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ABSTRACT 

 

Coastal areas of the Gulf of Mexico are important for many reasons. This part of the 

United States provides vital coastal habitats for many marine species; the area has seen ever 

increasing human settlement along the coast, ever increasing infrastructure for marine 

transportation of the nation’s imports and exports through Gulf ports, and ever increasing 

recreational users of coastal resources. These important uses associated with the Gulf coast are 

subject to dynamic environmental and physical changes including: coastal erosion (Gulf-wide 

rates of 25 square miles per year), tropical storm surges, coastal subsidence, and global sea level 

rise. Coastal land subsidence is a major component of relative sea level rise along the coast of the 

Gulf of Mexico. These dynamic coastal changes should be evident in changes to the geoid along 

the coast. The geoid is the equipotential gravity surface of the earth, which best fits the global 

mean sea level. The geoid has not only been seen as the most natural shape of the Earth, but also 

serves as the reference surface for most of the height systems. By using satellites (GRACE 

mission) scientists have been able to measure the large scale geoid for the Earth.  A small scale 

geoid model is required to monitor local events such as flooding, for example, flooding created 

by storm surges from hurricanes such as Katrina (2005), Rita (2005), and Ike (2008). The overall 

purpose of this study was to evaluate the accuracy of the local coastal geoid. The more precise 

geoid will improve coastal flooding predictions, and will enable more cost effective and accurate 

measurement of coastal topography using global navigation satellite systems (GNSS).  

The main objective of this study was to devise mathematical models and computational 

methods to achieve the best possible precision for evaluation of the geoid in the coastal areas of 
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the Gulf of Mexico. More specifically, the numerical objectives of this study were to: 1) obtain a 

continuous map of gravity anomalies and a continuous map of gravity by using spatial 

interpolation methods and to evaluate errors; 2) solve the Laplace boundary value problem and 

evaluate errors; and, 3) evaluate precision of the local geoid by using geospatial statistical tools 

and numerical techniques.  

This dissertation investigates modeling of the geoid, especially the gravimetric 

equipotential surface that approximates mean sea level, in the coastal areas of the Gulf of Mexico 

as well as errors in the geoid determination. The document begins with Chapter 1 which 

introduces the study of this dissertation. Different models of kriging are used to determine the 

precision of the geoid based on the free-air gravity anomalies data supplied by United States 

Naval Research Laboratory and the airborne gravity data provided by the U.S. National Geodetic 

Survey, which can be found in Chapters 2 and 3. Research in Chapters 2 shows that more precise 

evaluation of errors in gravity anomalies can be achieved by using different models of kriging. 

Results from Chapters 2 and 3 show that ordinary kriging with the stable semivariogram model 

provide better predictions. Research results from Chapter 3 provide estimation of maximum 

possible errors in the calculation of the geoid undulation.  

The dissertation also investigates behavior of gravity equipotential surfaces around 

coastal lines and its impact on the geoid evaluation. Chapters 4 and 5 are about evaluation of 

errors in the Dirichlet problem for calculation of gravity potential with uncertain boundary and 

boundary values has been achieved by solving the Laplace equation by means of separation of 

variables. Research has provided a theoretical model in Chapter 4 to estimate very small changes 

in gravimetric potential relative to the coast. Maximum possible error in the solution of Direchlet 



vii 
 

problem is determined in Chapter 5. Maximum possible error depends on the errors of boundary 

values and the precision of the boundary itself.  

Chapter 6 describes a novel approach to sea level rise modeling. Factor analysis is used to 

analyze local and global sea level rise and relationships between changing sea levels, currents, 

and the shape of the Earth. Results of factor analysis from Chapter 6 show that the elevation of 

sea level relates to the geoid and ocean circulation. Chapter 7 describes the relationship between 

the geoid and wetlands modeling. Research in Chapter 7 shows that the predicted continuous 

elevation map obtained through the ordinary stable kriging was sufficiently precise and fairly 

reliable. Chapter 7 is an exploratory chapter, and the ideas of this chapter will help the future 

research. Chapter 8 briefly listed conclusions of previous chapters.  

In general, this dissertation provides mathematical and statistical foundation for precise 

evaluations of errors in geoid determination. This knowledge is needed for creation of high 

quality environmental, coastal and marine models, such as models for marshes restoration.  
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Chapter 1: Introduction 

              Coastal areas have been shaped by the rise and fall at seas, and have also been shaped 

by river flows in some regions of coasts. Sea level change is globally considered as a 

consequence of climate change, but sea level change in coastal areas is also associated with 

vertical movements of the land. Coastal areas are situated at the interface between the land and 

water. Hence, coastal areas are influenced by both terrestrial and oceanic processes and events. 

Storms and floods are among the heaviest threats to the habitation of coastal areas. The 

increasing vulnerability of coastlines to environmental change needs for accurate elevations, 

which requires the need of precision of the geoid. However, precision of the large scale geoid 

model is not sufficient to monitor local events such as flooding, for example, flooding created by 

storm surges from hurricanes such as Katrina (2005), Rita (2005), and Ike (2008). Thus, the 

overall purpose of this research is to evaluate the accuracy of the local coastal geoid.  

            Geodesists and cartographers who study the measurement of the size and shape of the 

Earth are interested in sea level as an elevation datum. This datum is known as the geoid. The 

geoid is defined as the equipotential gravity surface of the Earth, and theoretically best fits global 

mean sea level (Hofmann-Wellenhof & Moritz, 2006). The shape of the geoid reflects the 

information of the interior of the Earth’s material structure, density and distribution, which has a 

significant effect on research and applications in oceanography, seismology, geophysics, 

geological prospecting, oil exploration, and other related Earth science. The geoid is not only 

considered as the most natural shape of the Earth, but also it serves as the reference surface for 

most of the height systems. Therefore, it is essential to understand the determination of the geoid 

in the coastal areas. With enhanced understanding of the geoid, the methods applied for the geoid 
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determination are diverse. The demand for precise evaluation of the geoid is keeping pace with 

the rapid development of accurate gravity measurements.  

1.1 Background and relevance  

            In classical geodesy, the earth’s gravity fields to geodesy play a supporting role in 

relative positioning. It is mainly used in defining the reference ellipsoid and its orientation, and 

in determining the ground observation data (distance, direction, etc.) attributed to the reference 

ellipsoid surface. The approach of modern geodesy is to apply spatial techniques that are three-

dimensional geocentric global Earth measurements. The precise definition of gravity fields plays 

a critical role in spatial geodesy:   

1) The geoid is the elevation datum from which to obtain geographical spatial information;  

2) High-precision GPS technology combined with a high-resolution geoid model to replace 

the traditional standard of measurement in determination of heights or normal height, 

which truly achieves GPS technology in the geometric and physical meaning of three-

dimensional positioning function;  

3) Precise time-varying information of the gravity fields helps research and understanding 

of such geodynamic phenomena, so as to support important scientific studies in 

monitoring environmental resources, reducing or preventing damage and devastation 

caused by weather events. 

Determining the geoid combines geometric geodesy and geodetic science not only to assist in 

determining the geometric spatial location, but also to acquire the relationship between altitude 

and the Earth’s gravitational field.                                               
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Figure 1.1 Illustration depicting the ellipsoid, geoid, and topographic surface (Li and Götze, 

2001). 

 

            There are three different surfaces that fit the requirement of global geodetic applications 

(Li & Götze, 2001). They are the topographic surface, the reference ellipsoid and the geoid 

(Figure 1.1). The topographic surface, which is the landmass topography as well as the ocean 

bathymetry, is highly irregular. The ellipsoid is a geometric or mathematical reference surface, 

and the geoid is the equipotential of the Earth’s gravity field which best fits the global mean sea 

level (Hofmann-Wellenhof & Moritz, 2006; www.ngs.noaa.gov/GEOID/). In other words, the 

geoid means that at any point it is perpendicular to the direction of gravity. In today’s satellite 

age, the modern approach for satellite positioning is the Navigation System using Time and 

Ranging (NAVSTAR), which is known as the global positioning system (GPS) (Smith, 1997). 

The ellipsoid height can be geometrically determined within only a few centimeters of accuracy 

by the global navigation satellite system (GNSS) (Sadovski et al., 2009). Compared with using 

GPS, a faster and more economical approach, is to use geoid models with the same accuracy as 

GPS, or produce orthometric heights with better accuracy. Additionally, the geoid models can be 

established almost everywhere (Sadovski et al., 2009). The geoid modeling has been based on 

http://www.ngs.noaa.gov/GEOID/
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Stokes (Heiskanen & Moritz, 1967) and Molodensky’s (Telford et al., 1990) theories. In both 

theories, including the theories of gravity and topography reductions, which are of fundamental 

importance for determination of the precise geoid, a lot of assumptions have to be made to 

achieve desired results. As mentioned in Sadovski et al.’s paper (2009) “…Due to the massive 

and still improving knowledge of the Earth’s surface, fixed-boundary value problems seem more 

adequate and theoretical and numerical studies along this line are not only important in practice, 

but also may lead to a fundamental change in physical geodesy…”. 

            By using satellites, scientists discovered the long wave (large scale) geoid for the Earth 

(Seeber, 2003; Drinkwater et al., 2003), but its resolution is not sufficient for orthometric height 

determination from GPS when it comes to relatively small scale and/or local events such as 

flooding. This was the case after flooding created by storm surges from hurricanes Katrina 

(2005), Rita (2005), and Ike (2008) in the coastal areas of the Gulf of Mexico. So, there is a need 

to develop methods of the geoid evaluation at the local level, based on local gravity observations, 

and complemented by gravity observations from air and space.  

1.2 Gulf of Mexico coasts 

            The Gulf of Mexico is the ninth largest water body in the world. It is bordered by three 

countries: the United States, Mexico, and Cuba (Figure 1.2). Along the U.S. coastline of the Gulf 

of Mexico, there are five states: Florida, Alabama, Mississippi, Louisiana, and Texas. This 

coastline extends from the western Florida Keys to the southern tip of Texas. The area of the 

Mexico Gulf is approximately 1.5022 × 10
12

 square meters (580,000 square miles). The Gulf of 

Mexico is also the largest semi-enclosed coastal water of the Western Atlantic (Heileman and 
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Rabalais). Gulf water is around 2.4342 × 10
15

 cubic meters (584,000 cubic miles), and the 

average depth is 1615.14 meters (5,299 feet) (NOAA’s state of the coast, 2011).   

 

Figure 1.2 Gulf of Mexico (NOAA’s state of the coast, 2011). 

 

            The Gulf of Mexico has had an accelerated loss of coastal lands over the last 50 years. 

Coastal wetlands are lost at rate of 25 square miles per year (NOAA’s Oil Spill Response, 2010). 

Loss of wetlands and shoreline erosion are considered a challenge and consequence of climate 

change and, especially, sea level rise now and in the future. The impact of sea level changes on 

coastal sedimentary environments can be expected (Davis, 1987). As sea levels rise, shorelines 

will respond by flooding or eroding. Erosion explains most of the net shoreline recession on 

beaches and barrier islands, such as the east coast of the U.S., while flooding accounts for most 

of the loss in wetlands and subsiding deltas, such as along the Mississippi (Eisma, 1995). 

