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Abstract. This paper explores the potential of using unmanned aircraft system (UAS)-based
visible-band images to assess cotton growth. By applying the structure-from-motion algorithm,
the cotton plant height (ph) and canopy cover (cc) information were retrieved from the point
cloud-based digital surface models (DSMs) and orthomosaic images. Both UAS-based ph
and cc follow a sigmoid growth pattern as confirmed by ground-based studies. By applying
an empirical model that converts the cotton ph to cc, the estimated cc shows strong correlation
(R2 ¼ 0.990) with the observed cc. An attempt for modeling cotton yield was carried out using
the ph and cc information obtained on June 26, 2015, the date when sigmoid growth curves for
both ph and cc tended to decline in slope. In a cross-validation test, the correlation between
the ground-measured yield and the estimated equivalent derived from the ph and/or cc was
compared. Generally, combining ph and cc, the performance of the yield estimation is most
comparable against the observed yield. On the other hand, the observed yield and cc-based
estimation produce the second strongest correlation, regardless of the complexity of the models.
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1 Introduction

Monitoring crop growth has been realized to be of crucial importance for effective crop
management. Factors of crop growth, such as plant height (ph), canopy cover (cc), canopy
temperature, and water stress, are usually strong indicators for irrigation scheduling, harvest,
fertilization, pesticide application, and production.1,2 Remote sensing has proven to be an appro-
priate technology accessing abundant, detailed, and quantitative crop information.3,4 For
remotely monitoring the growth and health status, satellites provide well-tuned imagery prod-
ucts, however, their temporal and spatial limits sometimes tend to lag behind the requirement of
crop growth monitoring, especially during the early stages of crop growth. In this regard, piloted
aerial vehicles with portable remote sensors enable a complementary manner for monitoring a
designated area.5–7 Nevertheless, the use of an airborne sensing approach usually requires high
user cost and professionalism, and may cause lengthy delivery of products and often limited
temporal frequency.8 Moreover, airborne-based imagery is not capable of offering images
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with sufficient detail to detect crop disease symptoms from individual plant leaves.9 As an
alternative, ground-based sensing systems collect various in-situ data using equipment such
as global positioning system, multispectral optical camera, ultrasonic ranging sensor, infrared
radiometer, and temperature and relative humidity probes.10 The quality and performance of
the data collected by ground-based sensing systems are usually satisfactory,11 although the
data collection process is complex and time-consuming.

On the other hand, commercially available unmanned aircraft system (UAS) platforms are
currently capable of carrying different types of remote sensors and have been recently explored
for precision agriculture applications.12–14 The UAS platforms allow sensing crop growth with
low flying altitude, flexible revisit frequency, and reasonable price. Recent UAS-relevant
precision agriculture studies have used fixed-wing15,16 and multirotor17,18 platforms by carrying
various types of equipment.8,19–22

Discrete ranging airborne LiDAR systems can provide multireturn capabilities and have been
extensively utilized in forestry and vegetation for structure characterization and biomass
estimation.23,24 However, over short cotton plants, which will be discussed in this study, the
value of multireturn LiDAR is debatable because of limitations in range resolution. Range res-
olution in multireturn LiDAR refers to the minimum discrimination distance between consecu-
tive returns (e.g., canopy top versus ground) along the slant path of the laser pulse. Range
resolution is largely a function of the laser pulse length and response time of the receiver elec-
tronics for a given LiDAR system. The pulse widths of most commercially-available airborne
LiDAR systems are too long to consistently capture more than one return in terms of observing a
single cotton plant. For example, a 10-ns-pulse-length LiDAR system equates to ∼3-m “blind
zone” for target discrimination with a single-channel detector.25 LiDAR systems with shorter
pulse widths or full-waveform digitization may enhance the potential for effective cotton analy-
sis, yet airborne LiDAR remains a relatively expensive method due to sensor costs and payload
weight necessitating the use of larger aircraft. Although small UAS are now being equipped
with lightweight, low-cost LiDAR sensors, the ranging characteristics of these sensors coupled
with direct georeferencing solutions from the miniaturized onboard aiding technology limit
performance.26 Point clouds produced from such systems are currently not equivalent to
point cloud fidelity produced from expensive survey-grade airborne LiDAR systems although
this gap will close as technology evolves.

