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ABSTRACT 

 

Protecting genetic diversity is an integral component of food security, fishery management, and 

biodiversity conservation, and thus the ability to model and predict the distribution of genetic 

diversity is valuable. Population genetic theory predicts that genetic diversity will be greatest in 

the largest populations at mutation-drift equilibrium, implying that efforts to preserve diversity 

would be best focused on keeping populations as large as feasibly possible. Natural populations, 

however, are rarely in equilibrium, because their sizes can fluctuate due to a variety of processes, 

e.g., populations that have had a recent bottleneck or invaded a new habitat. To predict patterns 

of genetic diversity in natural populations, it has become increasingly important to understand 

how populations behave in non-equilibrium scenarios. Here we report the effects of mutation rate 

(µ), initial population size (Ne0), and final population size (Ne1) on the genetic diversity in 

expanding populations using a Wright-Fisher forward time model built with SLiM2. Using a 300 

bp sequence to simulate modern genome-wide surveys of genetic variation (RAD), a range of 

naturally occurring mutation rates, and population sizes, multiple models were created to cover a 

broad portion of parameter space, and six commonly reported measures of genetic diversity 

estimated.  As previously reported, genetic diversity increased with increasing population size 

given a similar set of circumstances, but there are broad swaths of parameter space where small 

populations exhibit greater diversity than large populations, making historical context critical in 

population genetics analysis. Depending on population size and mutation rate, the different 

diversity indices (nucleotide diversity, gene diversity, number of haplotypes, effective number of 

haplotypes, number of heterozygotes, and number of substitutions) progressed towards 

equilibrium at different rates. Furthermore, different diversity indices had different levels of 
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sensitivity to changes in diversity at different times. To better describe the change in diversity 

with time, logistic growth models were used to estimate the equilibrium diversity (Deq), initial 

diversity value (D0), amount of time required to reach halfway to genetic equilibrium (t50eq), 

growth parameter (Φ3), maximum rate of genetic diversity increase (r), and time required to 

reach 95% of the equilibrium value (t95) in populations that expand from Ne0 to Ne1. We 

employed both linear and non-linear model fitting and used AIC to identify the best models 

describing the logistic growth parameters with varying Ne0, Ne1, and µ. In most cases, the models 

fit the simulated data well as the relative bias is low, ranging from +/- 3%, but the models did not 

perform as well when Ne0, Ne1, and µ, are small, with relative bias as high as 20%.  The best 

models were used to create a tool that estimates the diversity of a population given the time since 

the onset of expansion, Ne0, Ne1, and µ. The prediction model performed best when using the Ne0, 

Ne1, and µ used in the simulations but could give misleading diversities when interpolating, so a 

switch was created to restrict the tool to only accept the predefined set of parameter values.  This 

tool can be used to get a rough approximation of how long it will take for genetic diversity to 

accumulate and determine why there might be deviations from the neutral expectation that large 

populations have more diversity without running time consuming simulations and subsequent 

analysis. 
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CHAPTER I 

INTRODUCTION 

Natural populations fluctuate in size due to a variety of processes which lead to a state of 

evolutionary disequilibrium.  Long-term processes such a glaciation cycles and shorter-term 

processes (including human activities, Halpern et al., 2008) lead to changes in ecological 

interactions, range expansions, and gene flow alterations which all affect population sizes. 

Population size can be categorized by census size (N) and effective size (Ne). Census population 

size is the number of individuals in a population while effective population size is the number of 

individuals required for a population to have the same genetic diversity as an ideal population. 

Census and effective population sizes are not necessarily equal, and differences are affected by 

such factors as nonrandom mating, harems, fluctuating population sizes.  

Many populations, including both plants and animals, are decreasing due to 

anthropogenic forces including overexploitation (Butchart et al., 2010; Hutchings, 2000), habitat 

destruction (Rothschild et al., 1994; Flockhart, 2015), climate change (Møller et al., 2008), and 

the detrimental effects of invasive species (Fritts & Rodda, 1998; Clavero & García-Berthou, 

2005). On the other hand, populations of invasive species and others released from competition 

and/or predation pressure may be expanding (Benning et al., 2002; Hulme, 2009).  These 

changes in population size can lead to rapid evolutionary changes (Charlesworth, 2009), where 

evolution is defined as the change in allele frequencies through time (Dobzhansky, 1937). As 

effective population size declines, genetic drift (Fisher 1922, Wright 1931) becomes more rapid 

and reduces genetic variation (Ellstrand & Elam, 1993; Willoughby et al., 2015).  In expanding 

populations, mutations accumulate, and drive increases in genetic diversity (Frankham et al., 

2014). While many analytical procedures used by researchers assume that natural populations are 
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in mutation-drift equilibrium, the past 40 years of population genetic research with DNA 

sequencing has revealed that most natural populations are in a state of disequilibrium (Gibbons et 

al., 2000; Allentoft & O’Brien 2010; Potts et al., 2010; Magurran, 2013) and it is important to 

understand how diversity changes in these populations through time. 

Within-group genetic diversity metrics are intended to quantify the amount of standing 

genetic variation within a sample. There are several measures of genetic diversity, and each 

quantifies a different aspect of diversity (Jost, 2008). In its simplest form, genetic diversity can 

be represented as the number of variants also known as zero-order measures.  Common measures 

include number of segregating or polymorphic sites (S), haplotypes (k), and heterozygotes (H; 

Hartl & Clark, 2007).  Second order measures of diversity represent both numbers of variants 

and how common they are, disproportionately weighting the most common variants (Jost, 2008).  

These include gene diversity, (He, Nei,1973) and the observed heterozygosity. Related metrics of 

diversity include the mean number of pair-wise mismatches (Π; Hartl & Clark, 2007), where a 

mismatch is a segregating site between two DNA sequences, and nucleotide diversity (Nei & Li, 

1979; Excoffier & Lischer, 2010).  These descriptive statistics of genetic diversity provide 

valuable insights into population variation which are related to evolutionary potential. 

Standing genetic diversity is generally related to the ability of a species to adapt on 

ecological time scales to the accelerating changes in selective landscapes (Bell & Collins, 2008; 

Pauls et al., 2013).  Elimination of alleles can be detrimental to population persistence because a 

rare allele conferring no fitness advantage may become advantageous in a new selective 

landscape (Barrett & Schluter, 2008).  Consequently, preventing the loss of genetic diversity 

associated with small population should be a prominent goal of natural resource management 

(McNeely et al., 1990; Reed & Frankham, 2003). Ultimately, smaller populations support less 
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genetic diversity, which decreases adaptive capacity and persistence in a changing environment 

(Soulé, 1976; Frankham, 1996; Pauls et al., 2013; Romiguier et al., 2014) risk spiraling down the 

extinction vortex as detrimental factors, such as increased inbreeding and buildup of deleterious 

alleles, compound (Gilpin & Soulé, 1986).  

