the study period consistently. 
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Depth distribution for pH revealed consistent spatial patterns over all four cruises 

although with different values (Figure 7). Profiles displayed similar maximum values over the 

entire shelf and upper 125 m and minimum values around depths of 500 m. In 2007, pH values 

fell below 8.0 at around 125 m, in 2021 this occurred at depths around 115 m. pH values fell 

below 7.9 at around 265±5 m consistently from all cruises. Maximum values of pH over the shelf 

in July of 2007 reached 8.139 while in April and August of 2021 the maximum pH values were 

8.099 and 8.108, respectively, between 0.031-0.050 units lower. Minimum pH values 

experienced over the shelf also varied from 7.828 in 2007 to 7.813 and 7.816 in April and 

August 2021 for a decrease of 0.012-0.015 units. The ranges of pH experienced over the shelf in 

2007 and 2021 were 0.311 and 0.289 (when April and August 2021 values were averaged). 

Temporal variation from 2007 to 2021 shows a variation of the pH = 8.0 isopleth by 10 m while 

the pH = 7.9 isopleth remained at similar depth. Larger variations were noted over the shelf 

where a 0.022 units smaller range of pH values was experienced with lower maximums by 0.036 

and lower minimums by 0.013 (when April and August 2021 values were averaged).  

Depth profiles for DO exhibit a consistent relationship with depth over all study periods, 

with high values at the surface layer, DO minimums around 400 m and gradual increase with 

depth after (Figure 10). Spatial variation is visible, data collected at higher latitudes (closer to the 

coast) and in shallow waters (< 200 m) display larger variations than other regions. Additionally, 

data collected outside of the Galveston line to the east in the 2021 cruises display higher DO 

values. For data collected along the Galveston line, the oxygen minimum in 2007 was 112.7 

µmol kg-1 at 355 m and DO was below 115.0 µmol kg-1 from 347-405 m. In 2017 the oxygen 

minimum was 109.4 µmol kg-1 at 398 m and DO was below 115 µmol kg-1 from 248-516 m. In 

April 2021, the oxygen minimum was 109.5 µmol kg-1 at 400 m and DO was below 115.0 µmol 
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kg-1 from 300-500 m. In August 2021, the oxygen minimum was 110.7 µmol kg-1 at 300 m and 

DO was below 115.0 µmol kg-1 from 300-400 m. Outside of the Galveston line, in April and 

August of 2021 oxygen minimums were 112.4 and 108.0 µmol kg-1 at 350 and 400 m. In April, 

no portion of the water column remained below 115 µmol kg-1, however, in August DO values 

below 115 µmol kg-1 were seen from 300-500m. Over all cruises except August of 2021, the 

oxygen minimum remained consistently around 400 m. The upper boundary depth for DO at 115 

µmol kg-1 has varied ~150 m mostly decreasing in depth over time. The thickness of the depth 

range at which the water column may experience low DO values (<115 µmol kg-1) also varied 

temporally ~150 m. It is also important to note that the measured DO in the surface layer (<50 

m) displayed large variation spatially in each dataset as well as temporally between cruises. This 

is important to consider in applicability of the models which contain DO as a variable for upper 

water column measurements. 
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CHAPTER IV. DISCUSSION 

IV.1 Constraining data 

One of the primary motivations behind the use of the simple MLR modeling with 

standardized variables to predict carbonate parameters is the ability to use the empirical 

relationships among predictor variables to accurately describe the controlling processes in the 

study area. Due to standardization the strength of the predictor variable can be inferred by the 

absolute value of the coefficient of variables included in the models (Quinn and Keough, 2002) 

(Table 3). In order to determine the most effective predictor variables of ΩArag and pH in the 

NWGOM, the data were quadruplicated and each copy was reduced to a different subset of the 

data to test for changes to the empirical relationships caused by depth or proximity to the 

Mississippi-Atchafalaya river outflow. The modifications of the four copies of data and the 

influence they are intended to test for are as follows: control dataset containing all data (model 

1), dataset testing for influence of surface water containing depths > 20 m from all stations 

(model 2), dataset testing for combined effect of river proximity and surface water containing 

depths > 20 m and longitudes > 94.3 ˚W (limited to Galveston line stations) (model 3), dataset 

testing for effects of proximity to the river containing longitudes > 94.3 ˚W (model 4) (Table 3).  

