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Active matter defines a class of far-away-from-equilibrium systems comprising self-driven micro-
particles. Their anomalous physical properties could be applied in areas such as mixing or separation,
micro-pumps, and self-healing materials. To realize such applications, a thorough understanding of
the physical mechanisms as well as the development of methods to manipulate various active systems
are required. Using a coarse-grained active liquid crystal model, we designed and investigated a single
self-driven droplet which encapsulated a dense suspension comprising non-motile but mobile active
particles that generate extensile stresses. We showed that such droplets can be driven into motion
and can have tunable mobilities owing to their internal collective motion, which is characterized
by induced active flows and motile disclination defects. Furthermore, it was illustrated that the
interplay among the internal directional flows, liquid crystalline structures, droplet size, and surface
tension resulted in different types of locomotion and rotation.

Active matter systems are far-from-equilibrium sys-
tems comprising biological or synthetic microstructures
that convert energy from the local environment to me-
chanical work [I]. In these systems, particle motions ef-
fectively exert active stresses upon the ambient liquid,
which itself acts as a coupling medium for complex dy-
namics as multi-particle interactions within the solvent
can manifest themselves as large-scale dynamics at the
macroscale [2HB]. To take complete advantage of the
anomalous properties of active matter (e.g., large-scale
induced motion, enhanced diffusion, and energy con-
version), it is essential to design biomimetic materials
powered by collective motions. For example, fascinating
synthetic bio-active fluids arise when dense suspensions
of microtubules (MTs) are inter-connected by walking
molecular motors to form active polymer networks [7H9].
It has been found that the sliding MTs are hydrodynam-
ically unstable as they effectively exert extensile dipo-
lar stresses upon the liquid, and will thus induce active
flows to bend the aligned structures, leading to an active
liquid-crystalline phase with motile disclination defects
[I0HI3]. Such hydrodynamic coupling of the nematic-
bending deformations with the generation of jet-like ac-
tive flows is considerably robust, and has been identified
as the “power source” of complex active nematic flows.

To effectively control the collective dynamics in vari-
ous internally-driven systems, it is critical to manipulate
the emergent coherent structures. One way of doing this
is to tune the suspension concentration and the amount
of chemical fuels [7, T4HI6]. Alternatively, we can take
advantage of the particle interactions, either individually
or collectively, with obstacles and geometric boundaries
to manipulate the system more directly. By trapping
active suspensions (such as Pusher swimmers or Quincke
rollers) within the straight and curved boundaries, stable
flow patterns, such as unidirectional circulations, travel-

ing waves, density shocks, and rotating vortices, have
already been constructed [I7H23]. More interestingly, ac-
tive polar gels under soft confinement by surface tension
are able to generate internal flows to break symmetry
and drive the whole-body movement [24H26].

In this Letter we construct a coarse-grained liquid crys-
tal model to study how active nematics interact with a
deformable interface by encapsulating a concentrated ac-
tive suspension in a droplet. We show that the interplay
between the internal active nematic flows and soft con-
finement due to surface tension can generate rich drop
translation and rotation dynamics. To begin with, we
consider rod-like microparticles that elongate through
nearly symmetric stretching or growth, such as MT bun-
dles undergoing polarity sorting [7, 9]. The ensemble
dynamics can be described through a probability distri-
bution function ¥ (x, p,t) that satisfies a Smoluchowski
equation [12 17, 27, 28] 2L + V - (x¥) + V,, - (p¥) = 0,
where x and p (|p| = 1) represent the rod’s center-of-
mass (c.o.m.) position and orientation, respectively; V
is a spatial derivative and V,, = (I — pp) - 9/0p is a sur-
face derivative on the unit sphere. We further assume
that the microparticles are non-motile and only advected
by fluid flow, which is described by the translational flux:
%X =u—drVInV, where u is the induced local fluid ve-
locity and dr is the translational diffusion coefficient. In
the meantime, these slender particles rotate due to the
fluid velocity gradient Vu and the enhanced steric inter-
actions at a finite concentration which can be incorpo-
rated into the model by introducing a local mean-field
alignment torque resultant from a Maier-Saupe steric
potential [12] 13, 30l BI]. Then we extend the classi-
cal Jeffery’s orbit [29] and define the rotational flux as:
p=(I-pp)(Vu+2(D) p—drV,In ¥, where the coef-
ficients di and ( respectively characterize the rotational
diffusion and the mean-field torque strength. Instead of



