ORBITRAP AND IRMS PETROLEOMICS

A Thesis

by

DERRY XU

BS, University of Texas, 2018

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

CHEMISTRY

Texas A&M University-Corpus Christi Corpus Christi, Texas

August 2021

© Derry Ray Xu

All Rights Reserved

August 2021

ORBITRAP AND IRMS PETROLEOMICS

A Thesis

by

DERRY XU

This thesis meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved.

Richard Coffin, PhD Chair

Hussain Abdulla, PhD Committee Member Jai Prakash, PhD Committee Member

August 2021

ABSTRACT

Petroleum compounds from crude oil are deceptively complex; aside from the wealth of hydrocarbon compounds, crude oil may also contain other heteroatom compounds, inorganic compounds, and metals. It has been theorized that crude oil contains more compounds than genes in the human genome. Current petroleomic methods, such as the use of stable isotopes ($\delta^{13}C$, δD) as tracers for identification in an environment, would become superannuated. Advancements in analytical techniques such as Orbitrap mass spectrometry allow for the characterization of samples at resolutions at higher resolving powers and mass accuracies than conventional methods. As an initial proof of concept, 13 unique oil samples were retrieved from different processing stages and drilling environments. After these samples were processed via liquidliquid extraction, they were analyzed using ultrahigh high-performance liquid chromatography (UPLC) coupled with Orbitrap Fusion mass spectrometer (OT-FTMS) by both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). I identified 19,000 compounds from the water extract fraction, most of these compounds detected in the water fraction are higher polarity heteroatom compounds than the hexane fraction. I identified a unique set of compounds (from 30 to 100s compounds) in each crude oil sample by applying volcano plot and principal component analyses. Identifying these unique compounds allows for the distinctive characterization of oil wells, spills, and processing methods. Our future goal is to apply these techniques to a wide variety of crude oil samples and form a global fuel library, using our research to protect oil companies (counterfeiting, spill responsibility) and the environment (complete spill cleanup, environmental interactions with crude oil).

iv

ACKNOWLEDGEMENTS

I want to express my thanks to the petroleum companies (Headington Energy Partners, CITGO Petroleum of Corpus Christi, and Strategic Carbon) for providing me the crude oil samples and support for this project. I also want to acknowledge Thomas Boyd at the US Naval Research Laboratory for running the crude oil samples for the carbon isotope values.

I also want to thank my committee members (Richard Coffin, Hussain Abdulla, Jai Prakash) for their time, support, and advice in completing this project. Thank you all!

CONTENTS	PAGE
ABSTRACT	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	vii
LIST OF TABLES	x
CHAPTER I - INTRODUCTION	
CHAPTER II - BACKGROUND	
CHAPTER III - SAMPLES AND DATA BACKGROUND	
CHAPTER IV - DATA ANALYSIS	
CHAPTER V - DISCUSSION	
CHAPTER VI - CONCLUSION	
REFERENCES	

TABLE OF CONTENTS

LIST OF F	IGURES
-----------	--------

FIGURES	PAGE
Figure 1: The Cavitation sample group	10
Figure 2: The Citgo sample group	11
Figure 3: The Headington sample group	12
Figure 4: The Beckman Coulter J2-21 centrifuge used for sample separation	13
Figure 5: Example of water-fraction samples and the separated layer	14
Figure 6: Florosil column to extract n-alkanes	17
Figure 7: PCA Analysis of ESI samples, separated by triplicate	19
Figure 8: PCA Analysis of APCI samples, separated by triplicate	20
Figure 9: PCA analysis of ESI samples, separated by sample group	21
Figure 10: PCA analysis of APCI samples, separated by sample group	22
Figure 11: Van Krevelen figure of the ESI samples	24
Figure 12: Van Krevelen figure of the APCI samples	
Figure 13: Carbon isotope data of C11-C23 alkanes	
Figure 14: APCI loading figure generated from Compound Discover	
Figure 15: APCI loading figure with the significant compounds in the top-right corner	
highlighted	
Figure 16: Van Krevelen figure of the top-right significant compounds	31
Figure 17: APCI loading figure with the significant compounds in the bottom-right-center.	
Figure 18: Van Krevelen figure of the bottom-right-center significant compounds	34
Figure 19: APCI loading figure with the significant compounds in the left-center highlighter	ed37
Figure 20: Van Krevelen figure of the left-center significant compounds	37

Figure 21: ESI loading figure generated from Compound Discover	38
Figure 22: ESI loading figure with the significant compounds in the bottom-right highlighted	41
Figure 23: Van Krevelen figure of the bottom-right significant compounds	41
Figure 24: ESI loading figure with the significant compounds in the bottom-left highlighted	44
Figure 25: Van Krevelen figure of the bottom-left significant compounds	44
Figure 26: ESI loading figure with the significant compounds in the top-left highlighted	47
Figure 27: Van Krevelen figure of the top-left significant compounds	47
Figure 28: APCI volcano plot of the Cavitation compounds versus the Citgo compounds	51
Figure 29: Van Krevelen figure of the significant Citgo compounds (right side)	52
Figure 30: Van Krevelen figure of the significant Cavitation compounds (left side)	52
Figure 31: APCI volcano plot of the Cavitation compounds versus the Headington compound	s <u>5</u> 6
Figure 32: Van Krevelen figure of the significant Headington compounds (right side)	
Figure 33: Van Krevelen figure of the significant Cavitation compounds (left side)	57
Figure 34: APCI volcano plot of the Citgo compounds versus the Headington compounds	61
Figure 35: Van Krevelen figure of the significant Headington compounds (right side)	62
Figure 36: Van Krevelen figure of the significant Citgo compounds (left side)	62
Figure 37: ESI volcano plot of the Cavitation compounds versus the Headington compounds	66
Figure 38: Van Krevelen figure of the significant Headington compounds (right side)	67
Figure 39: Van Krevelen figure of the significant Cavitation compounds (left side)	67
Figure 40: ESI volcano plot of the Citgo compounds versus the Headington compounds	71
Figure 41: Van Krevelen figure of the significant Headington compounds (right side)	72
Figure 42: Van Krevelen figure of the significant Citgo compounds (left side)	72
Figure 43: ESI volcano plot of the Cavitation compounds versus the Citgo compounds	76

Figure 44: Van Krevelen figure of the significant Citgo compounds (right side)	
Figure 45: Van Krevelen figure of the significant Cavitation samples (left side)	

LIST OF TABLES

TABLES	PAGE
Table 1. APCI top right loading data, separated by compound class	30
Table 2. APCI bottom center right loading data, separated by compound class	33
Table 3. APCI center left loading data, separated by compound class	36
Table 4. ESI bottom right loading data, separated by compound class	40
Table 5. ESI bottom left loading data, separated by compound class	
Table 6. ESI top left loading data, separated by compound class	46
Table 7. APCI Citgo vs Cavitation data, Citgo side	49
Table 8. APCI Citgo vs Cavitation data, Cavitation side	50
Table 9. APCI Headington vs Cavitation data, Headington side	
Table 10. APCI Headington vs Cavitation data, Cavitation side	55
Table 11. APCI Headington vs Citgo data, Headington side	
Table 12. APCI Headington vs Citgo data, Citgo side	60
Table 13. ESI Headington vs Cavitation data, Headington side	61
Table 14. ESI Headington vs Cavitation data, Cavitation side	
Table 15. ESI Headington vs Citgo data, Headington side	
Table 16. ESI Headington vs Citgo data, Citgo side	70
Table 17. ESI Citgo vs Cavitation data, Citgo side	74
Table 18. ESI Citgo vs Cavitation data, Cavitation side	75

CHAPTER I - INTRODUCTION

Petroleum is a complex mixture of hydrocarbons composed of a variety of elements that vary between sources. High resolution and accurate analysis of petroleum composition provide unique "fingerprint" compounds that characterized each type of crude oil. Which will help track oil spill source assessment and monitoring downstream processing methods. The holistic goal of this project is to create a global petroleum library/database utilizing the capability of Orbitrap Fusion Tribrid Mass Spectrometric (OT-FT-MS) to separate and accurately identified thousands of compounds analyses. The development of this database for petroleum identification will impact several sectors in the petroleum industry, summarized by the acronym SAPOR (Survey, Account, Protect, Optimize, Research).

SURVEY--A modernized fuel database would streamline early quality assessments of crude oil, mitigating exploratory risks. One of the unique advantages of our UPLC-OT-FT-MS petroleomics method is its celerity; we can run crude oils with minimal processing (liquid-liquid extraction) compared to direct injection mass spectrometers. This allows for flexibility and risk mitigation at every stage of the crude oil development process, from upstream to downstream. Key information, such as heavy metal, sulfur, paraffin content, and heavy/light compound ratios are valuable to companies at every sector of the oil industry. Chemical analyses can be applied to wildcat and appraisal well samples, where speed matters for securing high-value reservoirs (e.g., Maalouf et al., 2017). Tests can be conducted during the midstream to verify oil composition before and after transport. The generated compound data is especially beneficial for the distribution and retailing side of the petroleum industry, where purchasers want to know the composition of their product.

ACCOUNT-- A modernized fuel database would promote accountability for hydrocarbons released in the environment. This database development provides a substantial understanding of past and present oil formation and fate. Oil spills and seepages remain a problem today, with slow leaks from existing wells and catastrophic events such as the Deepwater Horizon releasing 200 million gallons amount of petroleum (Joye 2015; Beyer et al., 2016) or the more recent 2019 Brazil oil spill (Zacharias et al., 2021; Soares et al., 2020). On land, seepages from gas stations or poorly maintained oil storage could occur, and fuels can leach into the terrestrial environment (Blake and Rowland 1995; Nganje et al., 2007). More robust methods for petroleum identification would contribute to impurities removal research with a deeper understanding of hydrocarbon sample composition. As we've discovered, a large portion of petroleum compounds is also miscible in pure water, which translates to conditions in the environment. Physical oil spill cleanup methods, such as booms, burns, and mechanical skimmers, may not be enough for environmental remediation, as the chemical impacts may still be prevalent. As a result, we should further evaluate spill, seepage, and leaching cleanup methods for their complete efficacy. It can track sample to source link by composition, and biomarkers can help absolve unwarranted blame for the release of hydrocarbons in the environment while also identifying the key players in accidents.

PROTECT-- A modernized fuel database will aid in fuel sourcing as a protection from counterfeiting and loss for energy companies. Petroleum can be profitable, but with that profit arises potential disputes. With the increase of commingling wells and well sharing agreements, it is logical that more disagreements ad lawsuits will arise over recovery ownership. Commingled production is a petroleum engineering process where a well can be designed to tap into more than one oil pool/reservoir, improving recovery efficiency and yields. This can add complexity to

certain legal agreements and ownership rights, especially with drilling operations involving wellsharing agreements or joint ventures. Fracking can also add complications to product ownership (under great disturbance, a pool's contents can migrate to a different reservoir).

Under specific mineral rights laws, the issue of horizontal wells bypassing boundaries or pipelines descending past certain depths can also arise. In addition, there are instances of theft. Individuals can tap into an owned reservoir illegally at leaks or set up illegal valves, or they can steal barrels of oil. Petroleum identification would be beneficial in all these instances, as it would provide chemical evidence of wrongdoing or absolution of guilt. Regardless of outcomes, a petroleomics database would aid in intracompany and governmental drilling/ownership disputes.

OPTIMIZE-- A modernized fuel database would optimize refining and distillation techniques while streamlining quality assessments of crude oil. When a well is drilled, and crude oil is recovered, there are at least 15 different products that the crude can be distilled and refined into, depending on the feedstock composition. A strong understanding of the feedstock chemical composition would optimize refinery and distillation techniques by detecting harmful compounds before affecting the processing systems (I.e., sulfur and sediment fouling/plugging, salts, etc.). Understanding overall chemical structures can aid in carbon rejection and hydrogen addition processes, such as various cracking, coking, and visbreaking methods, allowing for more valuable middle distillates or special petrochemicals. In addition, chemical composition data can help with performance diagnoses, troubleshooting, and maintenance.

RESEARCH-- A modernized fuel database can serve as a springboard for potentially novel research routes. Creating a fuel database with both molecular and isotopic data compiled for each sample would provide momentum for broad-spectrum paleo-geochemical assessments (Moldowan et al., 1985). Current paleontological methods involving kerogen analyses can be

further ascertained with crude oil biomarkers. In addition, Basafa and Hawboldt (2019) provide an overview of reservoir souring due to sea-water injection into offshore oil reservoirs.

CHAPTER II - BACKGROUND

Petroleum identification is not a new concept, but research groups have been running their samples with different methodologies and analytical instrumentation since its conception. The first large-scale effort towards identifying petroleum compounds was conducted from 1927-1959, dubbed "Project 6" by the American Petroleum Institute (Mair and Rossini, 1958). The project was able to identify 169 individual hydrocarbons isolated from petroleum, and the methodology to identify those hydrocarbons required manual and involved methods (without modern instrumentation or analyzers), such as distillation, selective solvent extraction, selective absorption, and crystallization. Since then, the identification of petroleum compounds has relied more on developments in chromatography, mass spectrometry, and isotope geochemistry. Today, labs still utilize instrumentation from these three analytical fields for petroleum analysis.

Isotope Ratio Mass Spectroscopy (IRMS) - Early applications of isotope ratios for petroleum analysis were first conducted in the 1960s by pioneers such as Silverman and Epstein (1958) and Eckelman et al. (1962). The primary use of petroleum stable isotope ratios was for origin formation studies or as tracers for oil/oil and oil/source-rock correlations that are resistant to the thermal evolution of hydrocarbons (Schoell 1984). Since then, applications of petroleum isotopes have extended to environmental forensics, where researchers such as Pond et al. (2002) utilize nalkane and hydrogen isotope compositions for source identification of petroleum contamination. Carbon isotope analysis was used to fingerprint BTEX spill sources (Kelley et al., 1997) and confirm the degradation of oil (Coffin et al., 2008). Research has also extended past C/H isotopes and towards potentially toxic elements in petroleum, such as lead (Yao et al. 2015) or sulfur (Rosenberg et al., 2017). Isotope ratios are still utilized in the petroleum industry today to identify oil maturity, depositional environments, and sulfur content estimations. While relatively sparse compared to GC or MS, there are still new developments on methodology, such as utilizing "untreated" crude oils for GC/IRMS analysis (Carrie et al., 2015). With new methods in compound-specific light element isotope analysis and thorough statistical analysis of the data (Boyd et al., 2006), there is strong potential to determine individual oil source contributions in complex environmental mixtures of natural and anthropogenic compounds.

Gas Chromatography (GC) - The use of GC was first introduced by researchers such as Desty and Whyman (1957), Eglinton et al. (1959), and Bray and Evans (1961), where petroleum compounds were able to fractionate with early, self-crafted gas-liquid chromatography systems. Researchers such as Bollet et al. (1981) and Boduszynski (1988) introduced the injection of petroleum samples into HPLC instrumentation for separation and analysis. Boduszynski (1988) bridged chromatography and MS methods for petroleum samples by utilizing field ionization mass spectroscopy (FIMS) after separation.

High-Resolution Mass Spectrometry (HRMS) - The first applications of mass spectrometry for petroleum analysis were with the MS-9 were developed by Gallegos et al. (1967) and Drushel and Sommers (1967), where they analyzed for petroleum compounds and sulfur compounds in petroleum, respectively. Since then, the developments have followed those in instrumentation: Quadrupole/triple quadrupole analyzers (Reynolds et al. 1991; Frysinger and Gaines, 1999; Eide and Zahlsen, 2005), GC-Q-TOF-MS (Qian and Dechert, 2002), and FT-ICR-MS (Qian et al., 2001). In 2008, steps were taken by Marshall and Rodgers to build a petroleum compounds database with a custom FT-ICR-MS capable of higher resolutions. Since then, the "newly born" field of petroleomics has expanded with more studies making applications towards environmental detection (Kelley et al., 1997; Wang et al. 2013).

One of the tenets of instrumental analysis is that no one instrument is the best for every scenario, for every instrumentation setup will have its strengths and weaknesses. What we have shown in our research is a synthesis of the three analytical methods mentioned: we utilized Liquid chromatography for separation and OT-FT-MS for mass/charge analysis. Petroleum identification is not a new concept, but with our instrumentation and methods, we hope to transcend the limitations of other modern setups with greater accuracy and reliability. Until now, no technique provides the ability to accurately develop a global library with absolute confidence in source determination.

Chemical Background - The hydrocarbons in petroleum can be chemically characterized as paraffin (straight chain), cycloparaffins/naphthene (rings), or aromatics. Some current identification techniques utilize the physical properties of petroleum (density, viscosity, pour point) with calculations (correlation index, UOP characterization, viscous-gravitational constant) to classify and identify petroleum based on the primary hydrocarbon type. Metadata and reservoir sourcing are other valuable method for the classification of petroleum. Classification schemes such as the Department of Energy' tertiary-oil-recovery-info-system' (TORIS) allow for the classification of reservoir/extract ID based on lithology, depositional environment, structural definition, diagenetic overprint—all of which impact crude oil composition. In other words, how petroleum was formed in the environment by Earth's processes impacts the overall composition of the reservoir, further contributing to its complexity. In addition to source rock contributions, downstream refining methods and petrochemical processing can contribute to crude oil composition. From this study, chemical engineering cavitation has shown slight changes to the original hydrocarbon sample. Heavy metals, sulfur compounds, elemental ratios, chemical

structure ratios, and metadata on petroleum additives are all potential indicators for fingerprinting petroleum samples.

Compound-specific isotope analysis (CSIA) can be applied to crude hydrocarbons as tracers relatively unaltered from the development of hydrocarbons. As a result, petroleum stable isotopes such as δ^{13} C can be used for oil-oil and oil-rock correlations. We believe that we are the first to take this isotopic data and correlate it with conventional mass spectrometry data.

In the analysis of complex samples such as petroleum hydrocarbons, it is essential to identify both the strengths and limitations of the analytical instrumentation involved. For instance, the ionization method selected can contribute to the mass feature's appearance (or disappearance) on the final spectra generated by a mass spectrometer. Therefore, the ionization method is paramount; electronic spray ionization (ESI) is best suited for ionizing polar compounds (e.g., heteroatoms), but ESI is less effective for non-polar compounds. Suppose one wanted to identify the bulk of a crude oil sample. In that case, the hydrocarbon portion (CxHy) of a sample APPI is the preferred ionization method, but compounds with higher molecular weights are more challenging to ionize with this method. APCI shares similarities with APPI and ESI and is best suited for ionizing condensed aromatics and semi-polar compounds.

Coupling chromatography instrumentation (GC/LC) is another point of consideration gas chromatography (GC) is volatility dependent and, liquid chromatography (LC) is solubility/polarity dependent. A chromatographic method is essential for petroleomic studies because the separation over time allows for defined peaks (and thus structural identification) in a "compound-dense" sample.

When it comes to mass spectrometers, there are three main mass analyzer instrument types used for modern analytical chemistry: Q-TOF, FT-ICR, and Orbitrap. Q-TOF has limited

resolution (<60,000 resolving power), but it has rapid scan speeds and robust detection due to high kinetic energy. FT-ICR has a much higher resolution for molecular assignments, but its scan speed (1Hz) complicates the attachment of GC/LC instrumentation, which is essential for filtering compounds. The OT-FT-MS takes mass resolutions similar to the FT-ICR and combines it with faster scan speeds to allow for the use of GC/LC-- crucial for peak separation when there are so many individual compounds in an aliquot of oil.

CHAPTER III - SAMPLES AND DATA BACKGROUND

Sample Information and Processing

Figure 1-- The Cavitation sample group

Figure 2-- The Citgo sample group

Figure 3-- The Headington sample group

This project utilizes 14 hydrocarbon samples gathered from three different companies/sources (Cavitation, Citgo, and Headington). The sample photos are indicated above, and currently, only the Headington samples have available metadata for further conclusions with data. Regarding the Headington samples, all the samples were drilled in Kennedy, Texas, in two different fields (Mifflin and Sarita). The "Diesel Mud Base" sample is a constituent of Sarita Sogu 402.