Based upon the relative rates at which diversity can be lost due to genetic drift 

(Maruyama & Fuerst, 1985; Allendorf, 1986) and accumulated due to mutation (Nei et al., 1975; 

Maruyama & Fuerst, 1984), it is expected that the accumulation of diversity through mutation 

alone will take a longer time than the loss of diversity via drift. Mutation rate and the loss of 

mutations via genetic drift are largely responsible for the rate at which genetic diversity is 

accrued following a population expansion (Nei et al. 1975, Maruyama & Fuerst 1984).  As 

populations become larger, more mutations are generated, and genetic drift becomes weaker 

leading to fewermutations becoming extinct. Thus, larger populations at equilibrium are 

expected to have greater genetic diversity than small populations:𝐻0 =
4𝑁µ

4𝑁µ+1
  (Nei et al. 1975) 

where H0 is the original heterozygosity. Because background mutation rates tend to be low 

(=10-10 – 10-7) it may take thousands of generations to reintroduce lost genetic diversity (Lacy, 

1987), and mutation rates are generally deemed to be too slow to produce adaptively 

advantageous variants on short ecological time scales (Wright, 1932; Lacy, 1987). Mutation 

rates, however, do vary among loci (Chakraborty et al., 1997), causing diversity to accrue faster 

in some loci than in others. 

Interestingly, there is variability in the sensitivity of different measures of genetic 

diversity to expansions in population size. Using the infinite alleles model, Nei et al. (1975) 

found that the number of alleles in a population increased more rapidly than the gene diversity. 

Nei & Li (1976) have also shown that the expected number of alleles increases more quickly 



5 

 

than gene diversity (Nei & Li, 1976), and Maruyama and Fuerst (1984) came to a similar 

conclusion using a different numerical method.  Following these studies, Tajima (1989) used the 

infinite sites model to demonstrate that S increases more rapidly in an expanding population than 

 and concluded that the difference in the responsiveness was analogous to that previously 

found for the number of alleles and gene diversity.  Differences among the rates of accumulation 

can be attributed to how new mutations are low in frequency when they first enter a population. 

Measures of genetic diversity that are insensitive to rare alleles, such as nucleotide diversity, 

increase at a slower rate than those which are sensitive to rare alleles such as number of 

heterozygotes, assuming a constant . 

With µ remaining constant, the time required for a population to reach genetic 

equilibrium is directly dependent on the change in population size. Additionally, smaller 

populations reach genetic equilibrium faster (Maruyama & Fuerst, 1984).  There are few studies 

that we know of, however, that compare the full suite of genetic diversity indices, both site and 

allele-based, within the same context (Aris-Brosou & Excoffier, 1996). 

We built upon these previous studies by directly comparing the responses of six indices 

of genetic diversity in expanding populations using forward-time population genetic simulations 

of next-generation restriction-site-associated DNA sequences (RADseq) for ease of comparisons 

between simulated results and data collected from natural populations.  We tested for differences 

in the rate of accumulation in different measures of genetic diversity, time until genetic 

equilibrium is reached, and differences in the final equilibrium value. A predictive model was 

made to describe the accumulation of genetic diversity and its performance was evaluated. 
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CHAPTER II 

METHODS 

Demographic Population Expansion Model 

A logistic population growth model was chosen to accurately portray natural populations 

and the carrying capacity (Hastings, 2013): 

 
𝑑𝑁

𝑑𝑇
= 𝑟𝑚𝑎𝑥

(𝐾−𝑁)

𝐾
𝑁 (1) 

where rmax is the growth rate, K is carrying capacity, and N is the number of individuals in the 

population (Equation 1).  To model rapidly increasing populations, a growth rate of 0.3 was used 

as a reasonable rate of expansion seen in natural populations of both invertebrate and vertebrate 

populations,including Tisbe battagliai and Macropus spp. respectively. (Sibly & Hone, 2002). 

Populations were created with different initial (Ne0) and final population sizes (Ne1).  We 

assumed that all individuals had equal reproductive rates, and thus, the population sizes are both 

census (N) and effective (Ne).  Simulated populations were diploid, reproduced in discrete 

generations, and evolved according to the classic Wright-Fisher model (Fisher, 1923; Wright, 

1931, Hartl & Clark, 2007). Similar to Nei et al. (1975), the simulations began with either Ne0 = 

2 or Ne0 =100 to simulate a population starting with either minimal diversity or a population that 

has a low level of diversity, respectively. Following Eq 1, populations expanded to one of five 

final population sizes (Ne1 = 100, 500, 1000, 5000, or 10000). The values of Ne1 were chosen 

because they are realistic effective population sizes of species (Hasuer & Carvallho 2008The 

combination of Ne0 and Ne1 that did not result in an expansion (i.e., Ne0 = 100 and Ne1 = 100) was 

omitted. 
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Population Genetic Model 

 The modeled DNA within each population included 192-102,400 loci which were 

unlinked and conformed to the infinite-sites mutation model (Kimura, 1969). Each allele, in each 

locus, in each individual began with 300 adenosines, and one of five mutation rates ( = 1x10-4, 

1x10-5, 1x10-6, 1x10-7, or 1x10-8 per base pair per generation) was assigned to each locus, 

spanning the range of that commonly observed in sexually reproducing eukaryotes (Lynch, 

2010).  All treatments, demographic and genetic, were fully factorially crossed (see Simulations 

below).  Haplotype sequences were 300 bp to simulate the most common type of data generated 

double digest restriction site associated DNA sequencing (ddRAD, Peterson et al., 2012), which 

is popular in both model and non-model species. For the sake of simplicity, the only possible 

allelic states were either “A” or “T”, and it was possible for each to mutate to the other.  We did 

not differentiate between alleles with the same state that originated from different mutational 

events, thus allowing for homoplasy, as would be the case with empirical data. 

Simulations 

 To simulate expanding populations, a forward-time Wright-Fisher population genetic 

simulator, Selection on Linked Mutations (SLiM 2, Haller & Messer, 2016), was employed.  We 

simulated populations that began with either no variation (Ne0=2) or a small amount of variation 

(Ne0=100). Populations starting with 100 individuals were allowed to reach mutation-drift 

equilibrium prior to expansion by allowing 1,000 generations of no growth (r=0). Because our 

simulations were computationally intensive, we ran simulations on the TAMUCC high 

performance computing cluster, but even then, there were limitations on the number of 

generations and sampling times. During population growth, each population was sampled 124 

times, from 0 to 105 - 106 generations after the beginning of expansion. These sampling times 
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were chosen to cover the time between the onset of population growth and mutation-drift 

equilibrium while balancing the constraints on the amount of time required to run the 

simulations. Samples consisted of 100 diploid individuals, each with unlinked and selectively 

neutral 300 bp loci. Each treatment combination was replicated 192 to 102,400 times (see loci in 

Table S1) to obtain better estimates of population genetic parameters which are subject to the 

variation driven by genetic drift. The replicates are effectively 300 bp loci.  The SLiM2 scripts 

and scripts for all subsequent data processing and analysis described from here forward can be 

found at https://github.com/abynum91/BynumThesisScripts. 