solving the Smoluchowski equation directly, we took mo-
ment average [27] to derive a coarse-grained equation for
the second moment-tensor D = fp ppY¥dp, which is given
by:

]V)+2E:S:4§(D-D—D:S)-I—dTAD—4dR(D—%) (1)
v

where D = %—? +u-VD — (Vu~D+D'VuT) is an
upper-convected time derivative, E = (Vu + Vu®)/2
is the rate-of-strain tensor. The fourth-moment tensor
S = fp pPrpPpPYpdp is expressed in terms of D through
the so-called Bingham closure by employing an axisym-
metric distribution function ¥z which arises naturally as
describing nematically-ordered steady states due to the
balance between the rotational diffusion and the Maier-
Saupe alignment torque in the kinetic model [34] [35].
Note that while these active particles cannot self-swim,
their elongation or stretching motions effectively exert
dipolar stresses upon the liquid, which may eventually
lead to large-scale collective dynamics through the basic
transitions and instabilities associated with motile sus-
pensions [34].

Next, we consider such a concentrated active suspen-
sion being encapsulated in a 2D droplet that is immersed
in a Newtonian liquid. The velocity field u of the entire
domain is assumed to be incompressible (i.e., V- u = 0)
and can be solved by a forced Stokes equation:

Vp — Viu = %vw V- (cD). (2)

The first forcing term on the right-hand-side is related
to the surface tension (with coefficient o). Here we em-
ployed a diffuse interface approach to treat the sharp
fluid/fluid interface as continuous variations of a phase
function ¢ (0 < ¢ < 1). Then the phase segregation of the
two immiscible fluids can be described by a smooth but
narrow transition of ¢ across the interface with a small
thickness of order e, following a standard Cahn-Hilliard
model:

g +u-Ve=d.V?yu, (3)
ot

where d. is known as a mobility coefficient and py =
¢(c—1) (¢ — 1)—€?V2cis a chemical potential that guar-
antees a smooth variation of ¢ within the interfacial re-
gion [36, B7]. The second forcing term drives the inter-
nal collective dynamics, due to the extra particle stress
which is obtained as a configurational average of the force
dipoles exerted by the particles on the fluid, and takes
the form ¥ =aD + S : E—-2(s(D-D —S: D). Here
the three terms arise from a permanent dipole due to
the extensile stretching motion with the strength coeffi-
cient @ < 0, resistance to the local flow due to particle
rigidity (8 is a shape factor), and steric interactions, re-
spectively. The reader is referred to more details on the
kinetic model, coarse-graining through Bingham closure,

FIG. 1: Sequential snapshots of the dynamics of a Propeller
droplet. (a)-(c): the nematic director field superposed on the
colormap of the scalar order parameter 0 < s(x,t) < 1(s is
twice the principal eigenvalue of Q = D —I/2). The dashed
line in the lower left corner represents the averaged propelling
direction, while the arrow indicates the instantaneous moving
direction of the +1/2 defect. (d)-(f): the background fluid
velocity vector field superposed upon the colormap of the as-
sociated vorticity. (g)-(i): the body-force vector field (i.e.,
f = V- (cX)), superposed on its magnitude. The arrows in
(h) and (i) represents the contraction directions. The param-
eters are chosen as o = —2.0, R = 1.25, 0 = 3.0, 8 = 0.874,
¢ =05, dr = dr = d. = 0.05.

normalization, and parameter choice in the supplemen-
tary material [35].