As a sound and economical alternative to state-of-the-art LiDAR systems, new investigations
have revealed great potentials in precision agriculture using visual-band consumer-grade cam-
eras/red, green, and blue (RGB) cameras.27–29 As opposed to using costly LiDAR scanners, the
structure-from-motion (SfM) techniques, developed by the photogrammetry community, have
paved the way for utilizing low-cost visual-band cameras to access high-resolution three-dimen-
sional (3-D) first-surface-return point cloud and plant profile information.

Recent studies, such as Refs. 16, 17, 19, 27–29, have investigated potentials for obtaining
precise and reliable 3-D models of plants and achieved vegetation monitoring based on UAS
imagery. Compared with previous works, the following contributions are addressed: (1) compre-
hensive cotton growth quantification was conducted in a test field from UAS imagery. While
previous studies mainly focused on assessment of 3-D crop parameters from a single date flight
campaign, comprehensive experimental campaigns with ultralow flight altitude were made in this
study, enabling precise geospatial quantifications and full growth estimate over the life cycle of
the cotton plants. (2) Cotton growth modeling and assessment using UAS visual-band imagery
were introduced in this study. While related works primarily investigated trees and grain plants
such as barley, UAS imagery-based cotton growth and vegetation monitoring potentials were
rarely addressed. Furthermore, the relationship between cotton yield and plant growth param-
eters has not yet been sufficiently investigated, therefore, the potential of using plant growth
parameters for yield prediction prior to maturation stage was examined in this study.

Therefore, a case study of comprehensive cotton growth modeling and assessment is pre-
sented in this paper. A lightweight UAS platform was setup and used to frequently fly over
the designated cotton field. The study primarily focuses on the use of the low-cost UAS visible
imagery and geospatial computing methods for estimating cc and ph information and analyzing
their relationship with the cotton yield by testing regression models. The date when plant growth
stabilizes was selected for developing and assessing the regression models.
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2 Material and Methods

2.1 Study Site

A field trial was established at the Texas A&M AgriLife Research and Extension Center
(27° 46.948′ N, 97° 33.605′ W) at Corpus Christi, Texas, during the summer of 2015. The
field was 85-m long and 54-m wide. Seeds of 35 cotton varieties were planted on April 1,
2015, in north-to-south oriented rows at a rate of 13 seeds/m. Each plot consisted of two
rows that were 10.7-m long, spaced at 0.96 m. Each variety was replicated four times as indicated
by different colors in Fig. 1. In the first replication, the variety numbers were arranged in ascend-
ing order, while in the latter replications, plots were arranged in a randomized complete block
design. The border plots with dark blue color in Fig. 1 represented filler rows and were excluded
from subsequent processing and analysis. Table 1 shows the cotton varieties and types planted in
the study field. Cotton emergence was observed on April 6, 2015, and the cotton was harvested
on August 17, 2015. Four ground control points (GCPs) were set up at the corners of the test
field and used as geodetic benchmarks for image georeferencing purpose. The coordinates of
the GCPs were measured using the Altus APS-3 receiver (Altus Positioning Systems, Torrance,
California) in support of the TxDOT virtual reference station network, which enables instant
access to centimeter-level positioning accuracy under the WGS-84 frame.

2.2 Ground Data Collection

Routine management practices such as fertility, disease prevention, and weed and insect control
followed the guidelines provided by the Texas A&M AgriLife Extension Service for the region.
To determine population and plant density, stand counts were conducted on 0.0004 hectare on
April 28, 2015, for each plot. All plots were harvested using a custom two-row cotton spindle

Fig. 1 Geographical illustration of the cotton study site.
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Table 1 Cotton varieties and the types planted in the study field.

Variety number Variety type

1 ST 4946 GLB2

2 PHY 333 WRF

3 PHY 495 W3RF

4 PHY 499 WRF

5 PHY 312 WRF

6 PHY 552 WRF

7 PHY 444 WRF

8 NG 3405 B2XF

9 NG 3406 B2XF

10 NG 5007 B2XF

11 AMDG 7824

12 DG 3385 B2XF

13 UA 103

14 UA 222

15 HQ 210 CT

16 ST 4747 GLB2

17 DP 1219 B2RF

18 DP 1044 B2RF

19 DP 1359 B2RF

20 DP 1555 B2RF

21 DP 1549 B2XF

22 DP 1522 B2XF

23 DP 1518 B2XF

24 MON15R934XR

25 ST 6182 GLT

26 DP 1553 B2XF

27 MON15R525 B2XF

28 MON15R551 B2XF

29 12WSTR307-2 B2RF

30 FM 2007 GLT

31 CT15426 B2XF

32 CT15545 B2XF

33 CT15444 B2XF

34 CT15425 B2XF

35 CT15634 B2RF

Filler ST4946 GLB2
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picker model 9900 (Deere & Company, Moline, Illinois) on August 17, 2015. This equipment
was modified for small-plot research and allowed yield to be established on a per plot basis.