Analysis Methods and Specifications

Sample Processing prior to OT-FT-MS Analysis

Figure 4-- The Beckman Coulter J2-21 centrifuge used for sample separation

Figure 5-- Example of water-fraction samples and the separated layer

Before running petroleum samples on the OT-FT-MS, the samples must undergo processing to ensure efficient run conditions and prevent contamination. We can separate the polar and non-polar compounds of a petroleum sample through liquid-liquid extraction: I used Milli-Q water to isolate polar compounds and hexane (FisherSci Optima) to isolate non-polar compounds. To ensure the complete extraction of the respective compounds to the solvent, we centrifuged the samples at 15,000 xg RCF for 15 minutes in a Beckman Coulter J2-21 centrifuge at 10,400xg. Extra care against contamination was taken by triple-washing all apparatus (centrifuge tubes, glassware) with the appropriate solvent before experimentation.

UPLC-APCI- Orbitrap Fusion Mass Spectrometer Analysis

The hexane extract was dried using CentriVap Vacuum Concentrators and re-dissolved in hexane. 3 μ L of hexane extract was injected on Vanquish ultraperformance liquid chromatography (UPLC) coupled with Orbitrap Fusion Tribrid Mass Spectrometer (UPLC-OT-FTMS). The analysis was performed on the UPLC silica column (1.7 µm BEH HILIC column 2.1 x 150 mm) and was maintained at 30 °C via atmospheric pressure chemical ionization (APCI). Eluent A was hexane, and eluent B was hexane: isopropanol (9:1, v/v). The following gradient was used: hold at 18% B for 25 min; ramp to 35% B for 25 min; ramp to 100% B for 30 min and hold for 10 min. A 20 min column re-equilibration with the starting ratio of eluents was carried out between sample analyses. The flow rate used was 0.2 ml·min¹. The APCI set at 5µA corona current, 35 Sheath gas, 10 Aux gas, 325°C ion transfer tube temp, and 200°C vaporizer temp. The Orbitrap full scan was run at full scan mode at 500,000 (FWHM at m/z 200) resolutions with a scan range of 50-1000 m/z and RF Lens at 40%. For MS², the isolation window was set at 0.7 m/z with performing both collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) using an ion trap mass spectrometer as the detector. The AGC was set at 1.0e4 and the intensity threshold at 5.0e3.

UPLC-ESI- Orbitrap Fusion Mass Spectrometer

Water extract was analyzed on Vanquish UPLC - Orbitrap Fusion Tribrid Mass Spectrometer (UPLC-ESI-OT-FTMS). The analysis was performed on a 1.7 µm ACQUITY UPLC BEH C18 reversed-phase column (Waters, 30Å, 1.7 μ mol·L⁻¹, 2.1 mm X 100 mm) via a heated ESI (H-ESI) source to Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Scientific) operated under positive mode. Eluent A was Milli-Q water with 0.1% (v/v) formic acid, and eluent B was acetonitrile with 0.1% (v/v) formic acid. The following gradient was used: hold at 5% B for 2 min; ramp to 65% B for 16 min; ramp to 100% B for 7 min and hold for 8 min. An 8 min column re-equilibration with the starting ratio of eluents was carried out between sample analyses. The flow rate was 0.2 ml·min⁻¹ with an injection volume of 5 μ L. The H-ESI setting was set at 3200 volts, 30 Sheath gas, 10 Aux gas, 325°C ion transfer tube temp, and 200°C vaporizer temp. The Orbitrap full scan was run at 500,000 resolutions with a scan range of 50-1000 m/z and RF Lens at 40%. For MS², the isolation window was set at 0.7 m/z with performing both collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) using an ion trap mass spectrometer as the detector. The AGC was set at 1.0e4 and the intensity threshold at 5.0e3.

Carbon Isotope Ratios

Figure 6-- Florosil column to extract n-alkanes

The sample pre-processing method for isotopic analysis of n-alkanes was a urea adduction method derived from Pond et al. (2002). Urea crystals were used to filter out cyclic and highly branching chemical structures while letting straight-chain (or rarely-branching) structures such as alkanes flow through the urea crystals. The main modifications to the Pond et al. (2002) method are instrumentation and materials; a florosil column was used instead of silica gel to remove more UCMs (unresolved complex mixtures) that would otherwise cloud the C11-C23 alkane regions within the gas chromatogram data without compromising the δ^{13} C of alkanes (Ellis and Fincannon 1998). Samples were sent over to the US Naval Research Lab to run the processed samples on a Thermo 1310 GC with an Isolink II and Delta V Advantage (IR-MS). Conformational analysis was also conducted on an Agilent GC/MS.

Data Processing

Compound Discoverer 3.2. (CD) Thermo Fisher Scientific software allows for the data generated from an OT-FT-MS to be delivered to a data processing environment to be organized. Scripts are written and customized within the program to initially identify compounds and generate broad comparisons between samples (Li 2018). A combination of Excel and Python 3.9 was used to filter and clean datasets for each sample.

Visualization

The visualization of samples allows for better analysis and comparisons between sample compounds. The main figures for this project are PCA analyses, Volcano Plots, Van Krevelen diagrams, and stable isotope graphs of alkanes (Kind and Feihn 2007; Li 2012; Koch and Dittmar 2016). The primary tools used for figure generation were Excel and Python 3.9, and the stable isotope figures were created using Sigma Plot 10.2. The following section displays all visualizations split between the two different ionization methods used, ESI and APCI.

PCA Analyses

Figure 7-- PCA Analysis of ESI samples, separated by triplicate

Figure 8-- PCA Analysis of APCI samples, separated by triplicate

Figure 9-- PCA analysis of ESI samples, separated by sample group

Figure 10-- PCA analysis of APCI samples, separated by sample group

Principle Component Analysis/ Loading Figure

PCA figures/ loading figures are primarily used to disseminate high dimensionality data into a group of similar samples. Samples (points) closer to one another on the graph have more similar chemical compositions than samples further away on the PCA figure. This relationship is extended in a loading figure, where every point represents a compound instead. Points closer to the center of a PCA figure also indicate more average/common properties in chemical composition. PCA figures are primarily used in life science studies with high dimensionality datasets (e.g., computational biology, metabolomics), but we believe we can extend these figures to the field of petroleomics due to the complexity of the petroleome. Attached are PCAs of our crude oil samples organized by ionization method and sample source (groupings). Triplicate analyses also indicate the reproducibility of our sample processing and instrumentation.

The PCA figures above indicate the robust method and instrumentation reproducibility, except for the Sarita Sogu 402 sample ionized by ESI. The crude oil samples can be grouped by

company, but more metadata is required to make remarks on individual samples. There seems to be a significant "clump" for the APCI PCA analysis, indicating intergroup similarities for the non-polar compounds of crude oil samples. Diesel mud base is a constituent of Sarita Sogu 402, which is evident on the ESI PCA but not the APCI PCA.

Volcano Plot

Volcano plots are specialized scatterplots that are best used for the comparison of two individual datasets. Volcano plots provide information on both the commonality and unique differences between datasets (Wentian et al., 2012). Data points (or, in this case, compounds) near the vertical axis of a volcano plot indicate similar/common compounds between the two datasets. In contrast, points further away from both axes are points/compounds unique to that dataset. Attached are volcano plots of our crude oil samples, grouped by the company/organization of origin. The groups were further color-coded by primary colors so that the "common" compounds could be logically indicated by secondary colors.

From the volcano plots created for each permutation of the three groups (Cavitation, Citgo, Headington sample groups), the most noticeable volcano plot was the Cavitation vs. Headington plot, where few unique compounds for Headington are found. A larger data pool for one side of the volcano plot (cumulative number of compounds) can be used to compare new sample groups in future assessments.

Van Krevelen

Figure 11-- Van Krevelen figure of the ESI samples

Figure 12-- Van Krevelen figure of the APCI samples

Originally developed to study the structure and reaction processes of coals and kerogens (van Krevelen, 1950), the Van Krevelen diagram has proven useful in visualizing complex spectra based on a set of core elements (Kim et al. 2003). In the case of crude oil, the core set of elements are C, H, O, N, P, S, and they are utilized in the VK diagrams shown above.

From the VK diagrams shown, APCI reveals more compounds than ESI. This is to be expected from hydrocarbons, which are primarily non-polar.

Isotopes

Figure 13-- Carbon isotope data of C11-C23 alkanes

While the OT-FT-MS can generate larger amount of quantitative data for a petroleum sample, isotope analyses of petroleum still have their uses in petroleomics. The study conducted by Wang et al. 2013 demonstrates a strong agreement between source and sample in isotopic readings of degraded oil spill material, and the weathered oil residue in the environment deviated no more than 0.36% from the oil tank sample (Wang et al. 2013). Studies like Wang et al. 2013 are a strong argument for isotopes as a tool for sample-source verifications, especially with heavily weathered samples.

However, based on the carbon isotope ratio data generated for the Headington and Citgo sample groups, we have decided to omit further analysis after the preliminary data generated above. The data generated by OT-FT-MS methods is more robust and can lead to stronger inferences than the isotopic information displayed in Figure 13. In the case of our research scope, we do not have any weathered samples yet, but Hydrogen and Carbon CSIA may be worth revisiting when the fuel database is expanded.
Data Table Information

In our data analysis, we tried to apply the statistical observations recognized in mass spectrometry literature (Kind and Feihn, 2007; Koch and Dittmar, 2006). Thus, the data tables includes the calculation of parameters such as aromaticity index (AI), degree of unsaturation (DU), double bond equivalent (DBE), and all their relevant modifiers. The tables provide the averages, highest, and lowest values of these parameters.

Loading Graphs/PCA VK

APCI Loading

APCI

Loading

Figure 14-- APCI loading figure generated from Compound Discover

In this loading graph figure, the Citgo samples are isolated from the center and are thus collectively unique, except sample S0802. Sample S0802 is the least viscous sample in the group and the closest triplicate to the center. The Citgo APCI samples are also spread apart, indicating distinct inter-group compounds. It is also important to note that the negative side of the APCI loading graph is only occupied by the Citgo samples, further distinguishing the non-polar compounds of the Citgo sample group.

The Headington sample group has a large spread spanning the entirety of the vertical axis with groups of samples concentrating at the ends (Upper: Diesel Mud Base and Sarita Sogu 402; Lower: JGK C33 and JGK E Wells). Diesel mud base is a derivative of Sarita Sogu 402, so their loading positioning based on their non-polar composition is logical. JGK E Wells and JGK C33 are similarly based on similar drilling environments (see metadata table).

The Cavitation sample group has the smallest spread of the three sample groups. The sample from the cavitation sample group (Mid, Final, Vapor Recovery) indicate steps of the cavitation process (with the original sample being Lex_TX_1AM).

APCI	Loading	Тор	Right
------	---------	-----	-------

Top Right	Overlap	Cour	nt (Original)	Del	eted CxHy	Dele	eted O/C>1	Blanks	Sum Deleted	Count (Calculated)
	4%		447		134		0	89	223	224
APCI Loadir	ng Top Righ	nt	Total Compou	nds	CHO Compo	unds	N-Class	P-Class	S-Class	
# of :	0 0			224		194	23	3 -1	18	
% of total				100%		87%	10%	5 0%	8%	
# of AI>0.5				46		44	1	L O	2	
# of AI>=0.67	7			9		8	1	L O	1	
# of AI-MOD	>0.5			54		53	(0 0	1	
# of AI-MOD	>=0.67			13		13	(0 0	0	
# of Carbons	;			3845		3342	398	3 0	215	
Average O/0	2		0.11245	6554	0.1010	32548	0.221363552	2 #DIV/0!	0.323360806	
Average H/C	C(AII)		1.38481	1203	1.3072	12975	2.010226327	7 #DIV/0!	1.840845266	
Average H/C	C (Has O/C)		1.37616	52914	1.3072	12975	1.995327247	7 #DIV/0!	2.018869464	
Average Arc	maticity+ Ir	ndex	0.27001	5223	0.3369	32767	-0.321423135	5 #DIV/0!	-0.200145606	
Average AI-I	Mod+		0.37670	7909	0.3840	31844	0.029437229	#DIV/0!	0.277135563	
Average DU			5.98660	7143	6.5360	82474	1.739130435	5 #DIV/0!	2.833333333	
Average DU	/C		0.38012	5533	0.4087	95898	0.15369298	8 #DIV/0!	0.233570134	
Average DB	E		6.16517	8571	6.5360	82474	2.869565217	7 #DIV/0!	5.055555556	
Average DB	E/C		0.39654	0294	0.4087	95898	0.271091524	1 #DIV/0!	0.437842713	
Average MV	V		262.712	0791	257.08	10896	318.032213	8 #DIV/0!	240.7980722	
Average Car	bon Count		17.1651	.7857	17.226	80412	17.30434783	8 #DIV/0!	11.94444444	
High O/C			0.83333	3333		2	2.363636364	ι O	8	
High H/C (Al	I)		2.36363	6364		2	2.363636364	1 0	2.363636364	
High H/C (Ha	as O/C)		2.36363	6364		2	2.363636364	1 0	2.363636364	
High Aromat	ticity Index			3.5		0.75	3.5	5 0	3.5	
High AI-Mod	ł		0.76923	0769	0.7692	30769	0.03030303	3 0	0.538461538	
High DU				12		12	4	1 O	8	
High DU/C			0.78571	.4286	0.7857	14286	0.428571429	9 0	0.571428571	
High DBE				12		12	e	5 0	10	
High DBE/C			0.78571	.4286	0.7857	14286	0.571428571	ι Ο	0.714285714	
High MW				0		0	(0 0	0	
High C				42		42	38	3 0	24	
Low O/C			0.02777	7778	0.0344	82759	0.02777778	3 0	0.041666667	
Low H/C (All)		0.57142	8571	0.5714	28571	1.636363636	6 0	1	
Low H/C (Ha	s O/C)		0.57142	8571	0.5714	28571	1.636363636	5 0	1.636363636	
Low Aromat	icity Index			-4	-0.3333	33333	-4	1 0	-4	
Low AI-Mod			0.02439	0244	0.0243	90244	0.028571429) 0	0.083333333	
Low DU				0		1	(0 0	0	
Low DU/C				0	0.0476	19048	(0 0	0	
Low DBE				0		1	(0 0	2	
Low DBE/C				0	0.0476	19048	(0 0	0.181818182	
Low MW				0		0	(0 0	0	
Low C				6		7	6	5 0	6	

Table 1-- APCI top right loading data, separated by compound class

Figure 15-- APCI loading figure with the significant compounds in the top-right corner highlighted

Figure 16-- Van Krevelen figure of the top-right significant compounds

In the top right selection, which primarily consists of Diesel Mud Base and Sarita Sogu 402 compounds, there are very little sulfur-containing and no phosphorus-containing compounds, as indicated by the Van Krevelen diagram.

APCI Loading Bottom Center Right

Bottom Center right	Overlap	Count	(Original)	Deleted	CxHy	Deleted O/	C>1 Blar	nks Su	ım Deleted	Cοι	unt (Calculated)
	35%		747		97		0	140	237		510
APCI_Loading_Botto	m_Center_	Right	Total Com	pounds	сно о	Compounds	N-Class		P-Class		S-Class
# of :				510		185		201		11	290
% of total				100%		36%		39%		2%	57%
# of AI>0.5				26		25		1		0	1
# of AI>=0.67				7		6		1		0	1
# of AI-MOD>0.5				30		30		0		0	0
# of AI-MOD>=0.67				8		8		0		0	0
# of Carbons				13424		5205		5598		428	7029
Average O/C			0.10)3783967		0.059616417	0.1678	93984	0.1543896	615	0.115768982
Average H/C (All)			1.66	8577014		1.37596905	1.8643	05461	1.908552	296	1.821440964
Average H/C (Has O/	C)		1.65	7829791		1.37596905	1.8587	25419	1.87855	126	1.812287897
Average Aromaticity	+Index		0.05	3008238		0.308956725	-0.1754	16544	-0.1574503	335	-0.058121174
Average AI-Mod+			0.24	5334265		0.332165798	0.1567	10722	0.107929	112	0.138825288
Average DU			5.84	7058824		9.27027027	4,2089	55224		4	3.982758621
Average DU/C			0.22	7335469		0.350078405	0.1537	01758	0.092646	619	0.163860149
Average DBF			7.09	6078431		9 27027027	6 0995	02488	6 636363	636	6 165517241
Average DBE/C			0.28	37599312		0.350078405	0.2351	97527	0.177526	556	0.269522834
Average MW			430	6863039		403 6859068	506.84	73047	682 9520	873	424 3637374
Average Carbon Cou	nt		26 3	2156863		28 13513514	27 850	74627	38 909090	091	24 23793103
High O/C				0.625		1.909090909		2.4		167	17
High H/C (All)				2.4		1.909090909		2.4	. 2	.12	2.4
High H/C (Has O/C)				2.4		1.909090909		2.4	. 2	.12	2.4
High Aromaticity Ind	ex			5		0.727272727		5	0.157894	737	5
High AI-Mod				0.75		0.75	0.2888	88889	0.1898734	418	0.333333333
High DU				21		21		17		12	17
High DU/C			0.76	9230769		0.769230769	0.4444	44444	0.2558139	953	0.44444444
High DBE				21		21		19		14	19
High DBE/C			0.76	69230769		0.769230769	0.7142	85714	0.3255813	395	0.714285714
High MW				0		0		0		0	0
High C				60		57		60		60	54
Low O/C			0.02	22222222		0.022222222	0.0357	14286	0.0666666	667	0.029411765
Low H/C (All)			0.61	5384615		0.615384615	1.3333	33333	1.558139	535	1.3333333333
Low H/C (Has O/C)			0.09	0909091		0.615384615	1.3333	33333	1.558139	535	1.333333333
Low Aromaticity Inde	ex			-2.2	-	0.111111111		-2.2	-	0.8	-0.857142857
Low Al-Mod			0.01	2345679		0.048543689	0.0158	73016	0.012345	679	0.012345679
Low DU				0		2		0		0	0
Low DU/C				0		0.090909091		0		0	0
Low DBE				0		2		0		1	2
Low DBE/C				0		0.090909091		0	0	.02	0.040816327
Low MW				0		0		0		0	0
Low C				5		11		5		22	5

Table 2-- APCI bottom center right loading data, separated by compound class

Figure 17-- APCI loading figure with the significant compounds in the bottom-right-center

Figure 18-- Van Krevelen figure of the bottom-right-center significant compounds

In the bottom center right selection, which primarily consists of the entire Cavitation group along with JGK C33 and JGK E Wells, the molecular compositions are very clustered on the Van Krevelen figure. There is a clear separation between the clusters of CHO only compounds and the S-Class compounds. There is a significant number of un-oxygenated sulfur compounds.