Assuming that the droplet is initially circular with a
radius R and carries a suspension that is approximately
uniformly isotropic, then we solve the governing equa-
tions — in a periodic square domain by using a
pseudo-spectral method over long time periods [35]. As
shown in Fig. [1| after the initial transient, we captured
a quasi-steady self-propelling motion during which the
droplet performed swimming strokes as its body period-
ically wiggles; see movie S1. We refer to this motion as
a “Propeller” mode, which is different from the steady-
state translation of a mobile cell driven by internal active
flows [25] [26], and is instead somewhat reminiscent of the
undulating swimming of nematodes [38].

Periodic genesis and continual propagation of +1/2
disclination defects were observed during the propelling
motion, as highlighted in Fig. In panel(a), the ne-
matic field shows that a pair of +1/2 defects, once born,
separate from each other along an incipient crack. The
—1/2 defect quickly vanishes near the interface, while
the +1/2 defect keeps moving forward. Panel(b) shows



0.6

27 /

7] h; 1=t /\

5 0.56 26 & 2

5o0.

= £

5 = \ A

= il .

$o.52 258 7

E ——| 0 |'<— ﬁ & t = tl
—— Mean order

———- Total entro
0.48 - \ \ Py L

0 20 40 60 80

1
]
FS
o,
.
.
o
- =

FIG. 2: On the left: mean order and total entropy as a func-
tion of time during a propelling motion. On the right: ne-
matic director field superposed on the colormap of entropy
density. The green dotted line represents the c.o.m. trajec-
tory.

that the droplet migrates in the direction of defect mo-
tion (marked by the arrow) and elongates into an elliptic
shape with a global alignment approximately along the
long axis. In the meantime, the body is slightly bent to-
wards the upper right corner (highlighted by the “back-
bone” marked by a dashed line), which naturally selects
the direction of the bending deformation for the next
stroke, as marked by the arrow in panel(c). The velocity-
vorticity maps in Fig. [[{d)-(f) exhibit an evolution of
the internal flow pattern during one stroke. A fluid jet
is developed to bend the nematic field lines, “carrying”
the propagating +1/2 defect with two rolling vortices of
opposite signs. The vorticity field is strengthened and
weakened through the various stages of the strokes, with
the jet direction switching periodically as the Propeller
wiggles.

The body force (f = V - (¢X))) distribution in
Figs. [I(g)-(i) clearly shows that a net force generation
is associated with the motile +1/2 defect [12] [I3]. More-
over, the confinement effect manifests itself by the gen-
eration of a surface tension force across the interface as
the droplet bottom contracts (panel(h)), followed shortly
thereafter by contractions of both ends of the droplet
(panel(i)). Such internal force generation and the ac-
companying material deformation typically suggest an
elastic behavior of the ordered fluid, which can be eas-
ily seen in the limit where all the rod-like particles are
perfectly aligned. When also neglecting diffusion, the
active stress X, = aD follows the evolution equation:

v
3. +% (3, : E)X, =0 [35]. Compared with simple neo-

Hookean elasticity [39, [40] (i.e., zv) = 0) where the elastic
stress can be infinite, the second term here suggests that
the nematic elasticity is modulated by flow via a con-
straint stress due to particle rigidity, which effectively
bounds the active stress.

Next, we quantified the internal structure varia-
tions and correlate them with the propelling motion.
We first define the local entropy density f(x,t) =
fp 2 log (2mpp) dp by making use of a reconstructed

FIG. 3: Active nematic states in relatively large droplets. (a)
and (b) show the Rotor’s (R = 2.0 and o = 10.0) nematic and
flow fields, respectively. The angle 0 in (a) represents the ori-
entation of the long axis; the dashed line in (b) approximates
the velocity profile. (¢) The nematic field of a considerably
larger droplet that encapsulates multiple defects (R = 4.0
and o = 5.0). (d) The nematic field of slender (R = 1.0 and
o = 0.5) and thick (inset; R = 1.0 and o = 0.8) droplets at
equilibrium without internal flows. The dashed lines repre-
sent the change in shape. The other parameters are chosen
as o = —2.0, { = 0.5, dgp = dr = d. = 0.05.