2.3 Unmanned Aircraft System Platform and Imagery Data Collection

The UAS platform used for this study was a Phantom 2 Vision+ multirotor copter (DJI,
Shenzhen, Guangdong, China). Its integrated fisheye-lens camera provided 14 megapixel images
with RGB channels.30 Its gimbal enabled stabilized nadir observation to the field during the
flight experiments. Similar to the airborne photogrammetric technique, the UAS platform
requires taking images with a high degree of spatial overlap for a favorable processing
outcome.27 To select an appropriate flight strategy, the optimal image resolution, camera
response time per shot, as well as the battery life were also taken into consideration. After
balancing all these factors, it was determined that the UAS flew at an average height of
15 m with an average horizontal speed of 1 m∕s, and the camera captured a shot once the
UAS traveled 1 m horizontally.

Raw images were collected throughout the whole cotton growing and development phases
from early April to late July 2015 for a total of 16 datasets. Specifically, during the first week
after emergence, data were collected on a per-day basis for the purpose of monitoring the
germination process. The routine flight experiment was conducted every week or every other
week afterward, depending on the local weather conditions.

The flight time for each mission was ∼20 min to cover the whole test field, and the nadir-
view images were taken to enable ∼70% along-track and 60% across-track overlap between the
images. All flights were conducted around 12:00 PM local time to ensure the homogeneity of
light intensity. To minimize human intervention and maintain consistency between different
flight attempts, the camera settings (e.g., white balance, ISO rating, sharpness, and exposure
parameters) were kept on automatic or default mode.

2.4 Growth Information Generation

At this stage, the goal is to extract cotton ph and cc estimates for each flight. Figure 2 shows the
overall processing sketch using RGB images obtained from our lightweight UAS platform. Our
study case first utilized the Pix4Dmapper Pro software (Pix4D SA, 1015 Lausanne, Switzerland)
to generate initial mapping products. The software uses scale-invariant feature transform,31 or

Fig. 2 Diagram of the cotton growth estimation using RGB images obtained from the lightweight
UAS platform.
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similar descriptor algorithm, to find key points and match a large set of images. It geometrically
describes the projection between two corresponding points in a pair of images representing the
same 3-D object. The GCPs were then loaded to the process to create georeferenced products.
After importing the matched key points into the SfM algorithm, two-dimensional (2-D), and 3-D
products (georeferenced orthomosaic images and 3-D point clouds) were generated. For gen-
erating 3-D models, SfM is an important stage to establish the correspondence between images
and the reconstruction of 3-D objects to be studied. It requires multiple overlapped images as
input to extract the 3-D point cloud given 2-D image common features. Detailed descriptions of
the SfM algorithm and workflow can be found in Chapter 10 of Ref. 32. Similar to the
Pix4Dmapper that was used in this research, the frequently implemented photogrammetry tech-
niques can also be accessed in other equivalent commercially available software packages and
open source solutions such as Agisoft PhotoScan Professional,33 Correlator3D UAV,34

insight3d,35 and VisualSFM.36

The orthomosaic images generated had an average file size of 410 megabytes. Figure 3 shows
an example of the point cloud data, based on the flight experiment carried out on June 26, 2015,
focusing on a small part of the whole test field. The legend shows negative height because the
height was georeferenced to the WGS-84 reference ellipsoid. A 0.9-m height difference is
observable from the bare soil to the peak (highest point) of the cotton plants. In our study
case, over 18 million points were generated in a point cloud file for the whole field for each
flight, making the file size usually larger than 650 megabytes.

