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ABSTRACT

The common approachs for people to converse over a large geographical dis-

tance are via either SMS or video conference. A more immersive communication

method over the internet that creates an experience which is closer to a face-to-face

conversation is more desirable. The closest form is a conversation via the holographic

projection of the participants and environment. Many motion pictures have featured

this type of communication. While a complete system itself that uses holographic

projection is still many years away, the core functions of such a system are not im-

possible to achieve now. Two such features include 3D reconstruction of the target

and streaming of 3D data. With the current development speed of technology, 3D

reconstruction can be achieved with cost-effective depth cameras and 3D streaming

can be done after data optimization. The focus of this work is on how to approach

the idea by using such devices to create a standardized platform for the implemen-

tation of the system with aforementioned features. Specifically, the system is able to

capture 3D data from multiple depth sensors, reconstruct a 3D model of the human

target to create an avatar, and stream the changes acquired from the sensors to the

client to control the avatar in real time.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Virtual Reality (VR) and Augmented Reality (AR) devices have become more and

more popular. However, fully designed 3D content dedicated for these devices cur-

rently do not exist, let alone data streamed from other sources. One of the motiva-

tions for this research is to produce a cost-effective framework for streaming the 3D

data to these AR/VR devices.

The desired outcome of this paper is to create data for a novel type of virtual-reality-

based or augmented-reality-based conversations which are similar to what people seen

in science fiction motion pictures. People can converse with an experience closer to a

real life conversation, disregarding any geographical barrier. Figure 1 demonstrates

what a science-fiction movie envisions a holographic conversation.

Figure 1. Star Wars Holographic.

Image coutersy of starwars.com
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1.2 Contribution

The contributions of this paper are:

- Implementation of a system that allows the streaming of 3D data - This system

can take data captured by the depth cameras, the Microsoft Kinect, and stream

the data over a network connection. The receiving device accepts the data and

renders the 3D content on the screen. For devices which were specifically designed

for AR/VR, this data can be projected in 3D space around the users in real time

and significantly enhance the user experience.

- Development of a system that can do complete 360-degree 3D Reconstruction

- Utilizing multiple depth cameras to get the entire view of the target instead of

moving one single camera or spinning the model around. This feature is necessary

for the immersive experience which is required to achieve deeper interaction. The

participants can move around freely in a designated area and still be visible as a

whole model to the other participants.

1.3 Literature Review

Literature review for this project is separated into two parts. First part is the

introduction to some applications that have similar features. The second part is

about the underlying techniques which are used for this work.

1.3.1 Prior Work

This section introduces some systems that have similar features or methodologies of

this paper. This also includes the caveats of each implementation which leads to the

2



approach which is utilized in this project.

1.3.1.1 Microsoft Holoportation

Holoportation, which was introduced by Microsoft[14] can create a 360-degree view of

a humanoid 3D model. Holoportation features the expected outcome of this project.

The system requires a high-end workstation with two powerful GPUs. The two

GPUs are programmed to work in a pipeline fashion to process and stream data from

specialized depth cameras. While this setup has high accuracy and speed, the cost to

set up and maintain such a system is very high and not consumer friendly. Our work

is more focused on how to make the system’s price and setup more cost-effective based

on the consumer-grade depth sensors. Figure 2 shows Microsoft Holoportation’s data

being viewed through the Hololens.

Figure 2. Microsoft Holoportation[14]
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1.3.1.2 Oculus Avatar

Oculus[23] introduced Oculus Avatar for the users to manually create a digitized

version of themselves in the virtual world. This implementation features high detail

of the users hand movements and facial expression. To achieve that, this setup

requires specialized equipments which are attached to the user body. While the

capture of user action is precise, it is limited to the hands and the head. The

attachments could also lead to discomfort for user after extended usage period.

This application is introduced by Oculus[23] to manually create a digitized ver-

sion of themselves and control these avatars inside the virtual world. This main focus

of this implementation is the detail of the hands’ movements and facial expression.

This type of setup, consequently, limited to the hands and the head area. This will

make the avatars can only look like a bust statue of a person. Oculus Avatar also

requires special equipment attached to the users’ body, which can cause discomfort

over time.

Figure 3. Oculus Avatar[23]
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1.3.1.3 VPARK

One of the older applications is called Virtual Park or VPARK that was introduced

by Seo et al.[20]. This implementation mainly focused on the creation of a virtual

world, in which there would be avatars with realistic movements and speech. While

the strength of this is the overall management of the virtual world and its actors,

the downside is the standard the system is based on, which are MPEG-4 SNHC and

VRML. Both have become obsolete and hard for anyone to maintain and develop as

a result.

Figure 4. VPARK[20]

1.3.2 Background Information

The background informations in this section are separated into two main parts based

on the knowledge that can be used to work toward fulfilling the requirements to create

the features for the previously noted system. The two features are: 3D Reconstruc-

tion in real time using depth camera and 3D Graphical Data Streaming
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1.3.2.1 3D Reconstruction in real time using depth camera

3D Reconstruction has been an active area of research in the field of Computer Sci-

ence. The reason is that 3D Reconstruction can be applied to a vast range of areas

in the industry such as Computer Graphics, Computer Vision, and Medical Imaging.