APCI Loading Center Left

Center Left	Overlap	Cou	nt (Original)	Dele	ted CxHv	Delete	d O/C>1	Bla	nks	Sum D	eleted	Cou
	21%		1783		, 53		0		277		330	
APCI Loading	g Center L	eft	Total Compo	unds	CHO Com	oounds	N-Class		P-Clas	S	S-Class	;
# of :				1453		121		912		65		667
% of total				100%		8%		63%		4%		46%
# of AI>0.5				203		9		132		0		71
# of AI>=0.67				21		0		17		0		5
# of AI-MOD	>0.5			206		9		134		0		72
# of AI-MOD>	>=0.67			21		0		17		0		5
# of Carbons				43919		3329	28	3633		2090	1	9062
verage O/C	()		0.1212	05916	0.10	5745382	0.099236	5581	0.156	5333267	0.1292	9093
verage H/C	(AII)		1.4758	36717	1.610	J840449	1.459749	9431	1.962	2816907	1.5432	4012
verage H/C	(Has O/C)		1.6344	32907	1.610	J840449	1.61710	J174	1.966	347764	1.7816	0259
verage Aro	maticity+In	dex	0.1880	80913	0.06	5385651	0.189009	9773	-0.216	357541	0.1336	9724
verage AI-N	/100+		0.3189	53326	0.222	2305254	0.341881	1545	0.084	182/269	0.2963	51269
werage DU	c		8.8891	94/69	5.94	42148/6	9.711622	2807	2.584		1.2923	0600
verage DU/	L		0.3145	32045	0.23	3789995	10 529345	528 1474	0.080)/43668	0.283	50608
verage DBE	10		10.103	92292	5.94	4214876	10.5328	9474 2012	4.692	2307692	9.8950	245
Verage DBE			450 70	20094 07605	0.23	0/09990	0.303735	1526	0.150	7202033 722221	157 61	.3433 6430
verage lvivv	on Count		459.78	27025 17000	442.2 27 E	1220660	21 20502	+530 2222	22 10	20102221	457.01	.0429 7106
werage Carr			50.220	+2000	27.5.	1239009	51.5956	5555	52.13	0504015	20.570	57100
gh O/C			1.0344	82759	2.142	2857143		2.5		168		29
gh H/C (All)			2.5	2.142	2857143		2.5	2.230)769231		2.4
h H/C (Ha	s O/C)			2.5	2.142	2857143		2.5	2.230	0769231		2.4
gh Aromati	icity Index			9		0.625		9	0.192	2307692		1
gh Al-Mod				1	0.632	2653061		1	0.222	2222222		1
gh DU				29		19		29		10		29
₃h DU/C				1		0.64		1	0.322	2580645		1
gh DBE				31		19		31		11		31
gh DBE/C			1.0689	65517		0.64	1.068965	5517	0.35	5483871	1.0689	6552
gh MW				0		0		0		0		0
ligh C				63		42		63		55		63
ow O/C			0.0212	76596	0.02	777778	0.021276	5596	0.054	1545455	0.0256	64103
ow H/C (All)			0.1034	482.76	0.02	0.8	0.103448	3276	1.516	5129032	0.1034	4828
ow H/C (Has	5 O/C)		0.1034	48276		0.8	0.103448	3276	1.516	5129032	0.1034	4828
ow Aromati	city Index		0.2001	-14	-1.33	3333333		-14	-1.166	6666667		-5.5
ow AI-Mod	.,		0.0144	92754	0.0	1754386	0.014492	 2754	0.014	1492754	0.0144	9275
ow DU				0		0		0		0		0
ow DU/C				0		0		0		0		0
ow DBE				0		0		0		1		2
ow DBE/C				0		0		0		0.03125	0.0370	3704
ow MW				0		0		0		0		0
Low C				8		13		8		12		9

Table 3-- APCI center left loading data, separated by compound class

Figure 19-- APCI loading figure with the significant compounds in the left-center highlighted

Figure 20-- Van Krevelen figure of the left-center significant compounds

In the center left selection, which primarily consists of the Citgo samples (excluding S0802), the CHO compounds are overshadowed by the large amount of S-Class and N-Class compounds. There is a large chain of N-Class compounds <0.1 O/C, and the non-oxygenated compounds are primarily sulfur-containing.

ESI Loading

Figure 21-- ESI loading figure generated from Compound Discover

There are substantially fewer compounds in the ESI loading figure than an APCI loading figure for petroleum because petroleum is primarily non-polar. In this study, the Headington sample group is unique, occupying the entirety of the left side of the axis (except W1016). The Headington samples also have the largest inter-group sample spread of the ESI sample groups. By contrast, the Citgo samples tested have more common polar compounds (closer to the center) with low inter-group sample spread. The Cavitation sample group features an even tighter sample spread, indicating the negligent impact of the cavitation process on the polar chemical composition of petroleum. It is worth noting that Sarita Sogu 402 has poor reproducibility compared to any other sample triplicate in this study. Further testing should be conducted to verify the statistical uniqueness of Sarita Sogu 402.

ESI Bottom Right

Bottom Right	Overlap	Count (Original)	Dele	eted CxHy	Delete	ed O/C>1	Bla	nks Sum	Deleted	Cou	nt (Calcu	lated)
	0%	263		4		0		46	50			213
ESI_Loading_Bo	ottom_Rig	ht Total Compou	inds	CHO Comp	ounds	N-Class		P-Class	S-Class			
# of :			213		28		23	-1		164		
% of total			LOO%		13%		11%	0%	7	7%		
# of AI>0.5			27		12		9	0		6		
# of AI>=0.67			6		6		0	0		0		
# of AI-MOD>0.	.5		34		12		13	0		9		
# of AI-MOD>=	0.67		6		6		0	0		0		
# of Carbons			3102		558		287	0	2	279		
Average O/C		0.11861	2589	0.210	370309	0.168549	9433	#DIV/0!	0.101818	821		
Average H/C (A	AII)	1.52164	4022	1.212	873333	1.281759	9303	#DIV/0!	1.616885	728		
Average H/C (H	las O/C)	1.52593	6501	1.212	873333	1.250793	8651	#DIV/0!	1.620670	303		
Average Aroma	aticity+Inc	dex 0.06089	0956	0.232	653785	-0.416320	0033	#DIV/0!	0.024578	222		
Average AI-Mo	d+	0.29886	9332	0.389	461629	0.493618	3435	#DIV/0!	0.244041	422		
Average DU		4.53051	6432	8.392	857143	6.130434	1783	#DIV/0!	3.603658	537		
Average DU/C		0.32298	5774	0.445	235597	0.490598	3773	#DIV/0!	0.275539	381		
Average DBE		6.53990	6103	8.392	857143	6.391304	1348	#DIV/0!	6.213414	634		
Average DBE/C	2	0.4743	6277	0.445	235597	0.518549	9084	#DIV/0!	0.47214	487		
Average MW		19.6388	7324	21.42	171429	18.2803	3913	#DIV/0!	19.5457	439		
Average Carbo	n Count	14.5633	8028	19.92	857143	12.47826	5087	#DIV/0!	13.89634	146		
High O/C		0.66666	6667		1.8		2.5	0		10		
High H/C (All)			2.5		1.8		2.5	0		2.5		
High H/C (Has C	D/C)		2.5		1.8		2.5	0		2.5		
High Aromatici	ty Index	0.84210	5263	0.842	105263	0.666666	5667	0	0.5555555	556		
High Al-Mod		0.84615	3846	0.846	153846	0.666666	5667	0	0.565217	391		
High DU			17		17		9	0		10		
High DU/C			0.85		0.85		0.7	0	0.	625		
High DBE			17		17		9	0		12		
High DBE/C		0.91666	6667		0.85		0.7	0	0.916666	667		
High MW			0		0		0	0		0		
High C			28		27		18	0		28		
			0.05		0.05	0.074.404		-	0.000000			
Low O/C			0.05		0.05	0.0/1428	35/1	0	0.066666	667		
Low H/C (All)	. (-)		0.4		0.4		0.9	0	0.923076	923		
Low H/C (Has C)/C)		0.4		0.4		0.9	0	0.923076	923		
Low Aromaticit	ty Index		-7	-0.307	692308		-7	0		-7		
Low AI-Mod		0.02564	1026	0.025	641026	0.214285	5714	0	0.041666	667		
Low DU			0		3		0	0		0		
Low DU/C			0		0.15		0	0		0		
LOW DBE			1		3		1	0		3		
Low DBE/C		0.11111	1111		0.15	0.111111	1111	0	0.227272	/27		
Low MW			0		0		0	0		0		
Low C			6		14		8	0		6		

Table 4--ESI bottom right loading data, separated by compound class

Figure 22-- ESI loading figure with the significant compounds in the bottom-right highlighted

Figure 23-- Van Krevelen figure of the bottom-right significant compounds

In the bottom right section of the ESI loading figure, which consists primarily of the Cavitation sample group, the predominant sample group is S-Class samples. This contrasts with other Van Krevelen diagrams, where CHO and N-Class compounds have a more significant presence.

ESI Bottom Left

Bottom Left	Overlap	Cou	nt (Original)	Dele	eted CxHy	Delete	ed O/C>1 I	Blanks	Sum Deleted	Count (Calculated)
	17%		403		30		2	53	85	318
1										
ESI Loading	Bottom Lei	ft	Total Compou	nds	CHO Comp	ounds	N-Class	P-Class	S-Class	
# of :		-		318		222	76	5 8	67	
% of total			1	.00%		70%	24%	3%	21%	
# of AI>0.5				64		51	8	3 2	. 8	
# of AI>=0.67				10		4	5	5 2	2 4	
# of AI-MOD>	·0.5			84		75	4	1	. 5	
# of AI-MOD>	=0.67			14		10	2	. 1	. 2	
# of Carbons				4398		3089	977	75	849	
Average O/C			0.22293	5672	0.1866	546376	0.311728	0.595337	0.288290838	
Average H/C	(AII)		1.39236	9279	1.216	599512	1.920497	1.866766	1.878193176	
Average H/C	(Has O/C)		1.39425	9774	1.216	599512	1.978957	1.866766	1.971055048	
Average Aron	naticity+In	dex	0.04904	8378	0.316	764909	-0.58803	-2	-0.582691488	
Average AI-N	1od+		0.44467	6939	0.426	507086	0.612846	0.882353	0.675180382	
Average DU			4.91913	7466	6.3108	310811	2.960526	2.625	3.447761194	
Average DU/0	2		0.40519	3667	0.4679	931496	0.218022	0.273313	0.236457819	
Average DBE			5.4636	1186	6.3108	310811	5.118421	. 3.875	6.358208955	
Average DBE/	′C		0.46267	1561	0.4679	931496	0.424757	0.423016	0.497785023	-
Average MW			18.6187	9245	21.026	525676	20.17879	14.35125	5 19.68	
Average Carb	on Count		13.8301	8868	13.852	201794	12.68831	8.333333	12.48529412	
High O/C				1		2.5	2.5	5 58	3 14	
High H/C (All)				2.5		2.5	2.5	2.428571	. 2.5	
High H/C (Has	5 O/C)			2.5		2.5	2.5	2.428571	. 2.5	
High Aromati	city Index			7		0.75	7	2.333333	5 7	,
High AI-Mod				9		0.76	g	0.882353	9	
High DU				14		11	13	11	. 14	
High DU/C			0.91666	6667	0.777	77778	0.833333	0.916667	0.769230769	
High DBE				16		11	13	12	16	i i
High DBE/C				1	0.777	77778	0.833333	1	. 1	
High MW				0		0	C) C	0	-
High C				31		20	31	. 15	26	
										_
Low O/C			0.03846	1538	0.0526	531579	0.055556	0.142857	0.038461538	_
Low H/C (All)			0.41666	6667	0.6153	384615	0.833333	0.416667	0.615384615	_
Low H/C (Has	0/C)		0.41666	6667	0.6153	384615	0.833333	0.416667	0.615384615	_
Low Aromatic	city Index			-7		-3	-6	5 -7	-6	-
Low AI-Mod			0.0303	0303	0.0476	519048	0.030303	0.882353	0.037037037	
Low DU				0		0	C) C	0	
Low DU/C				0		0	C) C	0	
Low DBE				0		0	1	. 1	. 2	
Low DBE/C				0		0	0.052632	0.066667	0.166666667	
Low MW				0		0	C) C	0	
Low C				4		0	C) C	0 0	

Table 5--ESI bottom left loading data, separated by compound class

Figure 24-- ESI loading figure with the significant compounds in the bottom-left highlighted

Figure 25-- Van Krevelen figure of the bottom-left significant compounds

In the bottom-left section of the ESI loading figure, which may consist solely of Sarita Sogu 402, the compounds are predominantly CHO only, with an extensive oxygenation range of S-Class compounds. There are significant S-Class and some N-Class compounds with no oxygenation.

Top Left	Overlap	Count	(Original)	Delet	ed CxHy	Deleted	1 O/C>1	Blanks	s Sum Dele	ted	Count (C	Calculated)
	11%		403		21		14	12	0	155		248
ESI Loadir	ng Top Le	eft	Total Comp	ounds	CHO Con	npounds	N-Class	Р	-Class	S-Cla	ISS	
_ # of :	0_ 1_			248		. 89		110	7		69	
% of total				100%		36%		44%	3%		28%	
# of AI>0.5				22		4		10	0		8	
# of AI>=0.6	57			11		838		5	0		5	
# of AI-MO	D>0.5			28		6		13	0		10	
# of AI-MO	D>=0.67			15		0		7	0		6	
# of Carbor	IS			2887		1516		1328	77		809	
Average O	/C		0.224	203168	1.5	55231484	0.20372	20763	0.431395892	0.15	9365057	
Average H/	′C (All)		1.660	294693	1.5	55231484	1.70686	59162	1.720564893	1.69	3422814	
Average H/	′C (Has O/C	C)	1.676	327434	30.	37640449	1.73002	28294	1.720564893	1.72	3245353	
Average Ar	omaticity	Index	-0.115	266653	0.2	97444094	-0.16998	32391 -	-0.738095238	-0.2	1355317	
Average Al	-Mod+		0.36	807864	0.13	34328358	0.40065	52918	0.153846154	0.49	2661648	
Average Dl	J		3.439	516129	3.3	70786517		3.6	3	3.39	1304348	
Average Dl	J/C		0.291	623583	0.3	18551229	0.29541	12697	0.333380019	0.2	8308513	
Average DB	BE		4.193	548387	0.3	18551229	4.34545	54545	4.285714286	6.01	4492754	
Average DB	BE/C		0.365	156105	17.	77996723	0.3688	39139	0.517250233	0.53	9591997	
Average M	W		17.22	392339	297	1869.393	16.4783	38182	18.75671429	16.9	3985507	
Average Ca	rbon Cour	nt	11.64	112903	17.0	03370787	12.0727	72727	11	11.7	2463768	
			0.000		2.2			2.5	40		12	
High U/C //			0.666	2 5	2.3	333333333		2.5	2 275	2.44	12	
High H/C (A	$\frac{1}{2}$			2.5	2.3	53333333		2.5	2.3/5	2.44	4444444	
High H/C (F	1as U/C)			2.5		59		2.5	2.3/5	2.44	4444444	
High Aroma	aticity inde	ex		1		1		1	0.152946154		1	
	a			10		12		10	0.153846154		12	
				1 25		12		1 25	1 25		1.25	
				1.25		1		1.25	1.25		1.25	
				81 C	24.0	T 0212420		2010	<u>ہ</u>		د 10	
				2	24.0	03313439		2	2		2	
High IVIV				24		24		24	17		22	
High C				24		34		24	17		22	
Low O/C			0.045	454545	0.1	56666667	0	.0625	0.3	0.04	5454545	
Low H/C (A	.11)		0.166	666667	0.1	56666667		0.25	0.5		0.25	
Low H/C (H	as O/C)		0.166	666667		12		0.25	0.5		0.25	
Low Aroma	ticity Inde	х		-5.5		0.0625		-5.5 -	-1.666666667		-5.5	
Low AI-Mo	d		0.047	619048		0	0.04761	L9048	0.153846154	0.09	0909091	
Low DU				0		0		0	0		0	
Low DU/C				0		0		0	0		0	
Low DBE				0		0		0	1		2	
Low DBE/C				0	0.34	45613653		0	0.125	0.18	1818182	
Low MW				0		0		0	0		0	
Low C				4		2		4	4		4	

ESI Top Left

Table 6-- ESI top left loading data, separated by compound class

Figure 26-- ESI loading figure with the significant compounds in the top-left highlighted

Figure 27-- Van Krevelen figure of the top-left significant compounds

In the top left section of the ESI loading figure, which consists of Headington samples (JGK C33, JCK C20, Diesel Mud Base), the Van Krevelen diagram generated is much less clustered other figures in this research. There is a significant number of unoxygenated N-Class and S-Class compounds.

APCI vs. ESI

Overall, several trends can be seen throughout the two sets of loading data.

1) Citgo is unique and isolated for APCI, while Headington is unique/isolated for ESI loading.

2) The cavitation sample group always has a tight sample spread due to LEX_TX_1AM being the base sample for all the other samples (Mid, Final, Vapor Recovery).
3) Diesel Mud base and Sarita Sogu 402 are similar on APCI because Diesel Mud base is a constituent of Sarita Sogu 402.

Volcano Plot Van Krevelens

Van Krevelen analyses were also conducted on the statistically unique compounds of every volcano plot comparison to display compounds do not present in other groups of oil visually. With a significant accumulation of different oil sample groups, this method will become a more robust method for filtering unique compounds by formation, well, or even by sample.

APCI Volcano

Citgo vs Cavitation

Overlap	Count (Original)	Deleted CxHy	Deleted O/C>1	Blanks	Sum Deleted	Count (Calculated)
16%	504	4	0	68	72	432

APCI_Citgo_CitgoVCavitation	Total Compounds	CHO Compounds	N-Class	P-Class	S-Class
# of :	432	63	187	9	240
% of total	100%	15%	43%	2%	56%
# of AI>0.5	114	0	82	0	36
# of AI>=0.67	13	0	12	0	1
# of AI-MOD>0.5	118	0	85	0	37
# of AI-MOD>=0.67	13	0	12	0	1
# of Carbons	11478	1665	4463	233	6712
Average O/C	0.183597187	0.205830623	0.154466	0.255287	0.16983
Average H/C (All)	1.428961159	1.712032823	1.263288	1.929768	1.544506
Average H/C (Has O/C)	1.665961028	1.712032823	1.583917	1.953884	1.803383
Average Aromaticity+ Index	0.186951205	-0.033626478	0.25615	-0.31979	0.113354
Average AI-Mod+	0.353289317	0.17051227	0.484711	0.180556	0.28033
Average DU	8.25462963	4.238095238	10.17112	3.111111	7.129167
Average DU/C	0.341316651	0.185711455	0.444527	0.107505	0.280601
Average DBE	9.81712963	4.238095238	11.32086	4.333333	9.908333
Average DBE/C	0.406948417	0.185711455	0.500406	0.157273	0.397201
Average m/z	416.75721	442.5914852	376.45	477.2196	447.1319
Average Carbon Count	26.56944444	26.42857143	23.86631	25.88889	27.96667
High O/C	0.789473684	2.142857143	2.4	120	19
High H/C (All)	2.4	2.142857143	2.4	2.230769	2.4
High H/C (Has O/C)	2.4	2.142857143	2.4	2.230769	2.4
High Aromaticity Index	0.75	0.470588235	0.75	0.192308	0.692308
High AI-Mod	0.75	0.5	0.75	0.222222	0.692308
High DU	22	13	22	10	19
High DU/C	0.769230769	0.526315789	0.769231	0.322581	0.714286
High DBE	22	13	22	11	21
High DBE/C	0.882352941	0.526315789	0.785714	0.354839	0.882353
High m/z	756.75611	668.63068	730.6453	657.5273	756.7561
High C	52	42	48	38	52
Low O/C	0.037037037	0.078947368	0.037037	0.064516	0.043478
Low H/C (All)	0.65	1.052631579	0.65	1.516129	0.714286
Low H/C (Has O/C)	0.80952381	1.052631579	0.809524	1.516129	0.869565
Low Aromaticity Index	-5.333333333	-1.333333333	-2.33333	-1.16667	-5.33333
Low AI-Mod	0.01754386	0.01754386	0.025641	0.138889	0.021277
Low DU	0	0	0	0	0
Low DU/C	0	0	0	0	0
Low DBE	0	0	0	1	2
Low DBE/C	0	0	0	0.058824	0.068966
Low m/z	172.12839	254.11521	179.0734	312.1702	172.1284
Low C	9	13	9	13	9

Table 7—APCI Citgo vs Cavitation data, Citgo side

Cavitation Side	Overlap	Count (Original)	Deleted CxHy	Deleted O/C>1	Blanks	Sum Deleted	Count (Calculated)
	17%	404	32	0	55	87	317

# of : 317 162 77 5 % of total 100% 51% 24% 2% 4	128
% of total 100% 51% 24% 2%	001
	10%
# of AI>0.5 32 30 2 0	1
# of AI>=0.67 12 11 1 0	1
# of AI-MOD>0.5 38 35 3 0	0
# of AI-MOD>=0.67 15 15 0 0	0
# of Carbons 7024 3564 2043 206 2	524
Average O/C 0.112206374 0.08058323 0.221402 0.195556 0.13	313
Average H/C (All) 1.607173633 1.351801351 1.939619 1.974758 1.886	283
Average H/C (Has O/C) 1.604043912 1.351801351 1.947491 1.928889 1.885	766
Average Aromaticity+ Index 0.093101172 0.318264664 -0.32675 -0.17343 -0.1333	877
Average AI-Mod+ 0.306549697 0.352549896 0.342863 0.142857 0.146	904
Average DU 5.189274448 7.5 2.714286 2.8	2.5
Average DU/C 0.265221937 0.374766735 0.140501 0.057424 0.144	482
Average DBE 6.056782334 7.5 4.207792 5.4 4	625
Average DBE/C 0.318069891 0.374766735 0.224111 0.155879 0.274	921
Average MW 362.3022313 322.986275 503.2322 730.348 357.2	597
Average Carbon Count 22.15772871 22 26.53247 41.2 19.7	875
High O/C 0.625 1.909090909 2.5 167	7
High H/C (All) 2.5 1.909090909 2.5 2.06	2.5
High H/C (Has O/C) 2.5 1.909090909 2.5 2.06	2.5
High Aromaticity Index 5 0.75 5 0.111111	5
High AI-Mod 0.76 0.76 0.578947 0.142857 0.33	333
High DU 17 17 12 12	7
High DU/C 0.769230769 0.769230769 0.636364 0.2 0.538	462
High DBE 17 17 13 13	9
High DBE/C 0.769230769 0.769230769 0.714286 0.272727 0.714	286
High MW 974.7039 960.72429 974.7039 942.7142 974.7	035
High C 60 57 60 60	53
Low O/C 0.029411765 0.029411765 0.030303 0.066667 0.033	333
Low H/C (All) 0.571428571 0.571428571 1 1.666667 1.230	769
Low H/C (Has O/C) 0.571428571 0.571428571 1 1.666667 1.230	769
Low Aromaticity Index -4 -0.2 -4 -0.38889	-4
Low AI-Mod 0.021276596 0.025641026 0.142857 0.142857 0.02	277
Low DU 0 2 0 0	0
Low DU/C 0 0.090909091 0 0	0
Low DBE 0 2 0 1	2
Low DBE/C 0 0.090909091 0 0.02 0.040	816
Low MW 156.08999 170.0727 156.09 404.2708 160.0	918
Low C 5 12 5 22	5

Table 8—APCI Citgo vs Cavitation data, Cavitation side

Figure 28—APCI volcano plot of the Cavitation compounds versus the Citgo compounds

Figure 29-- Van Krevelen figure of the significant Citgo compounds (right side)

Figure 30-- Van Krevelen figure of the significant Cavitation compounds (left side)

For this volcano comparison, there are many compounds with a lot of those compounds shared between Citgo and Cavitation samples (center, high –log10 P-value). For the Citgo data, there were significant amounts of S-Class compounds, including unoxygenated S-Class compounds. A larger CHO grouping between 0.5-1.5 H/C for the Cavitation data, along with another class cluster above it at 1.5-2 H/C. There are also minimal unoxygenated compounds detected in the Cavitation sample group in comparison to Citgo samples.

