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ABSTRACT 

Warming trends in sea surface temperature during the latter portion of the 20th 

century have raised inquiries about associated trends in oceanic evaporation.  Theory 

dictates that evaporation increases according to the Clausius-Clapeyron relation.  In this 

study, a 15-yr (1993-2007) dataset based on satellite observations by the French Research 

Institute for Exploitation of the Sea (IFREMER) is used to estimate interannual 

variability and trends in latent heat flux (LHF) and associated bulk variables.  

Comparisons with three satellite datasets, two reanalyses, and a hybrid of the two present 

both similarities and differences.  Interannual variability of evaporation shows spatial 

structure that is mainly related to El Niño-Southern Oscillation (ENSO) and cold air 

outbreaks over boundary currents.  LHF variability is largely controlled by variability in 

air-sea humidity difference.  Globally-averaged trends in LHF are positive for all seven 

products, but satellite datasets show an increase in evaporation that is larger and more 

global in scope.  The observed trends in LHF, in which IFREMER is second largest, are 

mostly attributable to trends in air-sea humidity difference. 

Because none of the datasets can be regarded as a “truth,” this study helps give an 

uncertainty range in trend estimates.  Discrepancies among datasets arise because of 

source and derivation of the meteorological variables used in the evaporation algorithm.  

In particular, IFREMER uses the two-satellite product from Reynolds et al. (2007) for sea 

surface temperature, which creates a ~2 W/m2 bias high in LHF starting June 2002.  

Biases in the Special Sensor Microwave Imager (SSM/I) contribute a larger than 

expected jump in IFREMER’s merged wind speed, and thus LHF, around 2002.  In 

addition, IFREMER’s humidity algorithm produces a large negative trend in air specific 

humidity, which enhances the positive evaporation trend. 
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1. INTRODUCTION 

Surface evaporation plays a dual role in the global climate system because it 

participates in worldwide distribution of water and heat.  Since the oceans cover more 

than two-thirds of the Earth's surface, most of the surface evaporation (~86%) occurs 

over the oceans [e.g. Baumgartner and Reichel, 1975].  Evaporation is a difficult quantity 

to measure regardless of whether it is over land or water because researchers must sample 

turbulent fluctuations of relevant variables over a wide range of temporal and spatial 

scales.  In addition, the vastness of the ocean makes direct measurements of these 

variables difficult.  Only during the satellite era (late 1970s and beyond) have scientists 

been able to monitor global surface oceanic and meteorological variables with sufficient 

spatial coverage for climatic applications. Satellite remote sensing allows estimating 

oceanic evaporation from measurements of radiation and surface roughness through 

empirical algorithms refered to as “bulk formulas.”  

This study reviews the methodology for estimating oceanic evaporation from 

satellite observations and provides an overview of some previous studies that measure 

oceanic evaporation, its variability, and trends.  The main goal is to analyze evaporation 

estimates produced by the French Research Institute for Exploitation of the Sea 

(IFREMER) [Bentamy et al., 2003].  An in depth analysis of interannual variability and 

trends in the IFREMER evaporation and associated bulk variables is performed, and the 

results are compared to other flux products to try to understand the reasons for the 

differences. The results of this work should help determine an uncertainty range in 

satellite evaporation estimates. 
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This thesis is organized as follows: In section 2 a review of the bulk flux 

calculation and background references are provided. The datasets used in this study are 

described in section 3.  The comparison methodology including the calculation of 

interannual variability and trends is provided in section 4.  The results of the comparisons 

between the various flux products are presented in section 5.  Finally, a discussion of the 

implication of the results and a summary are given in section 6. 

2. BACKGROUND 

 Oceanic evaporation is a determining factor in the global distribution of heat and 

precipitation.  Its influence is felt as part of the larger hydrologic or water cycle.  The 

hydrologic cycle describes the continuous movement of vast quantities of water through 

the earth’s climate system under the direct or indirect influence of solar radiation. The 

cycle directly affects the climate and the sustainability of life.  It is through precipitation 

that the public perceives the importance of the water cycle. Yet precipitation is only one 

part of the cycle.  Evaporation is just as important because rain does not occur without 

evaporation.  Furthermore, oceanic evaporation serves as an important air-sea interaction 

that couples the atmosphere to the ocean.  The phase change from liquid to vapor 

prompted by evaporation occurs through a turbulent flux of moisture that transfers both 

mass and latent heat to the atmosphere.  Latent heat flux (LHF) is synonymous with 

evaporation, but specifically, it represents the measured amount of heat transferred to the 

atmosphere during evaporation. 
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 The air-sea flux of moisture plays a crucial role in a wide variety of atmospheric 

and oceanic processes including sea surface temperature (SST) variability [Zhang and 

McPhaden, 2000; Yu et al., 2006; Grodsky et al., 2009], water cycle variability 

[Schlosser and Houser, 2007; Wentz et al., 2007], El Niño variability [Liu, 1988; Lau and 

Nath, 1996; Klein et al., 1999; Mestas-Nuñez et al., 2006], and global energy [Kiehl and 

Trenberth, 1997; Trenberth et al., 2009].  The role of LHF is particularly important in the 

global, surface energy budget.  LHF balances incoming solar radiation when combined 

with longwave radiation (blackbody radiation) and sensible heat flux (flux due to vertical 

temperature gradient in the air).  Of these four main terms, LHF represents the second 

largest component of the surface heat budget after shortwave radiation [Kiehl and 

Trenberth, 1997].  Moreover, knowledge of latent heat flux combined with the other 

turbulent fluxes, sensible heat and momentum (or wind stress), can provide a forcing 

function for ocean models [Grima et al., 1999; Blanke et al., 2002; Ayina et al., 2006]. 

2.1. Bulk Flux Algorithms 

 The direct formulation of LHF is based on estimating the covariance of specific 

humidity and vertical velocity as follows 

 qwLLHF v ′′= ρ  (1) 

where ρ is the density of air, Lv is the latent heat of vaporization, q' and w' are the 

turbulent perturbations of specific humidity and vertical wind velocity, respectively.  The 

overbar denotes a time averaged quantity and the prime refers to fluctuations about the 

temporal mean of that quantity. 
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 Two common methods for direct measurement of LHF in the open ocean are eddy 

correlation and inertial dissipation.  Eddy correlation calculates LHF by estimating 

turbulent fluctuations of the vertical wind and mixing ratio [Fairall et al., 1996a].   

Inertial dissipation measures the power spectrum of turbulent eddies in the inertial 

subrange; fluxes are inferred from the energy dissipation in this frequency spectrum 

[Large and Pond, 1982].  The necessary instruments involved in these two methods are 

expensive and only deployed on research cruises.  Additionally, most ships or buoys don't 

measure vertical velocity, much less turbulent perturbations of vertical velocity.  Thus, 

empirical bulk algorithms represent the most efficient means of estimating evaporation 

over large portions of the ocean. 

 Bulk algorithms are empirically derived formulas that parameterize LHF using 

common meteorological variables.  These bulk algorithms make use of Monin-Obukhov 

Similarity Theory (MOST) [Monin and Obukhov, 1954].  MOST postulates that a layer 

exists near the surface where fluxes are constant; vertical gradients of wind and humidity 

are determined by height above the surface and by the components that drive turbulence, 

i.e shear and buoyancy.  From MOST, the turbulent flux of latent heat and associated 

scaling parameters are defined as 

 **quLLHF vρ−=  (2) 

 ( ) ( )[ ]
2/1

4/122
* 








=′′+′′=

ρ
τvwuwu  (3) 

 
*

* u
qwq
′′

−=  (4) 
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where u* and q* are scaling parameters for friction velocity (or wind) and humidity, 

respectively.  The flux is related to meteorological measurements through a turbulent 

exchange coefficient, 

 ( )as
E qqU

qu
C

−
−= **  (5) 

where qa is air specific humidity at a specific height above the surface (typically 10 m), 

and qs is the interfacial value of specific humidity, or simply the saturation specific 

humidity.  Saturation humidity is computed from the saturation mixing ratio of pure 

water at a given SST.  Many bulk algorithms consider the effects of salinity on saturation 

humidity by reducing the value by 2%.  CE is the bulk transfer coefficient for water 

vapor, which is also called the Dalton number.  Thus, the bulk parameterization of latent 

heat flux is given as 

 ( )asaEv qqUCLLHF −= ρ  (6) 

where Ua is scalar wind speed at a specified height above the surface (typically 10 m).  

The two aforementioned, direct measurement techniques serve as ground truth for 

validating bulk LHF. 

 According to equation (6) three key properties control the rate of evaporation: 

heat, humidity, and air movement.  The theoretical limit governing the rate of evaporation 

is given by the Clausius-Clapeyron relation, which defines an exponential relationship 

between saturation vapor-pressure and temperature.  In other words, water vapor content 

increases exponentially with increasing temperature until saturation humidity is reached.  