Cotton ph was estimated using the Quick Terrain Modeler 8.0.5 (Applied Imagery, Chevy
Chase, Maryland) after loading the point clouds. In a first step, a bare soil-based digital surface
model (DSM) (terrain elevation), DSM0, is supposed to be created by the point cloud dataset
collected before cotton emergence. In this study, however, the first flight experiment was
completed on April 7, 2015, the second day after cotton emergence was observed. In spite
of that, its DSM was still considered the DSM0 due to the tiny and ignorable size of cotton
hypocotyls observed by the UAS camera. The DSM0 was then subtracted from each subsequent
digital surface model DSMi after emergence, producing the cotton surface profile CSPi at the
i‘th day after emergence (DAE). To allow an estimate of the uncertainty of height fields, the bare
soil areas of the DSMs after emergence were compared against the DSM0. In general, the DSM
uncertainty at the bare soil areas was ∼5 cm among all flight experiments in this study. It was
mainly introduced by routine tractor plows, meteorology changes as well as image processing
errors.

Fig. 3 An example of the point cloud data, based on the flight experiment carried out on June 26,
2015, focusing on a small part of the whole test field.
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In a specific CSP model, the ph information of each variety was determined by averaging the
height samples around the centerline of the cotton profile. More specifically in Fig. 4, the two
rows in the cyan frame represent a variety plot, and the red dots depict the samples to be used for
calculating the ph of this variety. The red dots were cloud points around the centerline of the
cotton profile with 0.10-m width at each row. The height was finally calculated by summing
all the samples of these two rows and dividing by the sample number.

For assessing cc, the georeferenced orthomosaic images were loaded into ArcMap 10.3.1
platform (Esri, Redlands, California) for classification. The study area was classified into
two categories (i.e., cotton canopy and bare soil). After manually training a few samples on
each category, the software performed interactive supervised classification and cc was calculated
as the proportion of the ground area covered by the vertical projection of crown perimeters,
as described in Ref. 37.

3 Results

3.1 Plant Height

The UAS flight experiments ranged from April 7 to July 23, 2015, which covered the cotton
growing and development cycle from emergence to early harvest stages. Due to the low flight
altitude in this study case, the DSMs generated in Sec. 2.4 yielded 7.3 mm∕pixel horizontal
resolution. The ph and cc were estimated from April 12, 2015, (7 DAE) and the datasets
collected previously were excluded because of the small size of the cotton seedlings during
the early germination stage.

Cotton development follows a sigmoid curve pattern characterized by a slow growth rate
during emergence, followed by a geometric increase in growth during leaf production, blooming
and boll development phases, and slowing down and declining during maturation.38

Figure 5 illustrates the sigmoid regression curve of cotton ph against DAE based on the visible
UAS imagery with SSE ¼ sum of squared errors, R2 ¼ coefficient of determination, adjusted
R2 ¼ adjusted coefficient of determination, and RMSE ¼ root-mean-square errors. Each green

Fig. 4 Point cloud illustration of ph calculation for each cotton variety plot.
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dot represents the estimated ph on a specific data collection day by averaging the height statistics
of all 35 varieties in 4 replications.

The cotton grew slowly before May 1, 2015, (26 DAE) and then exponentially until June 19,
2015 (75 DAE). The maximum crop height was observed on July 2, 2015 (88 DAE). The
increased variation in crop height after 40 DAE is likely caused by the phenotypic differences
between the varieties.

3.2 Canopy Cover

In addition to the ph estimation, cc is also closely related to crop growth and development. To
assess the cc, the orthomosaic images, which were created after applying the SfM algorithm,
were loaded into the ArcMap engine. The camera settings were kept on automatic or default
mode, and the image brightness values, for both bare soil and canopy, varied from day to
day. Therefore, each orthomosaic image generated an individual set of training samples, repre-
senting either canopy or soil, and the interactive supervised classification strategy, specifically
maximum likelihood classification using sample set,39 was performed to form the classified
raster image. After making a raster-to-polygon conversion, cc was obtained by summing the
area of all polygons over the investigated area. It is worth noting that the presence of weeds
in the field may result in overestimation of cc. To eliminate the interference of the weeds, par-
ticularly during the early growing stages, polygons in between two adjacent rows were removed
and excluded from the cc estimation. This process was performed by discriminating the 2-D
coordinates of the centroid of the polygons, and any polygons that appeared off the cotton
rows were filtered out.

The sigmoid curve in Fig. 6 depicts the cc regression against days after cotton emergence,
confirming similar growth pattern as the ph. The cc calculated was based on the whole test field,
rather than focusing on a specific area.

3.3 Relationship Between Plant Height and Canopy Cover

In this study, the ground measurements of cotton ph were not available, which disables a direct
validation of the height model estimated from UAS imagery. Alternatively, an indirect method
was conducted in this section to justify the UAS-based ph information.