Headington vs Cavitation

Headington Side	Overlap	Count (Original)	Deleted CxHy	Delet	ed O/C>1	Blanks	Sum Deleted			Count (Calculated)	
							-				
	4%	130	13		0	2	0		33	97	
			T 0		<u></u>						
APCI_Headingto	n_Headin	gtonVCavitation	Total Compo	unds	CHO Con	npounds	N-Class	P-Class	S-Class	10	
# OT :				97		59	11	2	24	19	
				100%		/1%	11%	2%	20	J%	
# 01 A1>0.5				2 1		1	1	0		1	
# of AL-MOD>0 5				6		0	1	1		1	
# of AI-MOD>=0	, 67			1		4	1	0		1	
# of Carbons				1657		1089	298	47	2	128	
				2007		2000					
Average O/C			0.1558	70036	0.12	3400457	0.11003	0.266667	0.2979	38	
Average H/C (Al	I)		1.5576	25588	1.51	0587301	1.818587	1.10119	1.6107	'35	
Average H/C (Ha	is O/C)		1.5538	18804	1.51	.0587301	1.808138	1.10119	1.5933	83	
Average Aromat	icity+Inde	ex	-0.0651	68321	0.20	9654826	-0.02631	0.314286	-1.100	008	
Average AI-Mod	+		0.2658	01767	0.27	1872168	0.26928	0.426901	0.2395	576	
Average DU			3.9487	17949	4.56	5217391	4.818182	11.5	4.8947	'37	
Average DU/C			0.2909	80413	0.31	3959586	0.167967	0.547619	0.2632	214	
Average DBE			4.3418	80342	4.56	5217391	5.636364	12.5	7.2105	526	
Average DBE/C			0.3195	04311	0.31	3959586	0.203598	0.603571	0.4029	946	
Average MW			283.02	35247	242.	9930664	449.0821	443.1679	345.73	67	
Average Carbon	Count		17.082	47423	15.	7826087	27.09091	23.5	17.263	\$16	
High O/C			0.8333	33333		2	2.142857	90		23	
High H/C (All)			2.1428	57143		2	2.142857	1.285714	2.1428	357	
High H/C (Has O	/C)		2.1428	57143		2	2.142857	1.285714	2.1428	357	
High Aromaticity	y Index		0.6956	52174		0.625	0.695652	0.428571	0.6956	52	
High Al-Mod				0.72	0.66	66666667	0.72	0.555556	0.	.72	
High DU				23		11	23	15		23	
High DU/C			0.7666	66667		0.7	0.766667	0.666667	0.7666	67	
High DBE			0.0000	25		11	25	16	0 0222	25	
			0.8333	33333		U./	0.833333	0.75	0.8333	000	
			662.	99244 20	5	701013 רכ	030.2907	030.290/	219.13	30	
				30		57				50	
Low O/C			0.0277	77778	0.04	3478261	0.027778	0.2	0.0555	556	
Low H/C (All)				0.6		0.8	0.6	0.916667	(0.6	
Low H/C (Has O/	′C)			0.6		0.8	0.6	0.916667	(0.6	
Low Aromaticity	Index			-7	-0.33	3333333	-0.625	0.2		-7	
Low AI-Mod			0.0256	41026	0.02	5641026	0.028571	0.298246	0.0714	29	
Low DU				0		1	0	8		1	
Low DU/C				0	0.05	2631579	0	0.428571	0.0714	29	
Low DBE				0		1	0	9		3	
Low DBE/C				0	0.05	2631579	0	0.457143	0.2142	286	
Low MW			150.	10415	1	50.10415	157.1463	250.0391	228.11	.79	
Low C				7		7	9	12		12	

Table 9—APCI Headington vs Cavitation data, Headington side

Cavitation Side	Overlap	Count (Or	Deleted CxHy	Deleted O/C>1	Blanks	Sum De	le Coun	t (Calculated)
	210/	402	<u> </u>	0		0 1	20	254
	21%	482	68	0	0	0 1	28	354
APCI Cavitation H	eadingtonV	Cavitation	Total Compounds	CHO Compounds	N-Class	P-Class	S-Class	
# of :			354	4 32	192	9	197	
% of total			100%	5 9 %	54%	3%	56%	
# of AI>0.5			14	4 4	8	0	3	
# of AI>=0.67			4	4 3	1	0	1	
# of AI-MOD>0.5			17	7 4	11	1	4	
# of AI-MOD>=0.67			e	5 3	3	1	2	
# of Carbons			10654	1052	6417	350	5652	
Average O/C			0.100427083	0.088322141	0.13416	0.264434	0.092861	
Average H/C (All)			1.6/92/5308	1.535800463	1.614647	1.765958	1.846502	
Average H/C (Has C	J/C)		1.781813753	1.535800463	1.793919	1.769598	1.8/4321	
Average Aromatici	ty+Index		0.090685893	0.18/363959	0.10885	-0.19665	-0.02606	
Average AI-IVIOd+			0.254341313	3 0.266097996	0.364552	0.453915	0.140988	
Average DU			5.61299435	0 7.5625	6.760417	0 17100	3.248/31	
Average DU/C			0.215450458	3 0.265365006	0.252867	0.1/163	0.133585	
Average DBE			0.37004019	7.5025	7.703125	7.222222	5.426396	
Average DBE/C			475 5000569		0.283335	706 6092	0.230489	
Average Carbon Co	unt		30,0960452	3 490.5203841	33 / 2188	38 88889	28 69036	
Average Carbon Co	unt		30.0300432		55.42100	30.00003	28.09030	
High O/C			1.034482759	2.052631579	2.190476	168	30	
High H/C (All)			2.19047619	2.052631579	2.190476	2.166667	2.190476	
High H/C (Has O/C)			2.19047619	2.052631579	2.190476	2.166667	2.190476	
High Aromaticity In	ndex		1	L 0.75	1	0.138889	1	
High AI-Mod			1.08	0.756097561	1.08	1.08	1.08	
High DU			30) 16	30	30	30	
High DU/C			1.034482759	0.761904762	1.034483	1.034483	1.034483	
High DBE			33	3 16	33	33	33	
High DBE/C			1.137931034	0.761904762	1.137931	1.137931	1.137931	
High MW			974.7039	960.72429	974.7039	942.7142	974.7035	
High C			63	3 57	61	60	63	
			0 010067030	0 010067025	0 029571	0.054545	0 02125	
			0.01000/92	0.01000/925	0.0205/1	0.034345	0.03123	
			0.103446270	0 571420571	0.103440	0.103440	0.103446	
Low Aromaticity In	dox		0.103448270	0.571428571	0.103440	0.103448	0.103448	
Low Al-Mod	uen		0.0000000	0.01020200	0.00007	0.138880	0.00007	
			0.01/2413/5) 0.04004009) 0	0.010000	0.130009	0.01/241	
			(, U	0	0	0	
Low DBF			(, 0) 0	0	1	0 2	
Low DBE/C			(, 0) 0	0	1 0 02	2 0 037037	
Low MW			160 03454	1 232 08827	173.0839	366.2533	160,0345	
Low C				3 17	10	18	8	

Table 10-- APCI Headington vs Cavitation data, Cavitation side

Figure 31-- APCI volcano plot of the Cavitation compounds versus the Headington compounds

Figure 32-- Van Krevelen figure of the significant Headington compounds (right side)

Figure 33-- Van Krevelen figure of the significant Cavitation compounds (left side)

For this volcano comparison, there are substantially fewer unique compounds detected in Headington samples than the Cavitation sample group—this also goes for the less unique compounds in the center, which is also stacked towards the Cavitation side. Regarding the Van Krevelen data, the Headington sample group primarily consists of CHO only compounds, while the Cavitation Van Krevelen consists of more N-Class and S-Class compounds.

Headington vs Citgo

Headington Side	Overlap	Count (C	Driginal)	Deleted C	хНу	Deleted O/C	>1	Blanks	Sum Deleted	Count (Calcul	ated)
							_				
6%		338 52		52 0 38		90	248				
APCL Headington	Headingto	nVCitgo	Total Co	omnounds	сно	Compounds	N-(Class	P-Class	S-Class	
# of :			Total et	248		195		24	1	42	
% of total				100%		79%		10%	0%	17%	
# of AI>0.5				26		25		1	0	1	
# of AI>=0.67				7		6		1	0	1	
# of AI-MOD>0.5				35		34		1	0	1	
# of AI-MOD>=0.6	7			11		10		1	0	1	
# of Carbons				4396		3350		596	35	692	
Average O/C			0	.125770775		0.096446013	0	.220181164	0.2	0.264426786	
Average H/C (All)				1.47852258		1.398250344		1.95037312	1.285714286	1.741292785	
Average H/C (Has	0/C)		1	.476684995		1.398250344	1.958096853		1.285714286	1.743852033	
Average Aromatic	city+Index		0	.072289856		0.291746142	-0	.478789029	0.2	-0.958108093	
Average AI-Mod+	•		0	.320797511		0.333914929	0	.243995443	0.298245614	0.228773889	
Average DU				5.39516129		5.892307692	3	.291666667	15	3.547619048	
Average DU/C			0	.328493462		0.363008358	0	.138914053	0.428571429	0.224082636	
Average DBE			5.762096774			5.892307692	4.416666667		16	5.69047619	
Average DBE/C			0	.354054951		0.363008358	0	.224683442	0.457142857	0.37433687	
Average MW			2	80.9483615		255.5275447	4	59.0410138	636.29665	331.0319921	
Average Carbon C	Count		1	7.72580645		17.17948718	2	4.83333333	35	16.47619048	
High O/C			0	.8333333333		2	2	.3333333333	90	23	
High H/C (All)			2	.3333333333		2	2	.3333333333	1.285714286	2.3333333333	
High H/C (Has O/C	2)		2	.3333333333		2	2	.3333333333	1.285714286	2.3333333333	
High Aromaticity I	Index			0.75		0.75	0	.695652174	0.2	0.695652174	
High AI-Mod				0.76		0.76	0.72		0.298245614	0.72	
High DU			23			13	23		15	23	
High DU/C			0	.769230769		0.769230769	0	.766666667	0.428571429	0.766666667	
High DBE				25		13		25	16	25	
High DBE/C			0	.8333333333		0.769230769	0	.8333333333	0.457142857	0.833333333	
High MW				974.7039		450.38591		974.7039	636.29665	974.7035	
High C				52		32		52	35	49	
			0	02777777		0 03135	0	027777778	0.2	0 03571/1286	
			0	588725704		0.03123	0	۵	1 28571/1296	0.033714280	
		0.50255294			0.58235294 0		0.0	1 28571/296	0.0		
Low Aromaticity Index		0.300233234			-0 333333333 /		1.285714280				
Low Al-Mod			0	0256/1026		0.0000000000000000000000000000000000000	0	-4 028571//20	0.2	-7 0 071/128571	
			0	0200+1020. م201		0.020041020	0	1429 / 1429. م	15	0.071420371	
				0		0.052621570		0	LD 0 // 28571 // 20	0	
		0			0.032051579	1 (0.4203/1429	0		
			0			0.052624570			10 0 4E71 420F7	L 0.040916337	
				UU		0.052631579	0		0.45/14285/	0.040816327	
				152.119/1		152.119/1	-	157.14633	636.29665	1/8.0//85	
LOW C			6		7		6	35	6		

Table 11-- APCI Headington vs Citgo data, Headington side

Citgo Side	Overlap	Count (Original)	Deleted CxHy	Deleted O/C>1	Blanks	Sum Deleted	Count (Calculated)
	19%	1103	66	0	135	201	902

APCI_Citgo_HeadingtonVCitgo	Total Compounds	CHO Compounds	N-Class	P-Class	S-Class
# of :	902	84	542	29	416
% of total	100%	9%	60%	3%	46%
# of AI>0.5	133	7	88	0	42
# of AI>=0.67	14	0	12	0	3
# of AI-MOD>0.5	138	7	92	1	44
# of AI-MOD>=0.67	16	0	14	1	4
# of Carbons	27315	2209	17064	1000	12392
Average O/C	0.133554747	0.189319034	0.106526252	0.165647949	0.125783505
Average H/C (All)	1.491274028	1.641477272	1.455893341	1.913426192	1.613173732
Average H/C (Has O/C)	1.674005269	1.641477272	1.658273273	1.919732767	1.848169913
Average Aromaticity+Index	0.193931932	0.022625129	0.215960265	-0.187262553	0.099061633
Average AI-Mod+	0.320475255	0.210578318	0.362701511	0.3581819	0.268534059
Average DU	8.366962306	5.202380952	9.370848708	3.310344828	6.286057692
Average DU/C	0.307063428	0.220660756	0.332723748	0.103692672	0.246436508
Average DBE	9.603104213	5.202380952	10.20295203	5.344827586	8.932692308
Average DBE/C	0.357528154	0.220660756	0.368050047	0.162902758	0.35452757
Average MW	460.1422218	432.2748111	473.5107655	611.8016503	476.1766715
Average Carbon Count	30.2827051	26.29761905	31.48339483	34.48275862	29.78846154
High O/C	1.034482759	2.142857143	2.4	168	30
High H/C (All)	2.4	2.142857143	2.4	2.176470588	2.4
High H/C (Has O/C)	2.4	2.142857143	2.4	2.176470588	2.4
High Aromaticity Index	1	0.619047619	1	0.192307692	1
High AI-Mod	1.08	0.627906977	1.08	1.08	1.08
High DU	30	17	30	30	30
High DU/C	1.034482759	0.636363636	1.034482759	1.034482759	1.034482759
High DBE	33	17	33	33	33
High DBE/C	1.137931034	0.636363636	1.137931034	1.137931034	1.137931034
High MW	914.95648	668.63068	876.84519	861.80874	914.95648
High C	63	42	63	55	63
Low O/C	0.024390244	0.035714286	0.024390244	0.054545455	0.03125
Low H/C (All)	0.103448276	0.818181818	0.103448276	0.103448276	0.103448276
Low H/C (Has O/C)	0.103448276	0.818181818	0.103448276	0.103448276	0.103448276
Low Aromaticity Index	-5.333333333	-1.333333333	-2.333333333	-0.727272727	-5.333333333
Low AI-Mod	0.016949153	0.01754386	0.016949153	0.138888889	0.016949153
Low DU	0	0	0	0	0
Low DU/C	0	0	0	0	0
Low DBE	0	0	0	1	2
Low DBE/C	0	0	0	0.045454545	0.037037037
Low MW	160.03454	254.11521	179.07337	352.23778	160.03454
Low C	9	13	9	17	9

Table 12-- APCI Headington vs Citgo data, Citgo side

Figure 34-- APCI volcano plot of the Citgo compounds versus the Headington compounds

Figure 35-- Van Krevelen figure of the significant Headington compounds (right side)

Figure 36-- Van Krevelen figure of the significant Citgo compounds (left side)
For this volcano comparison, there are many unique compounds at the –log10 P-value cap (top of the graph), meaning many unique compounds were detected for these two groups of samples. The shared compounds (center) lean towards the Citgo side, and overall, Citgo has more samples and more unique samples. Regarding the Van Krevelen data, the Headington sample group indicates many CHO only compounds relative to all the other sample types. The Citgo sample primarily consists of S-Class compounds and unoxygenated S-Class compounds.

General Notes APCI Volcano/Van Krevelen

Holistic observations are also made with the APCI Volcano Plot and Van Krevelen data.

- The Citgo sample group has a lot of S-Class and unoxygenated compounds when ionized by APCI. This is seen with both the comparison with Cavitation and Headington.
- The Headington sample group is primarily composed of CHO Only compounds. Compared with both Cavitation and Citgo, large clusters of CHO Only compounds are present for the Headington Van Krevelen.
- 3) Cavitation has similarities to both Headington and Cavitation. When compared with Headington, its unique graph is "missing a lot of CHO compounds." When compared with Citgo, it's missing a lot of "S-Class and 0-Oxy S-Class".

