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Abstract: This study investigates the feasibility of applying monoplotting to video data from a security
camera and image data from an uncrewed aircraft system (UAS) survey to create a mapping product
which overlays traffic flow in a university parking lot onto an aerial orthomosaic. The framework,
titled VirtuaLot, employs a previously defined computer-vision pipeline which leverages Darknet
for vehicle detection and tests the performance of various object tracking algorithms. Algorithmic
object tracking is sensitive to occlusion, and monoplotting is applied in a novel way to efficiently
extract occluding features from the video using a digital surface model (DSM) derived from the
UAS survey. The security camera is also a low fidelity model not intended for photogrammetry
with unstable interior parameters. As monoplotting relies on static camera parameters, this creates a
challenging environment for testing its effectiveness. Preliminary results indicate that it is possible
to manually monoplot between aerial and perspective views with high degrees of transition tilt,
achieving coordinate transformations between viewpoints within one deviation of vehicle short and
long axis measurements throughout 70.5% and 99.6% of the study area, respectively. Attempted
automation of monoplotting on video was met with limited success, though this study offers insight
as to why and directions for future work on the subject.

Keywords: monoplotting; photogrammetry; computer vision; object detection; object tracking;
neural networks

1. Introduction

In many photogrammetry applications, the knowledge of a camera’s combined posi-
tion and orientation, also called camera pose, is essential even if that camera remains fixed
in a static position [1,2]. Static camera pose can be measured via hardware using external
surveying instruments, while mobile cameras can use onboard positioning systems such
as inertial measurement units (IMUs) and/or global navigation system satellite (GNSS)
receivers [3–11]. There are numerous studies on the subject of computing mobile camera
pose relatively without positioning hardware from one camera frame to the next to create
point clouds, which can be georeferenced using known position targets in images, called
extracting “structure-from-motion” (SfM) [8,12–14]. Additionally, SfM can be coupled with
hardware positioning equipment in a real-time process that forms the basis of simultaneous
localization and mapping (SLAM) of an environment [15–19].

Computation of point cloud products using computer vision typically relies on key-
pointing algorithms [12,20]. These algorithms automatically detect and identify salient
points in images which can be subsequently identified again up to a certain degree of

Remote Sens. 2022, 14, 5451. https://doi.org/10.3390/rs14215451 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14215451
https://doi.org/10.3390/rs14215451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8071-5476
https://orcid.org/0000-0002-7996-0594
https://orcid.org/0000-0002-4022-0388
https://doi.org/10.3390/rs14215451
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14215451?type=check_update&version=3


Remote Sens. 2022, 14, 5451 2 of 28

change relative to the initial perspective [21–28]. Through application of geometric prin-
ciples and probabilistic statistics, coordinate points located in two images can be used to
simultaneously determine 3D point locations in space for 2D points in both images and
derive relative camera positions for the images. Iterating this process over various combi-
nations of image pairs can lead to accurate estimations of camera pose, and relative point
coordinates in 3D space, the necessary components for creating point clouds [12,14,29,30].
More recently, some deep learning approaches to pose estimation have also been developed,
a large number being derived from Kendall et al. [31]. However, the input data used with
these methods is somewhat uniform with regard to certain meta-characteristics [31–33].
For example, when computing a point cloud using tourism photographs, SfM is capable
of identifying two camera positions which could be completely opposite to each other as
long as there is some coverage of the same area by other images in positions that somewhat
interpolate the transition between the original two camera poses [20,34–36]. These images
are generally of a perspective which would include a horizon line, mirroring the positions
in which a human would observe a scene. Alternatively, aerial imagery observing nadir
may be used in an identical pipeline to create point clouds of structures and terrain over
wide areas [3,12,13].

For quite some time, mixing both aerial and terrestrial imagery during SfM processing
was only possible in an automated fashion if there were enough images captured between
nadir and terrestrial perspective shifts that keypointing could be used to track camera
pose changes effectively unless other positioning systems could be relied upon to accu-
rately record camera pose and register it in post processing [3,35–38]. In a certain sense,
an SfM generated point cloud, often called a sparse point cloud, can be described as a
database of 3D points which have known point descriptors attached to them from various
perspectives. Each image processed by an SfM pipeline will extend the existing point
description records while also adding new points. Some advanced keypointing techniques
have been developed to address the problem of high transition-tilt, allowing registration
between images with signifcant changes to camera pose, but their additional complexity
is of variable effectiveness and incurs additional processing overhead [20,34–36]. Some
deep learning approaches have also addressed image keypointing, image registration, and
similar topics, but they are similarly constrained in that they require the same data as an
SfM pipeline to be able to effectively determine an input camera’s pose reliably after a
lengthy training phase [31].

However, there exists a sibling process to stereo-photogrammetry, which itself is
derived from the principles of stereo-plotting, called “monoplotting” [39,40]. Monoplotting
appears to have been primarily used in manual applications for digitizing perspective
imagery data and converting it to an aerial perspective, using manually matched point
coordinates between perspective and aerial images accompanied by digital surface model
(DSM) data [40]. Examples of monoplotting applications include using historical imagery to
map vegetation change onto thematic maps and using perspective imagery to demonstrate
how the elevation and flow of Arctic ice has changed over a long period of time [40,41].

The primary objective of this case study is to develop a framework to record vehicles as
they move throughout a parking lot monitored by existing surveillance equipment (terres-
trial video camera) already installed on a university campus, presented in a format which
allows for general understanding of the movement of vehicles across the area and is not im-
pacted by the equipment’s pan-tilt-zoom functionality. This study evaluates the impact of
monoplotting as an additional automated layer of relatively rapid camera pose estimation
over the classic computer vision problem of detecting and tracking vehicles via terrestrial
video, similarly to the pedestrian tracking method applied by Petrasova et al. [42], and tra-
jectory estimation techniques applied by Chen et al. [43]. Aside from our earlier study [44],
which forms the basis for this extended paper, there are some studies which cover similar
and related topics, including continuous camera localization as proposed by Jiang et al. [45],
and similar approaches to camera pose processing and integration as presented by Zhang
et al. [46], Han et al. [47], and Luo et al. [48]. A distinct difference between those studies and
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this one is that either prior camera position and object information is available as in Zhang
et al. [46], or camera calibration data is available as in the others [45,47,48]. While the target
camera pose data is available in this study, in contrast to the other studies this data is used
for validation purposes only and not provided as a starting point for monoplotting (which
it could be) in order to evaluate the proposed methods independently.

This work also engages various fields of computer vision, specifically neural network
based object detection and algorithmic object tracking techniques. However, an in-depth
review of these methods is better served by the following references: [7,48–63]. The quality
of the monoplotting solutions can be affected by several factors present in this study.
Specifically, the physical components of the camera itself should be quite inviolate to change,
but the weatherproof chassis or the mechanical control mechanisms contained within, may
be more affected by varying ambient conditions. These variations can also be exacerbated
by changes in the shape of a plexiglass dome cover when it experiences thermal flux [64]. In
particular, air temperature and pressure appear cause a degree of dynamic variation in the
mechanical tolerances of the camera’s pivot-tilt-zoom functionality, reducing its precision
when attempting to return to a calibrated home position. The changes in mechanical
tolerances and shape of the plexiglass cover should both be physically minuscule and
ordinarily would be considered negligible. However, monoplotting requires a calibrated
camera image with a known static pose, and even small deviations when returning to a set
home position will have impacts on coordinate transformation accuracy as distance from
the camera increases. Such deviations, especially deviation when adjusting focal length
for optical zoom, can render previously recorded calibration data invalid over the course
of a day or when the weather changes. Furthermore, while the camera position can be
externally measured, the camera also provides an API which defines its own coordinate
space. Meaning there is also the potential for additional precision error when converting
from camera space to world space.