Although shoreline recession can be divided into those two different categories, the processes of 
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erosion and flooding are closely related. Shorelines may initially be submerged, then erosion 

begins when embayment and shallow bodies of open water become large enough to adapt to 

storm waves (Wells & Coleman, 1987). For example, this appears to have happened during the 

widespread internal fragmentation of some wetlands in the Gulf of Mexico.   

1.3 Purpose and numerical objectives 

 The purpose of this research is to find contributing errors to the accuracy evaluation of 

the coastal geoid in the Gulf of Mexico and to determine effect of these contributing errors on 

the estimation of water levels in coastal wetlands in the events of tropical storms, floods, 

tsunamis, and other natural catastrophes.  

            Smith and Milbert (1999) suggested that the greatest errors in the Geoid determination 

only happen in two kinds of situations. One is in the mountain terrain due to sharp variations; the 

other is in the coastal areas when water and the lands quite different in nature and density are 

brought together. Therefore, the main objective of this research is to devise mathematical models 

and computational methods to achieve the best possible precision (depending on the quality and 

quantity of data) for evaluation of the geoid in the coastal areas of the Gulf of Mexico. In other 

words, evaluate errors uses different metric spaces of functions in this study. In such a way, the 

worst case scenario can be evaluated, meaning the “largest possible” errors. However, generally 

in geosciences field, errors are measured by finding differences between predicted values and 

measured values. More specifically, the numerical objectives of the research include: 

 To obtain a continuous map of gravity anomalies and a continuous map of gravity using 

spatial interpolation methods. 

 To evaluate errors of absolute gravity and maximum possible errors in geoid undulation. 

 To solve the Laplace boundary value problem. 
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 Evaluate errors of the gravity potential under the conditions of uncertainty in the 

boundary and boundary values. 

 To evaluate precision of the local geoid by using geospatial statistical tools and numerical 

techniques. 

Another objective of the research is using quantitative measures of sea level rise to investigate 

the relationship between sea level rise and the shape of the Earth.  

1.4 Dissertation organization 

 This dissertation is organized into seven chapters. Chapter 1: Introduction includes 

introduction of the research, background and relevance, Gulf of Mexico coasts, purpose and 

numerical objectives, dissertation organization, and references. Chapter 2: Finding continuous 

map of free-air anomalies by kriging methods; and Chapter 3: Kriging of absolute gravity data. 

Chapter 4: Computation of the geoid downward corrections in coastal areas. Chapter 5: 

Evaluation of errors of gravity potentials under the conditions of uncertainty in the boundary 

value problems. Chapter 6 and Chapter 7 are applications. Chapter 6: Sea level rise and the 

geoid: A factor analysis approach; and, Chapter 7: The Geoid and wetland modeling: The impact 

of the geoid precision on wetlands modeling. Chapter 8: Conclusions which includes the major 

findings of the dissertation.  
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For more information on historical and theoretical reviews, please see Appendices 1 and 2.     
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Chapter 2: Using Kriging Methods to Determine Free-air Anomalies Continuous Maps   

In today’s satellite age, the modern approach of using satellite based positioning 

techniques, especially global positioning systems (GPS), is very popular during geodetic and 

surveying work. Using GPS can be quicker and easier than using leveling in determining 

positions; however, there is a faster and more economical approach, which is to use geoid 

models associated with modern technology. Therefore, geodesists and surveyors are focusing 

greater attention on deriving more precise geoid models.  This chapter focuses on the theory of 

geoid modeling and evaluates the level of precision when geoid approximation is obtained by 

using Free Air Anomaly (FAA) data.  

There are two common interpolation techniques used to produce a prediction of a random 

field (Reguzzoni et al., 2005). One is least-square collocation, which is mainly used in geodesy; 

the other technique that is mainly used in geology and hydrology is called kriging. Besides these 

two techniques, other spatial interpolations, such as inverse distance weighting (IDW) and 

splines are also utilized to conduct a comparison. A comparison of the different interpolation 

techniques is important to minimize errors.  

Data sample (Figure 2.1) used in this chapter is free-air gravity anomaly (FAA) data, 

which was supplied by United States Naval Research Laboratory (USNRL) along meridians and 

parallels (A. Sadovski, personal communication, September 17, 2009). The total sample size is 

21095, and the FAA values range between -23.22 mgal
1
 and 26.21 mgal. Normality of sampling 

distribution is tested for determining kriging methods. Therefore, skewness and kurtosis are 

examined within the FAA data (Figure 2.2). The skewness is 0.23, which is a slightly right 

                                                           
1
 Gravity is measured in gal (1 gal = 1 cm/s

2
). The unit is being named in honor of Galileo 

Galilei. For convenient use, the milligal, abbreviated mgal (1 mgal = 10
-3

 gal). 
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skewed distribution. The values are more concentrated on the left of mean 0.20 mgal. The 

kurtosis is 2.36, which is more flattened than a normal distribution with a wide peak 

(platykurtic). Points on the Normal QQ Plot (Figures 2.3 to 2.5) also deviate from the reference 

line represented in black line. In Figure 2.3, FAA values of the standard normal distribution are 

plotted on the x-axis in the Normal QQ Plot, and the corresponding FAA values of the dataset 

are plotted on the y-axis. The main departure points from the reference line are selected and the 

locations of these selected points are highlighted in Tourmaline Green in Figures 2.4 and 2.5. 

 

 

Figure 2.1 Regions map of the Gulf of Mexico coasts with the area of data observation in black 

grid. U.S. National Atlas Water Feature Areas (in light blue) represents the water feature areas 

(e.g., bays, glaciers, lakes, and swamps) of the United States.  
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Figure 2.2 Frequency histogram with descriptive statistics for FAA data (unit in mgal). 

 

 

Figure 2.3 Normal QQ plot of FAA data (unit in mgal). 



13 
 

 

Figure 2.4 Normal QQ plot of FAA data (unit in mgal). The main departure points from the 

reference line are selected (in Tourmaline Green). The corresponding locations of these selected 

points are highlighted in Tourmaline Green in the area of data observation (in black grid).  
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Figure 2.5 Normal QQ plot of FAA data (unit in mgal). Another main departure points from the 

reference line are selected (in Tourmaline Green). The corresponding locations of these selected 

points are highlighted in Tourmaline Green in the area of data observation (in black grid). 
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2.1 Kriging of FAA data 

Gravity anomalies are variations in gravity over a given areas. FAA is given by: 

                                                                                                                          (2.1) 

where go is the value of the observed gravity; gn is the normal gravity; gFAC is the free-air 

correction which is given in Equation 2.2, and h is the elevation depends on latitude. 

                                                                                                                                 (2.2) 

To make a global free-air gravity anomaly map, we want to have FAA measurements at 

every point of the Earth’s surface; however, this is an impossible task to be performed in the real 

world. Using the kriging method to predict values of a random unsampled area from a set of 

observations is an approach to meet this need. As a prediction, errors do exist during the process 

of kriging method. Thus, in addition to creating a continuous surface of gravity anomalies, 

evaluating errors is also needed in this chapter. Fortunately, the kriging method can also estimate 

the prediction error to assess the quality of a prediction.  

The kriging method here was conducted by using ArcGIS 10—Spatial Analyst and 

Geostatistical Analyst. There are six types of kriging in Geostatistical Analyst tools. The most 

common types are ordinary kriging and universal kriging, which were chosen to be used in this 

study. The simple kriging method is also quite common, but it requires the data should have a 

normal distribution. Thus, the simple kriging method was not applied in this study. There are 

three major components—the spatial autocorrelation component (known as semivariogram), a 

trend, and a random error term. These three components are the key to lead to different types of 

the kriging methods. The simple equation represents the kriging method is:  
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                                                                 ∑     
 
   ,                       (2.3) 

where zs is the estimated value for an unsampled location s; zi is the known value at the control 

point i; wi represents the weight applied to sample values associated with the control point i; n is 

the number of sample points used in the estimation.  

2.1.1 Ordinary kriging  

Ordinary kriging is the original formulation of kriging (Cressie, 1990). The ordinary 

kriging method is based on unknown trends, and focuses on spatial autocorrelation. A 

semivariogram (Figure 2.6) can be used to explore spatial autocorrelation. The semivariance is 

computed by,  

                                                       ( )  
 

 
  (  )   (  ) 

                                                  (2.4) 

where  ( ) is the semivariance between known points    and    separated by the distance h; and 

z stands for the value at a known point.  

 

Figure 2.6 The anatomy of a typical semivariogram (ESRI).  
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Namely, in ArcGIS 10, the graph (Figure 2.7) of the empirical semivariogram is computed as,  

              (          )                   

                                 
 

 
           (                                       )                  (2.5)                           

for all pairs of locations separated by distance h.  

In other words, semivariogram can be defined as, 

                                                          ( )  
 

 
     (  )   (  ) ,                                           (2.6) 

where var means variance.  

 

Figure 2.7 Semivariogram model of the ordinary stable kriging. The averaged semivariogram 

values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis (in degree). Binned values are 

shown as red dots, which are sorted the relative values between points based on their distances 

and directions and computed a value by square of the difference between the original values of 

points; Average values are shown as blue crosses, which are generated by binning 

semivariogram points; The model is shown as blue curve, which is fitted to average values. 

Model: 0.24582×Nugget+369.12×Stable(2.1204,1.9385).  
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Figure 2.8 Semivariogram with all lines (green lines) that fit binned semivariogram values. The 

averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis (in 

degree). 

 

According to the First Law of Geography (Tobler, 1970), points nearby should be more 

similar in value than points further away. The plots of each pair of the location were binned to 

average semivariance data by distance and direction, and the model fit through the averaged 

binned values at the distance (Figures 2.5 to 2.14). Spatial statistics techniques assume that 

spatial autocorrelation exists in range. The range is approximately 2.1204 degree of the stable 

model (Figures 2.7 to 2.9), and it is approximately 2.0244 degree of the Gaussian model (Figures 

2.10 to 2.12). Namely, values behind this range start to flatten out (are approximately constant), 

and the spatial autocorrelation does not exist anymore or little. Another important parameter of 

the semivariogram model is called the nugget. The nugget represents independent error, 

measurement error, or microscale variation. The nugget in semivariogram model with the stable 

technique is 0.2458 mgal
2
, and with the Gaussian technique is 0.7551mgal

2
.  The independent 

error in semivariogram model with the stable technique is quite smaller than it is with the 

Gaussian technique. The last parameter is the sill, which represents the value of the 

semivariogram at the distance.  Only variables become uncorrelated behind the range, the sill of 

the semivariogram will be equivalent to the variance of the random variable. The sill, which is 

comprised of the nugget and partial sill, shows the variation between the data values. The partial 



19 
 

sill of the semivariogram in Figures 2.7 to 2.9 is 369.1191 mgal
2
 and in Figures 2.10 to 2.12 is 

360.2210 mgal
2
. The variation between FAA data values is smaller by using the Gaussian 

technique than using the stable technique. 