As shown in Ref. 40, there is a linear relationship between ph and cc, which satisfies

EQ-TARGET;temp:intralink-;e001;116;87cc ¼ 1.12 × ðph∕Row SpacingÞ: (1)

Fig. 5 Sigmoid regression of cotton ph against DAE based on UAS imagery.
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By applying Eq. (1), the estimated phs shown in Fig. 5 were converted to estimated ccs
against DAE.

Comparison between observed cc derived from the orthomosaic image classification and
estimated cc calculated using Eq. (1) is shown in Fig. 7. Results show a strong linear relationship
between these two sets and demonstrate that the estimated and observed ccs coincide well with
a coefficient of determination R2 of 0.990. This, in turn, proves the reliability of crop height
estimated from UAS imagery. As for the validity of the observed cc, it will be addressed in
a separate paper with an average accuracy of 88% achieved.

Fig. 7 Comparison between the observed cc derived from orthomosaic classification and
estimated cc calculated using Eq. (1). The 1:1 relationship is represented by the solid line,
and the dashed line depicts the linear regression between actual observed cc and estimated
equivalent.

Fig. 6 Sigmoid regression of cc against DAE based on UAS imagery.
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4 Yield Modeling and Discussion

4.1 Yield Modeling and Analysis

In this paper, an investigation was conducted to model and assess the relationship of the cotton
yield with the ph and/or cc on June 26, 2015, the approximate date of transition between rapid
growth and crop maturation.

Three regression types (linear, quadratic, and exponential) were established for modeling the
cotton yield (Table 2). The independent variables were ph and/or cc on June 26, 2015. The yield
models were calibrated using all 35 cotton varieties (samples) of replications 2, 3, and 4 as
shown in Fig. 1. Therefore, a total of 105 samples were used for model calibration Eqs. (2–10).
In each sample, the plot yield, height, and cc information were calculated independently. On the
other hand, the remaining 35 samples from replication 1 were used for model validation.

A comparison of the estimated yield against the observed yield for the 35 samples from
replication 1 was made to evaluate the regression models. Correlations vary according to the
models applied and Figs. 8–10 present the validation results estimating cotton yield using
the models established in Table 2. Specifically, the estimated yields of subfigures (a–c) in Fig. 8
are derived from fitting Eqs. (2–4) in Table 2. Similarly, the estimated yields of subfigures in

Table 2 Regression models established for modeling cotton yield against the ph and/or cc in
terms of linear, quadratic, and exponential fits.

Dependent
variable

Independent
variable Fit type Regression model

Yield
(103 kg∕Ha)

ph (m) cc (%) Linear
EQ-TARGET;temp:intralink-;e002;255;665yld ¼ 0.4951þ 2.93 × ph (2)

EQ-TARGET;temp:intralink-;e003;255;625yld ¼ 0.02329þ 4.841 × cc (3)

EQ-TARGET;temp:intralink-;e004;255;585yld ¼ −0.3881þ 2.038 × phþ 2.693 × cc (4)

Quadratic
EQ-TARGET;temp:intralink-;e005;255;545yld ¼ −2.978þ 11.43 × ph − 5.158 × ph2 (5)

EQ-TARGET;temp:intralink-;e006;255;507yld ¼ 5.452 − 13.33 × ccþ 15.14 × cc2 (6)

EQ-TARGET;temp:intralink-;e007;255;469

yld ¼ 1.162þ 19.69 × ph

− 26.95 × ccþ 0.7514 × ph2

− 31.84 × ph × ccþ 46.93 × cc2 (7)

Exponential EQ-TARGET;temp:intralink-;e008;255;396yld ¼ 1.289 × expð0.9852 × phÞ (8)

EQ-TARGET;temp:intralink-;e009;255;359yld ¼ 1.071 × expð1.671 × ccÞ (9)

EQ-TARGET;temp:intralink-;e010;255;319

yld ¼ 1.36 × expð0.7691 × phÞ
þ 0.002249 × expð8.261 × ccÞ (10)
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Figs. 9 and 10 are derived from Eqs. (5–7) and Eqs. (8–10), respectively. The blue asterisks in
each subfigure depict 35 validation samples (varieties) in the first cotton replication. The dash
lines illustrate the linear relationship between estimated and observed yield, while the solid lines
indicate a 1:1 relationship. θ angle denotes the included angle between the dash line and solid
line in units of degrees. A smaller θ angle indicates a smaller separation to the 1:1 line which
represents the most ideal estimation-observation relationship.