Removal of surface layer of water is regularly practiced in some capacity in carbonate 

modeling studies in order to eliminate variability due to influences beyond the scope of the 

model, such as surface water gas exchange, physical, biological and seasonal changes (McGarry 

et al., 2020; Juranek et al., 2009; Kim et al., 2010). In the NWGOM removal of shallow water 

can potentially mitigate the effects of the freshwater outflow as the low salinity river discharge is 

buoyant, although this is primarily addressed with the longitudinal restrictions. Depths to be 

removed explicitly for the purpose of removing the mixed layer vary from location and season of 
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study. Some models do not require exclusion of air-surface water interactions due to predictor 

variables being unaffected by this exchange and some have used removal of additional surface 

water as a means of removing the effect of seasonality (McGarry et al., 2021; Juranek et al., 

2009; Kim et al., 2010; Muller-Karger et al., 2015). Due to the fact that all the models produced 

in this study contain DO, removing air-sea interaction was necessary. The removal of upper 50 

meters to eliminate seasonality as done by Kim et al. (2010) would remove a substantial portion 

of the dataset in this study and thus is not viable here. Instead, 20 m removal was chosen as it is 

the depth of the mixed layer in summer in the GOM (Muller-Karger et al., 2015). Based on the 

final models chosen for ΩArag and pH, the relationships showed that the exclusion of the upper 20 

m of the water column did slightly improve the performance of all models. When models for 

each parameter are compared with the model containing the same spatial data but all depths, 

models with the upper 20 m removed had either greater R2, lower RMSE, lower PRESS, or a 

combination of the three (Table 3). The improvement seen in all models indicates that the 

removal of surface water does increase the applicability of the models. However, due to the 

small changes, more analysis with additional data including increased training data are needed to 

determine what degree of depth removal results in the most applicable model for the NWGOM. 

The primary purpose of the constraints of longitude, limiting the eastern extent of the 

study area to the west of the 94.3 longitudinal line, is to test for and mitigate the effects of the 

freshwater outflow that can be transported westward over the Louisiana-Texas shelf (Morey et 

al., 2003). This narrower study area effectively eliminates the influence of the Mississippi 

Atchafalaya River System, as well as limits the study to the same stations repeatedly surveyed by 

all four cruises along the “Galveston Line” (Androulidakis et al., 2015). The performance of 

models with unrestricted data compared to those with longitude restrictions was variable. For 
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ΩArag, both models R2, RMSE and PRESS improved or went unchanged when constrained (Table 

3). For pH the exclusion of data from stations outside of the Galveston line increased R2 values 

by 0.02 in both cases but left RMSE unchanged and increased the PRESS value of one model by 

0.01. Due to the conflicting changes in performance of models with spatial restriction no 

conclusion can be made regarding existence of influence of eastern stations. As the changes in 

performance caused by the spatial restriction are relatively small and all models still perform 

well, the model is essentially equally applicable in the entire surveyed area, i.e., no exclusion of 

eastern stations.  

IV.2 Drivers of carbonate system variability 

IV.2.1 Aragonite saturation state 

Due to the many controlling factors on ΩArag (Ksp, [Ca2+], [CO3 2-], DIC, and TA), 

temperature, salinity, pressure, and DO all have ties to ΩArag through interactions in carbonate 

chemistry and could be valuable in the prediction of ΩArag. Thus, the inclusion of temperature, 

pressure, and DO in the models is explained by known chemical relationships. Although 

predictors depth, salinity, and date were also tested, no model including these predictors was 

selected based on the criteria described in methods (Table 3). 