Data Processing 

 A custom bash (Free Software Foundation, 2007) script which employed GNU Parallel 

(Tange, 2011) was used to (1) convert all variant call format (VCF; Danecek et. al., 2011) output 

from SLiM2 to Arlequin format (Excoffier & Lischer, 2010), (2) run Arlequin, and (3) convert 

results from Arlequin’s xml output files to tidy tab-delimited files (Wickham et al., 2019).  

Arlequin was used to calculate nucleotide diversity (Nei & Li, 1979), number of polymorphic 

sites, number of substitutions, number of heterozygotes, number of homozygotes, gene diversity, 

and number of haplotypes.  We additionally used the Arlequin output to the effective number of 

haplotypes (Jost, 2008). 

Data Analysis 

 Results from Arlequin were analyzed in R (R Core Team, 2020) and plots were created 

using the package ggplot2 (Wickham, 2016). 

Logistic growth models were used to estimate the rate of increase in genetic diversity, the 

amount of time to reach equilibrium, and the amount of genetic diversity at equilibrium. The 

logistic regression model is: 

https://github.com/abynum91/BynumThesisScripts
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 𝐷 =
𝐷eq−𝐷0

1+𝑒

𝑡50eq−𝑡

Φ3

+ 𝐷0 (2) 

where D0 is the genetic diversity (D) at the start of the population expansion, Deq is D at 

equilibrium (Fig 1), t50eq is the time required for 𝐷 = 0.5(𝐷𝑒𝑞 − 𝐷0) = 0.5𝐷Δ, Φ3 is the 

difference between the time required for  𝐷 =
𝐷Δ

1+𝑒−1 ≈ 0.73𝐷Δ and t50eq, and t is number of 

generations (Fig 1A; Pinheiro et al., 2016). Logistic regression models were fit to each measure 

of genetic diversity using a nonlinear (weighted) least-squares (nls) model with the self-startup 

SSlogis in R (R Core Team, 2013). For the models with Ne0 = 100, D0 was estimated as the 

lowest observed genetic diversity for a given treatment and subtracted from all observations of 

genetic diversity within the same treatment prior to fitting the model, which assumed D0 = 0.  

The times to reach x% of equilibrium (txeq), where x=5|95, were calculated by solving Eq 2 for t 

given 𝑦 = 𝑥𝐷𝑒𝑞 (Fig 1). The maximum observed rate of increase in genetic diversity (r) per 

generation was defined as the slope of the best fit logistic model at t = t50eq, and can be derived 

by taking the derivative of Eq 2 and setting t = t50eq and D0 = 0: 

 
𝑑𝐷

𝑑𝑡
= (

𝐷eq

1+𝑒

𝑡50eq−𝑡

Φ3

)

−2

(𝑒
𝑡50eq−𝑡

Φ3 ) (
1

Φ3
),  𝑟 =  

(1+𝑒0)
−2

(𝑒0)

Φ3
=

𝐷𝑒𝑞

4Φ3
 (3) 

To assess the fits of the logistic models to the data, we created scatterplots (Fig S2) of 

residuals versus fits to identify deviations from model assumptions of randomly distributed 

residuals and calculated residual standard error (RSE), achieved convergence tolerance (ACT), 

and the standard error (SE) for each parameter estimate. The RSE is an estimate of the standard 

deviation of the distribution of residuals, which are the difference between the model-predicted 

and simulated mean values of genetic diversity.  Thus, the smaller the RSE are relative to 

simulated values of genetic diversity, the better the logistic model fits the data.   
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We also estimated of the logistic model parameters Deq, t50eq, and Φ3 directly from the 

simulation data to test for bias in the estimates from the nls model.  For the estimation of Deq, we 

identified the mean diversity values that were at (or very near) equilibrium using an algorithm 

that started by considering all data points for a particular simulation treatment combination after 

log10t85eq (estimated from logistic model) and comparing their skewness (R package e1071) to a 

sample from log10t85eq + 0.1 after removing outliers (Q1-1.5IQR and Q3+1.5IQR) from both.  

Skewness is expected to trend towards zero as equilibrium is approached.  If the skewness of the 

second sample was closer to zero, then log10 teq was iteratively increased by 0.1 until the sample 

with lowest skewness value was identified, and the mean and standard deviation of the Deq 

estimates were recorded.  t50eq was estimated as the time at which the mean diversity value across 

loci was 0.5Deq. This was accomplished by sampling the data points near t50eq (𝐷 = 0.5𝐷eq ±

0.1𝐷eq), fitting a linear model to diversity versus log10t using the lm and summary R commands 

to generate the equation for the best fit line, and plugging in 0.5Deq and solving for t.  A similar 

procedure was followed for estimating Φ3 except the data sampled were 𝐷 = 0.73𝐷eq ± 0.1𝐷eq 

to obtain t73eq from which t50eq was subtracted (refer to the description of Eq. 2). 

To directly test for differences among different genetic diversity measures, genetic 

diversity values were standardized relative to their equilibrium values, Deq, using the following 

equation: 

 𝐷sij
=

𝐷ij

𝐷eq.i
  (4) 

where Ds (range: 0-1), is the standardized diversity value for observation j from diversity index i, 

Dij is any single genetic diversity value, and 𝐷eq.i is the equilibrium value for diversity index i 

given a particular combination of Ne0, Ne1, and µ. To test the global model of the effects of Ne0, 

Ne1, and  on rstd (the standardized rate of increase and essentially the same as Φ3 because Deq = 
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1, see Eq 3), t50eq, t05eq, and t95eq, we employed the following linear model using the lm function 

in R: 

 𝑦 ~ 𝑁𝑒0 ∗ 𝑁𝑒1 ∗ µ (5) 

where all individual sources of variation and interactions were included in the model. Because 

each diversity index was independently modeled as described above (LM.1-4, Table 1) and the 

simplest model explained most of the variation, we decided that it was not important to 

investigate more complex models that included Ds ,  and Ne1 were transformed, as necessary, to 

satisfy the assumptions of least squares multiple regression. 

Predictive Model 

 Systematic variation in the logistic model parameters (Deq, t50eq, Φ3) would enable 

straight-forward interpolation of any combination of simulation parameters within the range 

investigated. We endeavored to generate a predictive model (PhiPhinder.r) that accepts the inputs 

of Ne0, Ne1, and  and returns D0.i, Deq.i, t50eq.i, and Φ3i, thereby enabling the parameterization of 

a logistic model describing the change in diversity over time.  To test the relationships of the 

response variables associated with the accumulation of genetic diversity in an expanding 

population (Deq, t50eq, Φ3) with the initial population size (Ne0), final population size (Ne1), and 

mutation rates (), we employed multiple linear regression models with and without quadratic 

terms using the lm R command (Table 1). Variables were transformed, as necessary, to satisfy 

the assumptions of least squares multiple regression. The contribution of the predictors to the 

linear models were evaluated using t-statistics and p values generated by the summary R 

function.  The adjusted R2 parameter from the summary R command was used to quantify the 

amount of variation explained by the model.  
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To better estimate Deq, which most strongly affects the inferred diversity trajectories, we 

additionally compared the performance of the linear models to nonlinear models fit using R 

packages drc (Ritz et al., 2015) and aomisc (Onofri & Garcia 2021, see Table 1). Explicitly, two 

levels of models were used.  First the relationships between Deq and  were modeled 

independently for each combination of Ne0 and Ne1.  Second, the relationships between nonlinear 

parameter estimates themselves and Ne1 were modeled for each Ne0 (see Table 1). The 

performances of the models were either described using the AIC and BIC R commands or by 

directly calculating AIC and BIC so that the linear and nested nonlinear models could be 

compared.  AIC was favored over BIC when they disagreed because we were more interested in 

obtaining a good fit than minimizing the number of parameters required to obtain the fit. The 

best models were used to parameterize the PhiPhinder.r script described earlier in this paragraph. 
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CHAPTER III 

