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Abstract
In this paper we study a (3 + 1)-dimensional generalized B-type
Kadomtsev-Petviashvili (BKP) equation. This equation is an extension of the
well-known Kadomtsev-Petviashvili equation, which describes weakly dispersive and
small amplitude waves propagating in quasi-two-dimensional media. We first obtain
exact solutions of the BKP equation using the multiple-exp function and simplest
equation methods. Furthermore, the conservation laws for the BKP equation are
constructed by using the multiplier method.
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1 Introduction
It is well known that many phenomena in science and engineering, especially in fluid me-
chanics, solid state physics, plasma physics, plasma waves and biology, are described by
the nonlinear partial differential equations (NLPDEs). Therefore the investigation of ex-
act solutions of NLPDEs plays an important role in the study of NLPDEs. For this reason,
during the last few decades, researchers have established several methods to find exact
solutions to NLPDEs. Some of these methods include the inverse scattering transform
method [], the Bäcklund transformation [], the Darboux transformation [], the Hirota
bilinear method [], the (G′/G)-expansion method [], the homogeneous balance method
[], the variable separation approach [], the tri-function method [, ], the sine-cosine
method [], the Jacobi elliptic function expansion method [, ], the exp-function ex-
pansion method [] and the Lie symmetry method [–].
The purpose of this paper is to study one such NLPDE, namely the ( + )-dimensional

generalized B-type Kadomtsev-Petviashvili (BKP) equation, that is given by []

uxxxy + α(uxuy)x + (ux + uy + uz)t – (uxx + uzz) = , (.)

where α is a real-valued constant. This is a nonlinear wave equation in three spatial (x, y, z)
and one temporal coordinate (t).
It is well known that the Kadomtsev-Petviashvili (KP) equation describes weakly disper-

sive and small amplitude waves propagating in quasi-two-dimensional media []. The KP
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hierarchy of B-type possesses many integrable structures as the KP hierarchy. The ( + )-
dimensional nonlinear generalized BKP equation

uyt – uxxxy – (uxuy)x + (uxx + uzz) = , (.)

was studied in [–] by different approaches. In [] a new form of the ( + )-
dimensional BKP equation given by (.) was investigated and it was shown, using the
simplified form of the Hirota method, that one- and two-soliton solutions exist for (.).
Also, specific constraints were developed that guarantee the existence of multiple soliton
solutions for (.).
In this paper we employ the multiple exp-function method [] and the simplest equa-

tion method [, ] to obtain some exact solutions of (.). In addition to this, conserva-
tion laws are constructed for (.) using the multiplier method [].

2 Exact solutions of (1.1)
In this section we employ two methods of solution.

2.1 Exact solutions using the multiple exp-function method
In this subsection we employ the multiple exp-function method and obtain exact explicit
one-wave and two-wave solutions of (.). For details of the method, the reader is referred
to the paper [], in which this method was introduced. So, following the method and
using the notation of [], for a one-wave solution, we have

p = A +Aekx+ly+mz–ωt ,

q = B + Bekx+ly+mz–ωt

and the resulting one-wave solution is

u(x, y, z, t) =
p
q
,

with

A =
(kB + αA)B

αB
,

m = θk,

ω = k ,

where θ is any root of θ + k θ + k +  = .
Likewise, for a two-wave solution, we have

p = kekx+ly+mz–ωt + kekx+ly+mz–ωt

+ A(k + k)ekx+ly+mz–ωtekx+ly+mz–ωt ,

q =  + ekx+ly+mz–ωt + ekx+ly+mz–ωt +Aekx+ly+mz–ωtekx+ly+mz–ωt
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and the resulting two-wave solution is

u(x, y, z, t) =
p
q
,

where

A = –,

k = ,

k = ,

l = ,

l = ,

α = ,

m = θ ,

ω = –
– – m – m

 + θm + θm


( +m)
,

ω = –
m


 +m

and θ is any root of θ – (m – )θ + m
 + m +  = .

2.2 The simplest equation method
In this subsection we use the simplest equationmethod and obtain exact solutions of (.).
This method was introduced by Kudryashov [] and modified by Vitanov []. The sim-
plest equations we use in this paper are the Bernoulli and Riccati equations. Their solu-
tions can be written in elementary functions. For details, see, for example, [].
Making use of the wave variable

ν = kx + ky + kz + kt + k,

where ki, i = , . . . ,  are constants, the (+)-dimensional generalized B-type Kadomtsev-
Petviashvili (.) transforms to a fourth-order nonlinear ordinary differential equation
(ODE)

kkF
′′′′
(ν) – kF

′′(ν) + kkF ′′(ν) – kF
′′(ν)

+ kkF ′′(ν) + kkF ′′(ν) + αkkF
′(ν)F ′′(ν) = . (.)