In summary, this study develops a computer vision and object tracking pipeline,
and explores the feasibility of leveraging monoplotting, to create an accurate, real-time
visualization of parking lot vehicle traffic overlaid on an aerial map (i.e., orthomosaic
image) with a terrestrial video camera whose geometric calibration and pose changes
unpredictably. The entire framework is named VirtuaLot. With this motivation in mind,
the contributions of this paper are as follows:

1. A computer vision pipeline which can detect and track vehicles that enter and exit a
parking lot, using an available deep learning object detection network and traditional
image processing techniques to improve the pipeline efficiency by reducing and
constraining inputs and outputs to both deep learning object detection and more
traditional tracking algorithms.

2. Using monoplotting as a mechanism to automate the definition of tall, vertically
occluding objects in a perspective camera image.

3. An investigation into the effects of using a camera with unpredictably changing
internal geometry as input for the monoplotting process, to evaluate its suitability as
a mechanism for registering perspective video and uncrewed aircraft system (UAS)
aerial imagery. Attention is also paid to challenges encountered while attempting to
automate the monoplotting process using various keypoint descriptors.

The remainder of this paper is structured accordingly: Section 2 details the information
necessary to accomplish monoplotting atop the proposed computer vision pipeline, as
well as the specific details of the study area and datasets collected and used in this study.
The methodology outlined in Section 3 introduces the data preparation steps alongside
definition of the computer vision pipeline and the effects of direct image registration via
monoplotting, as well as the implementation of automatic occlusion detection. It also
investigates adaptations explored to overcome challenges with automating monoplotting
between the two views of the study area. Section 4 is arranged in alignment with the
methodology section, starting with review of coordinate transformation accuracy in single
image monoplotting, then quantitative analysis of the computer vision pipeline, followed
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by measuring the accuracy of the feature matching results and the effectiveness of the
occlusion handling process, ending with analysis of the impact of the effects of single and
sequential image monoplotting. Section 5 reviews the general efficacy of the results in the
proposed context of the research as a whole. Finally, Section 6 concludes this work and
discusses potential future development.

2. Study Area and Datasets

The study area is a parking lot located near the center of the Texas A&M University
Corpus Christi (TAMUCC) campus in Corpus Christi, USA, approximately 93 m wide by
118 m long, highlighted in orange on Figure 1. While not strictly necessary for purposes of
the application, for this case study a ground survey was performed to measure the position
of the perspective security camera as closely as possible using a total station and known
Continuously Operating Reference Station (CORS) benchmarks located on the campus
grounds to determine the position (but not orientation) of the camera housing in world
space to a high degree of precision. An average position for the camera was calculated by
taking four measurements targeting the edges of its circular chassis mount, equidistant
around its perimeter.

Figure 1. An example aerial UAS orthomosaic that provides the X, Y coordinates for monoplotting
features which are combined with the Z values from the DSM to compute the registration between
the perspective and aerial views. The parking lot of interest is outlined in orange, with an aerial map
of the TAMUCC campus inset.

The datasets in this case study are split into two categories: perspective video files
provided by the TAMUCC Police Department, and UAS imagery products that were
generated from a small UAS flight conducted by the TAMUCC Measurement Analytics Lab
(MANTIS). The UAS flight collected 1565 georeferenced photos, which were post-processed
using Pix4D Mapper to generate an aerial orthomosaic image and digital surface model
(DSM) of the campus area. The target parking lot for study and its surrounding area of



Remote Sens. 2022, 14, 5451 5 of 28

interest were extracted from the larger campus flight to reduce image sizes to workable
levels in this application.

An example of the perspective view from the video camera dataset is shown in Figure 2.
Normally, a calibration pattern would also be used to correct camera lens distortion for this
perspective video camera. However, attempts to calculate a valid camera calibration over
the course of the study would yield different results. As best we can determine, changes in
static air pressure, temperature, and humidity cause the weatherproof housing media and
control mechanisms to expand and contract over time, as well as during and after changes
in weather conditions. This is not typically an issue affecting the camera component of
the actively cooled AXIS Q6044-E PTZ, but it does affect the weatherproof cover and the
pan-tilt-zoom mechanisms.

Figure 2. View of the study area from the perspective camera. Regions of the image where vehicle
ingress/egress are expected are outlined in blue—there is no significance to the box thickness around
each region, it is an artifact of the GUI tool developed to accelerate region definition.

The thermal expansion of the polycarbonate weather housing is quite low, 0.065 mm/m ◦C
as per [64]. To put this into context, a 15 ◦C change in a 10 cm polycarbonate part can
cause thermal expansion of ±1 mm [65]. This is an extremely small value—for a flat part.
However, for a dome shape, such as the weatherproof housing, considering the degree
of temperature difference on a typical Texas summer day (a conservative estimate being
from 20 to 38 ◦C, not accounting for inclement weather which can get as cold as 10 ◦C if
not lower for periods of time), the weatherproof housing can elongate or contract in size
as well as expand or shrink in thickness over time, changing the exit position and travel
distance for light rays passing through the housing relative to the camera origin. This also
assumes a perfect, uniform thickness dome covering an imperfection free lens, neither of
which exist in this scenario. Because of this, a lens calibration taken in the morning hours
using a checkerboard pattern will not be the same as a calibration taken in the middle or
hottest parts of the day even if the camera is not manipulated. Additionally, the gearing
of the camera mechanisms may be subject to similar thermal effects, and the precision
of the “return to home position” function also varies over the course of a day. These are
not instantaneous issues, but rather ones that proceed from collecting data over time as
environmental flux causes these effects. In combination with the need to allow for ad



Remote Sens. 2022, 14, 5451 6 of 28

hoc camera movement, the imprecise “return to home” function can invalidate any fixed
configuration position, and imprecise “return to original zoom” mechanisms can invalidate
any recorded calibration. With this in mind, the study forgoes any notion of calibration
for the perspective video data, instead analyzing the raw data and how much error the
uncalibrated perspective view introduces into the end solution.

There are two perspective video samples chosen for discussion in this application
study: both recorded at 30 frames per second (FPS) in early December 2016 and September
2017. One sample is a four hour window with some interesting dynamic motion of low
numbers of vehicles, and the other is one of a full parking lot with high numbers of vehicles
moving through it at any given time. The first sample is presented as the vehicles which
are present are ones which demonstrate challenging instances of detection and tracking to
follow, as a representation of the capabilities of the application. The second sample tests the
accuracy and performance of the application handling high numbers of vehicles moving in
common traffic patterns. The first sample was reduced from 432,000 frames to 6646 frames
total by eliminating long periods of inactivity from analysis, resulting in a three and a half
minute sample with 46 vehicles annotated. The second sample is used as recorded, with
200 vehicles annotated over a two and a half minute time period in a very full parking
lot, roughly three new vehicles every two seconds. Vehicle detection and tracking data
was annotated from the video samples using a supervised image processing workflow,
combining background subtraction and the minimum bounds of contour detection with
a linear regression function to validate the size of a moving object as appropriate relative
to its position in the video frame. A centroid tracker could very reliably track these
“detections”, allowing mostly automated annotation of the perspective video samples
with some manual review to create ground truth datasets for measuring object detection
and tracking performance. This annotation method was impressively accurate, though
non-trivial to set up and not robust to changes in camera position.