RESULTS 

Performance of Logistic Models 

The logistic model was generally effective at describing the increase in diversity indices 

with time in an expanding population (Figs 2; S1; Table S1).  In all 45 sets of simulation 

parameters (, Ne0, Ne1) for all diversity indices, the nls function converged (ACT < 9.8E-6), and 

the RSE were small (0.01 – 7.0% of adjusted equilibrium diversity value, DΔ; Table S1), 

indicating that an adequate number of loci were sampled to control variation.  As evidenced by 

lower RSE values, the best model fits were associated with greater values of Ne0, Ne1, and  

(Table S1).  The lowest values of Ne0 and Ne1 resulted in the greatest RSE (relative to equilibrium 

diversity) for  = 10-8 due to the high variability associated with strong genetic drift and 

computational constraints on the number of loci we could simulate in a reasonable amount of 

time (up to 102,400, 300 bp loci).  

In visual inspections of the scatterplots of residuals from the logistic models versus time 

(Fig S2.1-12), there was a small amount of systematic bias which oscillated through time for all 

diversity indices.  For nucleotide diversity (Figs S2.1, S2.7), gene diversity (Figs S2.2, 2.8), and 

effective number of haplotypes (Figs S2.5, S2.11), the patterns reflect that simulated diversity 

increased faster than the logistic models immediately after the population expansion (all 

expansions completed within 62 generations), slower than the logistic models midway to 

equilibrium, and faster than the logistic models as equilibrium was approached. The number of 

substitutions (Figs S2.3, S2.9), heterozygotes (Figs S2.4, .10), and haplotypes (Figs S2.6, .12), 

exhibited the opposite pattern, and thus estimates of parameters such as t05eq and t95eq are 

expected to be slightly biased below the true values.   



14 

 

The longer the populations were simulated past the time at which equilibrium was 

approached (t95eq, see Figs S1.1-12, S2.1-12, S3.1-3), the lower the relative bias and the better the 

estimate of Deq, with a total simulation time of ~ 2 + log10 t95eq resulting in minimized relative 

bias. In simulations run for fewer generations after t95eq, the model estimates of Deq are often 

biased above the true values (up to 1.06x, Fig S3.1.1), which were independently estimated from 

the simulation results (Table S1). However, in most cases, the upwards relative bias was much 

lower (mean = 1.02x). Logistic model estimates of t50eq and Φ3 were biased above or below the 

true values by a factor of 0.99 -1.03 and 0.76 -1.24x, respectively, depending upon diversity 

index, mutation rate, and final population size (Figs S3.1.2-3). Another source of bias was the 

amount of variation in the mean diversity indices, a function of mutation rate and number of loci 

(Table S1).  At low mutation rates, it became computationally unfeasible to simulate 

proportionately more loci as the mutation rate decreased, which contributes to the greater degree 

of relative bias observed at lower mutation rates, especially 10-8. 

Modeling Logistic Parameters 

Most of the variation in the equilibrium diversity value (Φ1, Fig 3), and the time for 

diversity to reach 50% of equilibrium (t50eq, Fig 5), given Ne0, Ne1, and  were well described 

with the best-fit multiple linear regression models (R2 = 0.9673 – 0.9989; Tables 2, S2).  The 

best models, as determined by BIC, all included 2 (LM.2, .4), and those for nucleotide diversity 

and number of substitutions also included Ne1
2 (LM.4).  For AIC, which penalizes additional 

model parameters less severely than BIC, the more complex model (LM.4) was selected for the 

cases where AIC and BIC were not in agreement.  For all best models, there was an interaction 

of Ne1 or Ne1
2 with  or 2, but no effect of Ne0 (see Tables S3.2, S3.4).   
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There were usually positive relationships of Deq with Ne1 and , but there were exceptions 

where Ne1 had little effect on Deq when the effective number of haplotypes were near their 

minimum ( = 10-8) or the gene diversity and number of heterozygotes became saturated given 

the sample size ( = 10-4; Figs 3, S4.1.1; Tables S3.1-4).  For t50eq, a similar pattern was observed 

with respect to Ne1, however there were usually negative relationships with , where faster  was 

associated with faster approaches to equilibrium, and thus lesser t50eq (Figs 4, S4.1.2, S4.3.2; 

Table S3.1-4). This effect became more pronounced with larger increases in population size. 

By contrast, less variation in the logistic parameter Φ3 were explained by the models 

(LM.1-4, Table 1) than for the other parameters (Tables 2, S3.2, S3.4; Figs 5, S4.4.3).  The Φ3 

for nucleotide diversity had the worst model fit (R2=0.38; Table S3.2) with gene diversity 

exhibiting the next poorest fit (R2=0.82). For the other indices, 83-98% of the variation in 3 was 

explained by the best models, which again were either LM.2 (with 2) or LM.4 (with both 2 and 

Ne1
2) (Table 2; Tables S3.2, S3.4). 

Comparisons of Common Genetic Diversity Indices 

As mutation rate increased, and to a lesser extent as the Ne1 increased, the different 

genetic diversity indices exhibited increasingly unique behavior (Figs 2, S1.7-1.11).  There were 

significant differences among the diversity indices in their rates of increase as well as the times 

to increase to 5% (t05eq), 50% (t50eq), and 95% (t95eq) of their equilibrium values (p < 0.05; Table 

S1-2; Figs 2, 4, 6-7), and the differences varied with , Ne0, Ne1, and their interaction (p < 0.05).  