Temperature was included in all models as the most important predictor of ΩArag 

variability in the NWGOM (Table 3). The strength of the relationship is chemically explained by 

ΩArag as a function of Ksp and [CO3
2-], and Ksp as a function of temperature, salinity, and 

pressure, and temperature also controls speciation of the carbonate system. The inclusion of 

temperature as a dominant predictor variable aligns well with models built for ΩArag prediction in 

other areas, which also found temperature to be the primary predictor of ΩArag variations 

(McGarry et al., 2021; Juranek et al., 2009; Alin et al., 2012; Kim et al., 2010; Bostock et al., 
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2013) (Table 1). In the literature, it has been previously proposed that temperature is an 

important predictor of ΩArag in the upper 20 m of the oligotrophic waters of the NWGOM (Hu et 

al., 2018).  

DO was included as the second most important predictor variable in all models (Table 3). 

The prominence of DO likely indicates the importance of the presence and variation of 

production and consumption of organic matter, for example, the DO minima appeared in the mid 

depth (~400 m) (Figure 3). A prior study also showed that biological activities are an influential 

factor in the study area (Hu et al., 2018). 

IV.2.2 pH 

Although anthropogenic CO2 is the dominant driver of long‐term change in pH in the 

open ocean, the variations observed in coastal waters on decadal time scales are largely 

attributed to driving forces including riverine input (carbon and nutrients) and ocean circulation 

changes (for example upwelling) (Feely et al., 2008; Cai et al., 2003; Yang et al., 2018; Salisbury 

et al., 2008; Duarte et al., 2013). The fact that DO was included in all pH models indicates the 

presence of biological activities as a driving force. DO was also found to be the strongest 

predictor of pH in the California current system and the Oregon shelf (Alin et al., 2012; McGarry 

et al., 2021) (Table 1).  

Secondary and tertiary variables salinity and pressure (or depth) were included in models 

1-3 but neither were included model 4, which only included DO and temperature, including their 

second order polynomial terms (Table 3). These shifts in variables may illustrate the influence 

that varying biological and physical processes due to the subset of the water column or 

longitudes have on pH.  This influence is generated by the effect that these processes have on the 
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DO and DIC concentrations. (Alin et al., 2012). These empirical models show unique 

relationships between pH and DO and the additional influencing variables in the NWGOM.  

IV.3 Comparisons with previous pH and ΩArag models 

Although there are no existing models for the NWGOM, there are similar models that 

have been developed and applied in other areas. Due to the effects of differences in hydrography, 

river influences, and location on the drivers of the carbonate system, models are often specific to 

the geographic areas where they were created for. Although many of the primary drivers of the 

carbonate system remain the same, the secondary variables shift as does the degree to which they 

influence. Here I compare the accuracy and complexity of models created for other areas.  

In the literature, ΩArag models have been created for the Northeast US (McGarry et al., 

2021), Northern Gulf of Alaska (Evans et al., 2013), Central Oregon Coast (Juranek et al., 2009; 

Juranek et al., 2011), Southern California Current system (Alin et al., 2012), the Sea of Japan 

(East Sea) (Kim et al., 2010), and the Southern Ocean deep waters (Table 1) (Bostock et al., 

2013). These models all have between 2 and 3 variables and adjusted R2 ≥ 0.91 in comparison to 

models produced here which have between 2 and 6 variables with an adjusted R2 ≥ 0.93. The 

primary predictor variable in all previous models except two (Evans et al., 2013; Juranek et al., 

2011) is temperature, as is the case in this study. Most models also include some combination of 

temperature with salinity, oxygen, and interaction terms, and one model also used pressure (Kim 

et al., 2010), and one used NO3
- (Evans et al., 2013). Models for the prediction of ΩArag are 

generally similar in the number and type of variables used. The models created in this study and 

those created previously for ΩArag agreed on the use of temperature in combination with DO as 

predictor variables.  
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pH models have been created for the northeast US (McGarry et al., 2021), the northeast 

pacific (Juranek et al., 2011), and the southern California current system (Table 1) (Alin et al., 