 

Figure 2.9 Semivariogram showing search direction. The tolerance is 45 and the bandwidth 

(lags) is 3. The local polynomial shown as a green line fits the semivariogram surface in this 

case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-

axis (in degree). 

 

 

Figure 2.10 Semivariogram model of the ordinary Gaussian kriging. The averaged 

semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis (in degree). 

Binned values are shown as red dots, which are sorted the relative values between points based 

on their distances and directions and computed a value by square of the difference between the 

original values of points; Average values are shown as blue crosses, which are generated by 

binning semivariogram points; The model is shown as blue curve, which is fitted to average 

values. Model: 0.75508*Nugget+360.22*Gaussian(2.0244).  
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Figure 2.11 Semivariogram with all lines (green lines) which fit binned semivariogram values. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree). 

 

Figure 2.12 Semivariogram showing search direction. The tolerance is 45 and the bandwidth 

(lags) is 3. The local polynomial shown as a green line fits the semivariogram surface in this 

case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-

axis (in degree). 

 

Figure 2.13 A semivariogram map. The color band shows semivariogram values with weights 

(unit in mgal
2
). 
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Figure 2.14 A semivariogram map with an example search direction transects (unit in mgal
2
). 

 

The techniques used to determine which type of the ordinary kriging method gave a better 

predicted continuous FAA surface are: 

1. Cross validation; 

2. Direct visual comparisons of the graphs.  

The cross validation is a common statistical technique to compare interpolation methods 

(Elhomme, 1978). This estimate aims to calculate the model error. The two common statistics 

are the root mean square (RMS) and standardized RMS: 

                                                                     √
 

 
∑ (             )  

                                       (2.7) 

                                                        √ 

 
∑

(             )
 

  
 
    

   

 
                        (2.8)  

where n is the number of sample points; zi,obs is the known value of point i; zi,est is the estimated 

value of point i; s
2
 is the variance.  
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Table 2.1 Cross validation statistics compared between the stable and the Gaussian techniques 

(unit in mgal). 

 

The standardized RMS should approach to one, and the standardized mean should be 

close enough to zero. The average standard error (ASE) and RMS should be as small as possible. 

The ordinary kriging method using the stable technique meets most criteria (Table 2.1). 

However, the ordinary kriging method using the Gaussian technique has slightly better 

standardized RMS.     
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A. 

 

B. 

 

C. 

 

D. 

Figure 2.15 Cross validation of the ordinary stable kriging (unit in mgal). 

A. The predicted graph. The blue line represents the regression function, and the black line 

represents the reference line; 

B. The error graph. The blue line represents the error equation; 

C. The standardized error graph. The blue line represents the standardized error equation; 

D. The normal QQ plot of the standardized error. The reference line is represented by the black 

line. 
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A. 

 

B. 

 

C. 

 

D. 

Figure 2.16 Cross validation of the ordinary Gaussian kriging (unit in mgal).  

A. The predicted graph. The blue line represents the regression function, and the black line 

represents the reference line; 

B. The error graph. The blue line represents the error equation; 

C. The standardized error graph. The blue line represents the standardized error equation; 

D. The normal QQ plot of the standardized error. The reference line is represented by the 

black line.
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The Predicted, error, standard error, and normal QQ plot graphs are plotted respectively 

in Figures 2.15 and 2.16. The predicted graph shows how well the known sample value was 

predicted compared to its actual value. The regression function in Figure 2.15A is  ( )  

              and in Figure 2.16A is  ( )                . By visually analyzed the 

graphs, both regression function are closely aligned with the reference line. Therefore, both of 

them are good models, but the ordinary kriging method with the stable technique looks better 

than the one with the Gaussian technique because it looks much closer aligned on.  

            The error graph shows the difference between known values and predictions for these 

values. The error equation in Figure 2.15B is                   , and in Figure 2.16B is 

                  . The standardized error graph shows the error divided by the 

estimated kriging errors. The standardized error equation in Figure 2.15C is             

      , and in Figure 2.16C is                   . The normal QQ plot of the 

standardized error shows how closely the difference between the errors of predicted and actual 

values align with the standard normal distribution (the reference line). Figures 2.17 to 2.20 

displace the prediction and standard error map by using the ordinary kriging with stable and 

Gaussian techniques. The standard error displayed in Figure 2.18 is smaller than in Figure 2.20.  
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Figure 2.17 The ordinary stable kriging predictions map (unit in mgal). 
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Figure 2.18 The ordinary stable kriging prediction standard error map (unit in mgal). 
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Figure 2.19 The ordinary Gaussian kriging predictions map (unit in mgal). 
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Figure 2.20 The ordinary Gaussian kriging prediction standard error map (unit in mgal).  
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2.1.2 Universal kriging 

Unlike the ordinary kriging method, the universal kriging method assumes that the 

variation in z value has a trend.  

                                                                ( )   ( )   ( )                                                   (2.9) 

 ( )              or 

                                       ( )                   
             

                        (2.10) 

In the equation (2.9 & 2.10) shown above,  ( )  represents the variable of interest, which is the 

prediction; the  ( ) is the deterministic trend; and  ( ) represents a random error form. s 

indicates the location. The trend can be a linear function in spatial coordinates, or a 2
nd

 order 

polynomial trend surface. In the trend equation,                       are coefficients which 

are unknown; x represents longitude and y indicates latitude.  

To find out if there is a global trend in FAA data, trend analysis graph is needed. A global 

trend describes pattern of variation. Assumption of a constant average across the surface is 

applied for kriging models. There is no trend exists because the curve through the projected 

points is flat (as shown by the red line in the Figure 2.21). An upward curve as shown by the 

light blue line in Figure 2.21 is through the projected points on YZ plane, which indicates that 

there is a trend in FAA data. Therefore, de-trending is conducted before the universal kriging 

process in order to prevent biased the analysis. According to the trend analysis, two de-trending 

approaches were conducted. One approach is to remove the trend order as constant, and the other 

is to remove the trend as first order. The Kernel function chose to be exponential, which allows a 

selection of the kernel used to fit the surface (Figures 2.22 and 2.23). The goodness of fit in 
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removal of constant trend is 11.5802 (Figure 2.22). With removal of first order of the trend 

(Figure 2.23), the goodness of fit is 5.9941. Therefore, de-trend by removing first order of the 

trend is much better than removing constant trend. Results in this section will only be provided 

by removing first order of the trend universal kriging. If interested in results from the universal 

kriging by using constant trend removed (prediction models 3 and 4), please see Appendix 3. 
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Figure 2.21 Trend analysis of FAA. 

Legend: Grid (XYZ): Number of Grid Lines 11×11×6; Projected Data: YZ plane (Dark Blue), 

ZY plane (Yellow), XY plane (Peony Pink); Trend on Projections: YZ plane (Light Blue), XZ 

plane (Red); Axes (Black); Input Data Points_FAA (Green).   
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Figure 2.22 De-trend. The order of removal trend is constant (unit in mgal).  
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Figure 2.23 De-trend. The order of removal trend is first order (unit in mgal). 

 

 

Similar processes as the ordinary kriging method is conducted in ArcGIS 10, which are 

semivariogram modeling, searching neighborhood, and cross validation. The nugget, the range 

and the partial sill of the semivariogram were compared between the stable technique and the 

Gaussian technique of the universal kriging with first order of trend removed (see Table 2.2 and 

Figures 2.24 to 2.31). The semivariogram by using the stable model has smaller independent 

error than by using the Gaussian model; however, the variation in the semivariogram by using 

the stable model is a little bit bigger than by using the Gaussian model. By direct visual 

comparison of graphs (Figures 2.24 to 2.29), the model “perfect” fit through the averaged binned 

values at the distance h.  
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Table 2.2 Comparison of the components of stable and Gaussian semivariogram (units of nugget, 

partial sill and sill are mgal
2
; unit of range is degree).  

 

Figure 2.24 Semivariogram of the universal stable kriging with removal of 1
st
 order of trend. The 

averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis (in 

degree). Binned values are shown as red dots, which are sorted the relative values between points 

based on their distances and directions and computed a value by square of the difference between 

the original values of points; Average values are shown as blue crosses, which are generated by 

binning semivariogram points; The model is shown as blue curve, which is fitted to average 

values. Model: 0.23412*Nugget+49.936*Stable(0.95752,1.9033).  

 

 

Figure 2.25 Semivariogram with all lines (green lines) which fit binned semivariogram values. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree). 

 

Type Nugget Range Partial Sill Sill

Stable 0.2341 0.9575 49.9359 50.1700

Gaussian 0.3788 0.9059 48.9174 49.2962
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Figure 2.26 Semivariogram with showing search direction. The tolerance is 45 and the 

bandwidth (lags) is 3. The local polynomial shown as a green line fits the semivariogram surface 

in this case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) 

on the x-axis (in degree). 

 

 

 

Figure 2.27 Semivariogram of the universal Gaussian kriging with removal of 1
st
 order of trend. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree). Binned values are shown as red dots, which are sorted the relative values between 

points based on their distances and directions and computed a value by square of the difference 

between the original values of points; Average values are shown as blue crosses, which are 

generated by binning semivariogram points; The model is shown as blue curve, which is fitted to 

average values. Model: 0.37882*Nugget+48.917*Gaussian(0.90587).  
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Figure 2.28 Semivariogram with all lines (green lines) which fit binned semivariogram values. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree).  

 

Figure 2.29 Semivariogram with showing search direction. The tolerance is 45 and the 

bandwidth (lags) is 3. The local polynomial shown as a green line fits the semivariogram surface 

in this case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) 

on the x-axis (in degree).  

 

 
 

Figure 2.30 A semivariogram map. The color band shows semivariogram values with weights 

(unit in mgal
2
).  
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Figure 2.31 A semivariogram map with an example search direction transects (unit in mgal

2
).  

 

Searching neighborhood made use of the Geostatistical Analyst tool in ArcGIS 10 

software. The default of searching neighborhood was chosen, which is by using standard 

neighborhood searching type, neighbors range from 2 to 5, and the search sector type is 4 sectors 

with 45˚ offset. The example of searching neighborhood displayed in Figure 2.32.  

 

Figure 2.32 An example of searching neighborhood by using the Geostatistical Analyst Tool in 

ArcGIS 10. Legend is FAA intervals in color band (unit in mgal).  
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The cross validation statistics of the universal kriging method with first order of trend 

removed shows in Table 2.3, below. The prediction model using the stable technique is better 

than the prediction using the Gaussian technique. 

 

 

Table 2.3 Cross validation statistics compared between the stable and the Gaussian techniques 

(unit in mgal). 