At =10-8, only two patterns of increasing standardized diversity were evident, regardless of Ne1 

(Figs 2A-B, S1.7), with nucleotide diversity, effective number of haplotypes, gene diversity, and 

number of heterozygotes increasing towards equilibrium at a greater maximum rate (3, smaller 

values indicate faster rates; Fig 5A-B; Table S1), but taking longer to reach t05eq and t50eq (Figs 
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4A-B, 6A-B) than the number of haplotypes and number of substitutions.  At =10-6, as Ne1 

increased, 3 became increasingly differentiated among the different diversity indices (Figs 5E-

F) with the same two aforementioned groupings of indices at Ne1=500 and four groupings at 

Ne1=10,000. The 3 for effective number of haplotypes and number of haplotypes decreased 

(faster) with increasing Ne1, while the others increased (slower). The t50eq of all diversity indices 

increased with Ne1, but for gene diversity and the number of heterozygotes t50eq increased more 

slowly (Figs 4E-F).  The t05eq and t95eq also became more differentiated at higher Ne1 (Figs 6-7E-

F) but with different groupings of indices at Ne1=10,000 than for 3.  This demonstrates the 

complexity of the relationships here, and there are clearly interactions among Ne0, Ne1, , and Ds 

(Tables 2, S3.1-4). Indeed, at =10-5 and =10-4 there are 5-6 different patterns of diversity 

increase (Figs 2G-J), due to variation in 3, t50eq, t05eq and t95eq (Figs 4-7, S4.1.2, S4.1.5-7; 

S4.2.2, S4.2.5-7; S4.3.2, S4.3.5-7; S4.4.2, S4.4.5-7). 

The differences in the standardized diversity indices at a given generation can be quite 

distinct.  For example, when standardized nucleotide diversity is at 0.05 (=10-4, Ne0=2, 

Ne1=10,000; Fig 2), the standardized gene diversity, number of heterozygotes and number of 

haplotypes are above 0.95, approaching equilibrium.  These differences in progression towards 

equilibrium decrease with decreasing  and Ne1, but even at  = 10-8 and Ne1=500, when the 

standardized effective number of haplotypes is 0.05, the standardized number of substitutions is 

at ~0.35.  Overall, nucleotide diversity is generally the slowest to t05eq, t50eq, and t95eq, while gene 

diversity and the number of heterozygotes are generally the fastest (Figs 4, 6-7). When Ne1 is 

small and/or  <= 10-6, however, the number of substitutions and haplotypes can be the fastest to 

t05eq and t50eq, while the effective number of haplotypes can be the slowest to t05eq and t50eq. 

Because it consistently has the highest 3 (slowest), the number of substitutions can take as long 
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as nucleotide diversity and the effective number of haplotypes to reach teq95 and Φ1 when either 

Ne1 is small or  ≤ 10-5. 

The time to achieve 5% of the equilibrium value of diversity was lowest for the number 

of substitutions (Fig 6), except at =10-4, and Ne1>1000.  For Ne1<=1000, t05eq < 10 generations 

for the number of substitutions, and t05eq < 100 generations even for Ne1 = 10,000. At the other 

end of the spectrum, t05eq = 20-3000 generations for the effective number of haplotypes and 

nucleotide diversity and was positively related to Ne1 and maximized at =10-6.  The time to 

reach 95% of the equilibrium level of nucleotide diversity (1000-30,000 generations) was also 

positively related to Ne1 but negatively related to .  Due to a limitation on the sample size 

(n=100), t95eq was shortest for the number of heterozygotes (~100-10,000 generations, Fig 7). 

Prediction Model 

Generally, as Ne1 increased, the amount of bias for PhiPhinder.r approached 1.0 for all 

measures of genetic diversity for Deq (Figs 8, S5-6). Increasing mutation rate resulted in a similar 

pattern of the relative bias approaching 1.0 except when Ne0 = 100,  = 10-4, for number of 

heterozygotes (Fig 8B) and gene diversity (Fig 8D) which had extreme bias estimates of 0.11 and 

0.13, respectively.  Effective number of haplotypes (Fig 8E, F) has the highest and lowest bias 

values of 1.75 and 0.001 respectively and a mean of 0.61.  Number of heterozygotes (Figs 8A, 

B), gene diversity (Figs 8C, D), number of substitutions (Figs 8I, J), and nucleotide diversity (Fig 

8K, L) have bias values closer to 1.0 with means of 0.84, 0.84, 0.97, and 0.96, respectively.  On 

average PhiPhinder.r overestimates Deq values with an average bias value of 0.81.   
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CHAPTER IV 

DISCUSSION 

While the behavior of heterozygosity in expanding populations is well known (e.g. Nei et 

al., 1975; Maruyama & Fuerst, 1984; Tajima, 1989), it receives relatively little attention when 

compared to contracting populations, and it can be difficult to interpret the results of modern 

studies based upon the seminal work because of differences in units or measures of genetic 

diversity employed.  Detailing the accumulation of genetic diversity in expanding populations 

should be relevant in studies of species invasions, range expansions, and populations recovering 

from bottlenecks due to anthropogenic activities. 

Differences among the diversity indices 

There are clearly differences among diversity indices in populations that have expanded, 

which can be best visualized in their standardized form (Figs 2, S1.7-11), and it should be 

possible to exploit these differences in population studies.  Differences amongst the measures of 

genetic diversity can be seen even in the lowest values of  where accumulation of diversity is 

similar among metrics of the same order (see Fig 2; q = 0 for number of haplotypes and 

substitutions & q = 1 for the others; Jost, 2008).  Zero-order diversity measures are more 

sensitive to rare variants because they consist of simple counts of variants where rare and 

common variants are equally weighted. Since expanding populations have an excess of rare 

alleles (Maruyama & Fuerst 1984), these measures tend to increase sooner after the population 

expansion than most second-order measures unless they become saturated, which depends on , 

sample size, and number of nucleotides per locus. Metrics that approach their upper limits at 

lower  (number of haplotypes, heterozygotes, gene diversity) generally increase sooner after the 

expansion as  increases than those that do not approach saturation (nucleotide diversity).  
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The emergent result is that the metrics of diversity are differentially informative 

depending upon time since expansion and , where informative is defined as likely to differ 

between sampling times.  For example, if =10-4, at ~100 generations after the expansion some 

metrics will be near equilibrium (number of haplotypes, heterozygotes, gene diversity) and 

others will be near zero (nucleotide diversity). Clearly, different diversity metrics used 

individually could result in different conclusions. The maturation of genetic diversity is best 

described by the differential progression towards equilibrium among the metrics. The windows 

of maximal informativeness for the diversity metrics are approximately defined as the 

generations between t05eq and t95eq (Table S1). They are strongly affected by mutation rate and 

more weakly affected by initial and final population sizes.  With an estimate of population size, 

which could be obtained from genetic data using NeEstimator (Do et al., 2014), and an estimate 

of , observed metrics of diversity can be compared to their equilibrium values. If at least one of 

the metrics is in the window of informativeness, then it may be possible to detect changes in 

diversity between samples from different time points. If the initial population is between 2 and 

100, it has little effect on the trajectories of diversity increase (Figs. S1.1-11). A more general 

recommendation is that when testing for differences in diversity among sampling times in 

expanding populations, it would be wise to employ several diversity metrics because they may 

exhibit different patterns. 

Considerations for Empirical Next-Gen Studies of Expanding Populations 

In modern studies that employ high-throughput Illumina sequencing (Kuhn et al. 2004), it 

is common to over-filter the data and remove real diversity in a quest to remove sequencer errors 

(Kircher et al. 2012, O’Leary et al. 2018) – especially rarer variants, which are most common in 

expanding populations. Conversely, under-filtering will inflate rare variants, so a balance must 
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be struck. We recommend that attention be given to retaining as much natural variation as 

possible while attempting to remove variation caused by procedural error, especially when 

basing conclusions on rare variants or zero-order diversity metrics (O’Leary et al. 2018).  