Let us consider the solutions of ODE (.) in the form

F(ν) =
M∑
i=

Ai
(
G(ν)

)i, (.)

where G(ν) satisfies the Bernoulli and Riccati equations, M is a positive integer that can
be determined by balancing procedure as in [] and A, . . . ,AM are parameters to be de-
termined.
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.. Solutions of (.) using the Bernoulli equation as the simplest equation
The balancing procedure yields M =  so the solutions of (.) are of the form

F(ν) = A +AG. (.)

Substituting (.) intoODE (.) andmaking use of the Bernoulli equation and then equat-
ing the coefficients of the functionsGi to zero, we obtain an algebraic system of equations.
Solving this system with the aid of Mathematica, we obtain

α = –
kb
A

,

k =
k + k – kk – kk

ka + k
.

As a result, a solution of (.) is

u(x, y, z, t) = A +Aa
{

cosh[a(ν +C)] + sinh[a(ν +C)]
 – b cosh[a(ν +C)] – b sinh[a(ν +C)]

}
,

where ν = kx + ky + kz + kt + k and C is a constant of integration.

.. Solutions of (.) using the Riccati equation as the simplest equation
The balancing procedure yields M = , so the solutions of (.) are of the form

F(ν) = A +AG. (.)

Substituting (.) into ODE (.) and making use of the Riccati equation, we obtain an al-
gebraic system of equations by equating all coefficients of the functionsGi to zero. Solving
the algebraic equations, one obtains

α = –
ka
A

,

c =
kk b + kk – k + kk + kk – k

kka
.

Hence solutions of (.) are

u(x, y, z, t) = A +A

{
–
b
a

–
θ

a
tanh

[


θ (ν +C)

]}

and

u(x, y, z, t) = A +A

{
–
b
a

–
θ

a
tanh

(


θν

)
+

sech( θν
 )

C cosh( θν
 ) –

a
θ
sinh( θν

 )

}
,

where ν = kx + ky + kz + kt + k and C is a constant of integration.

3 Conservation laws
In this section we construct conservation laws for ( + )-dimensional generalized B-type
Kadomtsev-Petviashvili equation (.). The multiplier method will be used [, , ].
First we recall some results that will be used in the computation of conserved vectors.
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3.1 Preliminaries
Consider a kth-order system of PDEs given by

Eα(x,u,u(), . . . ,u(k)) = , α = , . . . ,m, (.)

with n independent variables x = (x,x, . . . ,xn) and m dependent variables u = (u,u,
. . . ,um). Here u(),u(), . . . ,u(k) denote the collections of all first, second, . . . , kth-order
partial derivatives. That is, uα

i = Di(uα),uα
ij = DjDi(uα), . . . , respectively, where the total

derivative operator with respect to xi is given by

Di =
∂

∂xi
+ uα

i
∂

∂uα
+ uα

ij
∂

∂uα
j
+ · · · , i = , . . . ,n. (.)

The n-tuple T = (T ,T, . . . ,Tn), Tj ∈ A, j = , . . . ,n, where A is the space of differential
functions, is a conserved vector of (.) if Ti satisfies

DiTi|(.) =  (.)

and equation (.) defines a local conservation law of system (.).
The Euler-Lagrange operator, for each α, is defined as

δ

δuα
=

∂

∂uα
+

∑
s≥

(–)sDi · · ·Dis
∂

∂uα
ii···is

, α = , . . . ,m. (.)

A multiplier �α(x,u,u(), . . .) has the property that

�αEα =DiTi (.)

hold identically. The right-hand side of (.) is a divergence expression. The determining
equation for the multiplier �α is given by

δ(�αEα)
δuα

= . (.)

After obtaining the multipliers, we can calculate the conserved vectors by using a homo-
topy formula [].

3.2 Construction of conservation laws for (1.1)
Wenow construct conservation laws for (+)-dimensional nonlinear BKP equation (.).
We obtain a multiplier of the form

� = Cux + f (t, y, z),

where C is an arbitrary constant and f is any solution of fzz – ftz – fty = . Corresponding
to the above multiplier, we obtain the following conserved vectors:

Tt
 =



(
–uxzu – uxyu + ux

)
,

Tx
 =



(
–uzzu + utzu + utyu + αuxuy + uxuxxy – ux

)
,
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Ty
 =




(
utux + αux – uxx

)
,

Tz
 =



(
uxzu + utux + ux(–uz)

)

and

Tt
 =



(
fz(–u) – fyu + uxf + uzf + uyf

)
,

Tx
 =



(–αfyuxu + αuxuyf – αuxyfu – ftu – uxf + uxxyf + utf – fyuxx),

Ty
 =




(
αuxf + αuxxfu – ftu + uxxxf + utf

)
,

Tz
 =



(fzu – ftu – uzf + utf ).

Remark  Due to the presence of the arbitrary function f in themultiplier, one can obtain
infinitely many conservation laws.

4 Concluding remarks
In this paper we studied ( + )-dimensional generalized B-type Kadomtsev-Petviashvili
equation (.). Exact solutions of the BKP equationwere found using two distinctmethods,
namely the multiple-exp function method and the simplest equation method. Also, the
conservation laws for the BKP equation were derived by using the multiplier method.
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