At saturation, the rate of evaporation equals the rate of condensation.  Winds aid the 
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evaporative process by removing water vapor above the surface.  The mixing ratio is 

lowered below the saturation point and further evaporation can occur.  This is a 

simplification of the evaporation process because turbulence plays a major role, but the 

simplification illustrates the importance of all properties in determining the rate of 

evaporation.  Ultimately, LHF can be estimated from measurements of SST, qa, and Ua. 

 Of course, ships and buoys can provide the state variables needed for calculating 

the bulk flux, but satellite estimates are periodic and truly global in scope.  Space-borne 

instruments can advance the global estimates of evaporation.  Many empirical models 

and satellite instruments are available for estimating these variables, and some of the 

more common approaches are briefly addressed. 

2.2. Satellite Estimates of Bulk Variables 

2.2.1. SST 

 The NOAA products are probably the most widely used for SST, and they include 

two high resolution SST datasets that use optimum interpolation to combine satellite 

measurements with in situ data [Reynolds et al., 2007].  These datasets have a spatial 

resolution of 0.25º and a temporal resolution of one day.  One utilizes the Advanced Very 

High Resolution Radiometer (AVHRR), while the other fuses the AVHRR with the 

Advanced Microwave Scanning Radiometer (AMSR).  The first AVHRR was launched 

in 1979, so it provides a record of global SST for the last 30+ years.  The AMSR is still a 

relatively new instrument (launched in June 2002), so its record length is limited.  Unlike 

the AVHRR, the AMSR has near all-weather coverage because it can “see” through 

clouds.  Reynolds et al. [2007] note a variance jump in the analysis with the addition of 
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the AMSR, which requires fusion of the two disparate instruments.  Both products 

provide useful SST estimates, but some institutions choose the AVHRR-only product 

over the AVHRR-AMSR product for consistency over the entire 30-yr record. 

2.2.2. Wind Speed, Ua 

 Satellite measured wind speed is often derived from scatterometers or the Special 

Sensor Microwave/Imager (SSM/I).  Scatterometers, such as SeaWINDS onboard the 

QuickSCAT satellite or scatterometers onboard the European Remote Sensing satellites 

(ERS-1 and ERS-2), offer many advantages over the SSM/I for measuring ocean winds.  

A scatterometer is an active microwave radar that sends high frequency radio waves 

toward the ocean surface and measures the received backscatter.  The magnitude of the 

backscatter is proportional to the surface roughness, which is a measure of wind stress.  

In addition, the power of the backscatter is a function of wind speed and direction; 

therefore, a scatterometer provides measurements of vector winds. 

 Conversely, the SSM/I, which is carried aboard satellites from the Defense 

Meteorological Satellite Program (DMSP), is a passive radiometer that measures 

microwave brightness temperatures (TB) at four separate frequencies: 19.35, 22.235, 37, 

and 85.5 GHz [Wentz, 1997].  The radiation observed by the SSM/I antennae is a mixture 

of radiation emitted by the sea surface and the atmosphere.  Sea surface characteristics 

affecting the emitted radiation include sea surface temperature and surface roughness, 

while atmospheric characteristics include atmospheric temperature and moisture content, 

i.e. water vapor and clouds [Wentz, 1997].  Empirical models relate the brightness 

temperatures at given frequencies to wind speed; still other frequencies are used to 
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correlate TB with water vapor or liquid water.  A drawback to the empirical models is 

they generally estimate surface wind speed better than vector winds [Wentz and Ashcroft, 

1996].  This drawback does not inhibit calculations of LHF since only wind magnitude is 

necessary, but wind vectors are required when forcing ocean models. 

2.2.3. Near-surface Specific Air Humidity, qa 

 The SSM/I is the most commonly used instrument for estimating near-surface 

humidity.  Of the three properties required to estimate evaporation, humidity is the most 

difficult to measure from space.  As a result, many empirical algorithms have been 

proposed and refined to measure near-surface humidity using SSM/I brightness 

temperatures [e.g., Liu, 1986; Schulz et al., 1993; Schlussel et al., 1995; Schulz et al., 

1997; Bentamy et al., 2003]. 

 The SSM/I estimates total column water vapor relatively well, but the main 

difficulty comes from estimating humidity at a given height, e.g. 10 m.  Initial research 

tried to relate total column water vapor with qa  [Liu, 1986] but the results showed 

systematic biases over large regions of the globe [Bentamy et al., 2003].  It has been 

shown that empirical models with the lowest bias are directly derived from SSM/I 

brightness temperatures [Schulz et al., 1997; Bentamy et al., 2003].  These models use 

multivariate linear regression to correlate certain frequency channels of the SSM/I with 

qa.  Even with improvements to qa over the years, though, humidity remains the largest 

source of error when estimating LHF [Bourras, 2006; Iwasaki, 2010]. 
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2.2.4. Moisture Transfer Coefficient, CE 

 In addition to the three key meteorological properties, equation (6) implies 

knowledge of the transfer coefficient, CE.  Much research has been devoted to developing 

an accurate bulk algorithm; so many different options are available [e.g., Liu, Katsaros, 

and Businger, 1979; Smith, 1988; Fairall et al., 2003; Chou et al., 2003].  Currently the 

COARE 3.0 flux algorithm [Fairall et al., 2003] is considered the “least problematic” 

[Brunke et al., 2003].  COARE 3.0 does not use prescribed transfer coefficients; instead, 

it uses an iterative approach to estimate the stability-dependent, MOST scaling 

parameters, and fluxes of heat and momentum. 

Included within the COARE 3.0 algorithm are sub-models that account for the 

cool-skin effect of SST at the interface and the influence of wave effects at moderate 

wind speeds.  A cool-skin layer forms in the upper few millimeters of the ocean because 

of heat lost due to turbulent fluxes and radiation; this layer is 0.1 to 0.5 C cooler than the 

water immediately below it [Fairall et al., 1996b].  In theory, it is appropriate to use the 

cool-skin temperature when calculating LHF.  In reality, most SST measurements are 

bulk temperatures, meaning they are taken slightly below the molecular surface layer.  

The cool-skin model accounts for the slight discrepancy between bulk temperature and 

skin temperature.  At moderate to high wind speeds, the assumption of an 

aerodynamically smooth surface is no longer valid.  The surface roughness alters the 

effects of turbulence, which in turn, alters the rate of evaporation.  Yet, a bulk algorithm 

does not measure turbulence directly, so sub-models are provided to account for the 
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effects of waves.  The COARE 3.0 algorithm is currently the most complex and state of 

the art turbulent flux algorithm publicly available. 

 COARE 3.0 shows the lowest bias when compared with eddy correlation flux 

measurements, and it is effective over a wide wind domain.  Other algorithms are 

effective at low or even moderate wind speed regimes, but they are inaccurate in high 

winds.  Most importantly, the COARE 3.0 algorithm is suitable for use with daily-

averaged variables measured by satellites. 

2.3. Previous Satellite Comparison Studies 

 The SEAFLUX project was created to coordinate research efforts on bulk 

turbulent fluxes and thus contribute to the improvement of all bulk formulas [Curry et al., 

2004].  The main goal of the project is to reduce uncertainty in all areas related to bulk 

flux estimates and increase the reliability of satellite-based fluxes.  In addition, 

SEAFLUX provides access to most satellite-based flux products which is useful for inter 

comparisons. 

Previous studies have compared satellite LHF products with each other and with 

reanalyses and in situ data [e.g., Kubota et al., 2003; Chou et al., 2004; Bourras, 2006].  

The most common reanalyses included in comparison studies originate at the major 

modeling centers such as the National Centers for Environmental Prediction (NCEP) and 

the European Centre for Medium-Range Weather Forecasts (ECMWF).  The reanalysis 

products incorporate a frozen, numerical weather prediction (NWP) model and a data 

assimilation system.  Reanalyses accomplish this assimilation by constraining a forecast 

model, which is consistent over the entire analysis period, with observations from the 
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global meteorological network and some satellites.  Reanalyses may represent a baseline 

for satellite comparisons. 

 A more straightforward baseline stems from oceanic in situ data obtained from 

buoys and ships of opportunity.  For example, the International Comprehensive Ocean-

Atmosphere Data Set (ICOADS) [Worley et al., 2005] is an archive of maritime 

measurements that extends back over 300 years, and it represents a standard of 

comparison for all calculated turbulent flux datasets.  It is important to note that satellite 

products involved in past inter-comparisons studies were early iterations; improvements 

have been made to the products since their publication.  Nonetheless, investigating older 

datasets provides insight into the current state of satellite-derived latent heat fluxes.  