Explicitly, we are advocating against the common practice of (blindly) removing loci with low 

frequency alternate alleles. This necessitates adequate depth of coverage and the sampling of 

many cells (genomes) to decipher between errors and rare alleles.  The exception to this is for 

metrics that are relatively insensitive to rare alleles, e.g., nucleotide diversity, gene diversity and 

effective number of haplotypes, will be less affected by over- or under-filtering because they are 

not sensitive to rare alleles.  The ability to adequately filter the data could affect which diversity 

metrics are reliable. 

It is worthwhile to note that while nucleotide diversity and number substitutions can be 

calculated with SNP data, haplotypic data is required to calculate the other indices.  Software 

that enables haplotyping of population genomic data such as rad_haplotyper (Hollenbeck, 2017; 

Willis et al., 2017) will be useful in calculating the indices evaluated here. The inferences made 

from just nucleotide diversity and number of substitutions, can be limited.  Depending on , 

there can be “dead zones” of sensitivity to changes in diversity if only nucleotide diversity and 

number of substitutions are used.  For example, assume a population where Ne0=2, Ne1=10,000, 

and =10-6, the population will reach genetic equilibrium according to the number of 

heterozygotes, genetic diversity, and effective number of haplotypes, thousands of generations 

before either nucleotide diversity or number of substitutions.  The one exception here is that SNP 

data can be used to estimate site-frequency spectra, which can be useful in studying expanding 

(or contracting) populations (Städler et al., 2009; Keinan & Clark 2012) but is beyond the scope 

of this work. 
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It takes a long time for genetic diversity to accumulate and the larger the expansion the 

longer it takes. 

One of the greatest justifications for the conservation of natural populations, beyond that 

our existence depends upon them, is that diversity can be lost in a short period of time, but it 

takes a long time for that diversity to replenish.  Given middling mutation rates (e.g., =10-6), it 

takes ~3,000-30,000 generations for neutral genetic variation to approach equilibrium values in 

populations that expand from 2 or 100 to 500-10,000 effective individuals.  Perhaps even more 

sobering is that it can take up to 3,500 generations for nucleotide diversity to increase to 5% of 

its equilibrium value (Ne0=100, Fig. 2F) and up to 161,000 generations to reach 95% in a 

population expanding to 10,000 effective individuals.   

Bridging the gap between simulation and real-world populations, critically endangered 

species, such as the kākāpō, Strigops habroptilus, can require hundreds or thousands of 

generations to recover genetic diversity, as conservation efforts attempt to expand their 

populations (Gerrodette et al. 2011 & White et al. 2015). In conservation, the number of variants 

can be monitored to track the genetic health of a population. While genetic equilibrium may not 

exist in natural populations, we can use it to measure potential genetic diversity in a population. 

Here, we can examine the Southern White Rhinoceros, Ceratotherium simum. As of January 

2020, the estimated population size is around 10,000 adults, which grew from 20-50 adults in the 

late 19th century (Emslie 2020). Using an estimated  of 2.5 x 10-8 (Tunstall et al. 2018) and 

assuming the number of haplotypes to be 1 (based on the Deq value of a population expanding to 

50 individuals), we can use PhiPhinder.r to estimate genetic equilibrium for C. simum. Using 

PhiPhinder's results, we can then estimate how long the population will take to reach genetic 

equilibrium. If the current C. simum population is left undisturbed and stabilizes at Ne1=10,000; 
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then an estimated 490 generations (3,920 yrs) are required to recover 5% of the equilibrium 

number of haplotypes and 61,376 generations (~491,009 yrs) to reach 95% of the equilibrium 

number of haplotypes, given a generation time of 8 years (Hillman-Smith et al. 1986). Here, we 

show the stark contrast between how quickly genetic diversity can be lost and the time necessary 

for a population to regain that genetic diversity. It is important to note that these simulations 

were done assuming there were no biotic or abiotic factors which results in an even faster 

accumulation of genetic diversity than in the natural world. 

Utility of Models Presented Here 

The logistic and linear models presented here can be used to estimate genetic diversity in 

expanding populations that begin with 2-100 effective individuals and expand to 100-10,000 

individuals for the realistic range of mutation rates encountered in nature.  It took a substantial 

amount of computational power to perform the simulations and analysis presented here, and it 

would require a substantial amount of work to obtain similar results for specific simulations. 

PhiPhinder.r can be used to estimate logistic model parameters (Eq 2; D0, Deq, t50eq, Φ3) given 

combinations of Ne0, Ne1, and  and curves of diversity in expanding populations could be drawn 

from the output.  The R script, PhiPhinder.r, uses the results reported here to generate estimated 

model parameters for each measure of genetic diversity when given any Ne0, Ne1, and .  

Despite very good model fits to the simulated data in most circumstances (Table 2), the 

performance of PhiPhinder was variable, and it performed well in some areas of parameter space 

and poorly in others (Fig 8), thus there are some limitations.  First, if one wishes to estimate 

patterns of diversity in populations that exceed the range of Ne0, Ne1, and  reported here, they 

will be better off using another method to predict changes in diversity. PhiPhinder.r has a built-in 

switch that will give better estimates of Deq, t50eq, and/or Φ3 if Ne0, Ne1, and , are restricted to the 
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values reported here. The switch will take the exact values from the estimated model parameter 

regression rather than attempting to estimate them. Even then, this does not guarantee low bias in 

the estimates of PhiPhinder.r. 

Second, there is a built-in assumption that contig lengths will be 300bp and sample sizes 

will be 100 diploids.  Number of haplotypes and heterozygotes will be sensitive to the sample 

size and the number of substitutions will be sensitive to the haplotype length, especially when 

they approach their maximum possible values when Ne1 and  are large.  The other diversity 

indices should be more robust to deviations in sample size and haplotype length.   

Third, the logistic models used by PhiPhinder.r exhibit systematic bias through time 

when compared directly with the simulated data (Fig S2), and while the bias was generally below 

5% for  >= 10-6, it did increase to as much as ~30% for  = 10-8.  The degree of bias beyond 

~5% was directly a function of the number of loci simulated relative to the number of mutations 

in the population at equilibrium, and thus low  and Ne1 were associated with slightly higher bias 

when we could not reasonably simulate the number of loci.  For Ne1=100 and =10-8, the amount 

of computational power available to us was not enough to reasonably control bias.  

Fourth, choosing a correct model to fit the logistic model parameters (Deq, t50eq, and 3) 

with nonlinear regression proved difficult. Each logistic model parameter only had 4 or 5 distinct 

values, depending on Ne0, making it challenging to fit curves.  The greatest challenge was 

towards the extreme values of  (e.g., 10-8), where model fit was the poorest, presumably due in 

part to variation. Fitting just one model to all 4 or 5 points led to large errors when estimating the 

logistic model parameter, especially at the extreme values of . The data was split by , Ne0, 

and/or Ne1 to allow multiple models to fit the data better and give better estimates when Ne0, Ne1, 

and , are restricted to what is reported here. While doing so gives better estimates when input 
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values are restricted, the estimated values when input values are not restricted can result in poor 

estimates. 