ESI

Headington VS Cavitation

Headington Side	Overlap	Overlap Count (Orig		iginal) Deleted CxHy		Deleted O/C	>1.2	Blanks	Sum Deleted	Count (Calculated	
	11%		823		29		16	173	218	3	60"
ESI Headington He	eadington	VCavitation	Total	Compounds	СНО	Compounds	N-Cla	155	P-Class	S-Class	00.
# of :	caamgeon	- carreation	. o ta.	605	0.11	276		252	21	121	
% of total				100%		46%		42%	3%	20%	
# of AI>0.5				83		42		26	3	20	
# of AI>=0.67				22		6		11	2	10	
# of AI-MOD>0.5				113		64		33	2	20	
# of AI-MOD>=0.67				30		13		11	1	10	
# of Carbons				7415		3381		3070	209	1443	
Average O/C				0.220285411		0.223972662	0.2	17185816	0.515292613	0.196859905	
Average H/C (All)				1.485455911		1.364996988	1.6	02686632	1.789625765	1.644440423	
Average H/C (Has C	D/C)			1.494150817		1.364996988	1.6	62206593	1.789625765	1.694244924	
Average Aromatici	ty+Index			0.032799838		0.166920816	-0.04	46700235	-1.701587302	-0.168044747	
Average AI-Mod+				0.419656518		0.399581405	0.4	43843497	0.406636501	0.631331266	
Average DU				4.58677686		4.905797101	4.24	42063492	2.80952381	3.983471074	
Average DU/C				0.373833547		0.40535084	0.3	50967589	0.333439017	0.318962468	
Average DBE				5.163636364		4.905797101	4.9	64285714	4.095238095	6.719008264	
Average DBE/C				0.430567961		0.40535084	0.4	42321165	0.501015791	0.586046047	
Average MW				216.7909479		206.4717002	222	.2329662	260.134211	241.4908411	
Average Carbon Co	ount			12.25619835		12.25	12.3	18253968	9.952380952	11.92561983	
High O/C				1		2.5		2.5	58	12	
High H/C (All)				2.5		2.5		2.5	2.428571429	2.44444444	
High H/C (Has O/C)				2.5		2.5		2.5	2.428571429	2.44444444	
High Aromaticity Ir	ndex			7		1		7	2.333333333	7	
High AI-Mod				9		1		9	0.882352941	9	
High DU				18		12		18	11	12	
High DU/C				1.333333333		1	1.3	33333333	1.333333333	1.25	
High DBE				18		12		18	12	16	
High DBE/C				2		1		2	2	2	
High MW				0		0		0	0	0	
High C				32		20		32	17	26	
Low O/C				0.038461538		0.052631579	0.0	58823529	0.142857143	0.038461538	
Low H/C (All)				0.166666667		0.166666667		0.25	0.416666667	0.25	
Low H/C (Has O/C)				0.166666667		0.166666667		0.25	0.416666667	0.25	
Low Aromaticity In	dex			-7		-3		-7	-7	-5.5	
Low AI-Mod				0.03030303		0.047619048	0.0	03030303	0.153846154	0.04	
Low DU				0		0		0	0	0	
Low DU/C				0		0		0	0	0	
Low DBE				0		0		0	1	2	
Low DBE/C				0		0		0	0.066666667	0.181818182	
Low MW				0		0		0	0	0	
Low C				3		4		3	3	4	

Table 13-- ESI Headington vs Cavitation data, Headington side

Cavitation Side	Overlap	Count (Ori	ginal)	(inal) Deleted CxHy		Deleted O/O	2>1	Blanks	Sum Deleted		d Count (Calculated)	
	0%		101		ъ		0	26	20			153
	0%		191		2		0	50		50		
ESL Cavitation He	eadington	VCavitation	Total	Compounds	СНС) Compounds	N-0	lass	P-Class	S-Cla	55	
# of :	caamgron	Carriation	rotar	153	erre	15		29)	0 010.	109	
% of total				100%		10%		19%	- 		71%	
# of AI>0.5				22		8		12	2		2	
# of AI>=0.67				3		2		1			0	
# of AI-MOD>0.5				30		8		18	3		4	
# of AI-MOD>=0.6	7			3		2		1			0	
# of Carbons				2234		281		370)		1583	
Average O/C				0.105341263		0.185189109	0.0	089364604	L	0.097	7431099	
Average H/C (All)				1.517077256		1.226482564	1	.16396678	3	1.653	1014175	
Average H/C (Has	0/C)			1.517192747		1.226482564	1.0	030245945	5	1.653	1014175	
Average Aromatio	city+Index	[0.161449671		0.25277448	0.4	165426336	5	0.068	3007511	
Average AI-Mod+				0.32560113		0.393733828	0.4	483144842	2	0.243	3173885	
Average DU				4.424836601		7.666666667	6.6	589655172	2	3.376	5146789	
Average DU/C				0.32660993		0.443355695	0	.53800883	5	0.254	4300255	
Average DBE				6.385620915		7.666666667	6.6	589655172	2	6.128	3440367	
Average DBE/C				0.46652265		0.443355695	0.53800883		5	0.450	0691504	
Average MW				255.8735702		309.9030187	19	5.0482107	7	264.6	5212188	
Average Carbon C	Count			14.60130719		18.73333333	12.75862069)	14.52	2293578	
High O/C				0.35		1.8		1.25	5		8	
High H/C (All)				2		1.8	1.5625		5		2	
High H/C (Has O/O	C)			2		1.8		1.25	5		2	
High Aromaticity	Index			0.764705882		0.764705882	0.7	727272727	/	0.545	5454545	
High AI-Mod				0.771428571		0.771428571	0.7	739130435	5	0.565	5217391	
High DU				14		14		10)		8	
High DU/C				0.77777778		0.77777778	0.7	769230769)		0.625	
High DBE				14		14		10)		11	
High DBE/C				0.916666667		0.77777778	0.7	769230769)	0.916	6666667	
High MW				0		0		C)		0	
High C				27		24		18	3		27	
Low O/C				0.05		0.05	0.0)71428571	-	0.07	1428571	
Low H/C (All)				0.555555556		0.555555556	0.6	592307692	2	0.923	3076923	
Low H/C (Has O/C	v H/C (Has O/C)			0.555555556		0.555555556	0.6	592307692	2	0.923	3076923	
Low Aromaticity I	ndex	dex		0.307692308		-0.307692308	0.2	266666667	7		-0.25	
Low AI-Mod				0.025641026		0.025641026	0.2	266666667	/	0.043	3478261	
Low DU				1		3		5	5		1	
Low DU/C				0.045454545		0.15		0.3125	5	0.045	5454545	
Low DBE				3		3		5	5		3	
Low DBE/C				0.15		0.15		0.3125	5	0.22	7272727	
Low MW				0		0		C)		0	
Low C				6		9		10			6	

Table 14-- ESI Headington vs Cavitation data, Cavitation side

Figure 37—ESI volcano plot of the Cavitation compounds versus the Headington compounds

Figure 38-- Van Krevelen figure of the significant Headington compounds (right side)

Figure 39-- Van Krevelen figure of the significant Cavitation compounds (left side)

For this volcano comparison, the compounds are stacked towards the unique Headington compound side, but both the compounds detected occupy the entirety of the X-axis and the – log10 P-values on both sides of the volcano plot, indicating that there is a wide range of unique and significant compounds. Regarding the Van Krevelen diagrams generated, the Headington sample group has many more compounds than the Cavitation sample group (as indicated on the volcano plot). There is robust clustering of N-Class, S-Class, and CHO only compounds around 0.2 O/C and between 0.5-2.5 O/C. There is also a substantial amount of unoxygenated S-Class and N-Class compounds. The Cavitation sample group is drastically different; there is a disproportionately more significant number of S-Class compounds than any other Van Krevelen, with a small CHO cluster below 1 H/C and another CHO only cluster at 0.3-0.35 O/C.

Headington VS Citgo

Headington Side Overlap Count 10%		Count	(Original)	Delete	ed CxHy	Deleted	0/C>1.2	O/C>1.2 Bla		Sum Dele	eted	ted Count (Calculated)	
		299		20		7	7		90			182	
ESI Headington H	eadington	VCitgo	Total Com	oounds	CHO Cor	npounds	N-Class		P-C	lass	S-Cla	iss	
# of :		-		182		118		33		9		40	
% of total				100%		65%		18%		5%		22%	
# of AI>0.5				28		17	,	3		2		9	
# of AI>=0.67				7		3		2		1		3	
# of AI-MOD>0.5				37		25		3		1		11	
# of AI-MOD>=0.67	•			12		7	,	3		0		4	
# of Carbons				2174		1388		398		91		494	
Average O/C			0.20	0692308	0.2	01665678	0.25896	6203	C).47397811	0.15	2637218	
Average H/C (All)			1.425	5827651	1.3	60455521	1.82858	5013	1.	895095446	1.39	5231133	
Average H/C (Has (D/C)		1.43	3323296	1.3	60455521	1.84413	2006	1.	895095446	1.45	5070525	
Average Aromatici	ty+ Index		0.093	1977594	0.1	96690063	-0.20778	1836	-1.	174074074	0.10	1124958	
Average AI-Mod+			0.45	1881327	0.3	93629215	0.87738	1269	0.	324786325	(0.748042	
Average DU			4.802	2197802	4.9	15254237	3.27272	7273	2.	77777778		5.325	
Average DU/C			0.393	3817379	0.	41006792	0.26326	5051	0.	255327316	0.42	7896695	
Average DBE			5.423	3076923	4.9	15254237	4.81818	1818	4.	222222222		7.975	
Average DBE/C			0.449	9613367	0.	41006792	0.41255	3582	0.	422147007	0.66	3281629	
Average MW			209.3	1430616	193	3.1618251	250.740	8506	25	6.6446778	240.	4387098	
Average Carbon Co	ount		11.94	4505495	11.	76271186	12.0606	0606	10).11111111		12.35	
High O/C				1		2.5		2.5		49		10	
High H/C (All)				2.5		2.5		2.5	2.	428571429	2.44	4444444	
High H/C (Has O/C)				2.5		2.5		2.5	2.	428571429	2.44	4444444	
High Aromaticity Ir	ndex		2.33	3333333		0.75	2.33333	3333	2.	333333333	2.33	3333333	
High AI-Mod				9	0.7	57575758		9	0.	666666667		9	
High DU				14		14		11		7		10	
High DU/C			0.88	3888889	0.7	7777778	0.88888	8889	0.	77777778	0.88	8888889	
High DBE				14		14	•	14		10		14	
High DBE/C				1.2	0.7	7777778	1.11111	1111	1.	111111111		1.2	
High MW				0		0		0		0		0	
High C				32		20		32		17		21	
Low O/C			0.052	2631579	0.0	52631579	0.06666	6667	0.	142857143	0.06	6666667	
Low H/C (All)			0.588	8235294	0.5	88235294	0.66666	6667	0.	77777778		0.6	
Low H/C (Has O/C)			0.588	8235294	0.5	88235294	0.66666	6667	0.	77777778	0.66	6666667	
Low Aromaticity In	dex			-6		-3		-2.2		-6		-2.2	
Low AI-Mod			0.03	3030303	0.1	11111111	0.0303	0303	0.	153846154	0.14	2857143	
Low DU				0		0		0		0		0	
Low DU/C				0		0		0		0		0	
Low DBE				0		0		0		1		3	
Low DBE/C				0		0		0	0.	111111111	0.17	6470588	
Low MW				0		0		0		0		0	
Low C				4		4		5		7		5	

Table 15-- ESI Headington vs Citgo data, Headington side

Citgo Side	Overlap	Count (Original)	Deleted CxHy	Deleted O/C>1.2	Blanks	Sum Deleted	Count (Calculated)
	1%	173	1	0	16	17	156