 Kubota et al. [2003] and Chou et al. [2004] performed comparison studies of LHF 

using a combination of satellite, in situ, and reanalysis products over a 2-yr and 1-yr 

period, respectively.  Kubota et al. [2003] looked at six separate datasets: the Japanese 

Ocean Flux Data Sets with use of Remote Sensing Observations (J-OFURO) [Kubota et 

al., 2002], the Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite Data 

(HOAPS) [Grassl et al., 2000], the Goddard Satellite-Based Surface Turbulent Fluxes 

(GSSTF) [Chou et al., 1997], the ECMWF reanalysis, the NCEP-National Center for 

Atmospheric Research (NCAR) reanalysis (NCEP-R1) [Kalnay et al., 1996], and da Silva 

et al. [1994], which derives from an earlier version of ICOADS. 

 Chou et al. [2004] used some overlapping datasets including the HOAPS, NCEP-

R1, and da Silva products, but they used version 2 of the GSSTF (GSSTF2) [Chou et al., 

2003].  The short time frames limited their investigation to mean-annual LHF, and the 
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influence of wind speed and humidity on LHF.  They found that fluxes based solely on in 

situ data may be limited to the Northern Hemisphere due to the lack of observations in 

the Southern Hemisphere.  In addition, the LHF accuracy of global reanalyses depends on 

the density of assimilated data.  Most satellite products tend to overestimate LHF in the 

tropics and the Southern Hemisphere when compared to reanalyses.  A possible cause is 

smaller estimates of near-surface humidity by the satellites.  Furthermore, reanalysis 

estimates of evaporation in the Southern Hemisphere are often interpolations of available 

data, so smaller values are not surprising.  HOAPS is the only satellite product that gives 

lower LHF values than reanalyses in the tropics, which likely results from their wind 

speed estimates. 

 Bourras [2006] also performed comparisons of LHF using data from five 

different satellite-based datasets: version 2 of HOAPS (HOAPS2) [Fenning et al., 2006], 

J-OFURO, GSSTF2, the Jones et al. [1999] dataset, and the Bourras-Eymard-Liu (BEL) 

dataset [Bourras et al., 2002].  He compared these fields with buoy data from the tropics 

and mid-latitudes. His results show that all satellite products exhibit different magnitudes 

of rms error and/or bias for different parts of the ocean.  In other words, moderate to 

strong variations in LHF existed when a single satellite product was compared to in situ 

data.  All products except the Jones dataset had moderate root mean square (rms) errors 

and biases in the mid-latitudes.  The Jones dataset experienced the largest systematic 

differences in the tropical Pacific.  Overall, he suggests that HOAPS2 is the most 

adequate satellite product for investigating fluxes over the global oceans. 
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 Bourras [2006] suggests that satellite products are already competitive with in 

situ flux climatologies or reanalyses, despite their errors and obvious differences.  His 

sentiments are likely prompted by the battle between sampling error versus measurement 

error.  Even though the ICOADS dataset is accepted climatology, it may be no better than 

satellite-derived fluxes because of the lack of observations in the Southern Hemisphere. 

2.4. Previous Studies on LHF Variability and Trends 

 The above studies of satellite latent heat flux were based on datasets that spanned 

only a few years, so their goals were limited to investigating annual means and associated 

spatial patterns.  Recent satellite-based datasets of evaporation now extend back to the 

late 1980's or early 1990's since this time frame coincides with the availability of SSM/I 

and/or scatterometers.  Hence, 20 to 30 years of satellite fluxes are now available for 

studying interannual variability and possibly trends.  This record length is too short to 

rule out a confounding influence from decadal and multi-decadal oscillations; yet, a trend 

analysis can help in analyzing tendencies in the recent climate and in evaluating the 

quality of satellite fluxes.  Recent warming trends in SST [Casey and Cornillon, 2001; 

Deser et al., 2010] suggest increased oceanic evaporation, and satellite estimates of LHF 

should contribute to this discussion.  These issues have been discussed in past studies and 

three of the more relevant studies are briefly discussed here. 

 Schlosser and Houser [2007] assessed the global water cycle, both land and 

ocean, by using several datasets of evaporation and precipitation.  Oceanic evaporation 

data came from HOAPS and GSSTF2, while land-based evaporation came from the 

Center for Ocean-Land-Atmosphere Studies (COLA) Global Offline Land surface 
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Dataset (GOLD).  They supplemented the water cycle analysis by using precipitation data 

from version 2 of the Global Precipitation Climatology Project (GPCP) and the Climate 

Prediction Center (CPC) Merged Analysis of Precipitation (CMAP).  All of these 

products are derived from satellites except the GOLD product, which is derived from a 

land surface scheme and an atmospheric model.  Their results show that interannual 

variations in total global evaporation loosely correlate with interannual variations in total 

global precipitation.  However, the estimates of evaporation and precipitation provide a 

better balance when looking at annual means.  One of their most notable findings is a 

trend in global evaporation which they attributed to the trend in oceanic evaporation as 

calculated by the HOAPS and GSSTF2 products.  A complementary trend in 

precipitation is not seen.  The most apparent cause for the LHF trend is transitions 

between SSM/I instruments, which causes jumps in qa and U, and thus, in LHF as well.  

In the end, they conclude that satellite measurements cannot yet satisfactorily describe 

water cycle variability.  

 Yu and Weller [2007] examined trends and interannual variations of surface 

turbulent heat flux, i.e., latent and sensible heat flux, using the Woods Hole 

Oceanographic Institution's (WHOI) objectively analyzed air-sea fluxes (OAFlux) [Yu et 

al., 2008].  They show that the equatorial Pacific and Indian oceans, as well as the 

Western Boundary currents, exhibit the largest interannual variability.  In all areas except 

the Indian Ocean, LHF variability is highly correlated with SST variability.  Global 

trends over the ice-free oceans from 1981 to 2005 are identified in LHF and SST.  Trends 

in SST are marked by large interannual variations associated with ENSO.  The LHF trend 
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does not exhibit these variations, yet the results suggest that the LHF trend is a response 

to the SST trend.  The variable that links the two trends is the humidity difference, qs - qa 

or Δq.  A trend is also seen in wind speed, but its role is to boost the effect of Δq. 

 Liu and Curry [2006] also examined trends and interannual variability of LHF 

using four datasets: GSSTF2, HOAPS2, the 40 year reanalysis produced by the ECMWF 

(ERA-40) [Uppala et al., 2005], and the NCEP-Department of Energy (DOE) reanalysis 

(NCEP-R2) [Kanamitsu et al., 2002].  They confirm a trend in evaporation as well from 

1989 to 2000, but their analysis is restricted to the tropical and sub-tropical oceans (35ºS–

35ºN).  The magnitude of the positive trend was significant at the 95% confidence level 

in all but one of the datasets (ERA-40), but it varies considerably between datasets. 

Unlike the other studies, Liu and Curry performed statistical significance tests on all 

calculated trends.  They attribute the positive trend in LHF to a significant positive trend 

in wind speed.  They also determined that the positive trend in evaporation is independent 

of ENSO. 

3. DATASETS 

 Seven monthly latent heat flux products from satellites, reanalyses, or a 

combination of the two are compared in this study.  Table 1 lists the properties and 

references of the seven datasets and suggests that differences in the determination of LHF 

may arise from the different sources of the three main input state variables as well as the 

type of bulk flux algorithm used.  The products are divided into two broad categories 

based on their input source: satellite and renalysis/hybrid. 
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 The four satellite products used for this investigation are version 2b of the GSSTF 

(GSSTF2b) [Shie et al., 2009], version 3 of HOAPS (HOAPS3) [Andersson et al., 2010], 

the IFREMER fluxes, and version 2 of J-OFURO (J-OFURO2) [Tomita et al., 2010].  

Most of these datasets rely solely on input data from satellite measurements; however, the 

GSSTF2b utilizes SST from the NCEP-R2.  Smith et al. [2010] classifies the GSSTF2b as 

a hybrid product, but since it is largely based on satellite data, it is classified as a satellite 

product here. 

 The three reanalysis/hybrid products used for this investigation are the interim 

reanalysis project from ECMWF (ERA-Interim) [Dee et al., 2011], NCEP-R2, and 

OAFlux.  The NCEP products (both R1 and R2) are common reanalyses used for 

comparison studies.  Only NCEP-R2 is included here because it is considered an updated 

version of the original NCEP reanalysis.  The ERA-Interim is also an updated reanalysis 

because it extends and improves upon the ERA-40.  OAFlux is unique because it 

combines meteorological variables from satellites with those from reanalyses; here it is 

grouped with the other reanalyses because it incorporates large amounts of info from 

NCEP-R1, NCEP-R2, and the ERA-40. 

 Each of the monthly products analyzed in this study are available over vastly 

different time periods.  In addition, many of the products use different horizontal grid 

resolutions.  To facilitate comparisons, each product was temporally trimmed to a 

common time period, January 1993 – December 2007, and bilinearly interpolated to a 1° 

× 1° grid resolution if the native resolution was not already partitioned in this manner.  