Furthermore, 3D Reconstruction is also one of the most challenging subjects of re-

search due to the demanding requirements such as the precision of the reconstructed

model and the speed of the reconstruction process. Both of which ultimately lead to

a need for such a requirement to be able to do the 3D reconstruction in real time.

At the beginning of this century, all of the listed demands of the 3D reconstruc-

tion process were not able to be met because of the limitation of hardware at the

time. The price requirement for such a system also was not inexpensive enough to

allow a cost-effective solution for the mass. However, since 2010, both hardware

and software solutions for 3D Reconstruction have been gradually released and im-

proved. Currently, some of the most popular hardware devices which are utilized for

3D Reconstruction are Microsoft Kinect, Google Tango, and Intel RealSense. All of

these devices are based on the utilization of low-cost depth cameras to get the depth

data (point cloud) and create the mesh based on these point clouds. The software

for building the meshes from depth maps includes Kinect Fusion[8], Project Tango

SDK[5], and Intel RealSense SDK[6]. These software solutions usually utilize existing

algorithms such as Iterative Closest Point (ICP)[16], K-Means, etc. These algorithms

are applied to the two main steps to generate 3D meshes from the point cloud. The

first step is usually to separate the foreground, which contains the point clouds that

make up the desired model from the background. The second step is to generate

triangles from the points by some of the algorithms which were studied thoroughly

6



and proved to be effective. As a result, it is possible to do the 3D reconstruction in

real time.

1.3.2.2 3D Graphical Data Streaming

Currently, there has been no widely used format for 3D data transfer over a network

in real time in the industry. Some formats which were dedicated for 3D data had

already existed, such as Virtual Reality Markup Language (VRML) and MPEG-4

SHNC. VRML was designed to describe 3D image sequences and allow users to in-

teract with them. MPEG-4 SHNC is based on the MPEG-4 standard, which is a

method of compressing audio and visual for streaming. MPEG-4 SHNC provides

compression scheme for VRML data. However, MPEG-4 has become obsolete and

VRML suffers from poor efficiency and navigation in the scene. The most popular

formats for streaming are either sound or image or the combinations of both, which

are movies. Some existing papers have proposed the methods to stream the 3D data,

which could be either point cloud or meshes. According to Maamar et al.[11], there

are four main types of techniques when it comes to 3D streaming, which are Geome-

try Replication[9], Progressive mesh[7], Image-Based Rendering[2], and impostors[9].

Each of these techniques has its advantages and limitations during implementation.

- Geometry Replication[9] This technique is not very different from how modern

computer games render 3D objects, which is to let the client store or download a copy

of the 3D models geometry and generate the acquired meshes locally by the clients

hardware. The advantage of this technique is the high level of scalability because

every object is stored and handled separately. The main disadvantage would be the

storage requirement of client to store the model.

7



- Progressive Meshes[7] Similar to how the browsers download and display a large

image file, this technique involves rendering and transmitting object progressively.

The model will be separated into a low-poly and a high-poly version. The low-poly

that is smaller in size will be sent first to the client. Then it will be updated over

time to reach the original quality. This way, the model will be rendered faster than

waiting for the high quality model to be transfered. The drawback is that the time

required for the complete mesh generation would increase.

- Impostors[9] As the name implies, in the impostor technique, the data which

is going to be streamed is not the actual 3D data. What is being streamed is an

image that is converted from the 3D model by the server. Because the 3D meshes are

not going to be transferred, but the conventional image data is, this technique can

take advantage of the current streaming technologies for 2D rasterized data. The

rendering time and bandwidth requirement also can be lowered as a result. The

reason is that the client now only needs to map the received image to a shape as

texture. However, it can cause the lack of image depth to objects which are close to

the users.

- Image-Based Rendering[2]: Taking the impostor technique one step further, data

being streamed in image rendering technique is not only the converted image data

from the 3D meshes but also the data that would represent the models instead of

the geometry itself. This allows further enhancement of streaming due to the need

of the client to render the scene. What also happens is the problem with displaying

such as distortion or pixel loss. An application that suffers from the same weakness

is the panorama photograph recoring application. More often than not, the stitching

of different photo frames into one giant picture usually results in the images are not

8



lined up corrently.

The next part of this paper is about the actual research done in order to complete

the mentioned objectives, which are the 3D reconstruction and 3D data streaming.

The final product of the research is a system which is capable of performing both of

these functions, which includes the reconstruction of the humanoid target and stream

the avatar, along with its changes to the client to emulate the virtual interactions.

9



CHAPTER 2

PROPOSED SYSTEM DESIGN

2.1 Problem Description

Even though when it comes to 3D Reconstruction, there are already many well-

studied algorithms existed along with appropriately designed implementations. How-

ever, most of the current implementations are limited by the camera perspective,

which can only capture a partial view of the desired object and completely unable

to see what is outside of its viewport. Most 3D Reconstruction or 3D Scanner right

now require either the camera to be moved around the object or the object to be

spun itself so that a complete model can be captured. Such workaround cannot work

for the goal of the system described in this research due to a need of a much higher

level of immersion.

For the streaming portion, compared to the conventional methods to stream other

popular types of data such as sound or video, 3D streaming shares some of the chal-

lenges when streaming those data, such as:

- Wireless network bandwidth limitation: Due to the amount of streamed data be-

ing larger, all the drawbacks of the wireless network have more significant effect on

the 3D streaming. Some of these wireless network related problems are background

noise, interferences, etc.