2012). They included between 2 and 7 variables and resulted in adjusted R2 ≥ 0.89 in comparison 

to our models which have between 4 and 5 variables and adjusted R2 ≥ 0.93. All previous models 

agree with this study in that DO was the most important explanatory predictor variable used in 

the prediction of pH. Additionally, all models used temperature (McGarry et al., 2021; Alin et 

al., 2012; Juranek et al., 2011), one used an interaction term between DO and temperature (Alin 

et al., 2012), and one included nutrients, salinity and multiple interaction terms (McGarry et al., 

2021). Although all models consistently depended on O2 as the strongest predictor of pH 

variation and use temperature in some capacity, the choices for additional fitting parameters are 

diverse for these pH models. 

IV.4 Data scarcity 

Although the research and data collection regarding carbonate systems has increased in 

popularity and frequency, many areas especially the coastal ocean including the GOM are still 

undersampled and many datasets lack measurements to quantify carbonate chemistry needed for 

OA studies. Currently the coverage of data in the GOM is limited largely to public data from 

select transects and stations visited by research cruises such as GOMECC (Peng and Langdon, 

2007; Barbero et al., 2017). New methods are being put into practice to remedy the missing data 

including autonomous measurements and modeling techniques like those used here.  

New equipment has made autonomous measurements for selected variables via satellites, 

floats, and gliders possible. Although satellites provide large volumes of invaluable data, their 

scope is limited not only to the surface layer but only measurements of temperature and ocean 

color which can be interpreted for estimations of productivity, dissolved organic matter, and 
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carbonate chemistry parameters (Chen at al., 2019). Some remedies to the lack of data beyond 

the surface have come in the form of novel technologies including Argo floats and gliders. The 

Argo array presently supports more than 3000 floats supplying profiles of T and S, of which 

about 200 are also equipped with an O2 sensor (Roemmich et al., 2019). Biogeochemical-Argo 

(BGC-Argo) floats can take measurements from surface to 2000 dbar and provide real time 

autonomous measurements for some combination of chlorophyll, particle backscatter, oxygen, 

nitrate, pH, or irradiance, with very few measuring all (Roemmich et al., 2019). Nevertheless, 

this equipment is limited in coverage ability and BGC-Argos have yet to reach the 

comprehensive coverage of traditional Argos. Gliders share the same biogeochemical sensors 

used by the BGC-Argos with similar mode of operations but perform saw-tooth trajectories 

surface to the bottom, or to 200–1,000 m depth limited largely by battery life and payload space 

hindering their ability to carry many sensors (Testor et al., 2019). Additionally, all data from 

floats and gliders must undergo rigorous quality control and correction of potential errors in 

sensors such as drift and compared to lab measured samples when possible (Roemmich et al., 

2019). The need for full comprehensive accurate datasets will require the combination of all 

measurement techniques. In-situ sample collection and lab-based analyses are considered most 

accurate but lack realistic coverage, remote sensing and autonomous sensor data provide 

coverage ability but require much data validation for accuracy.  

The capacity for autonomous observing of ocean carbonate chemistry is growing rapidly 

and by combining the real-time, high-resolution data with modeling methods it is possible to 

create comprehensive data coverage while simultaneously providing data validation via 

comparison between sources. With the use of MLR in combination with a single Argo profile 

float containing O2 and temperature sensors, Juranek et al. (2011) was able to create a 14-month 
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comprehensive time series containing ΩArag and pH, which were verified by comparisons to 

novel data. Evans et al. (2013) applied models to novel data from glider flight and a GLOBEC 

mesoscale SeaSoar survey to create complete datasets, allowing for identification of variability 

of ΩArag. Although autonomous measurements have just begun, successful unison of models and 

autonomous data collection has been done and the increase of these endeavors should greatly 

improve geochemical data coverage and advance carbonate chemistry studies. 