HOAPS3 and J-OFURO2 do not extend all the way to 2007, so their temporal extents 
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terminate in 2005 and 2006, respectively.  Variables from NCEP-R2 were downloaded at 

a 6-h timestep; therefore, the 6-h data were monthly-averaged for consistency with the 

other products.  Also, the native resolution of the ERA-Interim is a TL255 Gaussian grid 

(nominally 0.75°).  Yet, the ECMWF public server only provides data at a 1.5° 

resolution, so this reduced resolution was used here.  A common 1° × 1° land mask was 

applied to all datasets.  The land mask was created by combining land masks from each 

product, and then taking the largest coincident mask that applied to all grids.  Relevant 

aspects of each product will be discussed in more detail in the subsections that follow. 

 

Table 1.  Description and references for the seven flux products used in this study. All the 
datasets were monthly except NCEP-R2, which was 6-hourly. 
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Table 1.  (continued). 

 

3.1. Satellite Products 

 The GSSTF2b is an extended and slightly improved version of the GSSTF2, 

which was only produced for a 13-yr period (July 1987 – December 2000).  

Improvements include use of the SSM/I V-6 product from Remote Sensing Systems 

(RSS) for determining TB, precipitable water, and wind speed. Also, SST comes from 

NCEP-R2 instead of NCEP-R1.  GSSTF2b still employs an EOF method for calculating 

qa using SSM/I measurements of total precipitable water (W) and bottom-layer 

precipitable water (WB) [Chou et al., 1995, 1997].  The bulk algorithm used in the 

GSSTF2b remains the same as well; it is based on the algorithm from Chou et al. [1993].  

Two separate sets of the GSSTF2b are available: Set1 and Set2.  Set1 contains a larger, 

global temporal trend in latent heat flux, so Set2 was created using less data from 

satellites that appeared to have a large trend [Shie, 2010].  The trade off is less/more 
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missing data from Set1/Set2.  Yet, the selection process for Set2 was subjective, so Set1 

was used here because it included all available data. 

 The HOAPS3 is a satellite dataset comprised of all available SSM/I data from the 

various DMSP missions (i.e. F08, F10, F11, F13, F14, and F15).  HOAPS3 tries to 

preserve long term homogeneity in all its variable estimates by only using the SSM/I 

except for SST, where it uses the AVHRR.  In addition, it does not use NWP data, so it 

stands as an independent, satellite dataset of LHF.  Wind speed is directly derived from 

brightness temperatures using a neural network adapted from Krasnopolsky et al. [1995].  

Specific humidity is calculated using the regression coefficients from Bentamy et al. 

[2003], which are correlated with the 19, 22, and 37 GHz channels of the SSM/I.  SST is 

taken from the NOAA National Oceanographic Data Center (NODC) and Miami 

Rosenstiel School of Marine and Atmospheric Science (RSMAS) Oceans Pathfinder 

Version 5.0 [Casey, 2004].  Saturation specific humidity is calculated from SST using the 

Magnus formula [Murray, 1967] with a correction factor of 0.98 to account for salinity 

effects.  HOAPS3 (and remaining satellite datasets) implements the COARE 3.0 bulk 

flux algorithm to calculate latent heat, but it does not implement the sub-models. 

 IFREMER is a multi-satellite, multi-instrument dataset that relies on 

measurements from scatterometers and microwave radiometers.  Wind speeds are 

primarily derived from scatterometers aboard the ERS-1, ERS-2, and the QuickSCAT; 

however, SSM/I wind speeds enhance the wind product when scatterometer retrievals are 

unavailable.  The wind algorithm comes from Bentamy et al. [1999].  IFREMER utilizes 

the dual instrument version of Reynolds SST analysis [Reynolds et al., 2007], which 
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merges the AMSR with the AVHRR beginning June 2002.  The same empirical qa 

algorithm and COARE 3.0 algorithm used HOAPS3 are implemented in IFREMER. 

 J-OFURO2 also uses a variety of instruments from different satellites.  Wind 

speed is constructed from measurements taken by all SSM/I's, the AMSR-E, the Tropical 

Rainfall Measuring Misson (TRMM) Microwave Imager (TMI), the active microwave 

instrument (AMI), and the same scatterometers in IFREMER.  Humidity is based on the 

Schlussel et al. [1995] formula, which is similar to the Bentamy et al. [2003] formula but 

with different coefficients.  The F15 satellite is excluded from the humidity analysis.  J-

OFURO2 uses the Merged Satellite and In situ Data Global Daily SST (MGDSST) from 

the Japan Meteorological Agency (JMA) to formulate its estimates of saturation 

humidity.  The MGDSST merges in situ data with AMSR-E and AVHRR observations.  

While J-OFURO2 implements the COARE3.0 algorithm, it is unclear whether it 

implements the cool-skin or wave sub-models. 

3.2. Reanalysis/Hybrid Products 

 ERA-Interim is the latest generation of reanalysis from the ECMWF.  It is an 

updated version of the ERA-40 that addresses certain data assimilation problems and 

issues related to data selection, quality control, and bias correction.  It uses a 12-hourly 

4DVar assimilation scheme where an upper-air variational analysis is followed by a, 

separate near-surface analysis.  Dee et al. [2011] points out that the 4DVar scheme shows 

improvements over the 3DVar scheme implemented in the ERA-40.  ERA-Interim 

incorporates the same data as the ERA-40 with additional information from updated 
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satellite instruments.  The bulk algorithm used in the ERA-Interim comes from Beljaars 

[1995], who based stability functions on Holtslag and de Bruin [1988] and Dyer [1974]. 

 The NCEP-R2 is a separate reanalysis that tries to fix certain problems that arose 

after constructing the previous NCEP reanalysis.  It assimilates similar observational data 

as the ECMWF reanalysis while using a slightly older 3DVar technique and 1990's era 

NWP model. 

 WHOI's OAFlux is different from all previously mentioned LHF products 

because it is a fusion of multiple datasets including reanalyses and satellite observations.  

WHOI uses both NCEP reanalyses and the ERA-40 as input to the objective analysis. 

Satellite-based winds come from the SSM/I (Wentz algorithm), ASMR-E, and 

QuickSCAT.  For satellite SST, OAFlux utilizes the Reynolds SST analysis that is 

created only from the AVHRR.  Satellite humidity is based on the SSM/I using Chou et 

al. [1995,1997].  Using a variational objective analysis, OAFlux synthesizes NWP and 

satellite data.  It performs this synthesis for each of the relevant bulk variables using an 

ordinary least squares estimator, which is based on the Gauss-Markov theorem.  

Furthermore, error covariances that are based on in situ data determine the weights or 

contributions of each inputted product to the final estimates of each bulk variable.  For 

humidity, ERA-40 had some of the largest weights, while satellites had larger 

contributions to SST and wind [Santorelli et al., 2011].  After the objective analysis, the 

best estimates of the bulk variables are inputted to the COARE 3.0 algorithm with 

inclusion of a wave sub-model. 
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4. METHODS 

 Interannual variability and trends for the seven different products are examined 

using monthly estimates of LHF, SST, Ua, and qa over a large portion of the global, ice-

free oceans (45°S – 45°N).  As mentioned, SST is used to calculate the saturation specific 

humidity, qs.  SST differences between satellite and reanalysis products are typically 

smaller than differences in the other two state variables [Liu and Curry, 2006; Smith et al. 

2011].  The similarity in SST exists because most flux products incorporate the Reynold's 

SST analysis into their own studies.  Therefore, only the humidity difference, Δq, is used 

for this investigation because differences in Δq largely result from differences in qa. 

4.1. Interannual Variability 

 Interannual variability is quantified using the standard deviation of climatological 

means 
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where σ is the standard deviation, xn is the yearly-averaged mean of a given quantity, x  

4.2. Trend Calculation 

is the long-term annual mean of a given quantity, and N = 15 yr except for HOAPS3 and 

J-OFURO2, where N = 13 yr and N = 14 yr, respectively.  The calculated standard 

deviation gives the variation seen in the data on year-to-year or longer time scales. 

 Since LHF and the associated meteorological variables are environmental time 

series, it is reasonable to assume that the data are autocorrelated and highly variable.  
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Both of these attributes make trend detection difficult.  Data with positive autocorrelation 

increase the length of trend-like segments, while data with a high variance tend to 

obscure deterministic signals.  To account for these factors the following model 

according to Tiao et al. [1990] will be used here 

 tttt NSXY +++= ωµ  (8) 

where t = 1,…,T, Yt is the estimated LHF or one of the state variables, μ is an offset, ω is 

the magnitude of the linear trend, Xt is the time function represented as a monthly 

variable, St is a seasonal component defined as 
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where the sines and cosines for a given period j represent a different harmonic associated 

with the seasonal cycle, and up to m harmonics are used to fully explain the seasonal 

cycle.  Most environmental time series require four harmonics at most, but the total varies 

depending on the dataset being investigated.  Nt is the unexplained portion of the data, or 

error term, and it follows an autoregressive (AR) model with order AR(p), 

 tptptt aNNN +Φ++Φ= −− 11  (10) 

where p is the number of correlation parameters, Φ, in the model.  Autoregressive models 

express the current observation as a linear function of previous observations plus a 

homoscedastic noise term, at, which is also referred to as independent white noise.  The 

linear model in (8) is calculated through a generalized least squares fit of the data with a 

covariance structure of the errors to account for autocorrelation.  From the resultant 
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model, the trend, ω, is determined and significant trends are those exceeding the 95% 

confidence level. 