- Streaming performance: Similar to the issue of the wireless network bandwidth

limitation, but affected by the overall state of the global network infrastructure.

- Density: Streaming a node with high density can cause high communication over-

head, which results in packet collision while a low-density node may cause the packet

to be dropped. This can cause a large impact to 3D streaming because of the natural

10



disparity in the density of 3D data.

Apart from the similar challenges while streaming 3D compared to streaming other

conventional data types, 3D streaming has its distinctive problem, which is:

- Client performance limitation: For 2D streaming, most of the current generations

clients have sufficient power to render the content and many efficient algorithms are

used to support the streaming. But when it comes to 3D Streaming, the require-

ment of performance for the client side is significantly higher. Furthermore, the

performance also varies from device to device, which makes it harder to decide on

a standard quality of 3D data. In other words, it is a challenge to choose a level of

detail of 3D model so that most of the current generation devices can handle without

compromising the experience.

2.2 Proposed System Structure

To solve the described problems, a 3D Streaming System is put together like Figure 5

Figure 5. System Structure Proposal.
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Multiple Kinect Devices (4 sensors are used for this setup) are connected to one

single computer for data acquisition. Theoretically, only one Kinect is supported per

USB Controller. To add more sensors to the system, more USB controllers need to

be installed via PCI. The program is written in C++ based on the openFrameworks

toolkit. This program provides ablilites to calibrate the input data from each Kinect

by performing data registration process.

Calibrated data from all sensors will be processed by a down-sampling algo-

rithm, then triangulation and normal estimation to acquire a complete 3D model.

This completed 3D model will be rigged and sent to the client once.

The system will track the user skeletal information with the Kinects and con-

trol the pre-defined model with this information. The skeletal information is also

streamed to the socket client, which will do the same thing and display to the other

users of the system. The method for controlling the 3D model is based on Inverse

and Forward Kinematics.

2.3 3D Reconstruction in Real Time using Kinects

To implement a 3D Reconstruction System based on the Kinects, at least 3 or more

devices should be used for capturing data. The reason is because the limitation of

the Kinect camera’s frustum is that it only allows a maximum of 120 degree view of

the desired object. In other word, in case of the humanoid object of this research,

one Kinect can only provide approximately 40 percent of of the human body. That

is why it is safe to assume that a minimum of three Kinects can provide a 360 degree

of the target’s body. With this as the starting point, next problems can be addressed

as followed:
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2.3.1 Depth Device Data Registration

Every camera has it’s own coordinate system. To actually combine data from mul-

tiple devices into one single system, it is mandatory to find out the extrinsic of each

device. The extrinsic of each Kinect device consist of the transformation matrix that

will rigidly transform all data from one device to another. After doing the extrinsic

calibrations to determine the extrinsic parameters, the original data of each device’s

coordinate system will be move into the same predefined ”world space”. This cali-

bration process is usually called Extrinsics Calibration or Point Cloud Registration

in case of depth sensor devices.

2.3.1.1 Registration Methods

There are many ways to find the relative location of a camera in space. For the

normal RGB camera, this can be done by implementing the algorithm to solve the

Perspective-n-Point problem. If two or more cameras [24] are set to look at one

calibrating pattern and capture the corresponding 2D points of the pattern, the cal-

culated matrices will take the cameras to the coordinates of the calibrating pattern.

Unfortunately, these algorithms require intrinsics calibration for each cameras and

heavily relied on the quality of the images or specifically the camera sensor’s quality.

Therefore, they will not work well with the depth sensors such as Kinects due to

these devices are equipped with a somewhat low quality RGB sensor. The Kinect

360’s RGB sensor maximum resolution is 1280x1024 at low frame rate. The default

RGB stream with 30 frames per second can only output VGA resolution (640x480).

However, since the devices in use are depth sensors, the registration can be done

directly to the returned data from the devices, the point clouds. There are also many

algorithms available to perform the point cloud registration. The most popular one

13



is Iterative Closest Point, which tries to reduce the difference between two sets of

point cloud.

Another problem specific to this research is the use of multiple Kinects. Since

the devices are set up so that they will be capturing data from different angles, the

resulting depth data from each devices will be very different from each other. That

means the overlapping data, or the corresponding points in both set of point clouds

will not be high, which wil result in the quality of the ICP algorithm will be affected.

To increase the performace of the ICP algorithm, another algorithm is implemented

to find the correspondence matching keypoints of both point clouds. The ICP will

only work on these keypoints so that it will improve the algorithms performance.

2.3.1.2 Iterative Closest Points Algorithms

With the estimated correspondences, the last step of the registration process is to

compute the rigid transformations using the remaining good correspondences using

Iterative Closest Points Algorithms. The final results will be the transformation

matrix that will take all data from one Kinect to another. The process is repeated

until all devices are calibrated. Figure 6 demonstrates the implementation of ICP to

register two set of point clouds.

Figure 6. Registration with ICP

14



2.3.1.3 KeyPoints Estimation

The ”KeyPoint” is a speficic point that carry an ”interestingness” [17] , which can

be extracted and used as the feature descriptor of the scene. There are various types

of Keypoint that can be implemented such as Scale-invariant Feature Transform

(SIFT), Normal Aligned Radial Feature (NARF), and Features from Accelerated

Segment Test (FAST).