Aerial imagery from the MANTIS Lab was collected using an eBee fixed wing UAS
platform equipped with a 20 MP SenseFly SODA red–green-blue (RGB) digital camera
with a 10.6 mm lens mounted in a nadir observing orientation recording an average
2.78 cm ground sample distance (GSD) from an average height of 91 m above ground level.
Onboard GNSS image positions were recorded in WGS84 coordinate reference system
(CRS). Although the survey targeted low wind conditions, there are small changes in
orientation and tilt of the camera throughout the flight due to effects of wind and flight
dynamics. As such, the data collected does not represent a true nadir-perspective image set.
It should also be mentioned that the UAS flight surveyed the entire TAMUCC Ward Island
campus (1.32 km2), making it conducive for utilization of a fixed wing platform. Therefore,
the study area represents only a small portion of the entire region mapped.

A ground control network was established using the “NAD 1983 State Plane Texas
South FIPS 4205—Feet” CRS with the GRS80 ellipsoid, and nine ground control points
surveyed in over a 1.32 km2 survey area to improve the accuracy of the point-cloud derived
products. All positioning data was converted to the NAVD88 vertical datum from Geoid12B
referencing the Texas Department of Transportation real-time network (RTN) for control
measurements. During reconstruction processing and adjustment, the ground control
point network covering the flight area reported a vertical RMSE of 0.9 cm. However,
of greater concern in this application is the vertical accuracy of the DSM, particularly
its representation of the ground surface, as a high quality DSM is critical for accurate
monoplotting computation. Fortunately, in this aerial survey, the vertical deviation of the
ground plane of the parking lot as represented by the DSM is expected to be in the range of
2–4 cm, or less. This estimation is based on the vertical accuracy of the point cloud used to
interpolate the DSM measured relative to the control network and over flat surfaces in the
survey area.

The specifications of the platform sensors, raw images, orthomosaic derived from
overlapping raw images, and DSM derived from the same set of overlapping UAS images
using SfM photogrammetry are outlined in Table 1. The DSM is necessary for the computa-
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tion of the formulae described in Section 3.2 and implementation of methods in Section 3.3.
Note that the nature of the project only requires a partial overlap between perspective and
aerial viewpoints, and it was fortunate that the perspective camera field of view shown in
Figure 2 was entirely contained within the aerial orthoimage, but it is not strictly necessary.
Additionally, note that while an aerial orthoimage and DSM are used in this study, it is
possible to replace them with normally collected, calibrated aerial imagery and a DSM
collected by a LiDAR system for functionally the same inputs.

Table 1. Dataset Metadata.

Source Data
Set

Capture
Metadata

Positioning
Information

Recording
Date

Perspective Footage:
AXIS Q6044-E PTZ,

Weatherproof
housing;

1280 × 720 p @ 30 fps

Sample 1 Video:
Low Traffic;

(Reduced From
432 K Frames)

6646 Frames
≈3 m 30 s

≈1 vehicle/5 s
Sporadic

15 m above
ground plane,
≈20° below

horizon
observing
south west

December
2016

Sample 2 Video:
High Traffic

4616 Frames
≈2 m 30 s

≈1.5 vehicles/s
Constant Motion

Aerial Imagery:
SODA SenseFly

Camera on
eBee

UAS
Flight

Sensor Resolution: 20 MP
1565 Images; Avg. GSD: 2.78 cm

Image Resolution: 5472 × 3648 px;
nadir observing; 80% sidelap/70% endlap

Flying a back and
forth grid pattern
≈91 m altitude,

covering 1.32 km2

September
2017

Digital Surface Model
Derived from Aerial
Imagery Point Cloud Post

Processed
Data

Resolution:
12,042 × 8684 px

@ 2.79 cm/px

91.44 m altitude
above ground,

observing nadir,
covering 0.029 km2

Georeferenced
Orthomosaic:

Region Of Interest

In regards to training data for the neural network, the data for the bus, car, and motor-
bike classes was extracted from the PASCAL VOC 2012 dataset: out of the 20 classes and
16,682 samples available, there were 421 bus samples, 1161 car samples, and 526 motorbike
samples, totaling 2108 positive class samples. The remaining samples of other classes were
completely eschewed to avoid additional complexity that may arise from being able to
detect them. There are also several pre-processing steps necessary to implement the appli-
cation study, some derived from each dataset individually and others requiring multiple
datasets being analyzed in tandem, which are discussed in the Methods section.

3. Methods

The collection of methods employed in developing the VirtuaLot framework proposed
in this case study consists of two parts, the computer vision pipeline and the extension of
that pipeline using monoplotting to calculate coordinate transformations between the two
image perspectives. The computer vision pipeline outlined in Section 3.1 is the core engine
of this application study, but the objective of the research is to leverage it in an experimental
way by automating the monoplotting component (Section 3.4) to estimate occlusion regions
in the perspective view (Section 3.3), and to investigate any effects or artifacts that arise
during the process. A flowchart of the methods implemented for the VirtuaLot framework
is outlined in Figure 3.
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Figure 3. A high-level breakdown of the methodology and how the processes interact with one
another in terms of data flow.

3.1. Computer Vision Pipeline

The computer vision pipeline can be described as a bespoke object detection and track-
ing solution. Within the scope of this component specifically, the object classes of interest
are constrained to those commonly found in a parking lot, primarily vehicles, such as cars,
pickup trucks, and motorbikes, discounting larger trucks or delivery vans. The computer
vision pipeline was implemented using the Darknet deep learning framework [66] for initial
(and optionally continuous) object detection and tested with some of the object tracking
methods available in OpenCV: Kernalized Correlation Filters (KCF) [59], Boosting [67],
Track-Learn-Detect (TLD) [55], and MedianFlow [56]. A collection of annotated images is
required for training the Darknet framework, or a pre-trained network may be used. The
annotated images must be a series of image and text files which describe the classification
(category) of an area as well as the number of coordinates which encompass that area, and
the actual coordinate locations. A custom Darknet model was trained using a subset of the
PASCAL VOC 2007 and 2012 data [68], specifically on the aforementioned object classes at
the beginning of this section, to evaluate if training with a reduced dataset would affect
the final model compared to training on the full dataset. The training process for the VOC
subset model mimics the process for the full VOC model published by Redmon [66], using
the same 16,551 training images and 4952 testing images for validation, an approximate
75–25% split. Other object classes available in the dataset were completely eschewed in the
subset compared to the full model. Identical training parameters, including the moving
learning rate (10−3, 10−2, 10−3, 10−4), momentum (0.9), and decay rate (0.005) were applied
as in the original paper [66], however training was only run for 45 epochs, instead of
the original 135, with the learning rate ranges adapted accordingly in an effort to avoid
over-fitting on a smaller datatset sample. The smaller subset-trained network provided a
very minor performance improvement at the cost of slight detection consistency compared
to the fully trained network. Functionally, detection behavior of the two networks was
nearly identical. Multiple running options for the computer vision pipeline were developed
to investigate the effects of different approaches and methods as applied to the study,
allowing a choice of the neural network used to power object detection and a choice of
tracking method implementation. Several additional performance affecting options were
also developed, including different ways to arrange input tensors passed to the neural
network, the size of tracked object area used to initialize detected objects, and a motion
sensitive triggering mechanism powered by CPU or GPU background subtraction to reduce
the number of calls to the neural network. The effectiveness of each option and its impacts
on the computer vision pipeline was determined by parameter sweeping all combinations
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of possible options. The ground truth annotation algorithm, effectively serving as an addi-
tional detection and tracking method, was also evaluated with similar swept parameters to
establish performance baselines.