 

 

 

 

 

 

 

 

Cross-validation statistics Prediction Model 5 Prediction Model 6

U.K. 1st-Stable U.K. 1st-Gaussian

RMS Standardized 0.2058 0.2214

Mean Standardized -0.0025 -0.0061

Average Standard Error (ASE) 0.5070 0.6426

Root Mean Square (RMS)  0.1028 0.1412

Difference between RMS and ASE 0.4042 0.5014

Difference in Percentage 79.72% 78.03%
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A. 

 

B. 

 

C. 

 

D. 

Figure 2.33 Cross validation of the universal stable kriging with 1
st
 order of trend removed (unit 

in mgal). 
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A. 

 

B. 

 

C. 

 

D. 

 

Figure 2.34 Cross validation of the universal Gaussian kriging with 1
st
 order of trend removed 

(unit in mgal). 
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Figure 2.35 The universal stable kriging predictions map (unit in mgal).  
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Figure 2.36 The universal stable kriging prediction standard error map (unit in mgal).  
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Figure 2.37 The universal Gaussian kriging prediction map (unit in mgal). 
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Figure 2.38 The universal Gaussian kriging prediction standard error map (unit in mgal). 
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2.2 Inverse distance weighted (IDW) interpolation 

            The assumption of IDW interpolation is also based on the First Law of Geography 

(Tobler 1970), and there is no assumption required of the data. The IDW interpolation estimates 

a value of a point by using a linear weighted combination of the sample points. The general 

formula for IDW interpolation is: 

                                                                        
∑   

 

 
 
 

 
   

∑
 

 
 
 

 
   

                                                        (2.11) 

where zs is the estimated value at point s; zi is the known value at the control point i; n is the 

number of known sample points used in the estimation; di is the distance between point s and 

point i; p is the specified power which controls the degree of the local influence.  

 

Figure 2.39 An example of IDW searching neighborhood by using the Geostatistical Analyst 

Tool in ArcGIS 10. Legend is FAA intervals in color band (unit in mgal). 
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            IDW interpolation was conducted by the Geostatistical Analyst tool in ArcGIS 10 

software. The power set as 2, which suggests that the rate of change in values is influenced by 

distance (a higher value near a known point). By using standard searching neighborhood type, 

search by a 4 sectors with 45˚ offset. The neighbors range from 10 to 15. An example provided 

in Figure 2.39. The RMS is 0.0817, which is lower than the kriging method. The regression 

function in predicted graph (Figure 2.40A) is  ( )                 ; the error in this 

regression is too small to even ignore it. The regression function in error graph (Figure 2.40B) is 

 ( )                 . So far, IDW interpolation is better than either the ordinary kriging 

method or the universal kriging method. But unfortunately, IDW interpolation has no evaluation 

of predicted standard error, which may be tricky to demonstrate the use of the model. The 

predicted continuous map of FAA by using IDW interpolation displace in Figure 2.41.  
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A. 

 

B. 

Figure 2.40 Cross validation of IDW (unit in mgal). 
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Figure 2.41 The IDW prediction map (unit in mgal). 
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2.3 FAA applied to geoid undulation and evaluates errors  

It is well known that free air anomalies are not correlated with heights in flat regions, and 

therefore we can determine Geoid undulations N(x, y) at measured points (x, y) in the area A by 

using FFT (Fast Fourier Transform) to Kearsley two-dimensional convolution integral  

 (     )  
 

   
∬

  (   )

√(    )  (    ) 
    

 

 

In discrete case we use K × L gridded point gravity anomalies with spacing Δx and Δy then the 

Geoid undulation at the point (     ) could be found by using the following discrete convolution 

of Kearsley integral: 

 (     )  
 

   
∑ ∑  (     )

   

   

   

   

  (           )     

where  

  (           )  {

 

√(     )  (     ) 

                                       

                   

And the contribution at the computation point (     ) should be evaluated as follows: 

  (     )  
√    

 √ 
  (     ) 

Now we can estimate errors corresponding this way of finding geoid undulations. If we 

assume that Δx = Δy = 1, and that the maximum absolute errors cannot exceed some ε > 0 then 

for any point (     ) maximum absolute error E of undulation N(     ) will be less than 
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     ∑∑
 

 

 

   

 

   

 

 
           

The last inequality can be obtained through evaluation of double sum by the way of double 

integration over the rectangle region of the plane between 1 and K for x and 1 and L with respect 

to y. 
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Chapter 3: Kriging of Absolute Gravity Data 

By using satellites, scientists discovered the long wave (large scale) geoid for the Earth 

(Seeber, 2003; Drinkwater et al., 2003), but its resolution is not sufficient for orthometric height 

determination from GPS when it comes to the relatively small scale and/or local events such as 

flooding. So, there is a need to develop method(s) and model(s) of the geoid determination at the 

local level, based on local observations of gravity, and complemented by observations of gravity 

from the air and space.  

In principle, there is a need for gravity g at every point of the Earth’s surface. Gravity is 

continuously changing, and it reflects the results of Earth’s phenomena, such as tropic storm, 

hurricane, earthquake, early tides, variation in the atmosphere density, etc. Gravity also alters 

when only a small change happened in the constructions and the density of materials beneath the 

constructions. But having gravity data provided everywhere on the Earth is totally impossible in 

reality. To predict values of a random unsampled area from a set of observations is needed. As 

chapter 2 mentioned, the kriging method is not the best approach to predict free-air gravity 

anomalies, but in this chapter, I assumed that the kriging method is a better approach than other 

methods for prediction of gravity based on the airborne data provided by National Geodetic 

Survey (NGS). The reason I still have a confidence on the kriging method is that the kriging 

method can estimate the prediction error to assess the quality of a prediction, which other 

methods do not have.  

3.1 Data  

Data used in this chapter is airborne gravity data of the Gravity for the Redefinition of the 

American Vertical Datum (GRAV-D) project which was released by NGS 
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(http://www.ngs.noaa.gov/GRAV-D). Table 3.1 lists the nominal block characteristics, and 

details can be founded in GRAV-D General Airborne Gravity Data User Manual. Four blocks 

(Block CS01, CS02, CS03 and CS04) data (Figures 3.1 and 3.2) were chosen to be interpolated 

(GRAV-D Science Team, 2012).  

 

Table 3.1 Nominal block and survey characteristics (GRAV-D Science Team, 2012).  

The total sample size (four blocks together) is 389578, and the gravity values range 

between 975480 mgal and 977490 mgal. Keep in mind, the standard gravity is 980665 mgal. The 

descriptive statistics of airborne gravity data is listed in upper right corner of Figure 3.3. Figure 

3.4 shows the normal QQ plot of airborne gravity data. The airborne gravity data was fixed by 

using free-air reduction and by the international gravity formula (Li and Götze, 2001).  

 

Characteristic Nominal Value

Altitude 20, 000 ft (~ 6.3 km)

Ground speed 250 knots (250 nautical miles/hr)

Along-track gravimeter sampling 1 sample per second = 128.6 m (at nominal ground speed)

Data Line Spacing 10 km

Data Line length 400 km

Cross Line Spacing 40-80 km

Cross Line Length 500 km

Data Minimum Resolution 20 km
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Figure 3.1 Tracks and locations of data of airborne gravity. Gravity data plotted by individual 

block from CS01 to CS04.   
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Figure 3.2 Tracks and locations of data of airborne gravity. Gravity data plotted by four blocks as 

a group.   

 

Figure 3.3 Frequency histogram with descriptive statistics for airborne gravity data (unit in 

mgal).  
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Figure 3.4 Normal QQ plot of airborne gravity data (unit in mgal).  

3.1.1 Free-air correction (FAC) 

The masses of outside the geoid need to be removed by using different gravity 

corrections in aim to determine the geoid. Gravity need to be reduced refer to the geoid. As a 

Taylor series (Li and Götze, 2001;  Hofmann-Wellenhof & Moritz, 2006), the gravity reduced 

onto the geoid gg may be calculated by  

                                                                          
  

  
                                                       (3.1) 

where go is the observed gravity, and H is the elevation. 
  

  
 is considered as free-air correction 

factor which is 0.3086 mgal/m. gg presented on Figure 3.5, and the values ranged from 978960 

mgal to 979470 mgal with a mean of 979230 mgal and standard deviation 105.79 mgal. 

Normality of sampling distribution is tested for determining kriging methods. In order to do so, 

skewness and kurtosis are tested within data of gravity on the geoid (Figure 3.6). The skewness 

is -0.29, which is slight left skewed distribution. The values are more concentrated on the right of 

mean. The kurtosis is 2.28, which is flattened than a normal distribution with a wide peak 
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(platykurtic). Points on the Normal QQ plot (Figure 3.7) also deviate from the reference line 

represented in black line. 

 

Figure 3.5 The airborne gravity reduced onto the geoid by free-air correction. 
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Figure 3.6 Frequency histogram with descriptive statistics for data of gravity on the geoid (unit 

in mgal). 

 

 

Figure 3.7 Normal QQ plot of gravity on the geoid data (unit in mgal). 

3.1.2 The international gravity formula (IGF) 

The international gravity formula estimates theoretical gravity change with latitude on the 

ellipsoid surface. Based on the Helmert theorem, there are several international gravity formulas. 

The difference of these IGFs is explained in Li and Götze (2001). IGF 1980 (Moritz, 1980; Li 

and Götze, 2001) is used in this study: 

                                           (                                )                 (3.2) 
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where   is the latitude; the unit of γ is mgal.  

 

Figure 3.8 Frequency histogram with descriptive statistics for data of gravity on the ellipsoid 

(unit in mgal). 

 

Figure 3.9 Normal QQ plot of gravity on the ellipsoid data (unit in mgal). 

The values of gravity on the ellipsoid ranged from 978970 mgal to 979450 mgal with a 

mean of 979240 mgal and standard deviation 106.43 mgal. More details about descriptive 

statistics are listed in upper right corner of Figure 3.8. Points on the Normal QQ plot (Figure 3.9) 

deviate from the reference line represented in black line. 
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3.2 Kriging of gravity on the geoid 

3.2.1 Ordinary kriging of gravity on the geoid 

The Methodology will not be explained again, and similar explanation can be found in 

chapter 2 of this dissertation. Similar processes as the ordinary kriging method is conducted in 

ArcGIS 10.1, which are semivariogram modeling, searching neighborhood, and cross validation. 

The nugget, the range and the partial sill of the semivariogram were compared between the stable 

technique and the Gaussian technique of the ordinary kriging. There is no difference between the 

stable technique and the Gaussian technique of the ordinary kriging of gravity on the geoid 

(Table 3.2). In this case, the semivariogram displaced in Figures 3.10 to 3.13 stands for both 

stable and Gaussian techniques, and the model “perfect” fit through the averaged binned values 

at the distance h.  

 

Table 3.2 Comparison of the components of stable and Gaussian semivariogram (units of nugget, 

partial sill and sill are mgal
2
; unit of range is degree).  