IV.5 Application of MLR 

IV.5.1 Water masses 

The importance of geographically localized MLR models is due to the differing 

hydrography of study areas and its effects on the predicted parameters. As seen in Figure 3, 

riverine discharge, and all water masses except for the Subtropical Underwater were encountered 

in this study. Based on the discussion in Alin et al. (2012), the models created in this study (the 

absence of a major water mass) may not account for potential changes in ocean circulation 

associated with warming. Large-scale shifts in coastal ocean circulation may affect the depth 

distribution of the water masses and their chemical signatures in the water depth zone that these 

empirical models cover. This reconstruction describes the water masses that have been included 

in the training of these models as well as serves as a baseline for the water mass composition in 

the NWGOM in the years 2007, 2017, and 2021. This baseline can be used in the future to 

observe potential shifts in circulation as well as to ensure models applicability to the inclusion of 

novel data.  

IV.5.2 Temporal effect on MLR model fit 

As concern about OA has grown, most carbonate system observations have been 

collected in recent years. The GOMECC-1 survey in 2007 was among the first to collect com- 



27 

 

prehensive measurements of inorganic carbonate system parameters in the GOM. Furthermore, 

there is motivation to apply the empirical models to future projections of ocean conditions to 

forecast the carbonate system conditions as OA progresses.  

Previously created MLR have been applied to historical (40 year) and in-situ data 

(Juranek et al., 2011; Kim et al., 2010; Juranek et al., 2009; Evans et al., 2013). The temporal 

applicability of the model depends largely on timescale. Models can be used for prediction of 

past, and future data within approximately 10 years of the collection of the data used in its 

creation under assumptions that any seasonality or waterbody changes are captured by the model 

(Juranek et al. 2011). For example, Juranek et al. (2009) created a model using data collected 

only in spring and successfully used it to predict the seasonal changes in ΩArag under the 

assumption that the seasonal variability of the primary independent variables (temperature and 

DO) would be comparable to the variation encountered spatially during the initial data collection.  

In order to use the model for predictions beyond the 10-year frame even with relatively 

unchanged circulation and watersheds, it is necessary to make corrections for shifts caused by 

changes in the anthropogenic CO2 inventory in the water column. This is due to the fact that 

empirical models do not account for anthropogenic addition of CO2, which changes the ratio of 

DIC/DO. After approximately 10 years the error due to anthropogenic emissions will exceed the 

model uncertainty (Juranek et al. 2011). Due to this, the models presented here should be 

accurate and applicable ±10 years, from approximately ~1997-2031. In order to extend the 

reconstruction further than 10 years it would first be necessary to account for the progressive 

addition (or subtraction) of anthropogenic CO2 to the water column over time. For example, Kim 

et al. (2010) used estimates of anthropogenic CO2 invasion to subtract anthropogenic CO2 and 
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apply modeling estimates of DIC in the Sea of Japan (East Sea) to create a 40-year 

reconstruction.  

In addition to long-term changes, there is strong motivation to apply the empirical models 

to year-round basic hydrographic data to reconstruct the seasonal cycle of carbonate chemistry. 

However, this model along with most other models were calibrated using mostly summer data 

(Davis et al., 2018). One method to avoid the problem of seasonal variations in the relationships 

between physical and chemical data is by excluding waters from depths influenced by local 

meteorological conditions from the analysis (Kim et al. 2010). Although removal of portions of 

the data to omit meteorological affects was not possible, seasonal application may be viable in 

the produced models for pH as it was explained primarily by biologically driven changes. 