3.2. Single Frame Registration with Monoplotting

Traditional monoplotting normally requires a recorded camera pose and preferably
two calibrated camera images, with source positions in three-dimensional space as coor-
dinates X, Y, Z coupled with ω, φ, κ describing the camera orientation in terms of roll,
pitch, and yaw when an image was taken [39]. A conceptual visualization of monoplotting
is shown in Figure 4. However, there are several mathematical relationships which can
be leveraged to reconstruct complete or partial pose parameters given a series of known
points in a pair of images, usually of the same scene [39]. As monoplotting is usually
a fully manual process, the linear form of its collinearity equations can be simplified as
Equations (1) and (2):

xa − F0 + vxα = b11∆Xa + b12∆Ya + b13∆Za (1)

ya − G0 + vyα = b21∆Xa + b22∆Ya + b23∆Za (2)

where bnn is shorthand for a series of partial derivatives taken from the functions of
rotation angles (ω, φ, κ) multiplied by coefficients of the orthogonal transformation matrix
m between image plane and object space orientation. Xa, Ya, Za are object space coordinates,
xa, ya are image space coordinates, and F0, G0 are functions with estimated, iteratively
solved values [39].

Figure 4. Visualization of the monoplotting principle, and how the arrangement of camera origin,
image plane, and world space are determined through the collinearity Equations [40].

In this case study, image registration between the perspective terrestrial video se-
quences and the UAS aerial orthomosaic detailed in Section 2 is performed by first comput-
ing an image homography to determine 2D inlier and outlier points, followed by solving
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for the camera pose using an iterative adjustment computation as outlined in [39]. The
elevation values necessary to compute the 2D–3D transition [39] are retrieved from the
DSM at the marked coordinate locations in Figure 5 to provide the necessary 2D-3D con-
text. Figure 6 displays the DSM values linked to the selected points shown in Figure 5.
To measure the effects of monoplotting on the image registration process, 399 manually
annotated point pairs are divided into seven recursively growing subsets, as shown in
Figure 5, to simulate variations in keypoint matching efficacy. The 399 points were drawn
from a larger set, filtered by computing the intersection of Shi-Tomasi corner detection [27]
results and the locations of image keypoints detected with the list of algorithms presented
in Section 3.4. The paired points are manually annotated to discard non-ground level fea-
tures and features which had no temporal overlap between the aerial orthomosaic and the
perspective video, for the purpose of measuring the accuracy of coordinate transformations
using a well-defined registration between a single video frame and the aerial image, and
how the number of keypoints successfully matched can influence the overall accuracy.

Figure 5. 399 manually annotated point pairs, with coordinates shown on the aerial image. Regis-
tration was tested for variance over successively larger sets of points, determined by group number.
Points which were regularly dropped during the computation process to reduce transformation error
are visualized as blue crosses.

The efficacy of registration with each group of an increasing number of points is
determined by the deviation present in point transformations between the aerial image and
perspective video coordinate systems, an example of which is visualized by Figure 7. We
note that the end product of this image registration specifically treats the aerial orthomosaic
origin as true and fixed, so that the iterative solution focuses on solving for the perspective
camera origin alone.

3.3. Automated Occlusion Detection

Using the registration defined by the monoplotting process, it occurs that a potentially
viable process for identifying occlusion regions created by static vertical elements in the
perspective view, such as trees or streetlights, using the DSM is possible.
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By projecting the DSM into the perspective image, an example of which is shown
in Figure 6, the intersection of the ground plane and regions of potential occlusion can
be identified in the perspective view directly. The DSM can then be masked using the
same regions of interest defined in the background subtraction constraint to eliminate
extraneous elevation data. Using the width of the transformed elevation feature on the
ground, an occlusion region can be initially defined starting from its lowest available
coordinate to the top of the image. Analyzing the Hough [69] lines computed in each
region, the strongest set of near-to-vertical lines with matching orientations can be used
to roughly refine the width of an occlusion region, and the highest horizontal line can be
approximately computed from the value of the DSM via trigonometry to cap the occlusion
region. These occlusion regions can then inform object tracking methods that the object
they are tracking is potentially occluded, allowing for more robust handling of occluded
vehicles as they maneuver through the parking lot area.

Figure 6. The process and results of using images registered via monoplotting to determine approxi-
mate occlusion areas from a Hough transformation cross referenced with the DSM and trigonometry.
Note that some occlusion regions encompass vertically oriented features entirely, while some only
encompass partial features. Furthermore, the occlusion regions are substantially buffered in this
image for the reader. The actual regions are quite closely constrained to the actual vertical lines in
each region.

3.4. Automated Monoplotting

In order to fully automate the process of monoplotting, various keypointing methods
available in OpenCV were applied to both the UAS orthomosaic and the perspective
video to measure the efficacy of such methods at successfully computing a correct image
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registration via keypoint matching. Keypoint methods examined include: Scale Invariant
Feature Transformation (SIFT) [26], Speeded Up Robust Features (SURF) [25], Oriented
Fast and Rotated Brief (ORB) [21], Accelerated-KAZE features (AKAZE) [70], and Binary
Robust Invariant Scale keypoints (BRISK) [71]. Both the standard implementation of the
aformentioned methods and a version leveraging the affine keypointing process outlined
by Yu et al. and Morel et al. are tested [35,36]. Notably, in order to acquire results in a timely
manner, the affine method keypoint datasets (titled ASIFT, ASURF, AORB, AAKAZE, and
ABRISK) were constrained to using the same number of keypoints that their standard
method counterpart computed for each frame, filtered in order of strongest responses first.

After computing keypoint matches between perspective video frames and the UAS
orthomosaic, the z-dimension required for computing the 2D-3D monoplotting solution is
retrieved from the DSM using the closest available cell value. The monoplotting of each
frame was processed two ways. First, using keypoints that were detected across the entirety
of the frame. Second, using the same mask defined for isolating the parking lot area used
in Section 3.3, to reduce the number of keypoints and concentrate them within the area
of interest. The efficacy of monoplotting automation using each keypointing technique is
computed through statistical analysis of comparisons to the pose of the camera computed
by the single frame iterative process and the ground truth location from the survey.

4. Results

This section first reviews the accuracy of using a single image monoplotting solution
to perform coordinate transformation, then moving into light qualitative analysis of the
object detection and tracking pipeline performance and how well it integrates with the
single image monoplotting solution and vertical occlusion detection. Finally, results on
automation of monoplotting close out the section.

4.1. Single Frame Registration via Monoplotting Results

The effects of ignoring lens calibration are also demonstrated in Figures 7–9 where the
effects of the transformation show significant distortion near the edges and with increased
distance from the camera origin.

The effects of distortion due to being unable to calibrate for the internal geometry of
the perspective camera are visualized in Figure 7 as transformation boundaries of the per-
spective image into the aerial plane, Figure 8 as discrete measurements, and continuously
quantified in Figures 9 and 10.

Figure 9 visualizes the ranges of transformation accuracy for any given pixel between
perspective and aerial images in the area of interest under the best possible brute-force
solution able to be achieved with manual monoplotting using a single perspective video frame
for registration reference. There are two areas of significant pixel deviation in the top-left and
bottom-right corners in Figure 9, which reveal areas of significant image distortion in the
perspective image.