 

 

 

 

Type Nugget Range Partial Sill Sill

Stable 28.12 5.52 16437.37 16465.49

Gaussian 28.12 5.52 16437.37 16465.49
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Figure 3.10 Semivariogram model of the ordinary kriging. The averaged semivariogram values 

on the y-axis (in mgal
2
), and distance (or lag) on the x-axis (in degree). Binned values are shown 

as red dots, which are sorted the relative values between points based on their distances and 

directions and computed a value by square of the difference between the original values of 

points; Average values are shown as blue crosses, which are generated by binning 

semivariogram points; The model is shown as blue curve, which is fitted to average values. 

Model: 28.118*Nugget+16437*Stable(5.53,2); Model: 28.118*Nugget+16437*Gaussian(5.53).                                            

 

Figure 3.11 Semivariogram with all lines (green lines) which fit binned semivariogram values. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree). 

 

Figure 3.12 Semivariogram with showing search direction. The tolerance is 45 and the 

bandwidth (lags) is 3. The local polynomial shown as a green line fits the semivariogram surface 

in this case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) 

on the x-axis (in degree). 
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Figure 3.13 A semivariogram map. The color band shows semivariogram values with weights 

(unit in mgal
2
).  

 

The Predicted, error, standard error, and normal QQ plot graphs are plotted respectively 

in Figure 3.14 (A to D). The predicted graph shows how well the known sample value was 

predicted compared to its actual value. The regression function in Figure 3.14A is  ( )  

                . By visually analyzed the graph, the regression function is closely aligned 

with the reference line. Therefore, it is well predicted. 

The error graph shows the difference between known values and predictions for these 

values. The error equation in Figure 3.14B is                    . The standardized 

error graph shows the error divided by the estimated kriging errors. The standardized error 

equation in Figure 3.14C is                    . The normal QQ plot of the 

standardized error (Figure 3.14D) shows how closely the difference between the errors of 

predicted and actual values align with the standard normal distribution (the reference line). 

Figure 3.15 to Figure 3.18 displace the prediction and standard error map by using the ordinary 

kriging with stable and Gaussian techniques.  
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A. 

 

B. 

 

C. 

 

D. 

Figure 3.14 Cross validation of the ordinary kriging (unit in mgal). 

A. The predicted graph. The blue line represents the regression function, and the black line 

represents the reference line; 

      B. The error graph. The blue line represents the error equation; 

      C. The standardized error graph. The blue line represents the standardized error equation; 

D. The normal QQ plot of the standardized error. The reference line is represented by the 

black line.  

 



66 
 

 

Figure 3.15 The ordinary stable kriging predictions map (unit in mgal).  
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Figure 3.16 The ordinary stable kriging prediction standard error map (unit in mgal). 
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Figure 3.17 The ordinary Gaussian kriging predictions map (unit in mgal). 
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Figure 3.18 The ordinary Gaussian kriging prediction standard error map (unit in mgal). 

3.2.2 Universal kriging of gravity on the geoid 

Trend analysis was presented in Figure 3.19. There is no trend because the curve through 

the projected points is flat (as shown by the light blue line in the Figure 3.19). A slight 

downward curve as shown by the red line in Figure 3.19 is through the projected points on ZY 

plane, which suggests that it may have a trend exist in gravity on the geoid data. Therefore, de-

trend is conducted before the universal kriging process in order to prevent biased the analysis. 

Because the curve shown on ZY plane is not obvious, the de-trend approach is chosen to remove 

the trend order as constant. The process was conducted in ArcGIS 10.1 by using Geostatistical 
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Analyst. Results of the universal kriging with either the stable technique or the Gaussian 

technique were shown as exact same as results of the ordinary kriging.  

 

Figure 3.19 Trend analysis of gravity on the geoid. 

Legend: Grid (XYZ): Number of Grid Lines 11×11×6; Projected Data: YZ plane (Dark Blue), 

ZY plane (Yellow), XY plane (Peony Pink); Trend on Projections: YZ plane (Light Blue), XZ 

plane (Red); Axes (Black).   

 

3.2.3 Results and Evaluation of Error 

A better interpolation method should have a smaller RMS. Due to no difference between 

the ordinary kriging and universal kriging in this case; statistical results were same that listed in 

Table 3.3. The prediction error mean is 0.0038 mgal. As 1 meter increased in altitude, the gravity 

is decreased by 0.3086 mgal. With simple conversion, the accuracy of prediction is 

approximately 0.0123 meters. Namely, it is around 1.23 cm, which was expected.   
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Table 3.3 Statistics (unit in mgal).  

3.3 Kriging of difference between gravity on the ellipsoid and the geoid 

The kriging method used in this section is still the ordinary kriging with the stable 

technique. The nugget in semivariogram (Figures 3.20 to 3.22) is approximately 1.0324 mgal
2
, 

which is very small. The range is 2.2212 degree, and the partial sill is 355.2671 mgal
2
. Figure 

3.23 is an example of a semivariogram map with weight values.  

 

Figure 3.20 Semivariogram model of the ordinary kriging. The averaged semivariogram values 

on the y-axis (in mgal
2
), and distance (or lag) on the x-axis (in degree). Binned values are shown 

as red dots, which are sorted the relative values between points based on their distances and 

directions and computed a value by square of the difference between the original values of 

points; Average values are shown as blue crosses, which are generated by binning 

semivariogram points; The model is shown as blue curve, which is fitted to average values. 

Model : 1.0324*Nugget+355.27*Stable(2.2212,1.6818).  

 

 

 

RMS Standardized 0.1084

Mean Standardized 0.0007

Average Standard Error (ASE) 5.5060

Root Mean Square (RMS)  0.5918

Difference between RMS and ASE 4.9142

Difference in Percentage 89.25%
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Figure 3.21 Semivariogram with all lines (green lines) which fit binned semivariogram values. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree). 

 

Figure 3.22 Semivariogram with showing search direction. The tolerance is 45 and the 

bandwidth (lags) is 3. The local polynomial shown as a green line fits the semivariogram surface 

in this case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) 

on the x-axis (in degree). 

 

Figure 3.23 A semivariogram map. The color band shows semivariogram values with weights 

(unit in mgal
2
). 
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Figure 3.24 Cross validation of the ordinary kriging (unit in mgal).
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The Predicted, error, standard error, and normal QQ plot graphs are plotted respectively 

in Figure 3.24 (A to D). Statistical results of the ordinary kriging of difference between gravity 

on the ellipsoid and the geoid listed in Table 3.4. The prediction yields very small RMS. The 

mean of prediction error is approximately 0.00076 mgal. Figure 3.25 is the ordinary kriging 

prediction map which displaces the shape of the geoid. 

 

Table 3.4 Statistics (unit in mgal). 

 

RMS Standardized 0.2249

Mean Standardized 0.0007

Average Standard Error (ASE) 1.0672

Root Mean Square (RMS)  0.2369

Difference between RMS and ASE 0.8303

Difference in Percentage 77.80%
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Figure 3.25 The ordinary kriging predictions map (unit in mgal). 

3.4 Acknowledgements 

 Thanks to NGS at NOAA for open access to download GRAV-D airborne gravity data. 

For more information and project materials, visit NGS on the Web (GRAV-D Homepage: 

http://www.ngs.noaa.gov/GRAV-D). Other file data used in the map (named as nos80k, 

state_bounds, hydrogp020) was download from USGS.  

 

 

http://www.ngs.noaa.gov/GRAV-D


76 
 

3.5 References 

Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., & Popescu, A. (2003). VII: 

CLOSING SESSION: GOCE: ESA's First Earth Explorer Core Mission. Space Science 

Reviews, 108 (1-2), 419-432. 

GRAV-D Science Team (2011). GRAV-D General Airborne Gravity Data User Manual. Theresa 

M. Diehl, ed., Version 1. Access April 19, 2012. Available from: 

http://www.ngs.noaa.gov/GRAVD/data_cs01.shtml. 

GRAV-D Science Team (2011). Gravity for the Redefinition of the American Vertical Datum 

(GRAV-D) Project, Airborne Gravity Data; Block CS01. Access April 19, 2012. 

Available from: http://www.ngs.noaa.gov/GRAV-D/data_cs01.shtml. 

GRAV-D Science Team (2011). GRAV-D General Airborne Gravity Data User Manual. Theresa 

Diehl, ed. Version 1. Access April 19, 2012. Available from: 

http://www.ngs.noaa.gov/GRAVD/data_CS02.shtml. 

GRAV-D Science Team (2012). Gravity for the Redefinition of the American Vertical Datum 

(GRAV-D) Project, Airborne Gravity Data; Block CS02. Access April 19, 2012. 

Available from: http://www.ngs.noaa.gov/GRAV-D/data_CS02.shtml. 

GRAV-D Science Team (2012). GRAV-D General Airborne Gravity Data User Manual. Theresa 

Diehl, ed. Version 1. Access April 19, 2012. Available from: 

http://www.ngs.noaa.gov/GRAVD/data_CS03.shtml.  

http://www.ngs.noaa.gov/GRAVD/data_cs01.shtml
http://www.ngs.noaa.gov/GRAV-D/data_cs01.shtml
http://www.ngs.noaa.gov/GRAVD/data_CS02.shtml
http://www.ngs.noaa.gov/GRAV-D/data_CS02.shtml
http://www.ngs.noaa.gov/GRAVD/data_CS03.shtml


77 
 

GRAV-D Science Team (2012). Gravity for the Redefinition of the American Vertical Datum 

(GRAV-D) Project, Airborne Gravity Data; Block CS03. Access April 19, 2012. 

Available from: http://www.ngs.noaa.gov/GRAV-D/data_CS03.shtml. 

GRAV-D Science Team (2011). GRAV-D General Airborne Gravity Data User Manual. Theresa 

Diehl, ed. Version 1. Access April 19, 2012. Available from: 

http://www.ngs.noaa.gov/GRAVD/data_CS04.shtml. 

GRAV-D Science Team (2011). Gravity for the Redefinition of the American Vertical Datum 

(GRAV-D) Project, Airborne Gravity Data; Block CS04. Access April 19, 2012. 

Available from: http://www.ngs.noaa.gov/GRAV-D/data_CS04.shtml. 

Hofmann-Wellenhof, B., & Moritz, H. (2006).  Physical geodesy (2
nd

 ed.). New  York: Springer 

Wien.  

HYDROGP020 - U.S. National Atlas Water Feature Areas: bays, glaciers, lakes and swamps. 

(2003). U.S. Geological Survey. Accessed January 19, 2012. Available from: 

http://coastalmap.marine.usgs.gov/GISdata/basemaps/usa/water/hydrogp020.zip.  

Li, X., & Götze, H. J. (2001). Tutorial ellipsoid, geoid, gravity, geodesy, and geophysics. 

Geophysics, 66, 1660-1668.  