# of : 156 8 95 55 % of total 100% 5% 61% 33% # of Al>-0.5 24 4 20 00 # of Al>-0.67 1 0 1 00 # of Al>-0.67 1 0 1 00 # of Al>OD>0.67 1 0 1 00 # of Carbons 1809 138 1131 559 Average H/C (All) 1.51321678 1.347649241 1.240030751 1.88531387 Average H/C (All) 1.51321678 1.347649241 1.240030751 1.88531387 Average H/C (All) 0.315321678 1.347649241 1.240030751 1.88531387 Average H/C (All) 0.31533371 0.412420933 0.421179622 0.422607001 0.15733371 Average H/C (All) 0.338560823 0.38860421 0.47154568 0.18096436 Average DBE 5.082756621 6.125 5.36842105 1.745454545 Average DBE/C 0.46725532 0.38860421 0.47376437	ESI_Citgo_HeadingtonVCitgo	Total Compounds	CHO Compounds	N-Class	P-Class	S-Class
% of total 100% 5% 61% 35% # of Al-So.5 24 44 20 0 0 # of Al-So.67 1 0 1 0 0 # of Al-MOD>0.5 28 44 23 1 1 0 0 # of Al-MOD>0.67 1.1 0 1 0 1 0 0 # of Al-MOD>0.67 1.1 0 1.347649241 1.32295839 1.871035436 Average O/C 0.132566129 0.201585145 0.128172445 0.128255843 Average H/C (All) 1.513121678 1.347649241 1.240030751 1.8853187 Average H/C (Has O/C) 1.597511615 1.347649241 1.240030751 0.128265843 Average DU 4.406895552 6.125 5.57847378 4.036363636 Average DU/C 0.38860623 0.38860421 0.47154568 4.036363636 Average DEE 5.082758621 6.125 5.7844738 4.036363636 Average DEE/C 0.467265532 0.388	# of :	156	8	95		55
# of Al>0.5 24 4 20 0 # of Al>0.67 1 0 1 0 1 0 # of Al-MOD>0.5 28 4 23 1 0 0 # of Al-MOD>-0.67 1 0 1 0 0 0 # of Carbons 1809 138 1131 559 0.128255843 0.128172445 0.128255843 Average O/C 0.132566129 0.201585145 0.128172445 0.128255843 Average Al-Mod+ 0.38509543 0.42179620 0.4200751 1.88531387 Average Al-Mod+ 0.38560523 0.3860421 0.471514568 0.12825843 Average DU 4.406896552 6.125 5.536842105 1.745454545 Average DU/C 0.38540823 0.38860421 0.471514568 0.180906436 Average DBE/C 0.467265532 0.3860421 0.471514568 0.16363636 Average DBE/C 0.467265532 0.3860421 0.47514568 0.22222222 1.016363636 Average DBE/C <td< td=""><td>% of total</td><td>100%</td><td>5%</td><td>61%</td><td></td><td>35%</td></td<>	% of total	100%	5%	61%		35%
# of Al>=0.67 1 0 1 0 # of Al-MOD>0.5 28 4 23 1 # of Al-MOD>=0.67 1 0 1 0 # of Carbons 1809 138 1131 559 Average O/C 0.132566129 0.201585145 0.128172445 0.128255843 Average H/C (All) 1.513121678 1.347649241 1.24030751 1.88331387 Average Al-Mod+ 0.38560633 0.42117962 0.422607001 0.15733371 Average DU/C 0.385460823 0.38860421 0.47515458 0.180906436 Average DU/C 0.385460823 0.38860421 0.47515458 0.180906436 Average DBE/C 0.46726532 0.38860421 0.475194568 0.180966436 Average DBE/C 0.66725632 0.38860421 0.475194568 0.180966436 Average Carbon Count 11.59513385 17.25 1.190526316 10.16363636 Average Carbon Count 11.5951385 17.25 11.90526316 10.1636636 Average Carbon Coun	# of AI>0.5	24	4	20		0
# of Al-MOD>0.5 28 4 23 1 # of Al-MOD>=0.67 1 0 1 0 # of Carbons 1809 138 1131 0 Average O/C 0.132566129 0.201585145 0.128172445 0.128255843 Average H/C (All) 1.513121678 1.347649241 1.322958539 1.87103543 Average H/C (Has O/C) 1.597511615 1.347649241 1.322958539 1.871035436 Average H/C (Has O/C) 1.597511615 1.347649241 1.30205751 1.88531387 Average Al-Mod+ 0.38690833 0.421179622 0.422607001 0.15733371 Average DU/C 0.385460823 0.38860421 0.4759586 0.10806436 Average DBE 5.082758621 6.125 5.578947368 4.03636366 Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 3.07692308 2.2222222 1.2307	# of AI>=0.67	1	0	1		0
# of Al-MOD>=0.67 1 0 1 0 # of Carbons 1809 138 1131 559 Average O/C 0.132566129 0.201585145 0.128172445 0.128255833 Average H/C (All) 1.513121678 1.347649241 1.322958539 1.871035436 Average Aromaticity+ Index 0.235577707 0.162969659 0.329872467 -0.124280993 Average Al-Mod+ 0.3386906343 0.421179622 0.422607001 0.15733371 Average DU 4.406896552 6.125 5.536842105 1.745454545 Average DBE 5.082758621 6.125 5.578947368 4.03636366 Average DBE/C 0.467265532 0.38860421 0.47595031 0.423764973 Average MW 191.4355796 291.4207013 179.9446093 197.291408 Average MV 191.4355796 2.91.4207013 10.9526316 10.16363636 High H/C (All) 2.307692308 2 2.207692308 2.22222222 High HOC 0.7272727 0.652 0.72727277 0.5	# of AI-MOD>0.5	28	4	23		1
# of Carbons 1809 138 1131 559 Average I/C 0.132566129 0.201585143 0.128172445 0.128255843 Average H/C (All) 1.513121678 1.347649241 1.32255539 1.871035436 Average H/C (Has O/C) 1.597511615 1.347649241 1.240030751 1.88531387 Average Aromaticity+ Index 0.23557707 0.162969659 0.329872467 -0.124280993 Average DU 4.406896552 6.125 5.536842105 1.745454545 Average DU/C 0.385460823 0.32880421 0.471514568 0.180906436 Average DBE 5.082758621 6.125 5.578947368 4.036363663 Average DBE/C 0.467265532 0.38800421 0.4715959013 0.423764373 Average Carbon Count 11.59615385 17.25 11.90526316 10.1636366 Average Carbon Count 11.59615385 17.25 11.90526316 10.1636366 High H/C (All) 2.307692308 2.22022222 2.307692308 2.22222222 High Alex Mod 0.7729130435	# of AI-MOD>=0.67	1	0	1		0
Average O/C 0.132566129 0.201585145 0.128172445 0.128255843 Average H/C (All) 1.513121678 1.347649241 1.322958539 1.871035436 Average H/C (Has O/C) 1.597511615 1.347649241 1.240030751 1.88531387 Average Ai-Mod+ 0.38590543 0.421179622 0.422607001 0.15733371 Average DU 4.406890552 6.125 5.536842105 1.745454545 Average DU/C 0.385460823 0.38860421 0.471514568 0.180906436 Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.471514568 0.1016363636 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 1.307562308 2.22222222 1.307562308 2.22222222 1.9375062308 2.22222222 1.94603 0.538461538 0.538461538 0.538461538 0.538461538 0.538461538 0.538461538 0.538461538 0.53846	# of Carbons	1809	138	1131		559
Average O/C 0.132566129 0.201585145 0.128172445 0.128255843 Average H/C (All) 1.513121678 1.347649241 1.322958339 1.871035436 Average Aromaticity+ Index 0.23557707 0.16269659 0.329872467 -0.124280993 Average Al-Mod+ 0.386906343 0.421179622 0.422607001 0.1573371 Average DU 4.406896552 6.125 5.536842105 1.745454545 Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.475559013 0.423764373 Average MW 191.4355796 291.4207013 179.9446093 197.291408 Average MW 192.430769208 2 2.307692308 2.2222222 High O/C 0.692307692 2.307692308 2.22222222 2.307692308 2.22222222 1.9307692 0.538461538 High Al-Mod 0.739130435 0.64705824 0.739130435 0.538461538 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Average H/C (All) 1.513121678 1.347649241 1.322958539 1.871035436 Average H/C (Has O/C) 1.597511615 1.347649241 1.240030751 1.88531387 Average Aromaticity+ Index 0.235577707 0.162996959 0.329872467 -0.124280993 Average DU 4.406896552 6.125 5.536842105 1.74545454 Average DU/C 0.385460823 0.38860421 0.471514568 0.180906436 Average DU/C 0.385460823 0.38860421 0.471514568 0.180906436 Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.471514568 0.180906436 Average Carbon Count 11.59615385 17.25 11.90526316 101.6363636 High O/C 0.692307692 2 2.307692308 2.22222222 14164 High N/C (All) 2.307692308 2.22222222 2 2.307692308 2.22222222 12 1307692308 2.22222222 14164 High Al/C (All) 0.72727277 0.55 0.5384	Average O/C	0.132566129	0.201585145	0.128172445		0.128255843
Average H/C (Has O/C) 1.597511615 1.347649241 1.240030751 1.88531387 Average Aromaticity+ Index 0.235577707 0.162969659 0.329872467 -0.124280993 Average AI-Mod+ 0.385906343 0.421179622 0.422607001 0.15733371 Average DU 4.406896552 6.125 5.536842105 1.745454545 Average DU/C 0.38540823 0.38860421 0.471514568 0.180906436 Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 High H/C (All) 2.307692308 2.22222222 1.2 3.307692308 2.22222222 High Aromaticity Index 0.727272727 0.655 0.75913435 0.538461538 High DU 11 11 10 6 1 6 High DU/C 0	Average H/C (All)	1.513121678	1.347649241	1.322958539		1.871035436
Average Aromaticity+ Index 0.235577707 0.162969659 0.329872467 -0.124280993 Average Al-Mod+ 0.386906343 0.421179622 0.422607001 0.15733371 Average DU 4.406896552 6.125 5.53842105 1.745454545 Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average DBE 5.082758621 10.16363636 10.16363636 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 12.307692308 2.22222222 12.307692308 2.22222222 12.307692308 2.22222222 14164/14 10 6 High N/C (All) 2.307692308 2.22222222 2.307692308 2.22222222 12.307692308 0.538461538 High Al-Mod 0.739130435 0.647058824 0.739130435 0	Average H/C (Has O/C)	1.597511615	1.347649241	1.240030751		1.88531387
Average Al-Mod+ 0.386906343 0.421179622 0.422607001 0.1573371 Average DU 4.406896552 6.125 5.536842105 1.745454545 Average DJ/C 0.38540823 0.38860421 0.471514568 0.180906436 Average DBE 5.082758621 6.125 5.578947368 4.03636336 Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average MW 191.4355796 291.4207013 179.9440093 197.291408 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 High Al-Mod 0.72727277 0.625 0.72727277 0.55 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE/C 0.875 0.666666667 0.769230769 1.625	Average Aromaticity+Index	0.235577707	0.162969659	0.329872467		-0.124280993
Average DU 4.406896552 6.125 5.536842105 1.745454545 Average DU/C 0.385460823 0.38860421 0.471514568 0.180906436 Average DBE 5.082758621 6.125 5.758947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.47599113 0.423764373 Average MW 191.4355796 291.4207013 179.9446093 197.291408 Average Carbon Count 11.59615385 17.75 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 High H/C (All) 2.307692308 2.22222222 2 2.307692308 2.22222222 High Al-Mod 0.73272727 0.625 0.7272727 0.5 High Al-Mod 0.739130435 0.646666667 0.769230769 0.62525 High DBE 11 11 10 8 0.875 High DBE 11 11 10 8 0.875 High DBE 0.01 0 0 0 0	Average AI-Mod+	0.386906343	0.421179622	0.422607001		0.15733371
Average DU/C 0.385460823 0.38860421 0.471514568 0.180906436 Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average MW 191.4355796 291.4207013 179.9446093 197.291408 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 High H/C (All) 2.307692308 2.22222222 2 2.307692308 2.22222222 High Al-Mod 0.72727277 0.625 0.727272727 0.55 High Al-Mod 0.739130435 0.6467058824 0.739130435 0.538461538 High DU 11 11 10 6 1 High DU/C 0.769230769 0.666666667 0.769230769 0.6525 High DBE/C 0.875 0.666666667 0.8 0.875 High DBE/C 0.055555556 0.055555556 0.6666666667	Average DU	4.406896552	6.125	5.536842105		1.745454545
Average DBE 5.082758621 6.125 5.578947368 4.036363636 Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average MW 191.4355796 291.4207013 179.9446093 197.291408 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 High H/C (All) 2.307692308 2.22222222 2 2.307692308 2.22222222 High A/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 0.5 High Aromaticity Index 0.72727272 0.625 0.72727272 0.5 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 111 11 10 8 High DBE/C 0.875 0.666666667 0.8 0.875 High DBE/C 0.82555555 0.055555555 0.0666666667	Average DU/C	0.385460823	0.38860421	0.471514568		0.180906436
Average DBE/C 0.467265532 0.38860421 0.475959013 0.423764373 Average MW 191.4355796 291.4207013 179.9446093 197.291408 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 2.22222222 High H/C (All) 2.307692308 2.22222222 2.307692308 2.22222222 High Aromaticity Index 0.72727277 0.625 0.72727277 0.55 High Al-Mod 0.739130435 0.6467058824 0.739130435 0.538461538 High DU 11 11 10 6 High DBE 11 11 10 6 High DBE 11 11 10 8 High DBE 11 11 10 8 High DBE 0.055555556 0.0666666667 0.8 0.875 High DBC 0.055555556 0.055555556 0.0666666667 0.076923077 Low O/C 0.055555556 0.055555556 0	Average DBE	5.082758621	6.125	5.578947368		4.036363636
Average MW 191.4355796 291.4207013 179.9446093 197.291408 Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 6 High M/C (AII) 2.307692308 2 2.307692308 2.22222222 High M/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High Aromaticity Index 0.72727277 0.625 0.72727277 0.55 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 111 11 10 8 0.875 High DBE/C 0.875 0.666666667 0.8 0.875 High NW 0 0 0 0 0 Low O/C 0.055555556 0.055555556 0.666666667 0.0769230779 1 23 Low H	Average DBE/C	0.467265532	0.38860421	0.475959013		0.423764373
Average Carbon Count 11.59615385 17.25 11.90526316 10.16363636 High O/C 0.692307692 2 2.307692308 6 High H/C (All) 2.307692308 2 2.307692308 2.22222222 High H/C (Has O/C) 2.22222222 2 2.307692308 2.222222222 High Aromaticity Index 0.72727277 0.625 0.727272727 0.5 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.6666666667 0.769230769 0.625 High DBE 11 11 10 8 0.875 High DBE/C 0.875 0.6666666667 0.8 0.875 High NW 0 0 0 0 0 High C 23 23 17 23 23 Low O/C 0.05555556 0.05555556 0.066666667 0.076923077 23 Low O/C 0.692307692	Average MW	191.4355796	291.4207013	179.9446093		197.291408
High O/C 0.692307692 2 2.307692308 6 High H/C (All) 2.307692308 2 2.307692308 2.22222222 High H/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High H/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High Aromaticity Index 0.727272727 0.625 0.727272727 0.538461538 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.6666666667 0.769230769 0.625 High DBE 11 11 10 8 0.875 High DBE/C 0.875 0.666666667 0.8 0.875 High MW 0 0 0 0 0 High C 2.3 2.3 17 23 23 17 23 Low O/C 0.055555556 0.055555556 0.0666666667 0.07692307792 1 1 <td< td=""><td>Average Carbon Count</td><td>11.59615385</td><td>17.25</td><td>11.90526316</td><td></td><td>10.16363636</td></td<>	Average Carbon Count	11.59615385	17.25	11.90526316		10.16363636
High O/C 0.692307692 2 2.307692308 6 High H/C (All) 2.307692308 2 2.307692308 2.22222222 High H/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High H/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High Aromaticity Index 0.727272727 0.625 0.727272727 0.55 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.6666666667 0.769230769 0.625 High DBE 11 11 10 8 High DBE/C 0.875 0.666666667 0.8 0.875 High MW 0 0 0 0 0 High MW 0 0 0 0 0 0 High DBE/C 0.05555556 0.05555556 0.066666667 0.07692307792 1 Low O/C 0.0592307692 0.875 0.692307692 1 1 Low H/C (Has O/C) 0						
High H/C (All) 2.307692308 2 2.307692308 2.2222222 High H/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High H/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High Aromaticity Index 0.727272727 0.625 0.727272727 0.55 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 11 11 10 8 0.875 High DBE/C 0.875 0.666666667 0.8 0.875 High NW 0 0 0 0 0 High C 2.3 23 17 23 Low O/C 0.055555556 0.055555556 0.066666667 0.0769230779 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 <td>High O/C</td> <td>0.692307692</td> <td>2</td> <td>2.307692308</td> <td></td> <td>6</td>	High O/C	0.692307692	2	2.307692308		6
High H/C (Has O/C) 2.22222222 2 2.307692308 2.22222222 High Aromaticity Index 0.727272727 0.625 0.727272727 0.5 High Al-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 11 11 10 8 0.875 High DBE/C 0.875 0.666666667 0.8 0.875 High MW 0 0 0 0 0 High C 2.3 23 17 23 Low O/C 0.05555556 0.05555556 0.066666667 0.076923077 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.6666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU/C 0.0666666667 0.0	High H/C (All)	2.307692308	2	2.307692308		2.222222222
High Aromaticity Index 0.727272727 0.625 0.727272727 0.55 High AI-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 11 11 10 8 High DBE/C 0.875 0.666666667 0.8 0.875 High MW 0 0 0 0 0 High C 23 23 17 23 Low O/C 0.05555556 0.05555556 0.66666667 0.076923077 Low A/C (All) 0.692307692 0.875 0.692307692 1 Low A/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.6666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU/C 0.0666666667 0 0 0	High H/C (Has O/C)	2.222222222	2	2.307692308		2.222222222
High AI-Mod 0.739130435 0.647058824 0.739130435 0.538461538 High DU 11 11 10 6 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 11 11 10 8 High DBE/C 0.875 0.666666667 0.8 0.875 High MW 0 0 0 0 0 High C 23 23 17 23 Low O/C 0.05555556 0.05555556 0.666666667 0.0769230779 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 1 0 1 Low DU/C 0.0666666667 0.0666666667 0 0.06255 1 0.06255 1 0 3 1	High Aromaticity Index	0.727272727	0.625	0.727272727		0.5
High DU 11 11 10 6 High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 11 11 10 8 High DBE/C 0.875 0.6666666667 0.8 0.875 High DBE/C 0.875 0.6666666667 0.8 0.875 High MW 0 0 0 0 0 High C 23 23 17 23 Low O/C 0.05555556 0.05555556 0.0666666667 0.076923077 Low H/C (AII) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 1 Low DU/C 0.0666666667 0.0666666667 0 0.0625 Low DBE/C 0.0666666667 0 0.260869565 0.0260869565	High AI-Mod	0.739130435	0.647058824	0.739130435		0.538461538
High DU/C 0.769230769 0.666666667 0.769230769 0.625 High DBE 11 11 10 8 High DBE/C 0.875 0.666666667 0.8 0.875 High DBE/C 0.875 0.6666666667 0.8 0.875 High DBE/C 0.875 0.666666667 0.8 0.875 High DW/C 0 0 0 0 0 High DW/C 0.875 0.666666667 0.8 0.875 High DW/C 0.233 23 17 23 Low O/C 0.05555556 0.05555556 0.66666667 0.076923077 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.6666666667 -0.4 -5.5 -1.6666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 1 Low DU/C 0.0666666667 0 0.260869565 0.0260869565	High DU	11	11	10		6
High DBE 11 11 10 8 High DBE/C 0.875 0.666666667 0.8 0.875 High MW 0 0 0 0 0 High MW 23 23 17 23 Low O/C 0.05555556 0.05555556 0.066666667 0.076923077 Low O/C 0.0592307692 0.875 0.692307692 1 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low DU 1 1 0 1 1 Low DU/C 0.066666667 0.066666667 0 0.0625 Low DBE 1 1 0 3 3 Low DBE/C 0.066666667 0.066666667 0 0.260869565 Low MW 0 0 0 0 0	High DU/C	0.769230769	0.666666667	0.769230769		0.625
High DBE/C 0.875 0.666666667 0.8 0.875 High MW 0 0 0 0 0 High C 23 23 17 23 Low O/C 0.05555556 0.05555556 0.066666667 0.076923077 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low DU 0.043478261 0.025641026 0.185185185 0.043478261 Low DU/C 0.0666666667 0.066666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.0666666667 0.066666667 0 0.260869565	High DBE	11	11	10		8
High MW 0 0 0 0 High C 23 23 17 23 Low O/C 0.05555556 0.05555556 0.066666667 0.076923077 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 1 Low DU/C 0.0666666667 0.066666667 0 0.0625 Low DBE 1 1 0 3 3 Low DBE/C 0.0666666667 0.066666667 0 0.260869565 Low MW 0 0 0 0 0	High DBE/C	0.875	0.666666667	0.8		0.875
High C 23 23 17 23 Low O/C 0.05555556 0.05555556 0.066666667 0.076923077 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 1 Low DU/C 0.0666666667 0.0666666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.0666666667 0.0666666667 0 0.260869565 Low MW 0 0 0 0 0	High MW	0	0	0		0
Low O/C 0.05555556 0.05555556 0.066666667 0.076923077 Low H/C (AII) 0.692307692 0.875 0.692307692 1 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 Low DU/C 0.0666666667 0.0666666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.0666666667 0.0666666667 0 0.260869565 Low MW 0 0 0 0 0	High C	23	23	17		23
Low O/C 0.055555556 0.055555556 0.066666667 0.076923077 Low H/C (All) 0.692307692 0.875 0.692307692 1 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.6666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 Low DU/C 0.066666667 0.0666666667 0 0.06255 Low DBE 1 1 0 3 Low DBE/C 0.0666666667 0.0666666667 0 0.260869565 Low MW 0 0 0 0 0	-					
Low H/C (All) 0.692307692 0.875 0.692307692 1 Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 Low DU/C 0.066666667 0.066666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.066666667 0.066666667 0 0.260869565 Low MW 0 0 0 0	Low O/C	0.055555556	0.055555556	0.066666667		0.076923077
Low H/C (Has O/C) 0.692307692 0.875 0.692307692 1 Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 Low DU/C 0.0666666667 0.0666666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.0666666667 0.0666666667 0 0.260869565 Low MW 0 0 0 0	Low H/C (All)	0.692307692	0.875	0.692307692		1
Low Aromaticity Index -1.666666667 -0.4 -5.5 -1.666666667 Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 Low DU/C 0.066666667 0.066666667 0.06625 Low DBE 1 1 0 3 Low DBE/C 0.066666667 0.066666667 0 0.260869565 Low MW 0 0 0 0	Low H/C (Has O/C)	0.692307692	0.875	0.692307692		1
Low Al-Mod 0.043478261 0.025641026 0.185185185 0.043478261 Low DU 1 1 0 1 Low DU/C 0.0666666667 0.0666666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.0666666667 0.0666666667 0 0.260869565 Low MW 0 0 0 0	Low Aromaticity Index	-1.666666666	-0.4	-5.5		-1.666666667
Low DU 1 1 0 1 Low DU/C 0.066666667 0.066666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.066666667 0.066666667 0 0.260869565 Low MW 0 0 0 0	Low AI-Mod	0.043478261	0.025641026	0.185185185		0.043478261
Low DU/C 0.066666667 0.066666667 0 0.0625 Low DBE 1 1 0 3 Low DBE/C 0.0666666667 0.0666666667 0 0.2608695655 Low MW 0 0 0 0	Low DU	1	1	0		1
Low DBE 1 1 0 3 Low DBE/C 0.066666667 0.066666667 0 0.260869565 Low MW 0 0 0 0	Low DU/C	0.066666667	0.066666667	0		0.0625
Low DBE/C 0.066666667 0.066666667 0 0.260869565 Low MW 0 0 0 0 0	Low DBE	1	1	0		3
Low MW 0 0 0 0	Low DBE/C	0.066666667	0.066666667	0		0.260869565
	Low MW	0	0	0		0
Low C 4 9 7 4	Low C	4	9	7		4

Table 16--ESI Headington vs Citgo data, Citgo side

Figure 40—ESI volcano plot of the Citgo compounds versus the Headington compounds

Figure 41-- Van Krevelen figure of the significant Headington compounds (right side)

Figure 42-- Van Krevelen figure of the significant Citgo compounds (left side)

For this volcano comparison, the unique compounds are more clustered on the Headington side, while Citgo compounds are more spread out and reached higher –Log10P-Values. The standard compounds (+/- 2) are also more clustered towards the Headington side, indicating that Headington has a more significant number of compounds overall. Regarding the Van Krevelen diagrams, the Headington sample group has more compounds, with CHO "chains" and S-Class "chains" formed by the unique compounds. The Citgo Van Krevelen consists primarily of S-class compounds and N-Class compounds with small CHO clusters located at (0.3 O/C, 1.75 H/C) and (0.1 O/C, 1 H/C). There is also a disproportionate amount of unoxygenated N-Class compounds in the unique Citgo sample group.