Generally, the yield estimated by both ph and cc produces better linear results than those
obtained by using only ph or cc, regardless of the fit type. In other words, Figs. 8(c), 9(c),
and 10(c) outperform other solutions by using fitting Eqs. (4), (7), and (10), respectively, in
terms of the SSE, R2, RMSE, and θ angle. From the perspective of the fit type, all the models
combining both ph and cc, i.e., Figs. 8(c), 9(c), and 10(c), generate similar correlation results as
depicted in the corresponding subfigures. Likewise, the ph-only models, i.e., Figs. 8(a), 9(a), and
10(a), are not sensitive to the applied fit types according to the in-figure evaluation statistics,
yet generate the worst correlations. The performance of the models using only cc was found to
be between the ph-only models and the ph/cc combination models. For example, Fig. 8(b)
performs worse than Fig. 8(c), while better than Fig. 8(a). The same phenomenon also appears
in exponential models. However, as an exception, Fig. 9(b) shows a slight improvement on
the correlation statistics than Fig. 9(c) by estimating the yield using only cc and generates
the least dispersed correlation results among quadratic Eqs. (5–7).

Therefore, according to the result analysis, cotton yield is found correlated to both ph and cc
by establishing linear, quadratic, and exponential models as stated in Table 2. These models
generally agree with the expected behavior of larger yield at larger ph and cc. Different
from previous studies on physiological progression of cotton growth and yield, these results
provide a promising opportunity of predicting the yield of cotton when the rapid growth
phase is about to finish before maturation and boll opening by considering the 2-D and 3-D
growth statistics. Moving forward, upon these results, physiological rules might be acquired

Fig. 8 Validation estimating cotton yield using the model Eqs. (2–4) established in Table 2.
Estimated yields of subfigures (a), (b), and (c) are derived from fitting Eqs. (2), (3), and (4),
respectively.
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by agricultural producers to quantitatively manage and schedule plant care activities (such as
irrigation, fertilization, and pest control) that, in turn, benefit healthy and robust growth of
the cotton plants. To better understand the variability that may arise in estimating cotton growth
and yield pattern to ensure the most efficient use of the concerns addressed above, producers or
researchers are advised to arrange long-term observations under a multiyear scope. It is also
worth noting that the estimation-observation validation lines, as shown in Figs. 8(c), 9(c), and
10(c), are still ∼24 deg off the 1:1 relationship, which makes most estimated yield lower than
the observation. This phenomenon deserves further examination to enhance follow-up studies.

In this specific case, the independent variables used for estimating the cotton yield, i.e., the ph
and cc, are all based on the image dataset collected on June 26, 2015, the end of the rapid
increase in growth. The models established by using other dates may produce different results
considering the nature of the cotton growth, and this possibility will be further investigated in a
future study. Moreover, both the model training and validation phases used cotton samples of
various varieties. This means the models proposed in this study ignore the differences of the
growth characteristics of these varieties, thus a more delicate work needs to be carried out if
aiming at estimating the yield of a specific variety.

4.2 LiDAR-Derived Vegetation Metrics for Unmanned Aircraft
System-Structure-From-Motion Point Cloud Data

UAS-based SfM photogrammetry to derive 3-D point cloud data of crop structure, as performed
here, represents an alternative to LiDAR. Although a comparison of airborne LiDAR versus
UAS-SfM for crop monitoring is beyond the scope of discussion, it is important to emphasize
some key differences between the methods to assess the potential of LiDAR-based metrics
adapted to SfM point cloud data for progressing future results in this work. SfM relies on

Fig. 9 Validation estimating cotton yield using the model Eqs. (5–7) established in Table 2.
Estimated yields of subfigures (a), (b), and (c) are derived from fitting Eqs. (5), (6), and (7),
respectively.
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image-to-image pixel correspondence and collinearity to reconstruct the 3-D scene. As such, it
generates what is called a first (or single) return point cloud, whereas modern discrete-return (or
full-waveform) airborne LiDAR systems provide multireturn detection capability.41 This multi-
return capability has rendered LiDAR being widely applied to forestry because it enables canopy
and below canopy measurement. As mentioned in Sec. 1, however, the potential benefits of
multireturn LiDAR data over short vegetation such as cotton is debatable due to limitations
in the range resolution of many LiDAR systems. Another key difference in point cloud phenom-
enology between the two methods over vegetation stems from LiDAR being a pulsed ranging
technique, whereas SfM is photogrammetric and susceptible to false parallax induced from mov-
ing vegetation between overlapping images (such as from wind). This can sometimes result in
noisier point cloud data over vegetation dependent on weather conditions and vegetation
structure.42 However, SfM computed from hyperspatial resolution imagery collected from a
low flying UAS, as done here, can provide upward of two orders of magnitude increase in
point density relative to traditional airborne LiDAR collected at higher altitudes above ground.
This high point density enables noise to be easily smoothed and provides a high-definition point
cloud for reconstructing vegetation structure.