These are most likely caused by distortion from imperfections in the camera lens
itself compounded with the distortion of the plexiglass weather covering. For purposes
of estimating the potential effectiveness of this solution for monitoring vehicles, Figure 10
classifies the accuracy of the pixel position obtained via image warping in Figure 9 with
respect to parking lot stall dimension standards in Texas. Those standards dictate a min-
imum width of at least 2.438 m (8 ft) per parking space [72]. Parking space length is
variably codified across the state, however the lowest codified measure appears to be
5.49 m (18 ft) [73]. Passenger vehicle dimensions cannot fall beyond these ranges without
being classified differently, and there must be ample space for pedestrians to navigate
around vehicles according to [72]. For this work, a fair estimation of the small end of typical
vehicle dimensions averages 1.5 m wide (4.9 ft) and 4.5 m long (14.76 ft), and we treat those
dimensions as the upper limits for classifying per-pixel positioning accuracy across the
warped image when provided the inputs of the computer vision pipeline.
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Figure 7. The results of using the recursively larger groups of points outlined in Figure 5 to reproject
the perspective image into the aerial orthoimage plane. Note the distinct linear deformation in some
of the lateral parking space lines as well as variable degrees of alignment to the parking lot borders
and the bottom interior row of parking spaces around the edge.

Figure 8. The amount of error present for each control point computed by the solution using all
available control points. Errors less than 1.33 m are visualized but not labelled.
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Figure 9. Transformation accuracy from each perspective pixel to coordinates on the aerial image,
interpolated by inverse distance weighting.

Figure 10. Transformation accuracy qualified for vehicles detected by the computer vision pipeline.
Coordinates in the blue region are estimated to be accurate within the limits of the width of a small
vehicle, while coordinates in the green region will be accurate to within the length of a short vehicle.
Coordinates in yellow regions are likely to be outside those dimensions.

The total area of the parking lot captured during monoplotting from the camera view
is 9360.08 m2, out of ≈10,900 m2. Of that captured area, pixels that were transformed within
the width axis limit of 1.5 m covered 6603.82 m2 (70.5% of the total area registered onto the
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orthoimage), and pixels that were transformed between 1.5 m and 4.9 m covered 2722.69 m2

(29.08%); totalling 9326.51 m2 (99.6%) where image registration via monoplotting would
function successfully with the computer vision pipeline if a vehicle was visible along its
long axis relative to the camera. As a result, only 33.56 m2 (0.003%) of the captured study
area transformed beyond reliable accuracy. However, when taken in the context of how
vehicles are likely to be presented when navigating the parking lot under review of the
computer vision pipeline, object tracking appears to be considerably less stable in areas
where image warping only falls within the length axis and not the width axis of tracked
vehicles. For instance, vehicles at the far end of the parking lot or around the edges of the
image frame, especially in the corners where transformation accuracy is low, are not only
navigating through areas of lower transformation accuracy, but also have less pixels to
represent them, leading to a smaller “center-of-mass” for tracking purposes, which can
more easily jump around and provide noisy data.

Figure 11 visualizes the output of the computer vision pipeline using single image
monoplotting results to apply coordinate transformations of the tracked objects in the low
traffic sample. The output in Figure 11 is consistent with the conclusions of the statistical
analysis in Figures 9 and 10, which shows fairly smooth and consistent vehicle tracking
paths except around the edges of the image and at the areas of the parking lot furthest from
the camera, where the tracked vehicles are projected into the grass and not along proper
lanes of travel. Notably, the misprojected lines in Figure 11 are those furthest from the
camera, and also the ones with higher frequency of encountering occluded areas, leading
to more Kalman filter predictions used to estimate vehicle travel paths and increased error
in position transformation. Overall, the position transformation is quite well constrained
and representative of real world movement.

Figure 11. A visualization of the transformed coordinate accuracy output from the computer vision
pipeline combined with the results of the monoplotting registration. The low traffic patterns are
shown in red, and the high traffic patterns in blue. Note that as distance from the camera origin in
the top right increases, coordinate transformations become less stable. There are also some triangular
shapes present in the blue tracking lines which can be cross-referenced with Figures 8 and 9 to identify
the effects of lens imperfections.
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4.2. Object Detection and Tracking Results

Table 2 shows averaged results for detection and tracking performance across multiple
runs with different configuration parameters as defined in Section 3.1. These values are
averages of averages taken over the entirety of a sample for each set of parameterized
runs, categorized by the tracking method used. Notably, as the data generated by the
ground truth annotation method fills a similar role to the object tracking categories, during
analysis it is also parameter swept in a similar manner as described in Section 3.1, to
provide a baseline comparison to runs that use neural network detection and algorithmic
tracking. The logical annotation method works extremely well with region-constrained
motion triggering enabled, and the CPU based motion trigger run serves as the primary
ground truth reference for both samples and the following metrics. The detection rate
metric is calculated as the number of object detections which were executed on the sample
vs. the annotated data at the same frame and similar position, which can vary depending
on factors such as tracking methods needing to re-initialize or if duplicate detections occur.
The tracking stability metric is calculated as the number of frames for which tracking
methods maintain their lock on detected vehicles, relative to annotated vehicles in the
same frame and at a similar position on a scale of 0–1, 1 being perfect replication per frame.
Several sets of parameters pull the average tracking stability values down artificially low
across all runs, mostly due to a failure to re-capture lost vehicles. However, no single
parameter seems to contribute to this behavior equally for all tracking methods. To better
communicate the effects these poorly performing runs have on each metric, the minimum
and maximum metric ranges are included below their average category values in Table 2.

Table 2. This table displays the detection, tracking, and FPS performance of the ground truth and
sample runs performed with different tracking methods. Each column cell describes the average
performance and deviation of all parameter swept runs categorized by tracking method.

Sample 1 Ground Truth
Object Tracking Methods

Boosting Centroid KCF MedianFlow TLD
Detection Count 46.1 +/− 12.94 38.45 +/− 8.57 49.67 +/− 8.64 46.74 +/− 12.1 51.5 +/− 7.39 38 +/− 7.07
Tracking Stability 0.86 +/− 2.13 0.16 +/− 0.37 3.21 +/− 7.97 0.22 +/− 0.66 0.18 +/− 0.4 0.1 +/− 0.23
FPS 18.63 +/− 9.50 15.53 +/− 10.43 29.06 +/− 16.07 31.06 +/− 16.7 17.97 +/− 14.58 25.28 +/− 15.79
Sample 1 Min-Max Ground Truth Boosting Centroid KCF MedianFlow TLD
Detection Rate (%) 21.74–100 26.09–54.35 45.65–100 21.74–67.39 39.13–67.39 23.91–50
Tracking Stability 0.05–3.46 0.03–0.34 0.86–3.46 0.09–0.69 0.1–0.31 0.05–0.17
FPS 3–44.5 5.8–48.4 16.7–123 4–63.5 3–61.9 4.1–63.3

Sample 2 Ground Truth Boosting Centroid KCF MedianFlow TLD
Detection Count 4.15 +/− 4.08 6.84 +/− 6.29 7.67 +/− 15.14 3.56 +/− 1.12 3.62 +/− 0.75 2.86 +/− 0.79
Tracking Stability 0.04 +/− 0.30 0.06 +/− 0.31 0.12 +/− 0.62 0.02 +/− 0.13 0.03 +/− 0.21 0.01 +/− 0.09
FPS 23.3 +/− 10.23 20.65 +/− 8.66 25.63 +/− 15.64 22.24 +/− 6.51 22.33 +/− 6.81 20.97 +/− 6.96
Sample 2 Min-Max Ground Truth Boosting Centroid KCF MedianFlow TLD
Detection Rate (%) 0–100 1.5–7 0–100 2–6 2–5 2–5
Tracking Stability 0–1 0.01–0.09 0–1 0–0.03 0.01–0.1 0–0.05
FPS 4–42.5 4–27.9 4.6–104.4 4–30.1 4.1–29.7 4–29.8