Seasonal application may still be possible for ΩArag at depths 30–300 m as biological changes are 

primarily driven by DIC rather than TA (Hu et al., 2018; Anglès et al., 2019). It is expected that 

changes in DIC should be captured in these models due to their relationship with DO. This is 

because DIC and DO changes are expected to be proportional in remineralization zones (Hales et 

al., 2005; Anderson and Sarmiento, 1994). It has been previously observed that the seasonal 

variations in ΩArag in the GOM are influenced primarily by changes in temperature (Hu et al., 

2018). As a result, it is possible that as the models developed here may still be able to predict 

seasonal variations of ΩArag reasonably well.  

IV.5.3 Recommendation 

Potential issues seen in all models indicate that the models, despite their strength, could 

be improved further. Shapiro–Wilk test, a test for normality, p-values <0.01 indicate non-

normality in the residuals, this could be due to the large variation in the included shallow and 

mixed layers, need for more data points, or application of a more complex model. Future work to 
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improve these models includes additional data and potential application of non-linear or artificial 

intelligence (AI) models such as neural networks and locally interpolated regressions like those 

used by Carter et al. (2021). Data from GOMECC-4 in September 2021 are still in the processing 

stage at the time of this writing but on completion will be included in these models. 

IV.6 Shoaling, upwelling and benthic Fauna 

Although it is still largely unclear how organisms in the NWGOM could be affected by 

OA, laboratory experiments have indicated potentially deleterious impacts to organisms exposed 

to waters with low or decreased ΩArag (Kleypas et al., 2006; Fabry et al.,2008; Doney et al., 

2009). Most lab experiments largely manipulate pCO2 and pH conditions predicted for the open 

ocean in year 2100. However, coastal biogeochemical dynamics are governed by interactions 

between processes on land, in the open ocean, and the atmosphere, and the behavior may be 

different from the open ocean (Aufdenkampe et al., 2011). Upwelling in coastal areas combined 

with potential shoaling of ΩArag adds additional uncertainty and threat to benthic fauna in the 

coastal ocean. Included in the study area, is the Flower Garden Banks National Marine Sanctuary 

to the south of the Texas and Louisiana border, with a variety of habitats ranging in depth from 

17-140m (Johnston et al., 2016). The depth profiles reconstructed with these data show that the 

depth of ΩArag = 2 is located at ~180 m as of August 2021 but varied between 175-200 m 

between 2017 and 2021 (Figure 9). As the relatively low ΩArag = 2 in the reconstructed data sits 

at 180-200 m, upwelling or substantial mixing could bring this water in contact with deep water 

corals and calcifiers of the Gulf residing at depths of up to 150 m (Gil-Agudelo et al., 2020). 

Although the depth of ΩArag = 2 showed little variability from the four cruises, the seasonal 

upwelling of the low ΩArag waters is a documented occurrence in the NWGOM (Zavala-Hidalgo 

et al., 2006) and the upwelling intensity is likely to increase under future warming climate 
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scenarios with additional uptake of anthropogenic CO2 (Bakun, 1990; Snyder et al., 2003). 

Furthermore, additional CO2 will continue to decrease coastal ΩArag well into this century (Feely 

et al., 2008a). If climate impacts occur as predicted, upwelling and shoaling low ΩArag waters 

will bring the latter into coastal areas habited by calcifying organisms. 
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CHAPTER V. CONCLUSION 

 This study created models for the estimation of pH in the NWGOM that preformed 

reliably with R2>0.93 and RMSE<0.03 (Table 1). The empirical relationships created illustrated 

DO as the dominant driver of pH variability. Depth profiles for pH revealed consistent contour 

patterns over all four cruises with highest values over the shelf and upper 125 m and minimum 

values around depths of 500 m (Figure 7). The pH = 7.9 isopleth remained around 270 m in all 

years and the pH = 8 isopleth remained around 120 m in all years. Over the shelf there was a 

lower maxima by 0.0356 and lower minima by 0.0133 creating a 0.0223 unit narrower range of 

pH values (April and August 2021 averaged).  