After extraction, the Keypoints will be compared to summarize some characteristics

of the Keypoints in a vector format. These feature discriptors should be independent

of keypoint position, consistent result against the image transformations and also

have to be scale independent.

Using the resulting two sets of feature descriptors coming from 2 Kinects, Point

Matching of Feature Matching can be applied to find the Correspondences in both

scenes.

Obviously, not every computed correspondences are accurate. The reason is the

set up of multiple devices will only provide a partial overlap of the scene. The

correct correspondences will only be in the overlapping parts. Therefore, the incorrect

estimate should be rejected using RANSAC or manually remove the non overlapping

data from each scene. Figure 7 shows the ultilization of ICP only with found key

points.

2.3.1.4 Depth Sensor Error Model and Manual Transformation Adjustment

One limitation of the depth sensor such as Kinect is the accuracy of the returned

depth data not being consistent. For instance, the optimal range for the Kinect is

around 3 meters, within certain range of that distance, the precision is high. However,

the further away from the camera, the less accurate the point cloud’s point value
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is going to be. That’s why it is necessary for human supervising. In other word,

it requires manual transformation to increase the rigid transformation precision for

each Kinect.

Figure 7. ICP with matching key points.[17]

2.3.1.5 Contour Coherence based Registration Method

There is another problem with using the registration method based on ICP algorithm.

The algorithm works best when the two sets of input data fulfill both of the following

requirements, both set of the input datasets must have a high level of overlapping

data and the actual spatial difference between two frames has to be as little as

possible. For application such as Kinect Fusion, the reason that ICP works really

well when the device is moved slowly across the scene is because both of these

requirements are met. When the Kinect is moved fast enough, the ICP algorithm

starts failing to minimize the distance between frames because the difference is too
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great.

In this work, we use multiple Kinects which are setup in a stationary manner that

look at one particular location. To avoid cross-talking, only one Kinect is positioned

at 90 degree from each other, which results in total four Kinects being utilized. The

reason that four Kinect is the optimal number is:

- Lower cross-talking: more Kinects looking at the same view will suffer from

infrared interference. One Kinect at every 90 degree will still have enough data

overlap without causing too much interference.

- Lower USB Bandwidth: a typical personal computer features two main USB

2.0 controllers, the front and the back. Each USB 2.0 controller can only carry two

Kinect devices. More Kinects connected to the system will required adding custom

USB controllers.

The four-Kinect setup will return the difference between each frame coming from

every Kinect approximately 90 degree of rotation for every two neighbor Kinects.

Additionally, the portion of the targeted model would similarly be divided into four

quarters, which put the overlapping portion for the frame-pair at a very low level.

The combination of both of these conditions is unable to meet both of the requirement

for ICP. As a result, the orthodox ICP algorithm approach will assumably not work

in this case.

To solve this problem, Hao Li et al.[21] proposed using the registration method based

on finding and minimizing the contour coherence between the two frames. This

method works based on finding the same contour in the frame-pair and applying the

Levenberg-Marquadt algorithm to solve the minimization. However, this only return

a rough estimation of the Kinect pose that will register the body as a whole. Due to

depth sensor error model which has been mention before, the misalign still exists for
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smaller body parts where the errors are different between each frame. This can be

solved by segmentating the body into smaller regions and eapply the contour-based

registration on each part.

Figure 8. Registration using contour coherence.[21]

2.3.2 3D Model Mesh Building

After the calibration process, all data coming from every sensor are now in the same

coordinate space. The next step is to generate the 3D mesh out of these points [3] .

However, the problem is that all the points in the cloud are most likely unordered.

To make it possible for these points to become polygons of the 3D model, these

points will require triangulation and normal estimation to be rendered.

2.3.2.1 Delaunay Triangulation Algorithm

The Delaunay Triangulation Algorithm provides a way to triangulate a set of points

which are not on a same line on a plane. The basic idea of Delaunay Triangulation

is to find the set of indices of points that make up a triangle such that there are no

points other than the three exist inside the circumcicle of that triangle. However,

this can also be expanded for n-dimensional dataset such as point cloud that consist

3-dimensional data. In the case of point cloud, instead of using the circumcircle in

2-dimensional case, the circumscribed spheres of the triangles are considered.
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2.3.2.2 Unordered Point Cloud Triangulation and Normal Estimation

The resulted registered point cloud data is a perfect example for large and noisy

data. A method proposed by Marton et al [12] can take care of performing fast

surface reconstruction from large and noisy dataset such as the one being used. This

method can create the geometrical surface of the object based on data resampling

and reliable triangulation algorithm in almost real time.

2.3.2.3 Poisson Mesh Reconstruction

Another method to reconstruct the 3D model is to consider the process as a spatial

Poisson calculation. According to Kazhdan et al. [10], the Poisson formulation can

be applied to the surface reconstruction problem. Since the equation considers all

the points at the same time, the result is that data noise becomes a minor problem.

Combining with the returned data from the Kinect that also includes color for each

point, the texture of the model can be the direct color of each vertex.