Citgo VS Cavitation

B% 301 3 32 38 26 ESI_Citgo.CitgoVCavitation Total Compounds CHO Compounds N-Class P-Class S-Class #of i: 263 42 191 3 48 % of total 100% 16% 73% 1% 18% #of Al>-0.67 6 1 3 0 3 #of Al-MOD=0.67 7 1 3 0 4 #of Al-MOD=0.67 7 1 3 0 4 #of Al-MOD=0.67 7 1 3 0 4 Average 0/C 0.197598828 0.223559906 0.171116814 0.48611111 0.21725998 Average Al-Mod+ 0.39034089 0.16084354 0.1932902222 1.569033333 Average Al-Mod+ 0.39031408 0.31306667 2.43333333 0.1477859 Average DL/C 0.393205999 0.372130581 0.42293382 0.979666670 0.23326461 Average DL/C 0.39332033 1 0.11168860	Citgo	Overlap	Cour	nt (Original)	Dele	Deleted CxHy Deleted O/		ted O/C>1	Blanks	Deleted	eleted Count (Calculated)		
ESI Citgo CitgoVCavitation Total Compounds CHO Compounds N-Class P-Class S-Class # of :::::::::::::::::::::::::::::::::::	8%		301		3		3	32	38		5	263	
S1_Citgo_CitgoVCavitation Total Compounds CH0 compounds N-Class P-Class S-Class # of : 263 42 191 3 48 % of total 100% 166 73% 13% 13% # of Al-MOD-0.5 0 7 27 0 7 # of Al-MOD>0.5 0 7 1 3 0 4 # of Al-MOD>0.5 0.0 0.2235590 0.171116814 0.468111112 0 2175998 Average P(/C 0.197598828 0.223559061 1.45324728 1.59722222 1.64055279 Average P(/C (All) 1.47517795 1.458509612 1.613701967 1.59722222 1.64055279 Average Aromaticity-Index 0.15448329 0.16088454 0.19240059 0.3333333 3.979166667 Average PU/C 0.393205959 0.372130581 0.47222220 1.64055279 Average DE/C 0.44444662 3.66666667 1.641293385 0.47222220 0.5334641 Average DE/C 0.4444444 2.105 0.3334641 0 11 High D/C 1.25													
#of: 263 42 191 3 48 % of total 100% 16% 73% 1% 18% % of total 100% 16% 73% 1% 18% % of total 29 22 20 6 # of Al-MOD>0.57 6 1 3 0 3 # of Al-MOD>0.57 7 1 3 0 4 # of Carbons 3053 444 2289 228 59722222 15605336 Average N/C (Al) 1.47517756 1.453509612 1.613701967 1.59722222 15605336 Average Al-Mod+ 0.1548239 0.16084354 0.396070756 1971/108 4.6552279 Average Al-Mod+ 0.394031408 0.361306369 0.396070756 1971/108 4.6555279 Average Al-Mod+ 0.393205999 0.372130581 0.41293385 0.41293385 0.41293385 0.41293385 Average DE/C 0.44441606 0.372130581 0.41293455 0.53236641 4 4 Average Carbon Count 11.60836502 10.57142857 1.92 0.	ESI_Citgo_	CitgoVCavit	ation	Total Compo	unds	CHO Compo	ounds	N-Class	P-Class		S-Class		
% of total 100% 16% 73% 19% 18% # of Al>-0.57	# of :				263		42	191	L	3		48	
# of Al>-0.67 6 1 3 0 6 # of Al>-0.67 6 1 3 0 3 # of Al-MOD>0.5 400 7 27 0 7 # of Al-MOD>0.67 7 1 3 0 44 # of Carbons 3053 444 2289 24 533 Average O/C 0.17598828 0.223559906 0.171116814 0.480111111 0.21725998 Average M/C (All) 1.475177569 1.458509612 1.613701967 1.57922222 1.69053233 Average Aromaticity+ Index 0.154483299 0.160884354 0.192400959 -0.83333333 -0.4177889 Average DU/C 0.3930205959 0.372130581 0.412293385 0.4722222 1.605552279 Average DU/C 0.3932035959 0.372130581 0.412293385 0.47222220 0.4147889 Average DL/C 0.394031408 0.32130581 0.412293385 0.79166667 0.63256441 Average DE/C 0.44444444 2.16666667 2.44444444 43 12 Average DE/C 0.44444444 2.16666667	% of total				100%		16%	73%	,	1%	1	18%	
# of Al>=0.67 6 1 3 0 3 # of Al-MOD>0.5 40 7 27 0 7 # of Al-MOD>0.5 7 1 3 0 4 # of Al-MOD>0.67 7 1 3 0 4 # of Al-MOD>0.67 0.171116814 0.486111111 0.2172598 Average O/C 0.197598828 0.22355906 0.171116814 0.486111111 0.21725998 Average H/C (All) 1.475177569 1.458509612 1.453247228 1.59722222 1.5690336 Average H/C (All) 0.15442399 0.15048435 0.19404099 0.83333333 -0.1477859 Average Al-Mod+ 0.394031408 0.361306369 0.396070756 #DIV/OI 0.465193339 Average DU 4.44486692 3.66666667 4.76439790C 2.3333333 -0.1477859 Average DE/C 0.44441606 0.372130581 0.41229385 0.47222222 0.355597127 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.10416667 High D/C 0.875 2.16666667 2.44444444 <td># of AI>0.5</td> <td></td> <td></td> <td></td> <td>29</td> <td></td> <td>2</td> <td>22</td> <td>2</td> <td>0</td> <td></td> <td>6</td> <td></td>	# of AI>0.5				29		2	22	2	0		6	
# of Al-MOD>0.5 40 7 27 0 7 # of Al-MOD>-0.67 7 1 3 0 4 # of Carbons 3053 444 2289 24 533 Average M/C 0.175198828 0.223559906 0.171116814 0.4611111 0.21725998 Average H/C (H1) 1.475759 1.458509612 1.63247228 1.59722222 1.640552279 Average Al-Mod+ 0.154483299 0.10688434 0.12460959 -0.83333333 -0.4177859 Average M/C (H1) 0.454483299 0.16088434 0.12460959 -0.83333333 -0.1477859 Average M/Mod+ 0.393005959 0.372130581 0.4429382 0.4722222 0.35592727 Average DU/ 4.39215201 3.66666667 5.0875654 4 6.54166667 Average DU/C 0.39300599 0.372130581 0.44289382 0.79166667 0.632364641 Average M/2 19.262417 182.0156571 19.201593 11.0416667 Average Carbon Count 11.60836502 1.057142857 1.924444444 2.375 2.44444444 12	# of AI>=0.	67			6		1	3	3	0		3	
# of Al-MOD>=0.67 7 1 3 0 4 # of Carbons 3053 444 2289 24 533 Average O/C 0.197598828 0.223559906 0.171116814 0.486111111 0.21725998 Average H/C (All) 1.47517759 1.458509612 1.45324722 1.59722222 1.56903336 Average Aromaticity+Index 0.154483299 0.160884354 0.137416059 -0.83333333 -0.4177859 Average Aromaticity+Index 0.154483299 0.160884354 0.12406959 -0.833333333 -0.9147859 Average DU 4.4448692 3.666666667 7.476439706 2.33333333 -0.417859 Average DJ/C 0.33403599 0.372130581 0.4229382 0.79166667 0.63254641 Average DBE/C 0.44451106 0.372130581 0.4229382 0.79166667 0.63236444 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.0416667 High D/C 0.875 2.166666667 2.4444444 2.375 2.4444444 High N/C (MII) 2.4444444 2.166666667 2.4444444 2.375<	# of AI-MO	D>0.5			40		7	27	7	0		7	
# of Carbons 3053 444 2289 24 533 Average O/C 0.197598828 0.223559906 0.171116314 0.486111111 0.21725998 Average H/C (All) 1.475177569 1.458509612 1.61370167 1.59722222 1.640552279 Average H/Mod+ 0.154483299 0.160884354 0.19246059 -0.83333333 -0.1477859 Average HMod+ 0.393203999 0.37130581 0.41229388 0.4722222 0.55552279 Average DU/C 0.39320599 0.37130581 0.41229388 0.4722222 0.5555277 Average DU/C 0.39320599 0.372130581 0.41229388 0.4722222 0.5555277 Average DEE 4.92015201 3.66666667 7.083769634 4 6.511666667 Average M/Z 192.692417 182.0156571 192.901594 211.059833 219.6334265 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.0416667 High D/C 0.875 2.16666667 2.44444444 2.375 2.44444444 12 High D/C 0.8757142857 1.25 1.25 <	# of AI-MO	D>=0.67			7		1	3	3	0		4	
Average O/C 0.197598228 0.22355990 0.17111614 0.486111111 0.2172598 Average H/C (All) 1.475177569 1.458509612 1.453247228 1.59722222 1.56903336 Average H/C (Has O/C) 1.579547737 1.458509612 1.613701967 1.59722222 1.640552279 Average Ar-Mod+ 0.394031408 0.051306369 0.393007375 6.083333333 -0.1477859 Average M-Mod+ 0.394031408 0.051306369 0.396070756 #DIV/OI 0.465193339 Average M-Mod+ 0.3930310559 0.372130581 0.41229388 0.4722222 0.355592777 Average DE 4.920152091 3.66666667 0.64289382 0.79166667 0.632364641 Average M/Z 1.92.629417 182.0156571 192.901594 21.059883 21.6334265 Average Carbon Count 11.60836502 10.57142857 11.98493919 8 11.0416667 High O/C 0.875 2.166666667 2.44444444 2.375 2.44444444 High Aromaticity Index 1 0.833333333 1 1	# of Carbo	ns			3053		444	2289	9	24		533	
Average H/C (All) 1.475177569 1.458509612 1.453247228 1.59722222 1.56903336 Average H/C (Has O/C) 1.579547737 1.458509612 1.613701967 1.59722222 1.640552279 Average H/M (Has O/C) 0.154483299 0.160884340 0.192460959 -0.83333333 -0.1477859 Average H/M (Mot + 0.39401408 0.361306369 0.396070756' #DIV/OI 0.465193339 Average DU 4.44486692 3.666666667 4.764397906 2.33333333 3.079166667 Average DEE 4.920152091 3.6666666667 5.083769634 4 6.541666667 Average BEE/C 0.442815160 0.372130581 0.44289382 0.79166667 6.32364641 Average BEE/C 0.443615362 10.57142857 11942919 8 1.10416667 Average Carbon Count 11.60836502 10.57142857 11.98429313 10 1 High D/C 0.875 2.166666667 2.44444444 2.375 2.44444444 12 12 High D/C 1.01 2.44444444 2.375 2.44444444 12 12 12 12 12	Average O	/c		0.19759	98828	0.2235	59906	0.171116814	0.486	111111	0.21725	998	
Average H/C (Has O/C) 1.579547737 1.458509612 1.613701967 1.59722222 1.640552279 Average Aromaticity Index 0.154483299 0.160884354 0.192460959 -0.83333333 -0.1477859 Average DU 4.44486692 3.666666667 7.67437906 2.3333333 -0.1477859 Average DU 4.44486692 3.666666667 5.083769634 4 6.54166667 Average DE 4.920152091 3.666666667 5.083769634 4 6.541666667 Average DE/C 0.4444511606 0.372130581 0.41229385 0.47222222 0.355592727 Average DE/C 0.4444511606 0.372130581 0.41229382 0.791666667 A63236461 Average m/z 19.2629417 182.0156571 192.901594 221.059883 21.0534265 Average m/z 10.24444444 2.166666667 2.44444444 2.375 2.44444444 High O/C 0.875 2.166666667 2.44444444 2.375 2.44444444 High N/C (All) 1.02 2.44444444 2.375 2.44444444 2.375 2.44444444 2.375 2.44444444 2.375 2.444	Average H	/C (All)		1.4751	77569	1.4585	09612	1.453247228	3 1.597	22222	1.56903	336	
Average Aromaticity+ Index 0.15448329 0.16084354 0.19240059 0.83333333 0.1477859 Average Al-Mod+ 0.394031408 0.361306369 0.396070756 #DIV/01 0.465193339 Average DU 4.44486692 3.666666667 4.76397906 2.3333333 3.979166667 Average DU/C 0.39305959 0.372130581 0.412223385 0.47222222 0.35559277 Average DBE 4.920152091 3.666666667 5.883769534 4 6.541666667 Average DE/C 0.444511606 0.372130581 0.44289382 0.79166667 0.63236461 Average m/z 192.629417 182.0156571 192.901594 21.05883 219.6334265 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.10416667 High D/C 0.875 2.16666667 2.44444444 2.375 2.44444444 2.375 2.44444444 High A/C (All) 2.44444444 2.375 2.444444444 2.375 2.44444444 2.375 1.25 1.25 1.25 1.25	Average H	/C (Has O/C)	1.57954	47737	1.4585	09612	1.613701967	1.597	222222	1.640552	279	
Average AI-Mod+ 0.334031408 0.36130636 0.38607756 #DIV/01 0.465193339 Average DU 4.44486692 3.666666667 4.764397906 2.3333333 3.979166667 Average DBE 4.920152091 3.666666667 5.083769634 4 6.541666667 Average DBE/C 0.444511606 0.372130581 0.41229328 0.791666667 0.632364641 Average DEE/C 0.444511606 0.372130581 0.4428932 0.791666667 0.632364641 Average DEE/C 0.444511606 0.372130581 0.4228932 0.791666667 0.632364641 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.10416667 High O/C 0.875 2.166666667 2.44444444 2.375 2.44444444 12 High H/C (HII) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 12 12 High H/C (Has O/C) 2.44444444 2.375 2.44444444 2.375 2.44444444 13 12 High DUC 1.12	Average A	romaticity+	, Index	0.1544	33299	0.1608	84354	0.192460959	-0.833	333333	-0.1477	859	
Average DU 4.44486692 3.666666667 4.764397906 2.3333333 3.979166667 Average DU/C 0.393205959 0.372130581 0.412293385 0.47222222 0.355592727 Average DBE 4.920152091 3.666666667 5.083769634 4 6.541666667 Average DBE/C 0.444511606 0.372130581 0.44229382 0.791666667 0.632364641 Average Carbon Count 119.60836502 10.57142857 1198429319 8 11.10416667 High P/C (All) 2.44444444 2.165666667 2.44444444 2.375 2.44444444 High Aromaticity Index 1 0.83333333 1 0 1 High Al-Mod 11 0.83333333 1 0 1 High Al-Mod 11 0.83333333 1 0 1 High Al-Mod 11 0.83333333 1 0 1 High DU 12 6 12 5 12 High DD 12 6 12 5 12 High DD 0 0 0 0 0 <tr< td=""><td>Average A</td><td>I-Mod+</td><td>in a ch</td><td>0.39403</td><td>31408</td><td>0.3613</td><td>06369</td><td>0.396070756</td><td>5 #DI\</td><td>/0!</td><td>0.465193</td><td>339</td><td></td></tr<>	Average A	I-Mod+	in a ch	0.39403	31408	0.3613	06369	0.396070756	5 #DI\	/0!	0.465193	339	
Average DU/C 0.39320599 0.372130581 0.412293325 0.47222222 0.355592727 Average DBE 4.920152091 3.666666667 5.083769634 4 6.541666667 Average DBE/C 0.444511606 0.372130581 0.44289382 0.791666667 0.632364641 Average M/Z 192.629417 182.0156571 192.901594 221.0598833 219.6334265 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.0416667 Average Carbon Count 11.60836502 2.44444444 2.35 2.44444444 High N/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High Al-Mod 1 0.833333333 1 0 1 High Al-Mod 11 0.846153846 1 0 1 High DU/C 1.125 0.857142857 1.25 1.25 1.25 High DBE 16 6 16 8 16 High DB/C 2 0.857142857 0.25 0.25 0.25 Low H/C (All) 0.0247619048 0.10 0.06	Average D	U		4.444	36692	3.6666	666667	4,764397906	5 2.333	,	3,979166	667	
Average DBE 4.920152091 3.6666666667 5.083769634 4 6.541666667 Average DBE/C 0.444511606 0.372130581 0.44289382 0.791666667 0.632364641 Average Carbon Count 1192.629417 182.0156571 192.001594 221.0598833 219.6334265 Average Carbon Count 11.6083602 10.57142857 11.98429319 8 11.0416667 High Al/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High Al/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High Al/C (All) 2.44444444 2.166666667 2.4444444 2.375 2.44444444 High Al/C (All) 0.433333333 1 0 1 High Al/C (All) 10.2 6 12 5 12 High DU/C 1.25 0.857142857 1.25 1.25 1.25 High DBE/C 2 0 0 0 0 0 0 Low O/C 0.047619048 0.01 0.066666667 0.375 0.047619048 0.25 0.55 <td< td=""><td>Average D</td><td>u/c</td><td></td><td>0.39320</td><td>)5959</td><td>0.3721</td><td>30581</td><td>0.412293385</td><td>5 0.472</td><td>222222</td><td>0.355592</td><td>727</td><td></td></td<>	Average D	u/c		0.39320)5959	0.3721	30581	0.412293385	5 0.472	222222	0.355592	727	
Average DBE/C 0.444511606 0.372130581 0.44289382 0.791666667 0.632364641 Average m/z 192.629417 182.0156571 192.901594 221.0598833 219.6334265 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.10416667 High O/C 0.875 2.1666666667 2.44444444 2.375 2.44444444 High H/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High Al-Mod 1 0.843333333 1 0 1 High Al-Mod 112 6 12 5 12 High DU/C 1.25 0.857142857 1.25 1.25 1.25 High DBE/C 1.25 0.857142857 2 2 2 2 High DBE/C 2.24 18 24 12 21 21 Low O/C 0.047619048 0.1 0.06666667 0.375 0.047619048 Low H/C (All) 0.25 0.571428571 0.25 0.5 0.25 Low O/C 0.047619048 0.1 0.06666	Average D	BE		4.9201	52091	3.6666	666667	5.083769634	1	4	6.541666	667	
Average m/z 192.629417 182.0156571 192.901594 221.0598833 219.6334265 Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.10416667 High O/C 0.875 2.1666666667 2.44444444 2.375 2.44444444 High H/C (All) 2.44444444 2.1666666667 2.44444444 2.375 2.44444444 High Al-Mod 1 0.833333333 1 0 1 High Al-Mod 1 0.846153846 1 0 1 High DU 112 6 12 5 12 High DU/C 1.25 0.857142857 1.25 1.25 1.25 High DBE 16 6 16 8 16 High M/z 0 0 0 0 0 High M/z 0 0 0 0 0 0 High DBE/C 24 18 24 12 21 Low O/C 0.047619048 0.1 0.06666667 0.375 0.047619048 Low H/C (All) 0.25 0	Average D	BE/C		0.4445	11606	0.3721	30581	0.44289382	0.791	566667	0.632364	641	
Average Carbon Count 11.60836502 10.57142857 11.98429319 8 11.10416667 High O/C 0.875 2.166666667 2.44444444 2.375 2.44444444 High H/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High A/C (All) 2.444444444 2.166666667 2.44444444 2.375 2.44444444 High A/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High A/C (Has O/C) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High A/C (Has O/C) 2.44444444 2.375 2.44444444 2.375 2.44444444 High A/C (Has O/C) 0.83333333 1 0 1 1 High DU 11.2 6 12 5 1.25 1.25 High DBE/C 2.0 0.857142857 1.25 1.25 1.25 High M/Z 0.0047619048 0.1 0.06666667 0.375 0.047619048 Low H/C (All) 0.25 <t< td=""><td>Average m</td><td>)/z</td><td></td><td>192.62</td><td>29417</td><td>182.01</td><td>56571</td><td>192.901594</td><td>221.0</td><td>598833</td><td>219.6334</td><td>265</td><td></td></t<>	Average m)/z		192.62	29417	182.01	56571	192.901594	221.0	598833	219.6334	265	
High O/C 0.000 0.000 0.000 High O/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High H/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High A/Mod 2.44444444 2.375 2.44444444 High A/Mod 1 0.83333333 1 0 1 High A/Mod 1 0.846153846 1 0 1 High DU 1 0.87142857 1.25 1.25 1.25 High DD/C 1.125 0.857142857 1.25 1.25 1.25 High DBE 1 0 0 0 0 0 High DBE/C 2.24 18 2.4 12 21 High M/Z 0.0047619048 0.1 0.06666667 0.375 0.047619048 Low O/C 0.047619048 0.1 0.06666667 0.375 0.25 Low H/C (All) 0.025 0.571428571 0.25 0.25 0.25 Low O/C 0.047619048 0.09090901 0.047619048 0 <td>Average Ca</td> <td>arbon Count</td> <td>t</td> <td>11.6083</td> <td>36502</td> <td>10.571</td> <td>42857</td> <td>11.98429319</td> <td>)</td> <td>8</td> <td>11.10416</td> <td>667</td> <td></td>	Average Ca	arbon Count	t	11.6083	36502	10.571	42857	11.98429319)	8	11.10416	667	
Ing. O/C 1.1000000 1.1100000 1.11111 1.13 1.1400000 High H/C (All) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High H/C (Has O/C) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High Aromaticity Index 1 0.833333333 1 0 1 High Aromaticity Index 11 0.846153846 1 0 1 High DU 112 6 12 5 12 High DU/C 1.25 0.857142857 1.25 1.25 1.25 High DBE/C 2 0.857142857 2 2 2 High DBE/C 2.444444 18 24 12 21 Low O/C 0.047619048 0.1 0.06666667 0.375 0.047619048 Low H/C (All) 0.025 0.571428571 0.25 0.5 0.25 Low O/C 0.047619048 0.09090901 0.047619048 0 0.058823529 Low Al-Mod 0.047619048 0.090909091 0.047619048 0 0.058823529 <td>High O/C</td> <td></td> <td></td> <td></td> <td>0 875</td> <td>2 1666</td> <td>66667</td> <td>2 44444444</td> <td>1</td> <td>43</td> <td></td> <td>12</td> <td></td>	High O/C				0 875	2 1666	66667	2 44444444	1	43		12	
High H/C (Has O/C) 2.44444444 2.166666667 2.44444444 2.375 2.44444444 High Aromaticity Index 1 0.83333333 1 0 1 High Aromaticity Index 11 0.846153846 1 0 1 High DU 112 6 12 5 12 High DU/C 1.25 0.857142857 1.25 1.25 1.25 High DBE 16 6 16 8 16 High DBE/C 2 0.857142857 2 2 2 High DBE/C 2 0.857142857 2 2 2 High DBE/C 2 0.00 0 0 0 High M/z 0 0 0 0 0 High C 2 0.047619048 0.1 0.06666667 0.375 0.047619048 Low O/C 0.047619048 0.1 0.06666667 0.375 0.047619048 0.025 Low H/C (All) 0.047619048 0.09090901 0.047619048 0 0.058823529 Low Al-Mod 0.047619048	High H/C (All)		2,4444	14444	2.1666	666667	2.444444444	1	2.375	2.444444	444	
High Aromaticity Index Information and any of the second seco	High H/C (Has O/C)		2.4444	14444	2.1666	666667	2.444444444	1	2.375	2.444444	444	
High Al-Mod 1 0.846153846 1 0 1 High Al-Mod 112 6 12 5 12 High DU 1.25 0.857142857 1.25 1.25 1.25 High DBE 16 6 16 8 16 High DBE/C 2 0.857142857 2 2 2 High N/z 0 0 0 0 0 High C 24 18 24 12 21 Low O/C 0.047619048 0.1 0.066666667 0.375 0.047619048 Low H/C (All) 0.25 0.571428571 0.25 0.55 0.25 Low H/C (Has O/C) 0.25 0.571428571 0.25 0.55 0.25 Low Al-Mod 0.047619048 0.090909091 0.047619048 0 0.58823529 Low DU 0 0 0 0 0 0 Low DU/C 0 0 0 0 0 0 Low DU/C 0 0 0 0 0 0	High Arom	aticity Inde	x		1	0.8333	33333	1	L	0		1	
High DU 12 10 12 5 12 High DU 1.25 0.857142857 1.25 1.25 1.25 High DBE 16 6 16 8 16 High DBE 16 6 16 8 16 High DBE/C 2 0.857142857 2 2 2 High M/z 0 0 0 0 0 High M/z 0.04 0 0 0 0 Low O/C 0.047619048 0.1 0.066666667 0.375 0.047619048 Low H/C (All) 0.025 0.571428571 0.25 0.5 0.25 Low H/C (Has O/C) 0.025 0.571428571 0.25 0.55 0.25 Low Aromaticity Index -5.5 -0.714285714 -5.5 -1.5 -5.5 Low Al-Mod 0.047619048 0.09090901 0.047619048 0 0.058823529 Low DU 0 0 0 0 0 0	High Al-Mo	od			1	0.8461	53846	1	- L	0		1	
High DU/C 1.25 0.857142857 1.25 1.25 1.25 High DBE 116 6 16 8 16 High DBE/C 2 0.857142857 2 2 2 High DBE/C 2 0.857142857 0 0 0 High DC 0.047619048 0.1 0.066666667 0.375 0.047619048 Low O/C 0.047619048 0.1 0.066666667 0.375 0.047619048 Low H/C (All) 0.25 0.571428571 0.25 0.5 0.25 Low Aromaticity Index -5.5 -0.714285714 -5.5 -5.5 0.058823529 Low DU 0 0 0 0 0 0 0 Low DU/C 0 0 0 0 0 0 0 0 Low DBE/C 0	High DU				12		6	12)	5		12	
High DBE 116 6 16 8 16 High DBE/C 2 0.857142857 2 2 2 High DBE/C 0 0 0 0 0 High m/z 0 0 0 0 0 High m/z 0.047619048 0.1 0.066666667 0.375 0.047619048 Low O/C 0.047619048 0.1 0.066666667 0.375 0.047619048 Low H/C (All) 0.25 0.571428571 0.25 0.55 0.25 Low Aromaticity Index -5.5 -0.714285714 -5.5 -1.5 -5.5 Low DU 0 0 0 0 0 0 Low DU/C 0 0 0 0 0 0 0 Low DBE/C 0 0 0 0 1 2 1 Low DU/C 0 0 0 0 1 2 Low DBE/C 0 0 0	High DU/C				1.25	0.8571	.42857	1.25	5	1.25	1	1.25	
High DBE/C120.857142857222High m/z00000High m/z1218241221High C118241221Low O/C0.0476190480.10.0666666670.3750.047619048Low H/C (AII)0.250.5714285710.250.50.25Low H/C (Has O/C)0.0250.5714285710.250.50.25Low Aromaticity Index-5.5-0.714285714-5.5-1.5-5.5Low DU000000Low DU/C000000Low DBE000012Low DBE/C000000Low C444444	High DBE				16		6	16	5	8		16	
High m/z 0 0 0 0 0 0 High m/z High C High C Low O/C 0.047619048 0.1 0.06666667 0.375 0.047619048 Low H/C (All) 0.25 0.571428571 0.25 0.5 0.25 Low H/C (Has O/C) 0.25 0.571428571 0.25 0.5 0.25 Low Aromaticity Index -5.5 -0.714285714 -5.5 -1.5 -5.5 Low Al-Mod 0.047619048 0.09909091 0.047619048 0 0.058823529 Low DU 0 0 0 0 0 0 0 Low DU/C 0 0 0 0 0 0 0 0 Low DBE/C 0 0 0 0 0 0 0 0 Low C <th< td=""><td>High DBE/(</td><td>С</td><td></td><td></td><td>2</td><td>0.8571</td><td>42857</td><td>2</td><td>2</td><td>2</td><td></td><td>2</td><td></td></th<>	High DBE/(С			2	0.8571	42857	2	2	2		2	
High C 24 18 24 12 21 High C 0	High m/z				0		0	C)	0		0	
O Image: Constraint of the symbol Image: Consymbol Image: Con	High C				24		18	24	1	12		21	
Low O/C0.0476190480.10.0666666670.3750.047619048Low H/C (AII)0.250.5714285710.250.50.25Low H/C (Has O/C)0.250.5714285710.250.50.25Low Aromaticity Index-5.5-0.714285714-5.5-1.5-5.5Low AI-Mod0.0476190480.0909090910.04761904800.058823529Low DU000000Low DU/C000000Low DBE000012Low DBE/C000000Low C464444													
Low H/C (All) 0.25 0.571428571 0.25 0.5 0.25 Low H/C (Has O/C) 0.25 0.571428571 0.25 0.5 0.25 Low Aromaticity Index -5.5 -0.714285714 -5.5 -1.5 -5.5 Low Al-Mod 0.047619048 0.090909091 0.047619048 0 0.058823529 Low DU 0 0 0 0 0 0 Low DU/C 0 0 0 0 0 0 Low DBE 0 0 0 0 1 2 Low DBE/C 0 0 0 0 0 0 Low C 4 6 4 4 4	Low O/C			0.04762	19048		0.1	0.066666667	7	0.375	0.047619	048	
Low H/C (Has O/C)0.250.5714285710.250.5Low Aromaticity Index-5.5-0.714285714-5.5-1.5Low Al-Mod0.0476190480.0909090910.04761904800.058823529Low DU00000Low DU/C00000Low DBE00012Low DBE/C00000Low M/z00000Low C46444	Low H/C (A	AII)			0.25	0.5714	28571	0.25	5	0.5	().25	
Low Aromaticity Index-5.5-0.714285714-5.5-1.5-5.5Low Al-Mod0.0476190480.0909090910.04761904800.058823529Low DU000000Low DU/C000000Low DBE/C0000012Low m/z0000000Low C464444	Low H/C (H	las O/C)			0.25	0.5714	28571	0.25	5	0.5	0).25	
Low AI-Mod0.0476190480.0909090910.04761904800.058823529Low DU000000Low DU/C000000Low DBE00012Low DBE/C000000Low m/z00000Low C46444	Low Aroma	aticity Index	(-5.5	-0.7142	85714	-5.5	5	-1.5	-	-5.5	
Low DU 0 0 0 0 Low DU/C 0 0 0 0 0 Low DBE 0 0 0 1 2 Low DBE/C 0 0 0 0.214285714 Low m/z 0 0 0 0 Low C 4 6 4 4	Low AI-Mo	d		0.0476	19048	0.0909	09091	0.047619048	3	0	0.058823	529	
Low DU/C 0 0 0 0 0 Low DBE 0 0 0 1 2 Low DBE/C 0 0 0 0.214285714 Low m/z 0 0 0 0 Low C 4 6 4 4	Low DU				0		0	C)	0		0	
Low DBE 0 0 1 2 Low DBE/C 0 0 0 0.214285714 Low m/z 0 0 0 0 Low C 4 6 4 4	Low DU/C				0		0	C)	0		0	
Low DBE/C 0 0 0 0.125 0.214285714 Low m/z 0 0 0 0 0 Low C 4 6 4 4 4	Low DBE				0		0	C)	1		2	
Low m/z 0 0 0 0 0 Low C 4 6 4 4 4	Low DBE/C	2			0		0	C)	0.125	0.214285	714	
Low C 4 6 4 4 4	Low m/z				0		0	C)	0		0	
	Low C				4		6	4	1	4		4	