The ΩArag models in the NWGOM have excellent performance with R2>0.98 and 

RMSE<0.14 (Table 1). The empirical relationships demonstrate temperature and DO as the most 

important predictor variables. The data used to create the models were also used to create 

reconstructions that show variation of ΩArag over the timeframe of the study from 2007 to 2021 

(Figure 6). The depth range of the water column between ΩArag = 2-1.5 decreased over the study 

period. The ΩArag = 2 and ΩArag = 1.1 varied 20 and 50 m, respectively, with movement in both 

directions while the ΩArag = 1.5 isopleth shoaled 50 m from 2007 to 2021. Relatively low ΩArag 

(ΩArag ≤ 2) was present in the 180 m depths. Mixing, upwelling, or further atmospheric CO2 

uptake could bring the low ΩArag waters into contact with benthic fauna of the Gulf. As more 

information on the impacts of decreased coastal ΩArag on coastal organism and temporal 

coverage of ΩArag into the future becomes available, the potential ramifications will be better 

understood.  

Some caveats exist for the model application include seasonality, temporal gap from the 

creation to application of the model, and ocean circulation changes. First, all data collected for 
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this study occurred in the spring and summer months, therefore its accuracy in its application on 

an annual scale could be affected. Although some surface water data were removed, this removal 

may not be sufficient to account for all seasonal influence. The model for ΩArag includes 

temperature as a primary predictor which may allow the models to perform reliably in seasonal 

application. Further study should be done before applying the empirical models presented here 

outside of spring and summer months (Hales et al., 2005; Anderson and Sarmiento, 1994). 

Second, for application of these empirical models over time they must be adjusted on 10-year 

intervals to account for the additional anthropogenic CO2 in seawater. Finally, changes in ocean 

circulation that bring in water masses that the model was not trained on will likely affect its 

accuracy. For this case, if the presence of SUW becomes significant or significant increase in 

river discharge were to occur in the sample area, model application should not be considered 

without further training. 

The empirical model equations produced in this study using hydrographic and carbonate 

system parameters demonstrate their relationships in the NWGOM. Temperature was found to be 

the dominant driver of variability ΩArag and DO as the dominant driver of variability in pH. The 

data reconstructions done by this study have allowed for the identification of water masses 

regularly present in the NWGOM over the four sampling periods as well as portions of water 

column with low salinity, high temperature, and low density surface water influenced by riverine 

discharge. This study presents empirical models that contribute to the understanding of processes 

in the NWGOM and has begun a process of creating a complete and dynamic model to describe 

carbonate chemistry in this area. As more data become available, refined models as well as 

creation of additional models will improve our understanding of the spatial and temporal 

variations experienced in the physical and chemical parameters in this region. 
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Table 1 A comparison of previously published MLR models for ΩArag or pH. 

 

 

  

Author Geographic Area Date Variables R2 for ΩArag Variables R2 for pH 

Evans Northern Gulf of Alaska 2013 S, NO3 0.91 - - 

Bostock South- ern Hemisphere 2013 T, S, O2 0.99 - - 

Alin Southern California Current System 2012 T, O2, T∙O2 0.92 O2, T, T*O2 0.98 

Kim Sea of Japan (East Sea) 2010 T, P, O2 0.995 - - 

Juranek central Oregon 2009 T, T*O2 0.987 - - 

Juranek NE Pacific 2011 O2, T, T*O2 0.987 O2, T 0.98 

McGarry Northeast US 2021 T, S 0.93 O2, S, T, N, T*S, 

S*O2, O2*N 

0.89 
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 Table 2 Information of sampling cruises that collected data for this study. 

  

Cruise ID Date Stations Samples 

R/V Pelican 1 April 20-24, 2021 23 155 

R/V Pelican 2 August 10-15, 2021 23 173 

GOMECC 1 July 2007 8 78 

GOMECC 3 July 2017 8 75 



35 

 

Table 3 MLR models created in this study. Each parameter (ΩArag and pH) has four different 

models that used either the who dataset or subsets of these data. 