The traffic patterns in the low traffic sample are atypical and interact with many
vertical occlusions, though they do remain successfully tracked with no broken traces,
shown as red paths in Figure 11. The blue paths in Figure 11 are more typical traffic paths.
In the low traffic sample there are a total of 46 annotated vehicles, which enter or exit the
parking lot mostly individually. There are rarely more than two or three actively tracked
vehicles at any given time in the first sample, though the traffic patterns are not typical of
the parking lot—lots of random idling and driving across transit rows and parking spaces.
In the high traffic sample there are a total of approximately 200 annotated vehicles which
are in motion, and many un-annotated vehicles not in motion.In the second sample, there
are at minimum six actively moving vehicles at any given time, usually at least ten, and the
parking lot is extremely full, resulting in fairly predictable traffic patterns. Some vehicles
may simultaneously enter and exit the scene through the same region of interest.
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4.3. Automated Occlusion Handling

The implementation of the computer vision pipeline follows a detect-then-track pattern
to reduce the overhead of frame processing where possible: detections are performed via
Darknet inference passes in small regions to obtain seed data used to initialize the tracking
algorithms. However, any partial occlusion of the vehicles in the video samples would
result in object tracking failing.

To improve the robustness of object tracking, it was necessary to identify occluding
regions to allow for logical branching within the computer vision pipeline when vehicles
encountered occluding image features, allowing less confident tracking results to be com-
bined with Kalman filtering and assistive object detection calls until objects were no longer
occluded or stopped moving. Rather than identify occluding features by hand, it is possible
to use the procedure explained in Section 3.3. Figure 6 outlines how cross referenced pairs
of mostly vertical lines extracted from a Hough transform of the perspective image can
be combined with ground locations and elevation values from the DSM accompanying
the orthomosaic, using monoplotting to estimate bounding boxes for areas of occlusion
automatically. The occlusion regions Figure 6 are substantially buffered for visualization
purposes. Of 12 potentially occluding image features (trees and light posts) in the perspec-
tive video, 9 features could be successfully detected using this method reliably, The method
does appear sensitive to confidence in detecting concentrations of dense elevation spikes
on the DSM, as certain trees are not determined to be vertically occluding due to missing or
underestimated elevation values on the DSM. The quality of automated occlusion detection
is as good as it is largely in part to the relatively high ground sample resolution and success-
ful derivation of accurate elevations upon it. In cases where data is less accurate in either
horizontal or vertical resolution, elevations and resultant transformations of occluding
areas could render the results of this extraction process unusable.

4.4. Automated Registration Results via Monoplotting

The results of this process are arranged by sequentially keypointing the low traffic
video sample frames and matching them to the UAS orthomosaic then applying the same
iterative adjustment defined in Section 3.2 to compute an image registration, from which
the video camera pose is derived. The methods tested are SIFT [26], SURF [25], ORB [21],
AKAZE [70], BRISK [71] and an affine version of each (ASIFT, ASURF, AORB, ABRISK,
AAKAZE) [35,36]. When referring to a keypointing method in this section, the reference
refers to the collection of results recorded using the specific method (e.g., the SIFT method
results refers to the perspective video frames and UAS orthomosaic which have been
keypointed using the method, and the results of the keypoint matching for each frame to
the orthomosaic).

There are two sets of passes performed with each method, as described in Section 3.4,
one where the video frame was keypointed in it’s entirety, referred to as raw, and the
other where the keypointing process used the region of interest defined in Section 3.3 as
a mask to isolate keypoints to the relevant ROI, referred to as masked. Figure 12 shows
the masked video frames with affine keypointing methods applied to them would suggest
clear improvements to acquiring matches and effective inliers between video frames and
the orthomosaic for computing image registrations.
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Figure 12. The average, standard deviation, and outliers of the number of keypoint matches and
inliers computed across the entire sample, arranged by method and dataset.

However, when computing the camera pose solution from keypoint matches per
frame, the distribution of poses computed across all 6646 frames of Sample 1 varies far
more widely than expected from the ground truth position and the position estimated in
Section 4.1. The estimated position of the camera from using manually annotated point pairs
in the single image monoplotting process is visualized in Figure 13, measured at 1.14 m
distance away from the ground truth position using a total station. Figure 13 visualizes the
distribution of the camera position estimation results across all methods, categorized by
dataset, with multiple inset sections to highlight the extreme range which camera pose
estimations covered, as well as the sparse number of results that even come close to the
correct result. Figure 14 quantifies the standard deviation of camera position estimation
in two dimensions, categorized by the dataset type and the keypointing method applied,
which shows several interesting trends and patterns present in each method. A single
position estimation, out of 119,628 total estimations across all permutations of methods and
constraints, was within one meter of the ground truth position. Two additional estimations
were within two meters of the ground truth position, and a dozen total estimations fall
within the five meter range. All most nearby position estimations were oriented correctly,
while position estimations farther away were oriented opposite.
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Figure 13. Categorization of pose estimation positions linked to raster pixels, shown as positions
computed for the raw and masked version of the sample for all methods. The main map focuses
on the data collection area, the orange inset focuses on the study area, and the purple inset focuses
specifically on the area where the camera is present.

Interestingly, ORB-based keypoint detection and matching methods were the most
consistently selective about what they would identify as keypoints, but also detected the
fewest keypoints of any method, which greatly reduced the number of matches made and
thus the number of inliers computed to extremely low values as shown in Figure 12. Results
suggest that its performance would be below average in this application. This is confirmed
in Figure 14, which shows that the deviation of ORB pose estimations focuses around the
northern corner of the study area, clearly in error. Henceforth, any generalized statements
can be considered to be ignoring any ORB-based results.

Figure 14 also shows that the standard versions of the SIFT, SURF, and BRISK methods
applied to the raw dataset were the least consistent at approaching a single solution, even an
incorrect one. The affine versions of the same methods on the raw dataset were considerably
more consistent, generally covering approximately half as much area in terms of deviation.
Both standard and affine methods applied to the masked dataset were at least equivalent if
not a slight improvement in consistency over the raw affine processing. Slight variances
in total numbers of frames are due to failures to find enough inlier matches to compute
a pose.
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Figure 14. The standard deviations of position estimations in 2D, categorized by dataset and key-
point method.

It is of note that this is an extremely challenging scene to register correctly with
unmodified keypointing algorithms alone, as there are multiple kinds of repeated features
and otherwise largely featureless areas, with an extreme pose transition between the two
views. Because of these factors, results of attempts to automate monoplotting without
modification of keypoint matching logic, are considerably less than ideal. Of the 119,628
pose estimations performed across all methods and constraints, 12,160 (10.2%) of the pose
estimations did not fall within the bounds of the data collection area, let alone the study
area, which only contained 36,646 (30.6%) pose estimations, leaving 70,822 (59.2%) pose
estimations within the data collection area but outside the study area. Furthermore, the vast
majority of the estimations within the data collection area focus upon solutions which trend
towards either the north-western corner of the data collection area, or the south-western
corner of the study area, as shown by the ellipses of standard deviation computed in
Figure 14.