 Determination of m and p is completed through a two-step process.  The two-step 

process is applied to a globally-averaged (45°S – 45°N) time series of LHF or a bulk 

variable for each product.  First, equation (8) is fitted to the data using the first four 

harmonics (m = 4) calculated by (9), but with no autoregressive model for the errors.  The 

partial-autocorrelation of the residuals is plotted, and the maximum, significant lag is 

chosen as the value of p.  Second, equation (8) is re-fitted to the data using (10) and the 

chosen p as the model for the errors.  A similar model with one less harmonic is also 

fitted to the data.  Then, an ANOVA is applied to the two models to determine the 

significance of the added harmonic.  An insignificant model does not require the added 

harmonic.  Successive ANOVAs are conducted until loss of the higher harmonics 

becomes significant. 

 Table 2 shows the chosen m and p for each quantity and product.  According to 

Table 2, virtually all products require an AR(3) model to account for the autocorrelation 

seen in LHF.  Thus, LHF typically contains correlation up to three lags.  In addition, 

Table 2 shows that all variables require at least two harmonics to model the seasonal 

cycle, which means the annual and semi-annual harmonics explain most of the 

seasonality seen in the various time series. 

 This two-step process is straightforward when applied to the globally-averaged 

quantities; however, it becomes time consuming and requires extensive computer 

resources when applied to the entire gridded products.  Hence, it is assumed that the 
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globally-derived parameters apply everywhere.  Trend maps for each product are 

calculated using the properties listed in Table 2 but with a specified reduction in the 

order, p.  All models that have an order greater than one are reduced to an AR(1) model.  

The reduction in order saves on computer time without significantly affecting the results. 

 

Table 2.  The number of harmonics, m, and the order, p, of the auto-regressive model of 
the errors that fit the data of the seven products for LHF, wind speed (Ua), and humidity 
difference (Δq). 

 

5. RESULTS 

 To fully understand patterns of interannual variability and trends in evaporation, 

this study examines spatial and temporal differences.  The following will first look at the 

spatial distribution of interannual variability seen in the seven different products.  

Differences in variability among the products are summarized using global means.  Then, 

temporal variability is examined using global time series.  From these time series, trends 

are derived and discussed.  Finally, the spatial distributions of the trends are explored to 

understand their origins. 
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5.1. Spatial Patterns of Interannual Variability 

5.1.1. LHF 

 The standard deviation maps of annually averaged LHF describing the spatial 

structure of interannual variability in the seven datasets are presented in Figure 1.   A 

similar large-scale, spatial pattern is seen in all the maps but the magnitudes differ 

considerably.  As in Yu and Weller [2007], the areas of larger interannual variability 

occur in the eastern equatorial Pacific and the western boundary currents along the east 

coasts of North America and Japan.  All products except the GSSTF2b experience the 

greatest amount variation (~ 25 W/m2) in the western boundary current regions.  In the 

equatorial Pacific, GSSTF2b and HOAPS3 show the largest flux variability (~20 W/m2).  

All datasets show relatively higher values of LHF variability off the north-east coast of 

Australia with IFREMER, GSSTF2b, and particularly NCEP-R2 exhibiting the stronger 

values (~15-20 W/m2).  IFREMER, GSSTF2b, and NCEP-R2 also show elevated (~12-

16 W/m2) LHF variability in the sub-tropical Indian ocean. 

 The spatial pattern of LHF for NCEP-R2 is the most different from all the 

products showing broader areas of high variability.  Specifically, the NCEP-R2 

variability in the Pacific extends beyond the equatorial region into the Northern and 

Southern sub-tropical regions.  In addition, the NCEP-R2 experiences a second maximum 

off the west coast of South America in addition to the maximums seen in the boundary 

currents.  Overall, the satellite products tend to show more variability over all the oceans 

when compared to the reanalysis/hybrid products. 
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Figure 1.  Standard deviation of the yearly-averaged LHF (in W/m2) for (a) IFREMER, 
(b) GSSTF2b, (c) J-OFURO2, (d) HOAPS3, (e) OAFlux, (f) NCEP-R2, and (g) ERA-
Interim.  Standard deviation is calculated for the common period January 1993 through 
December 2007, except for (c) and (d) whose period ends on December 2006 and 
December 2005, respectively.  White areas over ocean regions represent 1° grid cells that 
are either defined as land or contain missing data. 
 

5.1.2. Wind speed 

 The interannual variability of wind speed (Ua) seen Figure 2 reveals some clues 

about the interannual variability of LHF.  Most notably, a regional, Ua maximum occurs 

in the Eastern equatorial Pacific in all products, but this maximum is subdued in the 
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ERA-Interim.  Thus, the equatorial maximums seen in LHF (Figure 1) coincide with the 

equatorial maximums seen in wind speed. 

 A second region of increased Ua variation occurs in the central-western, 

equatorial Pacific in all products.  This second region is distinctly different from the 

region in the eastern Pacific.  The magnitude of variation in the second region is weakest 

in IFREMER and strongest in NCEP-R2.  The bi-modal pattern seen in the variability of 

Ua is likely due to the El Niño-Southern Oscillation (ENSO).  In the eastern Pacific, the 

pattern resembles a canonical ENSO pattern, while the pattern seen in the central Pacific 

resembles a less traditional and less common Modoki ENSO [Ashok et al., 2007].  Even 

though the goal of this study is not to investigate ENSO, the fact that all products reveal 

this pattern is interesting nonetheless. 

 As noted earlier, the NCEP-R2 exhibits a unique pattern in interannual variability 

of Ua when compared to the other products.  It shows increased Ua variability in most 

oceans.  Variations are quite strong in the high latitudes of the Pacific, the equatorial 

Indian Ocean, and off the west coast of South America.  It is unclear why NCEP-R2 

exhibits such a distinctly different pattern. 

 The magnitude of variability in Ua is quite weak in the boundary current regions 

for all products.  Therefore, wind speed does not account for the LHF variability over the 

boundary currents.  Overall, both satellite and reanalysis/hybrid products show similar 

magnitudes of interannual variability in wind speed. 
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Figure 2.  As in Figure 1, except for wind speed, Ua. 

 

5.1.3. Humidity difference 

 Figure 3 shows the interannual variability of the air-sea humidity difference (Δq) 

for all seven products.  The overall spatial pattern is similar amongst all of the products.  

In fact, the observed pattern in Δq largely correlates with the pattern seen in LHF.  

Variability in Δq exhibits some of the largest magnitudes in the equatorial Pacific and 

cold tongue regions, as well as along the western boundary currents.  IFREMER has the 

lowest magnitudes of Δq variability in the equatorial Pacific compared to ERA-Interim, 

which has the highest magnitudes. 
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 Variability along the equator resembles interannual variability of SST (not 

shown), typically associated with ENSO.  In turn, saturation specific humidity dominates 

the pattern of variability seen in Δq.  The largest magnitudes of Δq in the 

reanalysis/hybrid products are shifted to the central-western Pacific, unlike in the satellite 

products.  A possible explanation for the shifted pattern lies in the derivation of Δq.  

Spatial variability in SST is very similar for most of the products, more so than any other 

variable.  The differences seen in the spatial variability of Δq likely result from 

differences in spatial variability of near-surface humidity, qa. 

 Compared to the other products, ERA-Interim also exhibits an unusual pattern in 

Δq along the equator.  The pattern resembles the Tropical Atmosphere-Ocean (TAO) 

array of moored buoys.  It is plausible that ERA-Interim relies heavily on the TAO array 

during the assimilation process in this region, which leads to the observed structure seen 

in Δq.  Overall, interannual variability of Δq, as opposed to Ua, appears to have a larger 

controlling influence over the interannual variability of LHF. 
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Figure 3.  As in Figure 1, except for humidity difference, Δq. 