Table 17-- ESI Citgo vs Cavitation data, Citgo side

Cavitation Side	Overlap	Count (Original)	Deleted CxHy	Deleted O/C>1	Blanks	Sum Deleted	Count (Calculated)
	1%	173	8	0	0	8	165

# of : 138 25 12	103
% of total 100% 18% 9%	75%
# of AI>0.5 16 9 2	5
# of AI>=0.67 5 5 0	0
# of AI-MOD>0.5 21 10 4	7
# of AI-MOD>=0.67 6 6 0	0
# of Carbons 2291 491 172	1659
Average O/C 0.120726595 0.208055008 0.205659826 0.0	.098859994
Average H/C (All) 1.429983058 1.2161357 1.38852971 1.4	.498927767
Average H/C (Has O/C) 1.437451849 1.2161357 1.38189255 1.5	.511319843
Average Aromaticity+ Index 0.148558866 0.245865695 -0.298247354 0.1	.104208247
Average AI-Mod+ 0.335871898 0.381200381 0.463506488 0.3	.306825211
Average DU 5.376811594 8.16 5.9166666667 4.5	.563106796
Average DU/C 0.355924005 0.447010663 0.420277557 0.3	.321365011
Average DBE 7.492753623 8.16 6.25 7.3	.398058252
Average DBE/C 0.48983467 0.447010663 0.441986241	0.5007793
Average MW 292.12298 331.2129612 259.1408133 28	289.0031468
Average Carbon Count 16.60144928 19.64 14.33333333 16	6.10679612
High O/C 0.642857143 1.8 2.117647059	10
High H/C (All) 2.117647059 1.8 2.117647059 2.1	2.117647059
High H/C (Has O/C) 2.117647059 1.8 2.117647059 2.1	2.117647059
High Aromaticity Index 0.842105263 0.842105263 0.625 0.5).555555556
High Al-Mod 0.846153846 0.846153846 0.647058824 0.5).565217391
High DU 17 17 9	10
High DU/C 0.85 0.85 0.7 0.6	.615384615
High DBE 17 17 9	12
High DBE/C 0.916666667 0.85 0.7 0.9	.916666667
High MW 0 0 0	0
High C 28 28 18	28
Low O/C 0.05 0.05 0.0625 0.0	.066666667
Low H/C (AII) 0.4 0.9 0.5	.923076923
Low H/C (Has O/C) 0.4 0.4 0.9 0.5	.923076923
Low Aromaticity Index -5 -0.307692308 -5	-5
Low Al-Mod 0.025641026 0.025641026 0.310344828 0.0	.041666667
Low DU 1 3 1	1
Low DU/C 0.045454545 0.15 0.058823529 0.0	.045454545
Low DBE 1 3 1	3
Low DBE/C 0.090909091 0.15 0.090909091 0.1	.176470588
Low MW 0 0 0	0
Low C 8 10 10	8

Table 18-- ESI Citgo vs Cavitation data, Cavitation side

Figure 43-- ESI volcano plot of the Cavitation compounds versus the Citgo compounds

Figure 44-- Van Krevelen figure of the significant Citgo compounds (right side)

Figure 45-- Van Krevelen figure of the significant Cavitation samples (left side)

The compounds are stacked towards the Citgo side of this volcano comparison. Both sides of the volcano plot have high –Log10 P-Values. The Citgo Van Krevelen has large amounts of N-Class compounds, along with unoxygenated N-Class and S-Class compounds on the H/C axis. However, the Cavitation Van Krevelen primarily consists of a large S-Class cluster ranging from 1-2 H/C at 0.1 O/C. There is also a CHO only cluster located at (0.3 O/C, 1.5 H/C).

General Notes ESI Volcano/Van Krevelen

Holistic observations were acknowledged with the ESI volcano plot Volcano Plot and Van Krevelen data.

- The Headington sample group had the most compounds detected with ESI ionization, sharing most of its molecular makeup with the Citgo sample group rather than the Cavitation sample group.
- Most of the unique compounds from the Citgo sample group are unoxygenated (has an O/C value of 0).
- The cavitation sample group ionized by ESI was revealed to have a predominant amount of unique S-Class compounds.

CHAPTER V - DISCUSSION

From preliminary data, inferences can be made with the figures created in conjunction with available metadata. These inferences pertain to the 1) Cavitation sample group and the 2) Diesel Mud Base and Sarita Sogu 402 samples.

The Cavitation samples stem from a project that utilized ultrasonic bubble cavitation to refine crude oil. While cavitation technology is a relatively new technology, cavitation technologies have improved the petroleum industry by affecting processes such as crude oil viscosity reduction, oxidative desulphurization/demetallization, and crude oil upgrading (Avvaru et al. 2018). The cavitation samples analyzed with OT-FT-MS are highly similar in composition, based on their positions in the PCA analysis (Figure 7-10). The cavitation project claims that their cavitation process fragmented heavier chain compounds (C31+) to lower molecular weight compounds, but further data analysis is required to confirm this claim. Based on the data analyzed in this project at this time, there also seems to be many unique sulfur compounds (Figure 18; Figure 22) persisting throughout the entire cavitation process.

Experimental refining methods such as ultrasonic bubble cavitation can be further studied with high-resolution mass spectrometry to confirm refining efficiency and efficacy.

The Diesel Mud Base and Sarita Sogu 402 also present a strong relationship in the data gathered. Diesel mud, or "oil-based mud," is a slurry of diesel and local sediment/dirt utilized for bore head lubrication (Osborne and Rahimtula, 1985). A significant detail observed in Figure 3 is that the Diesel Mud Base sample is red—this indicates that the fuel used was untreated, untaxed, and only allowed for non-vehicular purposes (Varughese and Khawaja, 2017). A distilled, "hydrocarbon pure" fuel such as red diesel has a unique compound signature compared to only crude oil samples, which is represented in the APCI PCA analyses (Figure 8; Figure 10). It

79

should be noted that Sarita Sogu 402 is highly similar to Diesel Mud Base. Obtaining the Headington sample metadata revealed the reason behind this; Sarita Sogu 402 was a sample taken immediately after mud-based drilling occurred, meaning that the field diesel contaminated the chemical composition of the initial Sarita Sogu 402 well sample. Oil-based mud contamination is a relatively modern concept (Petersen et al., 2017; Fadnes et al., 2001), but our data provides a unique, mass spectrographic perspective on the issue of oil-based mud contamination. In theory, the chemical composition of the oil-based mud becomes diluted with extensive crude oil recovery. Still, additional well samples throughout drilling would be necessary to confirm this.

Based on these two preliminary inquiries, the instrumentation, and methodology displayed in this project present research areas for further impact in addition to the areas mentioned earlier (SAPOR). Because this fuel database research is still ongoing and requires further expansion, the two strong inferences presented are still reliant on background metadata to make strong inferences. However, when more samples are accumulated in the database, progressively less background information will be needed, and background metadata can be used to confirm observations that were previously investigated solely.

CHAPTER VI - CONCLUSION

The field of petroleomics is relatively new, with the term "coined" in 2008 (Marshall and Rodgers, 2008). Since then, the number of studies merging mass spectrometry with petroleum chemistry has slowly escalated alongside improvements in instrumentation and methodology. The ultimate purpose of this study is to implement the mass spectrometry methods acquired from other fields of molecular chemistry while exploring new and original ways to disseminate and display the myriad of molecular compounds discovered in a single injection of crude oil.

Regarding the instrumentation application in this study, our petroleomics method involving OT-FT-MS and unique data analysis has shown novel and valuable techniques for the identification of petroleum-- by utilizing different ionization methods, it is possible to reveal both the polar and non-polar composition of petroleum. In the future, we hope to make more improvements to our approach through the accumulation of samples and additional ionization methods, such as Atmospheric Pressure Photoionization (APPI).

The second goal of this treatise on petroleomics is to find innovative ways to display the information generated through the spectrometric analysis of petroleum samples. This research has demonstrated visualizations currently used in the "–omics fields" (Van Krevelens, PCAs/Loading graphs, volcano plots). Still, we have applied unique approaches to our study, such as creating separate "Van Krevelen sections" for volcano plots or loading graphs. As this thesis was written, several ideas not seen in literature have been realized, such as the color-coding of sample groups *on* the volcano plots or the further separation of compound classes with Van Krevelen diagrams (CHON, CHONP, CHONS, etc.). Concepts such as these will be explored in future publications alongside new data.

81

REFERENCES

- Avvaru, Balasubrahmanyam, et al. "Current knowledge and potential applications of cavitation technologies for the petroleum industry." *Ultrasonics sonochemistry* 42 (2018): 493-507.
- Blake, Donald R., and F. Sherwood Rowland. "Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality." Science 269.5226 (1995): 953-956.
- Boduszynski, Mieczyslaw M. "Composition of heavy petroleums. 2. Molecular characterization." *Energy & Fuels* 2.5 (1988): 597-613.
- Bollet, C., et al. "Rapid separation of heavy petroleum products by high-performance liquid chromatography." *Journal of Chromatography A* 206.2 (1981): 289-300.
- Boyd, T. J., C. L. Osburn. K. J. Johnson, K. B. Birgl and R. B. Coffin. 2006 Compound-Specific Isotope Analysis Coupled with Multivariate Statistics to Source-Apportion Hydrocarbon Mixtures. Environ. Sci. Technol. 40:1916-1924.
- Bray, E. E., and E. D. Evans. "Distribution of n-paraffins as a clue to recognition of source beds." *Geochimica et Cosmochimica Acta* 22.1 (1961): 2-15.
- Coffin, R.B., Pohlman, J.W., Grabowski, K.S., Knies, D.L., Plummer, R.E., Magee, R.W., Boyd, T.J. 2008. Radiocarbon and stable carbon isotope analysis to confirm petroleum natural attenuation in the vadose zone. Environmental Forensics 9:75-84
- Desty, D. H., and B. H. F. Whyman. "Application of gas-liquid chromatography to analysis of liquid petroleum fractions." *Analytical Chemistry* 29.3 (1957): 320-329.
- Drushel, Harry V., and Adam L. Sommers. "Isolation and characterization of sulfur compounds in high-boiling petroleum fractions." *Analytical Chemistry* 39.14 (1967): 1819-1829.
- Eckelmann, Walter R., et al. "Implications of carbon isotopic composition of total organic carbon of some recent sediments and ancient oils." *AAPG bulletin* 46.5 (1962): 699-704.

- Eglinton, G., and A. R. Galbraith. "182. Macrocyclic acetylenic compounds. Part I. Cyclo tetradeca-1: 3-diyne and related compounds." *Journal of the Chemical Society (Resumed)* (1959): 889-896.
- Eide, Ingvar, and Kolbjørn Zahlsen. "A novel method for chemical fingerprinting of oil and petroleum products based on electrospray mass spectrometry and chemometrics." *Energy & fuels* 19.3 (2005): 964-967.
- Ellis, Leroy, and Ann L. Fincannon. "Analytical improvements in irm-GC/MS analyses: advanced techniques in tube furnace design and sample preparation." Organic geochemistry 29.5-7 (1998): 1101-1117.
- Fadnes, Finn Hallstein, et al. "Optimization of Wireline Sample Quality by Real-Time Analysis of Oil-Based Mud Contamination-Examples from North Sea Operations." SPE Annual Technical Conference and Exhibition. OnePetro, 2001.
- Frysinger, Glenn S., and Richard B. Gaines. "Comprehensive two-dimensional gas chromatography with mass spectrometric detection (GC× GC/MS) applied to the analysis of petroleum." *Journal of High-Resolution Chromatography* 22.5 (1999): 251-255.
- Gallegos, Emilio J., et al. "Petroleum group-type analysis by high resolution mass spectrometry." *Analytical chemistry* 39.14 (1967): 1833-1838.
- Kelley, Cheryl A., Beth Trust Hammer, and Richard B. Coffin. "Concentrations and stable isotope values of BTEX in gasoline-contaminated groundwater." *Environmental science* & technology 31.9 (1997): 2469-2472.
- Kind, Tobias, and Oliver Fiehn. "Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry." BMC bioinformatics 8.1 (2007): 1-20.

- Koch, Boris P., and T. Dittmar. "From mass to structure: An aromaticity index for highresolution mass data of natural organic matter." Rapid communications in mass spectrometry 20.5 (2006): 926-932.
- Li, Wentian. "Volcano plots in analyzing differential expressions with mRNA microarrays." *Journal of bioinformatics and computational biology* 10.06 (2012): 1231003.
- Mair, Beveridge, and Frederick Rossini. "Summary of Work of the American Petroleum Institute Research Project 6 on Hydrocarbons in the C 13 to C 38 Fraction of Petroleum."
 Symposium on Composition of Petroleum Oils, Determination and Evaluation. ASTM International, 1958.
- Maalouf, Christophe Bassem, et al. "Unlocking the Hidden Potential of an Upper Jurassic Carbonate Reservoir After 46 Years of Field Discovery: A Case Study in Offshore Abu Dhabi." Abu Dhabi International Petroleum Exhibition & Conference. OnePetro, 2017.
- Marshall, Alan G., and Ryan P. Rodgers. "Petroleomics: Chemistry of the underworld." *Proceedings of the National Academy of Sciences* 105.47 (2008): 18090-18095.
- Moldowan, J. Michael, Wolfgang K. Seifert, and Emilio J. Gallegos. "Relationship between petroleum composition and depositional environment of petroleum source rocks." AAPG bulletin 69.8 (1985): 1255-1268.
- Nganje, T. N., A. E. Edet, and S. J. Ekwere. "Distribution of PAHs in surface soils from petroleum handling facilities in Calabar." Environmental monitoring and assessment 130.1 (2007): 27-34.

- Payne, Jerry F., et al. "Mixed-function oxygenases as biological monitors around petroleum hydrocarbon development sites: Potential for induction by diesel and other drilling mud base oils containing reduced levels of polycyclic aromatic hydrocarbons." *Marine Environmental Research* 17.2-4 (1985): 328-332.
- Petersen, H. I., M. Hertle, and H. Sulsbrück. "Upper Jurassic–lowermost Cretaceous marine shale source rocks (Farsund Formation), North Sea: Kerogen composition and quality and the adverse effect of oil-based mud contamination on organic geochemical analyses." *International Journal of Coal Geology* 173 (2017): 26-39.
- Pond, Kristy L., et al. "Hydrogen isotopic composition of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination." *Environmental science & technology* 36.4 (2002): 724-728.
- Qian, Kuangnan, and Gary J. Dechert. "Recent advances in petroleum characterization by GC field ionization time-of-flight high-resolution mass spectrometry." *Analytical chemistry* 74.16 (2002): 3977-3983.
- Qian, Kuangnan, et al. "Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry." Energy & Fuels 15.6 (2001): 1505-1511.
- Reynolds, John G., Richard W. Crawford, and Alan K. Burnham. "Analysis of oil shale and petroleum source rock pyrolysis by triple quadrupole mass spectrometry: comparisons of gas evolution at the heating rate of 10. degree. C/min." *Energy & fuels* 5.3 (1991): 507-523.

- Rosenberg, Yoav O., et al. "Study of thermal maturation processes of sulfur-rich source rock using compound specific sulfur isotope analysis." *Organic Geochemistry* 112 (2017): 59-74.
- Silverman, Sol R., and Samuel Epstein. "Carbon isotopic compositions of petroleums and other sedimentary organic materials." *AAPG Bulletin* 42.5 (1958): 998-1012.
- U.S. Energy Information Administration EIA Independent Statistics and Analysis. In: Refining crude oil - the refining process - U.S. Energy Information Administration (EIA). https://www.eia.gov/energyexplained/oil-and-petroleum-products/refining-crude-oil-therefining-process.php. Accessed 13 Jul 2021
- Varughese, Bindu Sara, and Hassan Abbas Khawaja. "Detection of red dye in diesel oil." (2017).
- Wang, Chuanyuan, et al. "Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China." Marine pollution bulletin 71.1-2 (2013): 64-68.
- Yao, Pei-Hsuan, et al. "Lead isotope characterization of petroleum fuels in Taipei, Taiwan." *International journal of environmental research and public health* 12.5 (2015): 4602-4616.