In this work, SfM point cloud data were used to extract a single biophysical metric, mean ph,
for which to assess cotton growth rates and predict yield performance. Results showed that mean
ph values enabled high accuracy cc estimation validating SfM data integrity. Given the hyper-
spatial point density of the UAS-SfM approach, this opens the door for the application of a wide
array of LiDAR vegetation metrics adapted to SfM point clouds for improving crop phenotyping
and yield prediction. The literature provides numerous examples of LiDAR-based metrics for
estimating biophysical attributes of vegetation, primarily from the forestry community.23,43–45

Multireturn LiDAR metrics often employ descriptive structure statistics calculated from height
normalized LiDAR point clouds. These include selected height measures such as percentile of

Fig. 10 Validation estimating cotton yield using the model Eqs. (8–10) established in Table 2.
Estimated yields of subfigures (a), (b), and (c) are derived from fitting Eqs. (8), (9), and (10),
respectively.
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height, mean height, or max height; variability of height measures such as coefficient of varia-
tion; selected canopy return density measures; and selected cc measures such as cc above mean
height.44 Full-waveform LiDAR metrics describe the radiometric and geometric attributes of
the return waveforms over canopy.46 Waveform shape fitting methods are used to extract metrics
such as height of median energy, standard deviation of pulse width, waveform distance, number
of peaks, roughness of outermost canopy, and so on.44 With SfM being photogrammetric,
full-waveform digitization is not plausible; however, several studies, such as Refs. 46 and 47,
have shown the potential of using small-footprint, discrete-return LiDAR data to generate
pseudowaveforms for reconstructing waveform composition over forested terrain. Such methods
are well suited for adaption to the very high point density of the UAS-SfM point cloud for
biophysical parameter estimation at the plant and plot level.

The aforementioned LiDAR metrics open an array of possibilities for enhancing UAS-SfM
approaches to monitor crop performance such as cotton. Furthermore, by expanding the range of
the input feature set, advanced machine learning approaches can be applied to progress the
predictive performance for yield and growth estimation. Such exploration is currently being
investigated in extension to the results presented here.

5 Conclusions

UAS platforms offer flexible, high labor efficiency, cost-effective, and nondestructive
approaches to monitor crop growth and development with adequate resolution and revisit fre-
quency. In this study, the feasibility to monitor and model life-cycle cotton growth using UAS
imagery approach was examined. The imagery sensor used on the UAS was a commercial-grade
fisheye RGB camera. A total of 12 image datasets, covering germination to early maturation
phase, were used. By applying the SfM algorithm, individual images formed georeferenced
orthomosaic images with dense 3-D point clouds. The ph and cc information, derived from
the point clouds and orthomosaic images, follow the sigmoid growth curve as established by
the ground-based measurements. Statistical analysis confirmed the reliability of UAS-based
plant growth information by cross validating the ph and cc using an empirical model.
Potential was found to predict the cotton yield using ph and cc obtained on June 26, 2015,
the date when the sigmoid growth curve tended to decline in slope. However, the yield predicted
by using both ph and cc is prone to slight underestimation, when compared to the ground-
measured yields. Moreover, the observed yield and cc-based estimation produces the second
strongest correlation, regardless of the complexity of the models. On the contrary, the ph-only
models on the same day, were found least correlated to the observed yield. This preliminary
study seeks to help cotton producers acquire physiological rules for better management practices
that are implemented today, with the ultimate goal of promoting sustainable cotton production.

Future studies involve collecting more datasets in a multiple-year scale, improving the yield
estimation models by taking into account more parameters and the differences between varieties.
In addition, future studies will also investigate data fusion from additional sensors, such as
multispectral, hyperspectral, and thermal imaging sensors.
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