 

5.1.4. Summary statistics for interannual variability 

 Table 3 summarizes the interannual variability exposed in Figures 1-3, plus it 

gives the annual means.  From Table 3, it is apparent that NCEP-R2 has the largest 

annual-mean latent heat flux (134.0 W/m2) and the largest standard deviation of flux 

(9.56 W/m2).  GSSTF2b presents a similar magnitude of variability, whereas the other 

two products in the reanalysis/hybrid category have a much smaller standard deviation 

(~6.5 W/m2).  IFREMER, HOAPS3 and J-OFURO2 have standard deviations in between 

these extremes.  As a whole, satellite products suggest interannual variability of LHF is 
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higher than do reanalysis/hybrid products.  Annual means of LHF vary too much to 

classify the two sets of products. 

 When looking at wind speed in Table 3, all satellite products plus the ERA-

Interim and OAFlux have similar annual means (~7 m/s).  These same products also 

show similar magnitudes for the standard deviation of Ua (~0.28 m/s).  Only the NCEP-

R2 presents a dramatic difference in wind speed; it has the lowest annual mean (5.0 m/s) 

and the highest standard deviation (0.48 m/s).  Thus, all products present a similar global 

picture for wind speed except the NCEP-R2.  This fact was also pointed out in the 

standard deviation map of Ua (Figure 2). 

 For the humidity difference in Table 3, annual means range from 3.93 g/kg for 

NCEP-R2 to 4.73 g/kg for ERA-Interim.  The mean values are generally closer to each 

other amongst the satellite-based datasets.  Standard deviations range from 0.209 g/kg for 

NCEP-R2 to 0.292 g/kg for GSSTF2b.  The standard deviations for Δq and LHF do not 

display the same correspondence apparent in the spatial patterns.  Yet, the standard 

deviations of Δq separate the two sets of products distinctly.  Magnitudes of Δq are 

moderate to high for the satellites and mostly low for the reanalysis/hybrid products. 
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Table 3.  Global, annual mean and interannual standard deviation of LHF, Ua, and Δq for 
the period January 1993 through December 2007, except for HOAPS3 and J-OFURO2 
whose periods end on December 2005 and December 2006, respectively. 

 

 

5.2. Temporal Variability of Globally Averaged Ocean Fluxes 

 Temporal variability of LHF and its associated state variables are analyzed using 

time series of the globally-averaged (45°S – 45°N) data.  Figures 4-6 present the resultant 

time series.  To generate each time series, the respective seasonal cycle is first removed, 

and then the variables are low-pass filtered using a 5-month, centered moving average.  

Filtering reduces much of the noise created by intraseasonal variability, and makes the 

plots more readable.  To supplement the time series plots, Table 4 presents values of the 

global trend, where significant trends are in bold face. 

5.2.1. LHF 

 Figure 4, which shows the anomaly time series of LHF, separates the products 

into satellites (top) and reanalysis/hybrid (bottom).  All products show similar temporal 

variations for the first half of the time period.  For the second half, all products evolve 

somewhat similarly, but the magnitudes are greater in the satellites than in the reanalyses 
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or OAFlux.  The 1997-1998 ENSO, which is one of the strongest on record, is evident in 

all products. 

 Clearly, the most glaring characteristic-difference between the top and bottom 

panels of Figure 4 is the trend in LHF.  From 1993 to 2007, NCEP-R2, WHOI, and ERA-

Interim exhibit a smaller trend in LHF relative to the satellite products; NCEP-R2 shows 

the highest significant trend (0.49 W/m2/decade) in comparison to the other two 

reanalysis/hybrid products (Table 4).  Conversely, all of the satellite products exhibit a 

more pronounced trend in LHF with IFREMER and GSSTF2b being the largest. 

 The IFREMER trend is dominated by a specific segment of the data, i.e., the rapid 

increase in LHF centered around 2002.  The GSSTF2b trend is also driven by a rapid 

increase in LHF near 2000; however, the lower anomaly at the beginning of the time 

period contributes to the overall larger trend.  LHF trends for all satellites products are 

significantly positive with a range of 0.77 to 1.23 W/m2/decade (Table 4).  Looking at the 

time series of the state variables should reveal more information into the causes of these 

trends in latent heat. 
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Figure 4.  Anomaly time series of monthly LHF (in W/m2) over the ice-free ocean 
regions (45°S - 45°N).  Each time series has been filtered using a 5-month, centered 
moving average. 

 

5.2.2. Meteorological quantities: satellites 

 Figure 5 shows the anomaly time series of Ua, qa, SST, and Δq for the four 

satellite products.  The temporal extents match those in Figure 4.  The time series of wind 

speed (Figure 5, top left) highlights an extensive amount of interannual variability.  All of 

the datasets seem to track each other fairly closely except in the middle portion of time 

period.  During this portion, significant differences between the datasets are apparent.  

From 1998 to 2002, Ua is biased high in HOAPS3 and low in IFREMER.  Right around 
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2002, all datasets experience a large jump in Ua with IFREMER yielding the largest jump 

(~0.2 m/s greater than the other datasets).  IFREMER's low bias prior to 2002 contributed 

to the exaggerated jump in wind speed. Furthermore, the exaggerated jump in wind speed 

likely contributed to the jump observed in the LHF.  This issue is addressed in more 

detail in the discussion. 

 The time series of SST (Figure 5, bottom left) shows better correlation among 

datasets than Ua, and the 1997-1998 ENSO is evident within the observations.  The better 

agreement occurs because the source of SST within each product takes advantage of 

similar satellite data, i.e., the AVHRR.  IFREMER is biased slightly lower during the 

ENSO event, while HOAPS3 is biased higher during 2001-2002.  Furthermore, 

IFREMER is biased slightly higher from approximately mid-2002 onward.  While the 

reasons for some of these biases are not readily apparent, the bias in IFREMER after mid-

2002 could be due to the use of AMSR in the SST dataset.  This is another issue that is 

addressed the discussion. 

 Some of the biggest differences between the satellite products are seen in the time 

series of qa (Figure 5, top right).  The evolution of each time series is mostly similar, but 

the biases between datasets vary considerably.  GSSTF2b is biased high relative to the 

other datasets for the first half, and it is biased low relative to the other datasets for the 

second half.  HOAPS3 experiences an opposite effect in bias compared to GSSTF2b.  

IFREMER and J-OFURO2 track more closely to each other, and they mostly lie between 

the other two datasets. 
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 The bottom-right panel in Figure 5 shows the time series of the humidity 

difference for the four satellite products.  Based on the shape of these time series, one can 

conclude that the trends in LHF (Figure 4) are largely the result of trends in Δq.  Similar 

to qa, the biases of Δq vary considerably between products; this is to be expected since qa 

is part of the equation for Δq.  Figure 5 (bottom right) shows that GSSTF2b and 

IFREMER appear to have the largest trends in Δq, while HOAPS3 appears to have the 

smallest. 

 The values of the satellite bulk inputs given in Table 4 corroborate the qualitative 

trend differences seen in Figure 5.  Ua and Δq contain significantly positive trends for all 

satellite-based datasets.  Trends in Ua are virtually identical across all four products 

(~0.015 m/s/decade); accordingly, any differences in the LHF trend as a result of wind 

speed likely result from the discussed biases in Ua as opposed to Ua trends.  Trends in Δq 

range from 0.036 g/kg/decade for the GSSTF2b to 0.02 g/kg/decade for the HOAPS3.  

The magnitudes of the observed Δq trends in Table 4 directly correlate to the magnitudes 

of the LHF trends.  Trends in qa are mostly negative across all products except HOAPS3, 

and only the GSSTF2b and IFREMER are significant.  Therefore, qa explains the 

significant Δq trends seen in GSSTF2b and IFREMER, while SST explains the 

significant Δq trends seen in HOAPS and J-OFURO2.  Overall, the satellite-based 

products show large trends in LHF because of large trends in Δq. 
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Figure 5.  Anomaly time series of (top left) wind speed, (top right) specific humidity, 
(bottom left) sea surface temperature, and (bottom right) humidity difference ice-free 
ocean regions (45°S - 45°N) for the four satellite products.  Units for each time series are 
listed to the left of the plot.  All time series have been filtered using a 5-month, centered 
moving average. 

 

Table 4.  Global trends of LHF, Ua, qa, and Δq over the ice-free oceans (45°S - 45°N).  
All trends calculated from a 15-yr period except HOAPS (13-yr) and J-OFURO2 (14-yr).  
Trends that are significant at the 95% level are in boldface. 
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5.2.3. Meteorological quantities: reanalysis/hybrid 

 When looking at the state variables in Figure 6 for the two reanalyses and 

WHOI's OAFlux, more agreement exists relative to the satellite products.  The time series 

of wind speed (Figure 6, top left) reveals that NCEP-R2 experiences a greater range in 

wind speed over the 15-yr period than the other two datasets.  ERA-Interim and OAFlux 

track each other closely except during 2000 and 2006 where they diverge somewhat.  All 

three products contain a positive trend in wind speed.   The time series of SST (Figure 6, 

bottom left) shows close agreement between the three datasets; however, NCEP-R2 and 

OAFlux are in closest agreement.  ERA-Interim is biased low between 2002 and 2005.  