NOS80K - Medium Resolution Digital Vector U.S. Shoreline shapefile for the contiguous United 

States. (1994). National Oceanic and Atmospheric Administration (NOAA), National 

Ocean Service (NOS), Office of Coast Survey, and the Strategic Environmental 

Assessments (SEA) Division of the Office of Ocean Resources Conservation and 

http://www.ngs.noaa.gov/GRAV-D/data_CS03.shtml
http://www.ngs.noaa.gov/GRAVD/data_CS04.shtml
http://www.ngs.noaa.gov/GRAV-D/data_CS04.shtml
http://coastalmap.marine.usgs.gov/GISdata/basemaps/usa/water/hydrogp020.zip


78 
 

Assessment (ORCA). Accessed January 19, 2012. Available from: 

http://coastalmap.marine.usgs.gov/GISdata/basemaps/coastlines/nos80k/nos80k.zip. 

Seeber, G. (2003). Satellite geodesy (2
nd

 ed.). Berlin, New York: Walter de Gruyter.  

STATE_BOUNDS: internal US state boundaries. Valerie Paskevich. Accessed January 19, 2012. 

Available from: 

http://coastalmap.marine.usgs.gov/GISdata/basemaps/boundaries/state_bounds/state_bou

nds.zip 

 

 

 

 

 

 

 

 

 

 

 

http://coastalmap.marine.usgs.gov/GISdata/basemaps/coastlines/nos80k/nos80k.zip
http://coastalmap.marine.usgs.gov/GISdata/basemaps/boundaries/state_bounds/state_bounds.zip
http://coastalmap.marine.usgs.gov/GISdata/basemaps/boundaries/state_bounds/state_bounds.zip


79 
 

Chapter 4: Computation of the Geoid Downward Corrections in Coastal Areas  

This chapter was published: Song, H. Z., & Sadovski, A. L. (2011). Evaluation of Downward 

Corrections of Gravitational Free-air Anomalies to evaluate Geoid in the Coastal Areas.  

Proceedings 2011 World Congress on Engineering and Technology. IEEE Press, 676-679.  

This chapter deals with computation of the downward correction for the geoid 

determination in the coastal areas. Evaluation of precise geoid is very complicated in the coastal 

areas due to closeness of large masses of water and land which have different densities. We used 

MatLab and Stokes-Helmert integrals to find equipotential surfaces of gravity and then evaluate 

length of the plump lines and their deviation from geometrical perpendiculars in coastal areas. 

The difference between the plump line length and the length of geometrical perpendicular to the 

reference ellipsoid is needed to make right downward correction for determination of the precise 

geoid. 

The importance of the knowledge of the exact geoid (Holfmann-Weeenhof & Moritz, 

2006; http://www.ngs.noaa.gov/GEOID/) is necessary for the success of different human 

activities and even to its own survival. To know precise geoid may be the difference between life 

and death in the situations of tropical storms, floods, tsunamis, and other natural catastrophes. 

The other usefulness of the geoid is its positive impact on land issues, dredging, constructions, 

education, and few others. By using satellites scientists discovered long wave (large scale) geoid  

for the Earth (Seeber, 2003; Drinkwater et al., 2003), but its precision is not sufficient when it 

comes to the relatively small scale and/or local situations such as created by hurricanes Katherine 

(2005), Rita (2005), and Ike (2008) in the coastal areas of the Gulf of Mexico. So, it is quite 

timely to develop new and improve existing methods and models of the geoid determination at 

http://www.ngs.noaa.gov/GEOID/
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the local level based on local observations of gravity and complimented by observations of 

gravity from the air and space. In today’s satellite age the height can be determined with just a 

few centimeters of accuracy geometrically by the global positioning system (GPS).  

It is well known that the greatest errors in the geoid determination (Smith & Mibert, 

1999) happen either in the mountain terrain (due to sharp variations in the relief) or in coastal 

areas when two large bodies of water and land of quite different nature and density are brought 

together. We have to determine numerically for the future research the derivations of the plumb 

line from the geometrical vertical as long as they have visible origin, namely by a topographic 

surface of the continental relief, by a geological determination of the mass density of its 

constituents and by a systematic survey of the oceans according to well-established methods. 

Therefore, this study deals with the modeling of the equipotential surfaces for the ideal coastal 

areas. Initially we used Stoke-Helmert double integral for the 2D model: 

 

 

The result was a very rough evaluation of the slopes of gravity surfaces if we make a vertical cut 

perpendicular to a shoreline where water and land meet.  

To find more precise and better evaluation of equipotential gravitational surfaces we have 

used triple Stokes-Helmert integral  over the rectangle surface with sides 100 km over 20 km and 

depth of 2 km. Half of this rectangle located over the water and another half located over land. 

The following integral:   

dy
qypx

dxGdy
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dxGU lwqp   
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Using MatLab software solves this equation. The code for triple integral shown in Figure 4.1.  

 

 

Figure 4.1 Matlab code for triple integral. 
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The equipotential surfaces provide us with much needed information about plumb lines, 

which in turn would be very helpful for the downward continuation as well as for better use of 

the famous 0.3068 correction factor.  

In this study we calculated downward error by using the knowledge of geometry. When 

angles are getting smaller enough, the values of tangent and sine are approximately equal to each 

other and an angle itself measured in radians. The change of the curvature of the plumb line is 

the same as a change of normal gravity, which could be expanded as a polynomial series of 

altitude; it is enough for practical purposes to use linear extension of the normal gravity. In the 

case of our model the angle of the tangent line changes from  
 

 
      at point 0 to eventually 0 

at distance 30 km from the border of land and water masses. 

 

Figure 4.2 Equipotential levels. 
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Figure 4.3 Gravitational potential. 

 

Figures 4.2 and 4.3 were obtained by using MatLab, and they show equipotential levels 

and gravitation in the 2D plane normal to the Earth ellipsoid of reference at the shoreline. The 

next image on Figure 4.4 is more complicated. It represents levels of equipotential surfaces of 

gravity in the normal plane cut through the central point (0, 0, 0) of the model. Because of the cut 

these surfaces are represented by lines from the sea level to altitude 12,000 meters.       
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Figure 4.4 3D graph of equipotential surfaces of the vertical cut through the point (0,0,0). 

Now we can evaluate deviation of the plumb line from the geometrical perpendicular. By 

using calculation results from MatLab and 2D and 3D images we can estimate curvature and, 

what is most important here, tangent lines and value of derivatives. With the purpose of finding 

deviations of plumb line from orthogonal we change the orientation from vertical to horizontal as 

shown in Figure 4.5. So it would be quite simple to evaluate the length of the plumb line and 

compare it with the length of geometrical orthogonal. 
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Figure 4.5 Geometrical straight line (blue) and plumb line (red) after rotation. 

Knowing that angle of the tangent line changes over 10 kilometers of altitude rising from 

 

 
      at the height 0 to 

 

  
π     at the height of 10 km, and assuming that derivative of the 

plumb line curvature is linear   ( )       we can evaluate             and   

          . Then we use well known formula for the length of the curve:  

  ∫ √                         
  

 

            

So this calculation yields length L of such plumb line around 16.5 centimeters longer than 

geometrical vertical of 10 km. It is easy to see that curvature of the plumb lines diminishes if the 

move from the shoreline further inland or to the sea. We can expect that after 30 kilometers 

impact of water-land differences in densities will not have any effect on the curvature. It shows 
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that downward correction factor varies from maximum value of the order 16 cm at the shoreline 

to insignificant at the distances over 20 km. 

It makes a good sense to improve downward correction close to the shore. For instance, 

to make a linear increase along a plumb lines between16 cm at the water-land border (x = 0) to 0 

at the distances greater or equal to x = 20 km inland or ocean ward. The maximum increase in the 

plumb line is an equivalent of around 0.5 mgal.   

Numerical evaluations performed in this chapter show us the uncertainty in the 

calculation of precise geoid along the shoreline due to the variations in the shape of the shore and 

in the depths of the ocean close to the shore both of which could significantly affect precision of 

the geoid evaluation. 
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Chapter 5: Evaluation of Errors of Gravity Potentials under the Conditions of Uncertainty 

in the Boundary Value Problems 

It is well know that gravity potential V outside of the Earth surface could be found by 

solving Dirichlet boundary value problem of potential theory: 

                         ΔV=0, where       
   

   
 

   

   
 

   

   
     is called Laplacian,  

and V(S) is a given value of the potential on the surface S. Here, for simplicity, we assume that 

the surface of the Earth is a sphere. We define solutions of the Laplace Equation ΔV = 0 as 

harmonic functions. The most important harmonic functions are spherical harmonics. To 

introduce such functions we need spherical system of coordinates (Figure 5.1): r is a radius 

distance to a point P, ϑ is a polar distance in radians from the vertical axis, and λ is a geocentric 

longitude. 

 

Figure 5.1 Spherical and rectangular coordinates (Hofmann-Wellenhof & Moritz, 2006).  
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Defining relation between rectangle and spherical coordinates 

                                       √        , 

we can now look for harmonic solutions by solving the following Laplace equation in spherical 

coordinates: 

                                
   

    
  

 

  

  
 

 

  

   

    
    

  

  

  
 

 

       

   

   =0, or                       (5.1) 

                                                 

      
  

  
 

   

        
  

  
 

 

     

   

   =0                  (5.2) 

We will solve Laplace equation by using well known technique of separating variables 

(Folland, 1976). Namely, we will look for the solution V as a product of two functions, one of 

them depended solely on radius distance r, while another depends on pair of angles ϑ and λ:  

                                                            (     )   ( ) (   )         (5.3)                     

Performing substitution and differentiation in Equation 5.2, we get the following equation 

(Equation 5.4).  

                                           
 

 
(         )   

 

 
(
   

        
  

  
 

 

     

   

   )              (5.4) 

Left-hand side in Equation 5.4 depends only on r at the same time right-hand side depends only 

on angular values ϑ and λ. Here we will follow Hofmann-Wellenhof & Moritz (2006) notes to 

separate Equation 5.4 into two equations (Equations 5.5 & 5.6): 

                                                    ( )      ( )   (   ) ( )       (5.5) 

                                          
   

        
  

  
 

 

     

   

     (   )       (5.6) 
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It will be very helpful in finding desire solutions if we have denoted the constants in the 

form  (   ) in Equations 5.5 & 5.6.  

Solutions of the Equation 5.5 in this case are given by formulas 

 ( )          ( )    (   ). 

Denoting still unknown functions in Equation 5.6 by   (   ), we are able to figure out that 

Laplace Equation 5.1 is solved by functions: 

      (   )        
  (   )

    . 

These two groups of functions are called solid spherical harmonics, while functions   (   ) are 

known as Laplace surface spherical harmonics. 

We have to note that n is not just some number, but it must be an integer 0, 1, 2 … to 

solve a given problem.  

It is well known that sum of the solutions for linear differential equation is also a 

solution. So we can claim that 

                                                ∑     (   ) 
         ∑

  (   )

    
 
     (5.7) 

are also solutions of Laplace equation. 

Now we are going to find spherical harmonics   (   ) by the way of using new 

substitution 

  (   )   ( ) ( ), 
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where functions g and h depend on only one variable each. 