distribution function ¢ through Bingham closure [34]
[35], which, as shown on the right in Fig. [2| characterizes
the high- and low-order regimes well. Then, the total
system entropy can be defined as F (t) = [, f (x,t)dV,
which fluctuates periodically and varies in phase with
the mean order S (t) = 1/V [, s(x,t)dS. In this case,
the stroke period was measured to be Ty ~ 15.0 dur-
ing which the +1/2 defect approximately travels end-to-
end through the droplet’s long axis of length 3.0; while
the droplet c.o.m. position moves a distance of about
1.0. Hence we estimate the +1/2 defect moves about 34
times faster than the Propeller.

Over a wide range of parameters (see an example
of phase diagram in Fig. S3 [35]), similar Propeller
modes are observed in a narrow regime for relatively
small droplets. As the droplet size increases, the internal
dynamics quickly switch to become circulatory without
generating significant amounts of translation, especially
when the interface is less deformable (i.e., with large o).
The motion shown in Figs. [Bfa) and (b) is referred to
as a “Rotor” mode (see movie S2). A pair of +1/2 de-
fects quickly form as the system deviates from its initial
isotropic state (panel(a)) and then settles into a quasi-
steady rotating motion with a circulating flow (panel(b)),
which is very similar to the rotating flow confined in a
rigid circular disk [I°7, 19, B4, 41]. As R increases further,



multiple +1/2 defects are generated, and stream inside
the droplet, leading to seemingly chaotic internal flows
shown in panel(c), as well as random drop movement
(see movie S3).

The observed collective motion under soft confinement
can be further understood by examining a concatenation
of two instabilities (see snapshots in Fig. S4 [35]). Start-
ing from near isotropy, the system spontaneously evolves
toward a nematic state. This can be approximately un-
derstood by performing a linear stability analysis for an
unbounded suspension from which we obtain a maximum
growth rate for a long-wave instability at k = 0 according
t0 Apaz = 42’8[3;2; + (¢ —4dg [35]. Note that the isotropic-
nematic (I-N) transition is independent of hydrodynam-
ics, and instead due to the inclusion of steric interactions
via the Maier-Saupe potential which permits an aligned
base-state solution as a balance between the steric align-
ment torque and rotational diffusion [35]. In 2D, the
transition is characterized by a supercritical pitchfork bi-
furcation occurring at ¢ > 4dg [12] B1].

Immediately after the I-N transition, a bending insta-
bility develops from the nematic state [12]. The complex
dynamics will then be determined by the interplay be-
tween the induced (destabilizing) flow and the (stabiliz-
ing) surface tension force. It appears that the droplet
must be larger than some emergent nematic structures,
such as the +1/2 defects and incipient cracks (see the-
oretical predictions from linear analyses as well as com-
parisons with numerical simulations in Figs. S5 and S6
[35], respectively) to facilitate the generation of internal
nematic flows. Nevertheless, the length scale selection
is far more complex when the surface tension coefficient
is small, which allows for considerably large droplet de-
formation or even breakup. As illustrated in Fig. d),
when choosing R = 1.0 and ¢ = 0.5, while being aligned
and extending in the x direction, the droplet eventually
reaches an equilibrium rod-like shape as the horizontal
extension is balanced by the surface tension force at the
droplet’s two ends. In the meantime, the resultant con-
traction in the y direction effectively suppresses the insta-
bility development. Thus in the regimes with relatively
small o, we can tune the other parameters to construct
various stationary shapes without internal flow genera-
tion; see Fig. [3(d).