Figure 9. Poisson Surface Reconstruction.[10]
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2.4 3D Streaming in Real Time of Humanoid Object

After creating a 3D model out of the raw data from the depth devices, instead

of streaming the whole 3D model over and over again, the system rather streams

the changes of the model rather than the whole mesh. Specifically, since we are

targeting the streaming of changes in humanoid character, the most viable data to

be streamed would be skeletal data. The skeletal joint data can then be used to

control the humanoid model [22] . This would be similar to motion capture systems,

where targeted joint locations are tracked and used to move a generated 3D model.

This method requires the skeletal information and the humanoid 3D model to be

rigged with joints. The skeletal data can be acquired from the Kinects thanks to

the built in trained dataset. What is left is to rig the newly created 3D model and

stream the skeletal data for control

2.4.1 Humanoid 3D Model Rigging

For a humanoid 3D model, a rig is basically the digital skeleton which is set to the

mesh. The rig also contains joints and bones, which will be used as handles to move

the model to desired pose. In this case, the rig’s joints will be controlled by the

skeletal value from the Kinect. Given a humanoid 3D model, basic rigging involves

these concept: Skeleton Placing, Joint Hierarchy, Degree of Freedom, and Facial

Rigging. Normally, to create a high-quality skeleton rig, the rigging need to be done

manually by aligning the skeletal structure to the 3D model, however, this process

can be done automatically.

One of first automatic rigging process proposed by Baran et al.[1] is called Pinocchio.

This algorithm works based on the process called skeleton embedding. The process

calculate the location of the joints within the 3D character model by minimizing a
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penalty function. While the algorithm works effectively and fast, it requires the 3D

model to be almost perfect, specifically it has to be tight mesh with no holes. This

is a potential problem for the 3D model generated from the Kinect because of the

data noise and gaps. Most other methods after Pinocchio complement the original

approach, which all start the process from the empty mesh to generate the skeleton

rig.

Another different method, according to Feng et al.[4], is to start from an already

generated set of skeleton template and transfer the rig to the empty mesh. The

requirement is to have both of the pre-defined rig and the computing 3D mesh to

be at the same location in the object space and have minimized difference in shape.

Since the pre-defined template has high quality rigging information that just needed

to be copy to the generated model, this method returns better results than Pinocchio

approach and will be used for this project.

Figure 10. Rigging with deformable model.[4]

2.4.2 Skeleton Streaming

A Skeleton set provided by the Kinect can be streamed over the network. At the

beginning of the stream, the system server provides the client with 3D mesh. After

that, since the target won’t have any substantial change over the specific streaming
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period, what changes is only the rigid and non-rigid movement. Therefore, the

skeletal data will be sent over to the client to control the 3D mesh. Because this

needs to be in real time, the Open Sound Control, which has UDP protocol lying

underneath is a good choice for streaming protocol.

2.4.2.1 Open Sound Control - OSC

Similar to XML or JSON, OSC is also a content format originally designed to share

music performance data between musical instruments, computers, and other media

devices. OSC offers interoperability, accuracy, and flexibility [19] . Using OSC

messages to transfer the skeletal data from the Kinect allow the output data to be

used in any language or framework of choice. An OSC recorder can also be attached

so that the data can be saved and viewed later.

2.4.3 Animating Humanoid 3D Model using Skeletal Data

After acquiring a rigged 3D model and the skeletal data being sent over via OSC

messages, the joints data will be used to control the rigged model. This section

covers the rest of the Humanoid 3D model Rigging problem, which involves Forward

Kinematics and Inverse Kinematics [13] . Depending on the animation properties,

each scheme will be applied accordingly. Essentially, kinematics represents the study

in figuring out the consequential state of a system based on the given parameters of

the very same system while disregarding other aspects such mass. For instance, in

mechanical engineering, kinematics is used to describe the motion of system comprise

of smaller nodes which are linked hierarchially such as the human body skeletal joints.
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2.4.3.1 Forward Kinematics

This is the direct way of animating the skeletal data. The joints with lower hierar-

chical status within the skeleton tree will follow the joints at higher lever. Basically,

Forware Kinematics is used when the objective is to find out the target’s next state,

or the transformation to the next coordinate given the input angle. Because the chil-

dren nodes inherit the transformation of their parents, this scheme is fairly forgiving

and direct. Therefore this can be considered the ”dumb” way of animation.

2.4.3.2 Inverse Kinematics

In this scheme, the child joints will have to adjust themselves to accommodate the

Inverse Kinematics Joint. Contrary to the Forward Kinematics, Inverse Kinematics

tries to figure out the needed angle to rotate the part to the location known before

hand. In this scheme, the parents position and orientation are also determined by

the position and orientation of the child nodes. As a result, Inverse Kinematics can

be applied to create more complex motions more easily than Forward Kinematics.

However, it also demands more thought put into the way the nodes are linked. This

scheme can be called the ”smart” way.

2.4.3.3 Avatar Puppeteering

The act of manipulating the avatar using the skeletal information can be called

avatar puppeteering or avateering. Because the skeletal information comes from a

pre-defined rigging template, all the joint data are already known and only require

retargeting once to work with the joint data from the Kinect. For the Kinect One,

the skeleton rig consists of 25 joints. These joints are connected in a hierarchial

manner starting from the root, which is the pelvis in this case.