After substitution in Equation 5.5 and separating g and h, we come up with the following 

equation (Equation 5.8): 

                                             
    

 
                (   )        

  

 
    (5.8) 

The left-hand side is the function of ϑ only, and the right-hand side is the function of λ only, 

therefore both sides must be constant. Let us denote this constant   . Then Equation 5.8 splits 

into two equations (Equations 5.9 & 5.10): 

                                                   ( )        ( )    (   )     
  

    
  ( )    (5.9) 

and 

                                                                  ( )     ( )                             (5.10) 

Solutions of Equation 5.10 are functions 

 ( )                  ( )       , 

which could be easily verified by substitution. It could be shown that only meaningful values for 

m are integers 1, 2, 3 … 

Equation 5.9 is Legendre’s differential equation, and it may be shown that it has solutions only 

for integer values of m which are not greater then respective value of n. 

In such a way function 

 ( )     (    ) 



92 
 

and functions 

                                     (   )     (    )              (   )     (    )       (5.11) 

are solutions of differential Equation 5.6. These solutions are linear, so any linear combination of 

functions (Equation 5.11).   

                   (   )  ∑        (    )       
         (    )        (5.12) 

where     and     are arbitrary coefficients. Substituting just obtained relations in Equation 

5.7, we get solutions of the Laplace equation for interior and exterior of the sphere: 

               (     )  ∑   ∑        (    )       
         (    )       

    (5.13) 

             (     )  ∑
 

    
∑        (    )       

         (    )       
    (5.14) 

For Legendre’s functions    , n is called a degree and m is called the order of this function. Here 

Legendre’s function is: 

   ( )  (   )  
 

    
(    )

 
 

    

     
(    )  

Figure 5.2 illustrates an example of Legendre functions.  
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Figure 5.2 Legendre’s polynomials as function of       . Top: n is even; Bottom: n is odd 

(Hofmann-Wellenhof & Moritz, 2006). 

 

Now, any arbitrary function on the surface of the sphere can be expanded into series of 

spherical harmonics 

                    (   )  ∑   (   ) 
    ∑ ∑        (   )   

         (   )  
    (5.15) 

Here we introduce new abbreviations 

   (   )     (    )      
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   (   )     (    )      

It essential that just introduced functions are orthogonal, which means that the integral over the 

unit sphere of the product of two different functions is equal to zero: 

∬    (   )   (   )  
 

  , 

for any combination of m, n, s, and r, as well as 

∬    (   )   (   )  
 

   ∬    (   )   (   )  
 

   

for any s ≠ n or  r ≠ m or both. 

This gives us a tool to solve the Dirichlet problem with given boundary function F on the 

sphere surface. Suppose that this function F is not known precisely, it means that we have an 

error between what is a known to us function F and what is real unknown function H. Let us 

denote the maximum error by ε: 

                                                                           | ( )   ( )|                    (5.16) 

where χ is a point on the surface of the given sphere. Geometrically it means that the distance 

between functions is measured by maximum distance between them.  Let us assume for 

simplicity that we have a unit sphere, in this case we can present function F on the unit sphere 

into a form of spherical harmonics 

 (     )  ∑  (   )

 

 

 

and 
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  (   )  ∑       (    )      

 

   

      (    )       

Here we can determine coefficients by knowing surface function F and by using the following 

formulas: 
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∬  (   )   (   )  

 

 

    
    

  

(   ) 

(   ) 
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We understand that replacing F by  (     ) in Equation 5.16, then we obtain the 

following inequality: 

    | (     )   ( )|    

The exterior solution for the Dirichlet problem when r > 1 is 

 (     )  ∑
  (   )

    

 

   

 

So, for any exterior point with spherical coordinates (r, ϑ, λ), where r > 1, we have, as a worst 

case scenario, evaluation for the gravity potential error. 

                                             | (     )       (     )|  
 

 
                        (5.17) 
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The further from the surface axial location of the point with coordinates (     ) is, the smaller 

the error in estimation of the potential.  

Now let us suppose that the surface-boundary is not known precisely, it means that there 

is some possible error not exceeding value δ > 0 in meters along this boundary. It is well known 

that if object moves along any plumb line distance δ then the value of gravity potential changes 

by 0.308δ mgal. Our next step is to replace errors in boundary values and errors in boundary 

itself at any point χ of the surface by only boundary errors at the same point. We can achieve this 

goal by combining error ε at the boundary and error 0.03086δ to the shift to boundary as the 

aggregate error in the form ε + 0.308δ.  It is well known that in the maximum metric the total 

maximum error is not greater than sum of maximum errors. Now we can give the final 

estimation of the greatest error in the gravity potential determination outside of the surface of the 

planet: 

    | (     )       (     )|  
        

 
 

Remarks 

The above problem of evaluation of gravity potential errors was set up at U.S. National 

Geodetic Survey during personal conversation by Dr. Alexey Sadovski.  
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Chapter 6: Sea Level Rise and the Geoid: A Factor Analysis Approach  

6.1 Introduction 

Most scientists consider climate change to be a serious environmental threat (IPCC, 

2007). Climate change, whether from natural or anthropogenic causes, is evidenced by increased 

rates of sea level rise, increased atmospheric and ocean temperatures, changes to precipitation 

amounts and patterns, a possible subtropical desert expansion (Lu et al., 2007), thermal 

expansion of ocean water, and glaciers melting. Other effects of climate change are evidenced by 

severe weather events including heat waves, droughts (Dai, 2011), and heavy rainfall. Some 

potential effects of climate change include species extinctions due to shifting temperature 

regimes, the threat to food security because of extreme weather patterns (Battisti & Naylor, 

2009), and habitat losses due to coastal inundation due to higher rates of sea level rise. 

Sea level rise demands more attention in coastal areas. One reason is that about 10% of 

the world’s population lives in low-lying coastal areas with elevations less than 10 meters above 

current mean sea level (FitzGerald et al., 2008). The current global rate of sea level rise is nearly 

3.0 mm/year (Rahmstorf, 2007a; Nicholls & Cazenave, 2010). Satellite observations show the 

rate of sea level rise varies across the globe (http://sealevel.colorado.edu/content/regional-sea-

level-time-series). Thus, the study of sea level rise is an important component of earth science 

research.  

Cartographers and geodesists, those who study the measurement of the size and shape of 

the earth, are interested in sea level as an elevation datum. This datum is called the geoid, which 

is defined as the equipotential gravity surface of the Earth, and theoretically best fits global mean 

sea level in ocean areas (Hofmann-Wellenhof & Moritz, 2006). Hence, the rate of change in 
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mean sea level directly affects changes to the geoid and the elevation datum used as the reference 

for topographic mapping. 

Many methods have been used in sea level rise modeling. These methods can be divided 

into two categories: physical models, based on the conservation of mass (global water mass and 

ice mass measurements), and semi-empirical models, studying measured rates of change of sea 

level and measured changes in global temperatures along with the error estimates of 

measurements to predict future trends (Rahmstorf, 2012). These two approaches are 

complementary. For example, no one really understands the dynamics of each and every glacier, 

so it is quite difficult to calculate melting glaciers from physical models, hence the use of semi-

empirical methods described in the majority of studies of sea level rise. This paper introduces a 

different approach by using factor analysis of regional sea level rates of change as a statistical 

analysis tool. Instead of answering the question of how much and how fast sea levels are 

changing, this paper computes and discusses which mathematical factor statistically affects sea 

level rates of change and seeks patterns to explain spatial correlation. The paper also seeks to 

hypothesize that any insights into the factors influencing sea level change also apply to the 

changes to the geoid.  

6.2 Background 

 

There are two types of sea level rise. One is called global sea level rise. The cause of 

global sea level rise is basically rising temperatures. According to Roemmich (1992), thermal 

expansion of seawater and melted glaciers are increasing results from warming. Additionally, a 

2009 EPA report (Titus & Anderson, 2009) said that potential changes in polar ice sheet flow 

may be another factor that causes global sea level rise (Williams et al., 2009). The 

Intergovernmental Panel on Climate Change (IPCC) reported that sea levels have risen 
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approximately 4.8~8.8 inches (12~22 cm) around the world during last century (IPCC, 2007). 

Global sea levels rose at an average rate of 1.8 mm per year between 1961 and 2003 (1.3~2.3 

mm), and there was a much faster rate between 1993 and 2003 (Williams et al., 2009). The IPCC 

(2007) estimated that the global mean sea level will rise by 7.2~23.6 inches (18~59 cm) by 2100 

(Figure 6.1). The CU Sea Level Research Group (SLRG) at the University of Colorado defines 

the global mean sea level as “the area-weighted mean of all of the sea surface height anomalies 

measured by the altimeter in a single, 10-day satellite track repeat cycle”. The SLRG at CU also 

argues that the global mean sea level can be thought of as the eustatic sea level, which represents 

the level if all the water in the ocean is based on a single basin.  

 

Figure 6.1 Past and projected global average sea level. The gray shaded area shows the estimates 

of sea level change from 1800 to 1870 when measurements are not available. The red line is a 

reconstruction of sea level change measured by tide gauges with the surrounding shaded area 

depicting the uncertainty. The green line shows sea level change as measured by satellite. The 

purple shaded area represents the range of model projections for a medium growth emissions 

scenario (IPCC SRES A1B). Source: IPCC (2007).  

 

Another type is local sea level rise, often known as relative sea level rise, which is very 

important when studying coastal areas.  It refers to the change in sea levels relative to the 
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elevation of the land, and relative sea level rise includes the effect of both global sea level rise 

and vertical movements of the land (Williams et al., 2009). For instance, relative sea level rise 

along the coastal areas of the Gulf of Mexico is caused by the global rise in ocean levels and land 

subsidence resulting from natural and human-induced changes (Montagna et al., 2007). From 

natural view, the coastal plain was built by deposited, estuaries, coastal, and sediments. The 

thickness of mud and sand is compressing under their own weight at a rate of about 0.05 

mm/year (Paine, 1993). In addition, land subsidence is a human-induced result from extraction of 

subsurface fluids (i.e. oil, gas, water). Montagna et al. (2007) suggested that the highest rates of 

land subsidence are correlated with oil, gas, and groundwater withdrawal in South Texas coasts; 

however, Dokka (2006) proposed that a significant cause of subsidence is faulting in the Gulf of 

Mexico.  

 Figure 6.2 (Montagna et al., 2007) visually shows how a rise of 2, 4, and 6 meters 

respectively in sea level would result in inundations of the Corpus Christi Bay area. With a rise 

of less than 4 meters, barrier islands that exist today would be completely gone. With only a 2-

meter rise from current sea level, the lower Nueces Delta would be submerged, and the entire 

delta would be submerged with a 6 meters rise of sea level. This figure does not give us a 

realistic view or shape for future shorelines because it did not include variable factors (i.e. 

waves, currents, and human activities) in this case. But just by this view, there would be massive 

losses of marsh habitats in the bays. This is why studying and understanding what kind of factors 

lead to sea level rise is imperative.      
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Figure 6.2 Perspective view of inundation of the Corpus Christi Bay area by sea level rise 

(Montagna et al., 2007).  
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6.3 Data  

Datasets [msl_ib(mm) #version_2012_rel2] were downloaded from the University of 

Colorado Sea level research Group website (CU Sea Level Research Group, 2013; Figure 6.3). 