In the ideal case, there would be discussion of how far to either side of the camera ori-
gin computed position solutions ended up deviating as a statistical distribution. However,
as the majority of computed position solutions ended up nowhere close to the perspective
camera ground truth position on the UAS orthomosaic, it is more effective to visualize
this phenomenon as a histogram. Distances from the camera origin are calculated by 3D
vector subtraction relative to the ground truth position, categorized by method, shown in
Figure 15 as a percentage of frames within a given distance from the ground truth position.
In the ideal case, Figure 15 would have a strong leftward skew for all methods, falling
off quickly as distance from the perspective camera origin increases. Clearly, Figure 15
does not illustrate anything remotely close to the ideal case: SIFT, SURF, and their affine
counterparts generally performed the best, with the strongest leftward skews indicating
a closer general proximity to the ground truth position, but that in itself is an extremely
generous statement given that less than 20% of the frames processed resolved to a pose
within 100 m.



Remote Sens. 2022, 14, 5451 21 of 28

Figure 15. A histogram of distances to ground truth pose computed across the sample. Note that
an intentional axis break exists between 40 and 80% to clarify the distribution of lower percentages
while still visualizing the outliers.

Rather than truly being inaccurate, the concentrations of computed positions shown
in Figures 13 and 14 potentially suggest that the 2D–3D solution for pose computation is
preferring one of three degenerate solutions reflected over the center point of the perspective
image projected into 3D space. Inspection into the computation process confirms that in
nearly every case, a position close to the ground truth position was available, but for an
indeterminate reason a degenerate result reflected across a plane similar in orientation
to the camera plane but located at the ground position of the perspective view’s central
pixel in 3D space was preferable, thus the results are presented as they were calculated.
Our current theory is that this is an effect of attempting to reconcile the high transition tilt
between the perspective and aerial views with some degree of keypoints matched in error,
causing pose solutions to trend towards a minimum other than the desired target.

5. Discussion

The computer vision pipeline was successfully deployed, after some enhancement,
and meeting certain conditions. Prior to implementing the automatic vertical occlusion
detection so that more robust tracking logic could be implemented, the ability to track
vehicles throughout the scene until they actually exited the camera view was almost
zero percent in both video samples. Having an effective registration from monoplotting
becomes paramount for accurately estimating the parameters of potentially occluded
image areas effectively, as shown in Figure 6. Object detection results from the custom
trained neural network were generally quite consistent compared to the hand-crafted
annotation method, though it was common for automated methods to have multiple partial
detections compared to a singular ground truth detection. However, this was largely
due to the choice of tracking method which would affect the capacity for multiple object
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detections of vehicles navigating in regions of egress. There were several combinations of
computer vision pipeline parameters that could run at or above input camera frame rate. A
combination of detecting objects using Darknet and tracking on detected object centroids
was a 1:1 match to ground truth in the low traffic sample. Multiple region constrained
tracking algorithms also often achieved tracking stability within a deviation of 10% of the
ground truth in the low traffic sample. However, high traffic scenes such as the second
sample are likely to need more robust and generally fit models for vehicle detection, and
tracking methods which are more resilient to spurious similar features.

The custom trained Darknet model developed for this application was only slightly
faster than the full model, but rides the limit of being over-fit, likely due to limited training
data and low spatial distribution of target classes in that limited training data. Additionally,
a side effect of the tested tracking methods retaining their lock on vehicles in regions of
egress could severely hamper detection of additional vehicles, due to close proximity of
additional vehicle features and previously detected but dissimilar objects. Overall, the
computer-vision pipeline could be rated as effective for the needs of relatively low traffic
areas, or in regions with smaller scopes and moderate amounts of traffic. For larger scopes,
such as the study area and a high amount of traffic, more robust methods are required to
avoid issues with tracking stability in particular.

Figure 7 shows that an increasing number of points used for monoplotting does not
necessarily provide registrations of increasing accuracy. Each successive combination of
points used appears to narrow the focus of monoplotting solution in sub-meter increments,
but also increases misalignment around the edges of the image. Camera calibration can
temporarily correct these distortions until it changes enough to cause inaccuracy, however
even the uncalibrated images appear to align well enough to provide workable coordinate
transformations. Even a minimal five point registration appears to provide workable
coordinate transformation accuracy against the given DSM, shown in red on Figure 7.
The following discussion refers to the most accurate registration computed out of the test
in Section 3.2, which is shown in the top purple layer of Figure 7. Monoplotting with
a single image reference and manually selected points (without including the ground
truth survey location as initial adjustment parameters) produced a relatively close pose
estimation as shown in Figure 13; 1.14 m away from the ground truth location of the camera
at a similar elevation. The accuracy of the single image registration was also remarkably
good, demonstrating accurate and precise transformation from the perspective view onto
the aerial orthomosaic throughout 70% of the visible parking lot regardless of vehicle
orientation, and 99% of the visible lot could be accurately transformed if a vehicle was
presented along its longest axis. Figure 2 shows that the vast majority of the travel area
shown in perspective video, especially as distance from the camera origin increases, would
have vehicles presented along their long axis, which could be transformed accurately across
almost the entire parking lot. Typical travel paths for vehicles within the parking lot are at
least oblique in their presentation, meaning that there are few regions where vehicles are
actually presented on their short axis and in areas of the image with uncertainty greater
than the axis dimensions. There is little overhead calculating coordinate transformations
once the monoplotting solution is solved, making the coordinate transformations of vehicle
locations captured in perspective video onto the UAS orthomosaic image as fast as the
computer vision pipeline can run. Of note, an artifact of this arrangement of monoplotting
and object detection means that the transformed coordinates of vehicles are derived from
rays projected from the camera origin through the centroids of the detection boxes to the
ground plane. Transformed positioning error introduced through this effect is independent
of image registration error and thus can compound with it; however, in practice, it is only
at the furthest locations in the image away from the camera origin that this starts to become
a non-negligible effect.

Unfortunately, the automated monoplotting process appears to be particularly sen-
sitive to mismatched keypoints, even using an iterative adjustment approach which can
drop points to reduce errors. In an effort to reduce keypoint mismatches and improve
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pose accuracy, we tested five of the most popular keypointing methods, as well as their
affine implementations using Yu et al. and Morel et al. general process [35,36]. Addition-
ally, we tested the difference in results for all methods when sharing the constraint of a
manually defined ground plane from Section 3.3 used as a keypoint matching mask, the
effects of which are shown in Figures 12–14. Of the 119,628 pose estimations produced
from all methods tested, with and without the masking constraint, a single frame from the
Masked ABRISK run computed what we would consider a good result for pose estimation,
a sub-meter accuracy solution. However, that solution was an outlier for that particular
combination of data and method type, and so not indicative of any particular suitability to
the task. This extremely limited degree of success in acquiring even remotely accurate pose
estimations from uninitialized positions was unexpected.

Although the single successful result indicates it is possible for the process to work,
there is a compound chain of three effects theorized to be the primary source of error
observed in pose estimation. First, while the number of mismatched keypoints was usually
a small fraction of the total keypoints computed for an image, keypoint descriptors with
unstable and/or incorrect matching behavior were rather uniformly interspersed with
correct matches in each video frame. Because keypoints were computed for the aerial
image once, without a specific focus or constraint on the parking lot area of interest by
intentional design, common features could mismatch to features outside the study area.
While we observed that roughly one keypoint per thousand would mismatch outside the
study area bounds for the perspective imagery, leading to single digit counts of egregious
mismatches for normal keypointing and double digit counts for affine keypointing, this
did not occur commonly enough to cause concern in initial testing, especially as these were
only a few mismatches to remain after RANSAC eliminated most of the more extreme
outliers. However, these keypoint mismatches were often positioned well away from the
edges of the working area. In this case study’s particular perspective to aerial viewpoint
configuration, it is possible the iterative adjustment would first drop keypoints near the
edges of the image for error correction, as shown in Figure 5, which would lend the most
egregious mismatches more weight during adjustment.