Fifth, choosing the correct models for nonlinear regression proved difficult. While the 

chosen model, four parameter logistic regression, performed well, it was not the correct curve. 

Many of the logistic models had difficulty fitting the data around the midpoint. An obvious 

example is when Ne0=2 or 100, Ne1=10,000, and =10-6, for number of haplotypes (Fig S1.4), for 

raw or standardized data.  A better fitting model would provide better estimates of t50eq and thus 

better estimates for PhiPhinder.r. 

Overall, PhiPhinder.r is a powerful tool that estimates six different genetic diversity 

measures. The most reasonable estimates when , Ne0, and Ne1, are restricted to what is reported 

here. The output of PhiPhinder.r can be used to get a rough estimate of how many generations 

will be required for a population genetic diversity index to reach genetic equilibrium. Given 

PhiPhinder’s restrictions, genetic diversity estimates can help researchers predict the change in 

genetic diversity metrics in an expanding population given , Ne0, and Ne1. PhiPhinder.r produces 

estimates in seconds which is significantly faster than using the SLiM2 to Arlequin pipeline to 

obtain results. If the restrictions of PhiPhinder.r are too great, then the SLiM2 to Arlequin 

pipeline can prove useful to users wishing to model specific populations. Users can easily change 

model input parameters, such as , Ne0, and Ne1, and n, to best fit the study population. 

  



25 

 

Conclusions 

 While the predictive model performance was somewhat disappointing, the model fitting 

performance was quite good, and this effort did highlight important principles regarding the 

behavior of genetic diversity indices in expanding populations. We built upon previous efforts 

which found that two metrics of genetic diversity approached equilibrium at different rates in 

expanding populations [heterozygosity and allelic richness (Nei et al., 1975), allelic richness and 

gene diversity (Nei & Li, 1976; Maruyama & Fuerst, 1984), number of substitutions and gene 

diversity (Tajima, 1989)], by showing that all six metrics of genetic diversity (nucleotide 

diversity, number of substitutions, gene diversity, haplotypic richness, effective number of 

haplotypes, heterozygosity) do so, depending upon population size and mutation rate.  It is 

critical to studies seeking to test for increases in genetic diversity through time to select diversity 

measures carefully to match the population and time frame being studied to maximize the 

chances of detecting an increase in diversity.  Further, the wealth of simulation results spanning a 

broad range of realistic parameter space for expanding natural populations can serve as a 

reference for a broad variety of species and populations. 
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Figure 1.  Logistic model of genetic diversity accumulation. (A) A visual depiction of the 

logistic model (eq. 2) used for describing the change in genetic diversity through time in 

expanding populations.  The variables are described in the text.  (B) We reduced the number 

of model parameters to three by adjusting the starting diversity to be zero (D
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Figure 2. Changes in standardized genetic diversity in expanding populations, N
e1

=10
4
.  

All values have been standardized to a scale of D
0std

 = 0 to D
eqstd

 = 1. The results from all 

simulations are represented, with each point being the mean standardized diversity from each 

time point in each treatment combination.  Columns depict initial population sizes; rows 

depict mutation rate; and colors depict diversity indices.  Lines are best-fit logistic models 

described in Table S1.  
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Figure 3. Modelled equilibrium diversity D
eq

 versus N
e1

, , N
e0

 and diversity index. Points 

represent estimates of D
eq

 from the logistic models.  All axes are log
10

 scaled. Columns depict 

different initial population sizes, and colors depict different final mutation rates (). The best 

fit global linear models (eq. 4) and associated statistics are listed in Table 2. 
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Figure 4. t
50eq

 for different genetic diversity indices in expanding populations. Points 

represent estimates of t
50eq

 from the logistic models. All axes are log
10

 scaled. Columns depict 

different initial population sizes, rows depict different mutation rates, and colors depict 

different mutation rates. The lines are the best fit linear model (Table 2). 
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Figure 5. 3 for different genetic diversity indices in expanding populations.  Points 

represent estimates of 3 from the logistic models.  All axes are log10 scaled. Columns depict 

different initial population sizes, rows are different mutation rates, and colors depict different 

measures of genetic diversity.  Lines are best fit linear models (Table 2). 
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Figure 6. t
05eq

 for different genetic diversity indices in expanding populations.  Points 

represent estimates of t
05eq

 from the logistic models.  All axes are log
10

 scaled. Columns depict 

different initial population sizes, rows depict different mutation rates, and colors depict 

different measures of genetic diversity. Lines are best fit linear models. 
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Figure 7. t
95eq

 for different genetic diversity indices in expanding populations.  Points 

represent estimates of t
95eq

 from the logistic models.  All axes are log
10

 scaled. Columns depict 

different initial population sizes, rows depict different mutation rates, and colors depict 

different measures of genetic diversity. Lines are best fit linear models. 
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Figure 8. Relative bias in prediction of D
eq

. The equilibrium diversity values estimated by 

the PhiPhinder.r script are divided by the logistic model estimated D
eq

 values and plotted 

against mutation rate, genetic diversity index, and final population size.   
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Table 1. The functions used in modeling the nonlinear model parameters of Deq and the coefficients of the resulting models. Equations 

are presented how they are coded in R. The nonlinear models were used to both estimate Deq in response to mutation rate (x = ), as 

well as the nonlinear model parameter estimates themselves (x = a, x = b, ... etc) in response to Ne1. In some instances, a quadratic 

model (DRC.poly2) was a better estimator of the variation in the nonlinear model parameters in response to Ne1. 

 

 

 

R Package Model Name Function Description Response Variables Equation

Base R LM.4.1 First-order polynomial Deq, t 50eq,  3 f (x ) =  log10() * log10(N e1) * N e0 

LM.4.2 Second-order polynomial Deq, t 50eq,  3 f (x ) =  N e0 * log10()^2 * log10(N e1) + log10() * log10(N e1) * N e0 

LM.4.3 Second-order polynomial Deq, t 50eq,  3 f (x ) = N e0 * log10(N e1)^2 * log10() + log10() * log10(N e1) * N e0 

LM.4.4

Second-order polynomial Deq, t 50eq,  3 f (x ) = N e0 * log10(N e1)^2 * log10() + log10() * log10(N e1) * N e0 + N e0 * log10()^2 * log10(N e1)

aomisc DRC.poly2 Second-order polynomial a , b , c , d , g , f f (x ) = a + bx + cx^2 

aomisc DRC.powerCurve Power D eq, a , b f(x) = a * x^b 

aomisc DRC.asymReg Asymptotic D eq, a , b , c , g f (x ) = a + (b - a ) * (1 - exp(-cx ))

DRC AR.3 Three-parameter asymptotic D eq, a , b , c , g f (x ) = c + (d  - c ) * (1 - exp(-x /g ))

DRC AR.2 Two-parameter asymptotic D eq, d , g f (x ) =  d   * (1 - exp(-x /g ))

DRC LL.3 A three-parameter log-logistic function with 

a lower limit of 0.