23



A joint is not just a location in space, it also has a rotation which is usually relative

to its dirent parent. A bone is connected line segment between two joints. The

joint rotation’s basis is defined by: Bone Direction(Y axis), Normal(Z axis), and

Binormal(X axis). Bone direction always match the skeleton. Normal is the joint

roll, always perpendicular to the bone. Binormal is cross product of the normal and

bone direction. To apply the animations to the character, the absolute location of the

root will be applied to the root, then apply the relative rotation of each joints down

the hierarchial tree. To simplify the process, usually the rotation will be against a

default reference pose of the character.

Figure 11. Animate joints with forward kinematic.

2.4.4 Facial Rigging

The final piece of the system is to match the facial pattern of the created 3D model

to the captured target. This can be done by tracking the human face in the viewport

of each Kinect of the system. The resulting data should be the tracked points of the

human face laid out in the virtual space. After that, these points will be compared

against the points on the face of the 3D model and transformed accordingly. With

voice also recorded by the microphone arrays on each Kinect also being streamed,

the final model will be able to move, performing facial expression and voice according
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to the capturing target.

2.4.5 openFrameworks

openFrameworks is an open source toolkit for ”creative coding”. openFrameworks

uses C++ as the programming language and has OpenGL running as its backbone

[15] . It runs on almost all currently popular platform such as Windows, OS X,

Linux, Android, and iOS. The main advantages of this framework are its simplicity,

intuitivity and extensibility. This is the main framework to create the system’s UI,

Graphic Rendering, and Network Communication.

2.4.6 Point Cloud Library

Point Cloud Library (PCL) is a standalong, large scale, open source library for 2D/3D

image and point cloud processing. This library contains most of the state-of-the-art

algorithms for working with 2D or 3D data [18] . Similar to openFrameworks, this

library is also cross-platform and based on C++ language. The PCL will be mainly

be used for processing the input depth data from the Kinects

2.4.7 Microsoft Kinect SDK

This is the software provided by Microsoft to interact with data captured by the

Kinect. The SDK includes the driver to run the Kinect devices and act as the

intermediate layer for users to reach the built-in data of the Kinect such as Skeletal

and Joints data so that it can be processed with the Point Cloud Library and rendered

by openFrameworks.
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CHAPTER 3

EXPERIMENTAL SETUP AND TESTING RESULTS

This chapter discusses achieved results of the project. There are two types of results:

one for the 3D Reconstruction problem and one for the 3D Data Streaming problem.

3.1 Experimental System Setup

Four Kinect devices are positioned so that every two Kinects are located 90 degree

from each other and have a view of the same center location as shown in Figure 12.

These Kinect 360s are responsible for capturing depth data. Another Kinect One is

set up to capture skeletal data. After capturing, one single computer will handle the

procedures for 3D Reconsctruction and 3D Streaming.

Figure 12. Experimental Setup.
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3.2 3D Reconstruction Result

This section includes the results of the smaller problems from the 3D Reconstruc-

tion part, which consists of the following, data registration result, mesh generation

result, and skeletal rigging result. The overview of the 3D reconstruction pipeline

is described in Figure 13. This pipeline will take data from the 4 Kinect positioned

like in Figure 12. The detail of the reconstruction pipeline consists of the following

steps:

Figure 13. Reconstruction and Rigging Pipeline.

- Rough Alignment: raw data from four Kinects are rotated 90 degree from each
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other.

- Rigid Aligment: Contour-based registration is applied on every two frames to

minimize the difference between each set of point cloud.

- Non-rigid Alignment: The data are separated into 9 smaller body parts and

contour-barsed registration is used again to minimized the difference between point

cloud that belong to different body parts.

- Mesh Generation: Poisson surface reconstruction is applied on the calibrated

data to create a 3D mesh with texture.

- Skin Rig Transfer: the high quality skeleton rig is taken from a SCAPE model

and copied to the created mesh to create a deformable character mesh.

3.2.1 Data Registration Result

Figure 14 shows the captured data from each Kinect. According to the setup, each

Figure 14. Unregistered Depth Data from 4 Kinects.
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point cloud is rotated 90 degree from each other initially. Each scanned set of point

cloud is color coded to enhance visualization.

The initial registration start with rotating depth data 0, 90, -90, and 180 degree

respectively to the frame’s setup location. The front frame will require no rotation.

The right frame is rotated 90 degree clockwise. The back frame is rotated 180

degree. The left frame is rotated 90 degree counter-clockwise. The result of this step

is illustrated in Figure 15. The data is roughly in their correct positions.

Figure 15. Initial Rotations.

The next step is minimizing the difference between frames using the contour-
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based registration method. Figure 16 shows the result of this rigid regitration step.

The point clouds are almost aligned, but the smaller body parts are still disjointed

due to the sensor error.

Figure 16. Rigid Registration.

To solve the smaller disjoints, the whole body is segmentated into 9 smaller body

parts as seen in Figure 17. Then the contour-based registration is applied again, but

on matching body parts on each frame. The final result is that all the point cloud

data is now registered correctly.
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Figure 17. Non-Rigid Registration.

3.2.2 Mesh Generation Result

After applying the Poisson surface reconstruction method on the registered but un-

ordered point cloud data, the final result can be seen in Figure 18.

3.2.3 Skeletal Rigging Result

The aformentioned automatic rigging method would fit the prepared SCAPE model

with high-quality skeletal data into the generated 3D model and transferred the

skinning rig to it. Figure 19 describe the fitting process. The output of this step is

the full controllable 3D character.
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Figure 18. Mesh Generation Result.