Second, during the initial adjustment computation keypoints which could be dropped
for error minimization were far more likely to be weak correct matches that contributed
little to the final solution than actual mismatches due to sheer volume. Thus, any retained
mismatches would contribute additional weight to the final solution with subsequent
iterations unless they were promptly also dropped. Thirdly, inaccurate Z-values that
would be retrieved from the DSM due to keypoint mismatching can also skew adjustment
results. All these effects in combination can cause the iterative adjustment to pivot early
into an incorrect local minimum with little chance of recovering a correct solution. While
confidence in the DSM ground plane accuracy would suggest low if any error contribution
to the monoplotting process from the DSM itself, that only applies if features are matched
to areas that are part of the ground plane correctly.

In effect, even a moderate to low degree of mismatching within the study bounds due
to the repetitive features can cause the initial pose estimation of the iterative adjustment
performed by the automated monoplotting process to be closer to a degenerate solution
than a correct one, particularly if there are mismatches retained to features outside of the
study area. Successive iterations would further degrade the proximity of the final result to
its expected location as the adjustment drops points which would strengthen the actual
solution in pursuit of a degenerate one, until all that remains is a mess of coordinates that
have no real resolution or that actually resolve on a degenerate solution. This is somewhat
visible in Figure 13 as the masked frame keypoints trend towards a degenerate solution,
localized around the center of an “X” shape, while the unmasked keypoints mostly cluster
around the area in a cloud without a definite shape.
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6. Conclusions

Of the three contributions outlined in Section 1, it was possible to demonstrate a
computer vision pipeline which would function in an accurate way for detecting vehicles as
they entered or exited the study area. Without the enhancement of the occlusion detection
and handling made possible by integration of the products necessary for monoplotting
from the second contribution, it could still function as a serviceable application for moni-
toring/counting vehicle egress in the parking lot. However, tracking vehicles while they
traverse the broader scope of an area would only be feasible with an unobstructed view
of that area. In terms of vehicle detection abilities, the custom trained network performed
as well as the fully trained model with a minimal improvement to processing time, and
detected the vast majority of vehicles passing through ingress and egress zones. Notably,
any object detection network with the appropriate categories could be swapped out for
the Darknet models applied in this study. In terms of vehicle tracking, the KCF and TLD
methods were the most effective at discrete vehicle tracking. Although the centroid track-
ing method was generally faster than either, it struggled with keeping vehicles discretely
tracked and jumped from one vehicle to another frequently. Ultimately, combining the data
annotation method with the object detection and tracking methods could yield extremely
effective motion-based tracking results, with a validation layer provided by Darknet and a
tracking method of choice for a minimal performance impact in combination with a static
camera configuration.

The second contribution was able to extend the computer vision pipeline by making
it possible to track vehicles which could become partially occluded by vertical structures.
The tested object tracking algorithms were quite effective under simple conditions, but
the practical constraints of occlusions demonstrated how delicate some trackers were
to occluded subjects, requiring the implementation of occlusion detection. Occlusion
regions around mostly-vertical features could be automatically extracted and converted
into polygonal regions in the perspective view using the monoplotted relationship between
the perspective and UAS orthomosaic images, instead of a relatively expensive viewshed
computation on the DSM. This was deemed more effective as there was the expectation that
the position of the occluding regions would have to be updated frequently if the perspective
video origin was manipulated.

The third contribution explored the results of a best case scenario: just how accurate
coordinate transformation monoplotting could be without being able to calibrate the
perspective camera geometry. This was determined using a single video frame and a
semi-automatic process to assist manual identification and pairing of keypoints between
the perspective video and UAS orthomosaic. By separating the manually identified points
into multiple recursively growing sets, it was possible to determine that while some
transformation variation occurred, overall the results did not vary much between the
smallest and largest collections of points used to compute the image registration. In theory,
so long as the minimum number of points required were matched correctly, the iteration
adjustment of the monoplotting process would lock in on a reasonably good solution. The
best case image registration demonstrated that it was possible to accurately transform
vehicles visible on their long axis through 99.6% of the study area, and through 70.5% of
the study area along their short axis. Only a very small percentage of the visible study area
would actually be unusable in terms of coordinate transformations, and it was concentrated
in very small sections, in which entire vehicles would just barely fit. Overall, coordinate
transformation accuracy would be more than accurate enough for tracking vehicle travel
with a reasonably high degree of confidence.

The experiment which explored full automation of the monoplotting process from
an uninitialized starting location demonstrated that while it is theoretically possible to
accomplish (a single high accuracy pose estimation was computed out of 119,628 tested
frames), the stability of the solution can vary widely based on the keypointing method used
and the opportunity to apply feature masks. This ultimately is a failure, though one that
provides insights into the causes of solution instability and a foundation for continuation
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of future work. Results showed that if a minimum number of correct matches were made,
the iterative adjustment would be able to home in on a pose solution; however, the degree
to which mismatching could occur in the full video samples and the impact of the effects
of mismatched keypoints on the fidelity of the solution was underestimated. Specifically,
there was a combination of effects that had strong negative impacts on the automated
monoplotting adjustment. When mismatched points have stronger responses than correctly
matched keypoints, the spatial range of some mismatched points extends far beyond the
typical range of the target domain, and mismatched keypoints are retained early in the
iterative adjustment. This can cause multiple mismatched points to match to a single point,
which forces all keypoint matches to be dropped from consideration, including possibly
correct keypoint matches; or correct keypoint matches may be dropped during adjustment
in favor of mismatches. The iterative adjustment performed by the monoplotting process
should be able to drop some incorrectly matched points as low accuracy, but if enough
mismatches are consistent, then the iterative adjustment will trend towards a degenerate
solution, away from what would be the closest correct pose estimation. Compounded with
a challenging scene containing frequently repeated image features, partially deformable
subjects (palm tree fronds that change with the wind), and the presence of a high degree of
transition tilt between the perspective view and aerial orthomosaic, the extremely limited
degree of success in acquiring even remotely accurate pose estimations, and by extent
usable image registrations, suggests that descriptor matching methods alone lack the
necessary context to consistently leverage the available information to determine accurate
relative pose without masking both aerial and perspective image views.

Future work on this application could touch on several areas of study. If a reliable
solution for automating monoplotting can be achieved, then the framework should be able
to support integration of multiple cameras over a much larger area, such as the full campus
survey. There have been a number of advances in neural network object tracking tasks
which could potentially be drop-in replacements for the algorithmic object trackers used
in this paper that are more resilient to object occlusion, as well as improvements to object
detection networks. This could potentially allow elimination of the automated occlusion
process within the VirtuaLot framework.

Current focus is directed towards developing a fast keypoint matching method which
retains a degree of spatial context awareness through methods similar to the work of
Zhao et al. [74], though this presents its own challenges. Such context awareness could also
be achieved by applying a convolutional neural network across the entirety of perspective
video frames to identify areas which have a high probability of containing deformable image
features, and excluding those features from the keypoint matching process, in combination
with logical checks to ensure that keypoints are matched in a logically consistent orientation
between image spaces. In conjunction with increased keypoint density from fully affine
keypoint processing, better results from matching methods could potentially enable the
composition of multiple partial image registrations to improve coordinate transformation
accuracy, somewhat similar to Produit [41]. Alternatively, the application of linear features
similar to Boerner [4] could be integrated with, or replace, keypoints through collinear
feature recognition to provide better parameters for computing the pose of a terrestrial
video camera using nadir perspective aerial imagery. Ultimately, the VirtuaLot framework
could potentially serve as a foundation which could provide the data necessary to power
frameworks similar to [75].
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