Still, the SST's of the reanalysis/hybrid products are very similar to the satellite products 

(Figure 5, bottom left). 

 Looking at the time series of qa in Figure 6 (top right), fewer discrepancies exist 

among the products relative to the satellite products in Figure 5 (top right).  The greatest 

differences between all three products occur before 1997 and after 2002.  OAFlux is 

slightly low-biased between 1993 and 1997, and high-biased from 2002 onward.  ERA-

Interim is slightly low-biased after 2005.  All qa datasets show a positive trend for the 

time period.  The bottom-right panel in Figure 6 (bottom right) shows the various time 

series of humidity difference for the reanalysis/hybrid products.  Clearly, the Δq trends 

are much flatter than the Δq trends of the satellite-based datasets (Figure 5, bottom right).  

In addition, fewer discrepancies in the Δq occur between reanalysis and hybrid products. 

 In Table 4, Ua is significantly positive for all three reanalysis/hybrid products, and 

except for ERA-Interim, the magnitude of the Ua trend is on par with the Ua trends seen 
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in the satellite products.  ERA-Interim contains the only significantly positive trend in Δq.  

WHOI's Δq trend (-0.002 g/kg/decade) and NCEP-R2's Δq trend (0.003 g/kg/decade) are 

virtually non-existent.  Conversely, WHOI and NCEP-R2 show significant positive 

trends in qa.  Of the three reanalysis/hybrid products, only NCEP-R2 shows any 

significant trend in LHF, which likely results from significant, positive trends in wind 

speed and near-surface specific humidity. 

 

Figure 6.  As in Figure 5, except for the three reanalysis/hybrid products. 
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5.3. Spatial Distribution of Trends 

 This study already analyzed globally-averaged trends.  As an extension, the 

spatial patterns of the trends are examined as well.  The distribution of the trends 

elucidates the origin of the global average values.  Figures 7, 8, and 9 show the spatial 

distribution of trends in LHF, Ua, and Δq, respectively. 

5.3.1. LHF 

 In Figure 7, spatial patterns of the LHF trends show some general, qualitative 

agreement across all seven products, but the magnitudes are vastly different.  Some of the 

similarities between the products include negative trends in the Pacific cold tongue, large 

positive trends over the Pacific trade-wind belts, positive trends along the Northern and 

Southern Hemisphere boundary currents, and positive trends in the equatorial and sub-

tropical Indian ocean.  OAFlux has the most negative LHF trend in the cold tongue 

region, while NCEP-R2 has the largest positive LHF trend over the trade-wind belts.  All 

products present a maximum, positive LHF trend in the Gulf Stream.  For the remainder 

of the boundary currents, each product varies in the magnitude of the positive trend.  In 

the Indian Ocean, magnitudes of LHF trend are greater in the satellite products than the 

reanalysis/hybrid products. 

 Differences among the seven products are readily apparent.  The satellite products 

have positive trends over most of the global oceans; conversely, the reanalysis/hybrid 

products include large regions with negative LHF trends.  Spatially, GSSTF2b and 

IFREMER exhibit the largest positive trends, while ERA-Interim and OAFlux exhibit the 

smallest negative trends.  J-OFURO2 and HOAPS3 have positive trends over the global 
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oceans, but to a lesser degree than GSSTF2b and IFREMER.  NCEP-R2 shows 

similarities with ERA-Interim and OAFlux, but it also contains extensive regions with 

very large positive trends that aren't present in the other two reanalysis/hybrid products.  

The pattern of the LHF trend in GSSTF2b and IFREMER explains why those products 

had the highest globally-averaged LHF trend.  By the same token, the trend pattern 

observed in ERA-Interim and OAFlux explains why those products had the smallest 

globally-averaged latent heat flux trend. 

 

 



43 
 

 
 

 

Figure 7.  Spatial distributions of LHF trends (in W/m2 per decade) for (a) IFREMER, 
(b) GSSTF2b, (c) J-OFURO2, (d) HOAPS3, (e) OAFlux, (f) NCEP-R2, and (g) ERA-
Interim.  Trends are calculated on monthly data for January 1993 to December 2007, 
except for (c) and (d) whose period ends on December 2006 and December 2005, 
respectively.  Thick solid contours enclose regions with trends that are significant at the 
95% confidence level. 
 

5.3.2. Wind speed 

 In Figure 8, the spatial distributions of the wind speed trends show a lot of 

agreement.  The time series of global wind speed already showed similar magnitudes, so 

it is not unusual to find agreement in the spatial patterns as well.  All products highlight a 

large region of positive trends in the equatorial/sub-tropical, eastern Pacific Ocean.  The 
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region extends all the way to the central-western Pacific.  The other common feature is 

two regions of positive trend in the Northern and Southern Atlantic with the Southern 

Atlantic showing more significance. 

 Some differences arise in the magnitudes of the wind speed trend.  NCEP-R2 

contains both the largest positive trends and the smallest negative trends.  The large 

positive trends are contained the Pacific Ocean pattern previously described; the small 

negative trends occur in the higher latitude regions of the Pacific and the Atlantic.  These 

regions of positive/negative trends in wind speed are common to all products but with a 

slighter magnitude.  IFREMER does not contain many high latitude regions with a 

negative wind speed trend. 

 A loose correlation exists between the spatial pattern of Ua trends and the spatial 

pattern of LHF trends.  The correlation between Ua  and LHF trends is strongest in the 

Atlantic.  NCEP-R2 seems to contain a stronger correlation between Ua  and LHF trends 

in the Pacific than any other product.  Overall, the spatial distribution of wind speed 

explains trends of LHF in the Atlantic better than in the Pacific. 
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Figure 8.  As in Figure 7, except for wind speed, Ua (in m/s per decade). 

 

5.3.3. Humidity difference 

 Figure 9 shows maps of the trend in humidity difference.  Similar to the 

interannual variability maps of LHF and Δq, the trend maps of LHF and Δq contain 

strikingly similar patterns.  The same aspects of Figure 7 apply to Figure 9.  Thus, the 

spatial trend in Δq explains most of the spatial trend in LHF. 
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Figure 9.  As in Figure 7, except for humidity difference, Δq (in g/kg per decade). 

6. DISCUSSION 

 This study has shown that the IFREMER, satellite-derived, flux dataset exhibits 

good agreement with three other satellite datasets (GSSTF2b; HOAPS3; J-OFURO2); 

however, the satellite flux products exhibit both similarities and differences when 

compared with reanalyses (ERA-Interim; NCEP-R2) and WHOI's OAFlux.  Examination 

of the interannual variability of latent heat flux reveals a common structure among all 

seven products.  Regions of maximum LHF variability occur in the equatorial Pacific 
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Ocean, which is related to ENSO, and the western boundary currents, which are 

dominated by cold air outbreaks (Figure 1).  Satellite products tend to show more LHF 

variability over the open oceans than the reanalysis/hybrid products, which leads to 

increased global means of LHF standard deviation.  The NCEP-R2 exhibits the highest 

global mean of LHF standard deviation of any product (Table 3).  Differences in the 

magnitude of LHF variability result from differences in the magnitude of variability for 

the bulk variables, i.e., qa, Ua, Δq, and SST.  The global LHF pattern appears to be largely 

controlled by variations in Δq, but variations in Ua have some influence, particularly 

within the tropical Pacific.  Moreover, LHF variability is indirectly related to SST 

variability because SST modulates both Δq and qa. 

 The effects of SST and Ua on LHF are most obvious in the tropical Pacific where 

ENSO is the regulating mechanism.  During warm ENSO episodes, tropical Pacific water 

from the western warm pool migrates eastward, replacing normally cooler water.  The 

change in spatial distribution of warm water alters the humidity gradient between the 

surface and the atmosphere.  In addition, easterly trade winds relax or even reverse 

direction, further increasing the buildup of warmer water in the eastern tropical Pacific 

and modifying the magnitude of evaporation.  ENSO is a quasi-periodic, ocean-

atmosphere mode that occurs every five years on average, which influence interannual 

(3–8  yr) timescales.  The effect of ENSO on SST, which relates to Δq and Ua, explains 

the standard deviation pattern of LHF observed in the Pacific. 

 Interannual variability of LHF over the western boundary currents is modulated 

by synoptic, winter storms, also known as cold air outbreaks.  During the winter, mid-
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latitude cyclones leaving a continental land mass encounter warm waters within the 

boundary currents.  The air within the cyclone is dry, while the air just above the ocean 

surface is moist.  Hence, an intense humidity gradient is formed as the cyclone enters the 

region above the boundary current.    Large amounts of heat and moisture transfer from 

the water's surface to the atmosphere during these events.  Temporal variability of these 

wintertime outbreaks has a controlling influence on the interannual variability of LHF 

over boundary currents. 