Lastly, we highlight the distinctive features of vari-
ous modes of droplet motion. As shown in Fig. [i(a),
we tracked the c.o.m. trajectories for three typical pro-
pelling motions. In this figure, the droplet with a high
mobility (red line) has a moderate size and surface ten-
sion coefficient. This is because the interfacial elasticity
facilitates droplet elongation to comply with the moving
jet so that it can travel further during each stroke, leading
to an increased amount of translation. Curiously, a Pro-
peller may sometimes “tumble” by making turns (e.g.,
turning points 77 and T5, see movie S4) after traversing
a long distance. It is important to keep in mind that
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FIG. 4: (a) Typical c.o.m. trajectories of the self-propelling
and rotating droplets. The red line corresponds to the case
in Fig. [I] with ¢ = 3.0 and R = 1.25; the blue and green
lines represent the cases with a stronger surface tension (o =
5.0 and R = 1.25) and larger size (¢ = 2.0 and R = 1.5),
respectively. Top left inset: the backbone position suggests
bending in the opposite direction (red solid line) compared
with the regular bending (grey dashed line). Top right inset:
an enlarged view of the c.o.m. trajectory. (b) MSD. Inset: the
Rotor’s orientation angle suggests a tumbling motion. The
other parameters are chosen as a« = —2.0, ( = 0.5, drp =
dr = d. = 0.05.

a stable propelling motion requires a synchronization of
the structure variation, the internal flow development,
and the interactions of active nematics and surface ten-
sion. The combined effect yields a regular bias in the
bending direction during each stroke (see Figs[Ifa)-(c)).
As illustrated in the top-left inset of Fig. [{[a), a certain
degree of mismatch of the internal dynamics near T} or
Ty in fact causes the body to bend and then buckle in
the “opposite” direction (marked by the red backbone),
which effectively flips the c.o.m. trajectory thereafter.

The shape of the Propeller with the higher surface ten-
sion (blue line) appears to be more rounded, which means
that the jet has a shorter distance to travel; this also re-
duces control over the swimming direction (for more de-
tails, see Fig. S8[35]). It also takes much longer for such
a Propeller to settle into a stable stroking motion since
irregular turns occur frequently. To examine the propul-
sive efficiency of the Propellers, we projected their c.o.m.
trajectory onto the transverse and the swimming direc-
tions whose ratio yields a Strouhal number St. Indeed,
the first Propeller (red line) was more efficient at swim-
ming; it had a lower estimated St value of 0.43 compared
with 0.67 for the second one (blue line). In addition,
when the droplet is relatively large in size (green line),
two +1/2 defects may occur simultaneously to drive com-
plex internal dynamics, and can even cause a switch from
propelling to rotating motion (see movie S5).

The corresponding MSD measurements in panel(b)
suggest that the propelling motion can be super-diffusive
at relatively long (dimensionless) timescales (t ~ 103),
although it eventually becomes diffusive at even larger
timescales. Moreover, we show that a Propeller’s mo-
bility can be tuned by orders of magnitude when the



design parameters are appropriately optimized. Con-
versely, since a Rotor typically does not generate signifi-
cant translation motions (see trajectory in panel(a) and
also movie S2), the MSD (green line/open-circle) may
capture interesting mode switches as the drop settles into
a steady tumbling motion as measured via the rotation
speed of its long axis; see the inset of Fig. b).

We have studied other aspects of the active droplets.
For example, we observed that the internal flow strength
(characterized by the vorticity and maximum velocity) of
Rotors is typically greater than that of Propellers, which
is due to the enhanced hydrodynamic interactions be-
tween the two +1/2 defects. When multiple droplets ex-
ist, they coalesce at contact, leading to more frequent
mode switching. It would be intriguing to investigate
3D cases in which the topological structures are much
more complicated as well as to develop similar models
for self-propelling microparticles to incorporate polarity.
Furthermore, by combining such models with large-scale
discrete particle simulation tools, it may be possible to
construct bottom-up multiscale toolkits to facilitate the
design and optimization of novel active materials.
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