3.3 3D Streaming Result

This section includes the results from the solving partial problem of 3D Streaming,

which are 3D model streaming, skeletal data streaming, and character animation.

Figure 20 shows the streaming and character animation pipeline of the system. The

following list consists of the main functions that the system do to perform 3D stream-

ing:

- Model Transfer: The server will give the generated and rigged character from

the reconstruction pipeline to the client.

- Skeletal Data Stream: Another Kinect One is connected to the system to cap-

ture the skeletal data. This data is packed into OSC messages and streamed over to
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Figure 19. Automatic Rigging by fitting SCAPE model into the generated 3D mesh.

the client via OSC protocol.

- Transformation Apply: The transformation is computed based on the received

joints data and applied to the character.

- GL Render: The system will render the rotated and translated model to the

screen will OpenGL.

Figure 20. Streaming and Rendering Pipeline.
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3.3.1 3D Model Streaming

After generation, the 3D model is given to the client by the server through a standard

file transfer protocol. The user’s own avatar and the other participant avatar can be

rendered into one single space as shown in Figure 21

Figure 21. Mesh Transferred and Rendered.

3.3.2 Skeletal Data Streaming

By converting the skeletal data provided by the Kinects to OSC messages, it is possi-

ble to stream the skeletal data over the network using OSC. The program is open on

a computer is fed with the Kinect Skeletal data and open a streamer. Another com-

puter which acts as client will have the OSC Bridge ready to listen to the incoming
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data from the streamer and display as seen in Figure 22

Figure 22. Skeletal Data Streaming.

Figure 23 shows the constructed and transferred OSC message that was received

by the OSC Datamonitor program. The message content is the joints coordinates

captured by the Kinect as float value. In actual test setup, the messages are received

by the client.

Figure 23. OSC Message with Skeletal Data.

3.3.3 Character Animation

Figure 24 shows the rig information that was transferred from the SCAPE model

in the rigging process. It is visible that the structure and the number of joints are
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more complex than the Kinect’s skeletal data in Figure 23, which only covers 25 joint

locations.

Figure 24. 3D Model Skeletal Rig Structure.

To animate the character with the Kinect data, it is necessary to match the

joints from the 3D model with Kinect joint data. This process is called animation

retargeting, which is usually done for every new 3D rig that is introduced into the

system for the first time because other rigging method may return different skeletal

structure. For this specific system, since all the skeleton rig are transferred from

the same source dataset, the retargeting only needs to be done once. After that,

the computations of the joint orientations are executed to animate the characters.

Figure 25 shows the simulation of the virtual interaction between two users inside a

virtual space.
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Figure 25. Virtual Interaction.

3.4 Result Evaluation

The created system is able to perform functions which were expected from the pro-

posal. The system is geared towards the low-cost aspect. Specifically, hardware

wise, any computer system with averagely sufficient performance can run the pro-

gram. The system which were used for testing has the following specification, Intel

Core i5 6600K, 16GB of RAM, AMD R9 390x GPU. This computer setup cost ap-

proximately $500, which is close to a middle-range PC. The depth devices consist of

4 Kinect 360 and 1 Kinect One, combining with their required PC adapters have the

total cost of about $300. The final price of a whole system is less than $1000, which

is still affordable compare to an enthusiast computer.

Software wise, after setting up, the program is able the handle the following func-
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tionalities:

- Data Registration from connected depth devices

- Mesh Generation from registered data

- 3D Character Rigging from the created mesh

- Stream the created and rigged mesh to the client machine

- Stream the captured skeletal data to client

- Animate the character using the streaming skeletal data with kinematics

- Render the output data on the client side.

3.4.1 Data Registration from connected Kinects

The system is able to capture the depth data from 4 Kinects simultanenously and

perform the two-step registration on the data. The first step of registration is the

rigid transformation based on the contour-based registration. This step will minimize

the difference between every two Kinects’ frame. The second step of the registration

is the non-rigid transformation. This step is performed by segmentating the whole

body into smaller body parts in a heuristic fashion. By then, the contour-based

registration is applied to each body part pair.

The output would be the point cloud data with set of 9 transformation matrices for

each body part and the weight of each point for every matrix. The points which

completely belong to the one body part will have the weight for the respective trans-

formation matrix equal to one and the rest are zero. The points that lie in between

body part will have weighted transformation. The final result of the registration

process is a set of point cloud that is spatially correct.
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3.4.2 Mesh Generation from registered data

This step ultilizes the Poisson mesh reconstruction to generate a tight mesh from the

registrated data. The data from every Kinect also comes with color for each point,

this is due to the RGB data of the Kinect has already been calibrated to the depth

data. The Poisson texture blending algorithm is also applied to fill out the gaps and

holes. The final out put is a fully 3D reconstructed model of a humanoid target. The

whole process of capturing, registration, and mesh genaration takes approximately 5

minutes for the computer with listed specifications. It can be thought that the time

required would be improved if the program is executed on a higher-spec machine.