 Examination of trends in latent heat flux and the associated bulk variables 

revealed more differences between the two sets of products than was observed in the 

interannual variability.  All four satellite products exhibit large yet significant, positive 

trends in LHF; reanalysis/hybrid products exhibit much smaller, positive trends in LHF 

(Table 4).  IFREMER and GSSTF2b have the largest global LHF trends because they 

show positive trends over the majority of the oceans.  One reason for the observed LHF 

trends is the significant, positive trends in wind speed (Table 4).  Yet, the trend in wind 

speed is similar for all four satellite products, so it doesn't account for the larger trends 

seen in IFREMER and GSSTF2b.  Trends in humidity difference may also be partly 

responsible.  The magnitudes of the global trends in Δq directly correlate with the 

magnitudes of the global trends in LHF for all satellite products (Table 4).  Likewise, the 

spatial patterns in the trend of Δq and LHF correspond better than the spatial patterns in 

the trend of Ua and LHF.  This correspondence is true for all products. 

 The reasons for the larger Δq trends in satellites may be related to SST, qa, or 

both.  All seven products show a positive trend in SST over the 15-yr period, but some of 
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the satellite products, especially the IFREMER, show a slightly bigger trend in SST 

(Figure 5).  Thus, SST represents one reason why Δq is larger in the satellite-derived 

datasets.  When examining qa, three of the four satellites exhibit a negative trend, while 

all of the reanalysis/hybrid products exhibit a positive trend.  A negative overall trend in 

qa imposes a more positive trend in Δq.  Hence, qa is a second reason why the satellite 

products show an increased trend in Δq.  Finally, when the two variables are combined to 

calculate Δq, the opposite trends bring about an even more positive trend in Δq.  It is 

impossible to say which product gives the “most” accurate calculation of the humidity 

difference.  Nevertheless, this analysis is able to provide an uncertainty range of the trend 

in Δq (-0.002 to 0.036 g/kg/decade) and a corresponding uncertainty range of the trend in 

LHF (0.11 to 1.23 W/m2/decade). 

 Further exploration of the bulk variables, including source of the observations and 

method of calculation, can reveal more insight into the difference in LHF trends from the 

IFREMER and other satellite products.  Shie [2010] points out one reason for the LHF 

trend seen in the GSSTF2b.  He notes a slightly decreasing trend in SSM/I TB, which is 

used to retrieve WB.  Since WB is used in the calculation of specific air humidity, it leads 

to a larger trend in the humidity difference.  Santorelli et al. [2011] also found that 

specific air humidity contributes to the larger biases found in IFREMER.  Their solution 

was to utilize a different method for calculating humidity from Jackson et al. [2006, 

2009].  Based on comparisons with buoy measurements, Santorelli et al. [2011] showed 

that the new humidity algorithm improves the LHF estimates in IFREMER.  

Furthermore, they alluded to a discrepancy in SST around 2002 resulting from use of the 
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merged, Reynolds SST analysis.  The merged SST analysis takes advantage of the AMSR 

satellite instrument starting in June 2002.  Their conclusion was that the discontinuity 

observed in 2002 is an artifact of the merging process between the AVHRR and the 

AMSR instruments. 

 As mentioned, the global IFREMER trend of LHF was one of the highest.  It was 

shown in the results that the trend is overwhelmed by a rapid increase in LHF centered 

around 2002 (Figure 4).  The SST discontinuity noted by Santorelli et al. [2011] is also 

observed in this study (Figure 5, bottom left).  Furthermore, this study pointed out a large 

jump in wind speed around 2002 for the IFREMER dataset (Figure 5, top left).  One of 

these issues alone likely does not account for the rapid increase in LHF, but when 

combined with the calculation of air humidity, all issues could account for the rise seen in 

latent heat flux. 

 Figure 10 examines the effect of SST on LHF with and without the ASMR 

instrument.  The effect is only analyzed for June 2002 to December 2007, or the time 

period that the AMSR was in operation for this study.  In the left panel of Figure 10, it is 

shown that inclusion of the AMSR produces a bias of 0.055°C.  The resulting SST bias 

produces a LHF bias of 2.1 W/m2.  A LHF bias of this magnitude is not excessive, but its 

effect is enough to slightly elevate all flux estimates from June 2002 onward.  The bias 

does not suggest that the merged SST analysis is wrong; it just shows that the SST 

analysis using only the AVHRR is temporally consistent for the 15-yr period considered 

in this study.  Differences between the two SST products likely result from sampling 
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frequency.  The merged SST analysis still performs better from 2002 onwards because of 

improved spatial resolution afforded by the AMSR [Reynolds et al., 2007]. 

 

 

Figure 10.  Comparisons of (left) SST and (right) LHF between the two different analyses 
of Reynolds (2007): the analysis using only AVHRR and the analysis using 
AVHRR+AMSR.  Comparisons only cover the period of AMSR availability. LHF is 
calculated using the COARE 3.0 algorithm and state variables from IFREMER except for 
SST, which is taken from each of the Reynolds' analyses. 

 

 Figures 11 and 12 dissect the anomalous wind speed jump seen in IFREMER.  

The wind speed product of IFREMER merges wind estimates from scatterometers and 

SSM/I's.  An optimum interpolation process known as kriging determines the magnitude 
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of spatio-temporal contributions from SSM/I's and scatterometers [Bentamy et al., 1999].  

Figure 11 shows the merged, IFREMER winds along with QuickSCAT winds and 

SSM/I-F13 winds.  During the period when the wind speed jump is observed, 

QuickSCAT was the only scatterometer incorporated into the merged product.  The F13 

was not the only SSM/I instrument incorporated into the merged product around 2002, 

but only F13 is presented here because it should represent the temporal evolution of all 

SSM/I's.  From October 2001 to June 2002, Figure 11 shows that IFREMER experiences 

a ~0.6 m/s increase in wind speed, while QuickSCAT and F13 experience smaller 

increases in wind speed.  More importantly, QuickSCAT is biased higher than F13 during 

this period.  Thus, the merging process likely combines the biases of the two instruments 

during this period, forming a merged product that contains an exaggerated jump in wind 

speed around 2002. 

 Figure 12 further examines IFREMER wind speed by looking at the slope of wind 

speed over the same 2001-2002 period.  The top panel in Figure 12 shows regions with 

the greatest slope in wind speed occur at the southern high latitudes.  The remaining two 

panels in Figure 12 give the differences in wind speed slopes between IFREMER and 

respectively, the F13 and the QuickSCAT.  Figure 12 (middle panel) shows that the F13 

contains a larger slope than IFREMER over most oceans.  Conversely, QuickSCAT 

contains a smaller slope than IFREMER over most oceans except in the high-latitude 

north Pacific and north Atlantic (Figure 12, bottom panel).  Therefore, the wind speed 

jump seen in IFREMER during 2001 and 2002 likely results from a larger increase in 

SSM/I wind speed. 
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Figure 11.  Global anomaly time series of wind speed from IFREMER, QuickSCAT, and 
SSM/I aboard the F13 satellite.  Global averages are taken over ice-free oceans (45°S - 
45°N).  Temporal periods of IFREMER and F13 are truncated to match the shorter period 
of the QuickSCAT. 
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Figure 12.  (a) Slope of wind speed from IFREMER for period Oct 2001 to June 2002.   
Difference in slopes of IFREMER versus (b) F13 and (c) QuickScat over the same time 
period. 

 

 Since the effect of specific air humidity on IFREMER's LHF has been 

investigated thoroughly by Santorelli et al. [2011], this study only briefly looks at the 

effect of trends in LHF as a result of qa.  Figure 13 shows global time series of LHF using 

three different sources of qa.  The LHF calculation is performed using the COARE 3.0 

bulk algorithm, and the remaining bulk variables come from IFREMER.  Thus, Figure 13 

illustrates the effect of qa on the LHF trend in IFREMER.  Notably, the LHF trends 

decrease significantly using other estimates of specific air humidity largely because of 
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smaller anomalies at the beginning of the time series.  A jump in LHF still occurs around 

2002, but to a lesser degree than with qa estimated by IFREMER. 

 

Figure 13.  Global anomaly time series of LHF using qa from three different sources.  
LHF is recalculated using COARE 3.0 with state variables from IFREMER and the listed 
qa source. 

 

 Going forward, the IFREMER turbulent flux dataset should be reexamined to 

address some of the issues raised in this study.  IFREMER and other satellite-derived flux 

products already deliver an effective climatology of LHF over the global oceans 

[Schlosser and Houser, 2007], and they provide better flux estimates for forcing ocean 

models [Ayina et al., 2006].  Still, satellite products need to be studied further to 

determine their effectiveness in longer term climate studies.  Satellites provide an 
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advantage over reanalyses because they observe and sample the Southern Hemisphere 

ocean.  As bulk flux algorithms are improved, satellite-derived datasets should become 

the baseline for estimates of latent heat flux. 
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