D eq, b , d , g f (x ) = 0 + (d  - 0) / (1 + exp(b * (log (x ) - log (g )))

DRC LL.4 A four-parameter log-logistic function D eq, b , c , d , g f (x ) = c  + (d  - c ) / (1 + exp(b * (log (x ) - log (g )))

DRC LL.5 A five-parameter log-logistic function D eq, b , c , d , g , f f (x ) = c  + (d  - c ) / (1 + exp(b * (log (x ) - log (g ))) ^ f
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Table 2. Results from the best models, as determined by AIC, from the multiple linear regression 

analysis of the relationship of the logistic model parameters (Deq, t50eq, 3) and the rate of 

diversity increase at t50eq (r) with respect to initial population size (Ne0), final population size 

(Ne1), and mutation rate (m) for each of six diversity indices (see LM). RSE is the residual 

standard error, df is the degrees of freedom, and p is the probability of observing a t-statistic at 

least as extreme as that reported here by random chance.  Mutation rate and final population size 

were log10 transformed to satisfy the assumptions of the linear model. Emphasis indicates 

whether the information criteria supported the selected model.  In the case where BIC did not 

support the model selected, it supported LM.4. See Figs 3-6 for visualizations of the models and 

data. 

Response Diversity Index Best Model R
2

R
2

adj RSE F -stat p df AIC BIC

EffNumHaps LM.4 0.9992 0.9990 6.12E-03 6.24E+03 7.94E-55 37 -3.22E+02 -3.05E+02

GeneDiv LM.4 0.9954 0.9945 6.18E-03 1.14E+03 3.49E-41 37 -3.21E+02 -3.05E+02

NucDiv LM.4 0.9931 0.9918 2.11E-04 7.63E+02 5.38E-38 37 -6.25E+02 -6.09E+02

NumHaps LM.4 0.9995 0.9994 7.93E-03 1.02E+04 8.49E-59 37 -2.98E+02 -2.82E+02

NumHets LM.4 0.9999 0.9998 8.99E-03 3.66E+04 4.86E-69 37 -2.87E+02 -2.71E+02

NumSubs LM.4 0.9992 0.9991 1.38E-02 6.92E+03 1.19E-55 37 -2.48E+02 -2.32E+02

EffNumHaps LM.4 0.9829 0.9772 1.36E-01 1.72E+02 7.38E-26 33 -3.95E+01 -1.61E+01

GeneDiv LM.4 0.9932 0.9910 8.37E-02 4.40E+02 1.81E-32 33 -8.35E+01 -6.00E+01

NucDiv LM.4 0.9993 0.9989 4.85E-02 2.68E+03 2.26E-41 29 -1.30E+02 -9.97E+01

NumHaps LM.2 0.9796 0.9728 1.36E-01 1.44E+02 1.36E-24 33 -3.96E+01 -1.61E+01

NumHets LM.4 0.9932 0.9910 8.37E-02 4.39E+02 1.82E-32 33 -8.35E+01 -6.00E+01

NumSubs LM.4 0.9982 0.9973 7.28E-02 1.09E+03 1.04E-35 29 -9.38E+01 -6.31E+01

EffNumHaps † LL.3 - - 7.78E-02 - - 30 -8.84E+01 -5.95E+01

EffNumHaps ‡ DRC.pwrCurve - - 3.57E+00 - - 35 2.53E+02 2.73E+02

GeneDiv LL.4 - - 2.66E-03 - - 25 -3.91E+02 -3.53E+02

NucDiv LL.4 - - 2.48E-02 - - 25 -1.90E+02 -1.52E+02

NumHaps † LL.5 - - 2.06E-02 - - 20 -2.06E+02 -1.59E+02

NumHaps ‡ asymReg - - 1.03E+01 - - 30 3.51E+02 3.80E+02

NumHets LL.4 - - 2.48E-01 - - 25 1.77E+01 5.56E+01

NumSubs LL.5 - - 5.80E-03 - - 20 -3.20E+02 -2.73E+02

EffNumHaps LM.2 0.9909 0.9879 8.48E-02 3.26E+02 2.36E-30 33 -8.24E+01 -5.89E+01

GeneDiv LM.4 0.9924 0.9899 8.69E-02 3.93E+02 1.13E-31 33 -8.01E+01 -5.66E+01

NucDiv LM.4 0.9955 0.9932 5.11E-02 4.29E+02 7.13E-30 29 -1.26E+02 -9.50E+01

NumHaps LM.2 0.9783 0.9711 1.32E-01 1.35E+02 3.70E-24 33 -4.23E+01 -1.88E+01

NumHets LM.2 0.9923 0.9897 8.72E-02 3.85E+02 1.62E-31 33 -7.98E+01 -5.63E+01

NumSubs LM.4 0.9802 0.9700 1.05E-01 9.57E+01 1.45E-20 29 -6.06E+01 -2.99E+01

EffNumHaps LM.2 0.9814 0.9752 9.38E-03 1.58E+02 2.89E-25 33 -2.81E+02 -2.57E+02

GeneDiv LM.2 0.8658 0.8210 1.01E-02 1.94E+01 2.52E-11 33 -2.74E+02 -2.50E+02

NucDiv LM.2 0.4788 0.3802 7.53E-03 4.86E+00 5.89E-04 37 -3.03E+02 -2.87E+02

NumHaps LM.4 0.9605 0.9400 2.84E-02 4.70E+01 2.89E-16 29 -1.79E+02 -1.48E+02

NumHets LM.2 0.8955 0.8606 1.26E-02 2.57E+01 4.70E-13 33 -2.54E+02 -2.30E+02

NumSubs LM.4 0.8884 0.8307 3.20E-02 1.54E+01 6.17E-10 29 -1.68E+02 -1.37E+02

EffNumHaps LM.2 0.9979 0.9972 8.91E-02 1.44E+03 5.94E-41 33 -7.79E+01 -5.44E+01

GeneDiv LM.4 0.9918 0.9891 8.79E-02 3.65E+02 3.81E-31 33 -7.91E+01 -5.56E+01

NucDiv LM.4 0.9992 0.9988 5.00E-02 2.51E+03 5.80E-41 29 -1.28E+02 -9.70E+01

NumHaps LM.4 0.9967 0.9956 9.30E-02 9.15E+02 1.09E-37 33 -7.40E+01 -5.05E+01

NumHets LM.4 0.9922 0.9896 8.71E-02 3.81E+02 1.90E-31 33 -8.00E+01 -5.65E+01

NumSubs LM.4 0.9992 0.9987 5.02E-02 2.31E+03 1.94E-40 29 -1.27E+02 -9.65E+01

†  <= 10-6
‡  >= 10-6

 3 r std 

Linear

r Linear

D eq Linear

D 0 Linear

D eq Non 

linear

t 50eq Linear
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