 

 

 

 Predicting Data Coefficients Variables R2 RMSE PRESS 
Model 1 ΩArag Depths >20m 

All stations 
0.733 

0.3325 
-0.0377 

Temperature 
DO 

Temperrature2 

0.99 0.11 0.13 

        
Model 2 ΩArag All depths 

All stations 
0.6572 
0.356 

-0.1338 
-0.0312 

Temperature 
DO 

Pressure 
DO2 

0.98 0.14 0.14 

        
Model 3 ΩArag Depths >20m 

Galveston line 
stations 

0.7676 
0.3451 
-0.0547 

Temperature 
DO 

Temperrature2 

0.99 0.09 0.1 

        
Model 4 ΩArag All depths 

Galveston line 
stations 

0.6684 
0.371 

-0.1649 
-0.0486 

Temperature 
DO 

Pressure 
DO2 

0.99 0.12 0.14 

        
Model 1 pH Depths >20m 

All stations 
0.063 

-0.0219 
0.021 
-0.01 

DO 
Pressure 
Salinity 

DO2 

0.94 0.02 0.02 

        
Model 2 pH All depths 

All stations 
0.0605 
-0.029 
0.0201 
-0.0112 
0.0055 

DO 
Depth 

Salinity 
DO2 

Salinity2 

0.93 0.02 0.03 

        
Model 3 pH Depths >20m 

Galveston line 
stations 

0.0636 
0.0235 
-0.0209 
-0.0104 

DO 
Salinity 
Depth 
DO2 

0.96 0.02 0.03 

        
Model 4 pH All depths 

Galveston line 
stations 

0.0674 
-0.0333 
0.0186 
-0.0132 

DO 
Temperrature2 
Temperature 

DO2 

0.95 0.02 0.03 
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Figure 1 Locations of the sampling stations during the GOMECC cruises. Red square highlights 

the subset of stations used in this study. 
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Figure 2 Sampling locations during the Ocean Acidification at a Crossroad (XR) cruises. Black 

filled points illustrate the stations used in the “Galveston Line” data subsets . 
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Figure 3 A scatter plot of all collected data as explained by potential temperature and salinity. 
The green contour lines represent potential density (Variable description and units: temperature, 
potential temperature ˚C; Salinity, practical salinity; potential density, kg⋅m-3). 
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Figure 4 | Boxplots illustrating the distribution of residuals from all pH models. Depths indicate 
groupings of observations from 50 m intervals of the water column (i.e., Boxplot marked 100 
included residuals from predictions using measurements collected from 50-100 m). 
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Figure 5 Boxplots illustrating the distribution of residuals from all ΩArag models. Depths indicate 
groupings of observations from 50 m intervals of the water column (i.e., Boxplot marked 100 
included residuals from predictions using measurements collected from 50-100 m). 
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Figure 6 Contour plots showing the distribution of ΩArag over the Galveston line stations. The 

solid line represents Ω = 2. The dashed line represents Ω = 1.5. The dotted line represents Ω = 

1.1 (Variable description and units: Depth, m). 
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Figure 7 Contour plots showing the distribution of pH over the Galveston line stations. The 
dashed line represents pH = 8. The dotted line represents pH = 7.9 (Variable description and 
units: Depth, m).  
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Figure 8 Contour plots showing the distribution of DIC over the Galveston line stations 
(Variable description and units: Depth, m; DIC, μmol kg-1). 
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Figure 9 Contour plots showing the distribution of TA over the Galveston line stations (Variable 
description and units: Depth, m; TA, μmol kg-1). 
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Figure 10 Depth profiles of DO concentration using collected data from all stations. The color 
filling shows latitude of each data point (Variable description and units: DO, μmol kg-1; Depth, 
m). 
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Figure 11 Predicted versus measured values in ΩArag models based on the entire dataset or 
different subsets (see Table 3 for details).  
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Figure 12 Predicted versus measured values in pH models based on the entire dataset or 
different subsets (see Table 3 for details). 
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