3.4.3 3D Character Rigging from the created mesh

The automatic rigging process is executed based on a SCAPE model. The SCAPE

model is morphable that allows change in both pose and body shape. The procedure

of this automatic rigging method is also consists of two steps, fitting the deformable

model into the 3D scan and transferring the skin rig to it. The first step compute the

triangle correspondences between two model and deform the SCAPE model’s vertex

position to match the 3D scan. The second step copy the skinning rig, which include

the joints data and skin weight to the 3D scan using the calculated correspondence

from the deformation transfer step. The final result of this process is the high quality

rigged and deformable 3D model that is the same as a referenced SCAPE model.

3.4.4 Stream the created and rigged mesh to the client machine

According to the proposed system flow, the generated 3D character needs to be given

to the client by the server. As the created and rigged 3D model has size of a few

megabytes, this step is done via a straight-forward file transfer protocol (FTP). With
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the current standard of the network, the transfer process should not take more than

a few minutes. The experimental setup, which is setup as a closed network, only

required a few seconds for the file transfer. This step only need to be done once for

each model. The client would store the character and ulitize it at later stage.

3.4.5 Stream the captured skeletal data to client

Another Kinect One is attached to the system to capture the skeletal data. The

reason is the Kinect One is a product of better machine learning process that can

return the skeletal data with more accuracy compare to the Kinect 360. The skeletal

data from the Kinect consists of 25 joints’ coordinates. For every resulted frame,

these coordinates are bundled into an OSC message and sent to the client over the

network. As each message is a combination of 25 float numbers as string, the time

required to send a single message is insignificant. For the tested setup, from the server

to client, approximately 60 OSC messages can be transferred per second. That would

be enough to animate the character at 60 frames per second.

3.4.6 Animate the character

Using the generated 3D charater and the acquired skeletal data, the system can

animate the character to move like the skeleton. This ”puppeteering” step is done

by computing the relative angle from the parent to the child joints, starting from the

root of the skeleton, which is the pelvis. As the character skeletal rig is transferred

from a high quality SCAPE model, the rig usually contains a number of joints that is

much more than the 25 joints from the Kinect. The system is programmed to match

the corresponding joints returned by the Kinect and joints from the character before

calculating the rotation. The system can also apply locomotion transformation to
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the charater.

3.4.7 Render the output data on the client side

The system is programmed using openFramworks as the base, which is capable of 3D

rendering with openGL. As the generated 3D model is a Collada format, which is one

of the standards for the industry, after calculating and applying the transformation

to the model, the program can render the transformed model to the screeen. There

is two rendered model in the program’s virtual space, one is the current user of

the system and the other is the received character that represents the other user.

Two model rendered in a single virtual space at real time to simulate the virtual

interactions.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

This is the final chapter of the project. This chapter provides potential future re-

search and conclude this work.

4.1 Future Work

This section is based on the result evaluations. The section introduces the possibili-

ties for the upgrades of the system in the future research.

4.1.1 Depth Data Registration

The registration for this project is currently done based on the assumption that the

registration process will be executed for every 3D character creation. This is due

to the physical locations of the sensors and the user position are subject to change.

However, assume that the positions of the sensors are fixed, the calibration process

can be sped up by reuse the last registration result. The calibration time can be

significantly reduced from the current 2 to 3 minutes.

4.1.2 Skeletal Data Reading

The Kinect have already come with the built-in mechanism to return the stable joint

data. However, the actual output of the joints is still jaggy. The result is that the

animation of the character is also affected by the noisy data. This could be improved

by introducing a filter into the system to smooth out the joints data. One possible

downside is that more overhead and delay might also be added to the system.
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4.1.3 User Recognition

The current pipeline is that the user create their avatars followed by the system

animates that specific avatar. After one seesion, the character will be stored to the

harddrive. Currently, the user has to choose their created avatar among the created

models or recreate one from scratch. The system should employ some methods of

recognizing if the user is already recorded within the system so that this process can

be automated for future sessions.

4.1.4 Character Modular Approach

The system treats the user character as one single entity. This can be improved

with the modular approach, which means the avatar of the user can be modified to

certain extent, like changing clothes of the avatar. The users would be able to change

their appearance as they wish. This can also reduce the need of the recreating the

avatar for every session since the users would likely to use the same piece of clothing.

The reconstruction process is only required for completely new elements which are

introduced to the system.

4.1.5 Additional Data Stream

Along with the skeletal stream for the avatar controlling, the additional stream can

be combined to enhance the user experience such as changing in surrounding en-

vironments or virtual objects with interaction. Even though this is a significant

improvement in user experience, noticable increase of bandwidth requirement and

overhead would pose a problem if it not addressed appropriately.
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4.2 Conclusion

This work proposed an approach to create a cost-effective system that takes the

current consumer grade depth camera such as Kinects to reconstruct 3D model and

stream the data in real time. The system took inspiration from the novel idea of

having holographic conversations which are shown in science-fiction movies, in which

people can have conversation in person no matter the geographical barrier. The basis

of the system is to create the avatar of the user, have the user control the avatar

and stream the strange over the network to the client. This way, the streaming data

does not require high bandwidth, but still able to show what the user is doing on the

streaming side. Starting with the skeleton, more data can be streamed to enhance

the viewing experience, such as facial data, or complex hand movements. Ultimately,

the avatar will act the same as what the user is doing. Combining with virtual reality

or augmented reality solution, an experience of having a virtual conversation from

anywhere can be achieved.
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