The sea level data was used in this chapter recorded from 1992 to 2011(Figure 6.4). These 

datasets did not correct GIA, but applied the inverted barometer (IB) approach, which is the 

traditional static model, and also included seasonal signals.  

           These downloaded datasets were fixed by using a running average (also known as a 

moving average) in this study. The cumulative running average (CRA) is typically the 

unweighted average of the sequence of i mean sea level values           up to 2011: 

     
          

 
. 

 

Figure 6.3: Data from each region represented in the world map 

(http://ibis.grdl.noaa.gov/SAT/SeaLevelRise/LSA_SLR_timeseries_regional.php). 

 

In principle, a prediction lies on the original regression line, and an increase in the 

strength of correlation (either positive or negative) is expected. If it is a good prediction, the 

http://ibis.grdl.noaa.gov/SAT/SeaLevelRise/LSA_SLR_timeseries_regional.php
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correlation coefficient after the extra order pair added to the data should be stronger than the 

original coefficient. Unfortunately, this is not likely to happen due to the mutative trend of 

coefficient.  A running average method uses the i pairs of data to calculate the regression 

equation and correlation coefficient, and increases i by 1 each step, and repeats the process until 

reaching the suitable number of predictions. Therefore, there is a higher estimate from the 

mutative trend, and the prediction will be much smoother (Figures 6.5 and 6.6).  

 

Figure 6.4 Mean sea level dataset from 1992 to 2011. 
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Figure 6.5 Sea level variations: 2 years running averages. 
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Figure 6.6 Sea level variations: 5 years running averages. 

6.4 Method 

Using a running average of mean sea level data, the factor analysis approach was applied 

in this study. Factor analysis is designed to reduce the multi-dimension of space of variables to 

two or three dimensional space of factors that explain majority of variation of initial data. Firstly, 

the correlation matrix was obtained by using IBM SPSS Statistics 20. The extraction method 

used principal component analysis, and the rotation method used varimax with Kaiser 

Normalization. Then the four criteria-eigenvalue, variance, scree plot and residuals-were tested. 

Table 6.1 represents the communalities, and it indicates that all variables are >.9. Thus, this 
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analysis is fairly reliable. Finally, the number of factors to be retained was determined by 

eigenvalues. Since components with eigenvalues greater than 1 should be retained, the first three 

components satisfied this criterion. The total variance of the first three components is 97.748% 

(Table 6.2). However, if we take a careful look at the initial analysis, only the first component 

was strong enough to be retained. In this case, a principal component analysis was conducted to 

keep three components and utilize the varimax rotation. Inclusion of two components increases 

the model fit, and three components are fairly strong to be retained. After rotation, the first 

component accounted for 35.237%, the second for 32.655%, and the third for 29.856%. The 

screen plot (Figure 6.7) was then evaluated and shows that after component 3, the eigenvalues 

level off. The process of analysis for determining the appropriate number of components to 

retain was quite reliable according to the four criteria.  

 

Table 6.1 Communalities of mean sea level. 
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Table 6.2 Table of total variance for three components solution. 

 

Figure 6.7 Scree plot. 

6.5 Results 

The last step was to interpret each retained component. Table 6.3 indicates the factor 

loadings for the rotated components. Only the factor loadings over .7 were concerned in this 
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study. Component 1 consisted of four of seventeen variables: the Arabian Sea, the Bay of 

Bengal, the Maldives, and the Indian Ocean. These variables had positive loadings. The Arabian 

Sea and Bay of Bengal are marginal seas of the Indian Ocean. The Maldives Republic is the 

lowest country in the world. According to EGM08 (Earth Gravity Model of 2008) map, the geoid 

of these four variables is much lower than the others.  Thus, component 1 addressed the geoid. 

Component 2 included the Gulf of Mexico, the Caribbean Sea, the East Sea (also known as the 

Sea of Japan), and the Bering Sea. Among of these four variables, the loading of the Bering Sea 

was negative. The Bering Sea is marginal sea of the Pacific Ocean, and the circulation of this 

area is also affected by the Arctic Ocean. The currents of the Gulf of Mexico, the Caribbean Sea 

and the East Sea are warmer current. This second component represented circulation (especially 

indicate current).  Component 3’s interpretation is in question. Indonesian Through-flow has a 

long-term history of tectonic changes. These changes were not just zone collision (i.e., Asian-

Australia collision zone) and mountain building, but also included basins extensions and new 

ocean basins’ formation in eastern Indonesia (Kuhnt, W. et al., 2004). The Adriatic Sea is located 

in the collision zone between the African and the European plates (Favali, P. et al., 1993). So, 

component 3 may be influenced by the tectonic changes. Additionally, there is an attention that 

the areas with the loadings of the two components which were relatively high are mostly the 

places where oil spills have occurred, but this hypothesis has not been studied in this research.  
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Table 6.3 Factor loadings for rotated component matrix. 

6.6 Discussion  

The main goal of factor analysis is to simplify several inter-correlated measures orderly 

(Burt, 1940; Child, 2006). If using one word to describe these mathematical procedures used for 

factor analysis is “generalization”, which called factor in this chapter. Factors explain common 

variance among variables. The statistical method of factor analysis is designed to reduce data by 

grouping variables that show a common pattern. Principal components analysis (PCA) is most 

commonly chosen to use in extraction procedure. PCA evaluated all sources of variability for 

each variable during the procedure. However, there are always some things we are not able to 

determine with certainty. Therefore, it is easy to apply the methodology precisely, but 

interpretation varies among interdisciplinary branches of science.  
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Table 6.4 Table of total variance explained (Sadovski, A. et al., 2010). 

 

Table 6.5 Factor loading for rotated component matrix (Sadovski, A. et al., 2010). 

According to a poster presentation by Sadovski et al. (2010) (Tables 6.4 and 6.5), many 

factors of sea level rise are unexplained in the analysis of Texas coast, but more factors are 
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identifiable in the pattern of regional areas. In studying regional and local areas, different kinds 

of datasets (i.e. wind data, salinity data, temperature data, etc.) should be added. This will 

provide a more precise indication of which factors have a great impact in local areas. So far in 

this poster presentation the first of two main factors was interpreted as a global sea level rise 

while the second one as a local subsidence of the land in the coastal areas.  

The study of the mean sea level should not just focus on global, but regional or local 

areas, as well. Studying global sea level changes is helpful for finding and learning about 

changing patterns, but regional and local studies will reveal more specific factors that cause sea 

level rise. Knowing the patterns and factors which affect sea levels will result in more accurate 

predictions of changes along the coasts, and, ultimately, better means by which to plan for, or 

avoid, catastrophes due to inundation.  
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Chapter 7 The Geoid and Wetland Modeling: The Impact of the Geoid Precision on 

Wetlands Modeling 

Another application of determination and evaluation of the geoid is that the geoid can be 

used as a basis for wetland migration modeling in response to sea level rise. The key parameters 

for modeling wetland migration are illustrated in Figure 7.1, among of which, the elevation is 

one of the important factors for sea level modeling and its impact on coastal wetlands systems 

(Marshes on the Move, 2011).  

 

Figure 7.1 Illustration of Key Parameters for Wetland Migration Modeling (Marshes on the 

Move, 2011). 

 

7.1 Background 

 According to A to Z GIS: An illustrated dictionary of geographic information systems, the 

elevation defines as “the vertical distance of a point or object above or below a reference surface 

or datum (generally mean sea level)”. However, elevations are measured either by leveling or by 

GPS receiver. GPS heights are referenced to the ellipsoid reference surface, and they are not 
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even linked to mean sea level. The geoid is defined as the equipotential gravity surface of the 

Earth, and theoretically best fits global mean sea level (Hofmann-Wellenhof & Moritz, 2006). 

Hence, elevations can be determined by using the geoid. Namely, using precise geoid can help to 

have more precise elevation values.  

 The coastal areas of the Gulf of Mexico have more than half of the coastal wetlands and 

seven major estuarine systems in the State of Texas alone. Barrier islands are parallel to the land 

along the coast. Between the land and barrier islands are lagoons, which open to a large primary 

bay. Coastal areas are important for many species. Coasts are also as the protection of human life 

and properties from shores. But there is a very high rate (25 square miles per year) of losing 

coastal lands in the Gulf of Mexico over the last 50 years (NOAA’s Oil Spill Response, 2010). 

Also, the Gulf of Mexico as the highest amount of total proportion loss, the main caused factors 

are storms, erosion, subsidence, and global sea level rise (Coastal Wetland Reviews: Highlights).  

 Wetlands as part of coastal areas have great important functions. Mitsch and Gosselink 

(2007) mentioned two terms to describe wetlands, which are “the kidneys of the landscape” and 

“ecological supermarkets”. “The kidneys of the landscape” means that wetlands have a function 

that is just like the function of organ kidneys. It can receive the water and waste of both natural 

and human sources from upstream. It also can store water and filter waste. Kidneys are very 

important to our human bodies, so are wetlands to environment. “Ecological supermarkets” gives 

a direct view of wetlands, which have a huge variety of flora and fauna. Wetlands are important 

habitats in both ecological and economical aspects.  

 There are some facts listed below (NOAA’s state of the coast, 2011; Stedman & Dahl, 

2008) which show how and how much wetland along the Gulf coasts we lost:  
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 “272 square miles of wetlands were converted to open water, bare land, agriculture, and 

developed area between 1996 and 2006 in the Gulf of Mexico coastal watershed area”.  

 The area of wetlands is 31% of the total coastal watershed area of the Gulf of Mexico.  

 “108 square miles of wetlands lost to development between 1996 and 2006 in the Gulf 

coastal watershed area”. 

 In 2009, approximately 355 million pounds of shellfish harvest in coastal wetlands of 

Gulf of Mexico. Annual commercial value of these shellfish was 474 million dollars.  

 After Hurricanes Rita and Katrina (2008), only in Louisiana coast, 198 square miles of 

marsh was lost to open water (Barras et al., 2003; Barras et al., 2008). 

 “1/3 the amount of Louisiana’s coastal wetlands that will be lost by the year 2050 at 

current rates of loss”.  

 It is certain that coastal wetlands have been already experiencing submerging by rising in 

the sea level and associated with a high rate of loss. And it will be continued to lose areas in 

response to the future rates of sea-level rise and other factors (i.e. human activities). Many 

federal and state agencies are regulating with monitoring the environment along the Gulf of 

Mexico coastal areas. For example, Texas General Land Office (TGLO) is in charge of all Texas 

coastal submerged lands and Texas Water Development Board (TWDB) conducts research on 

freshwater inflow and impacts to Texas estuaries.  It will be helpful if could provide 

information/data they needed (1) for mean sea level rise and a local geoid; (2) for determining 

mean water level changes in coastal wetlands; and, (3) for coastal areas management.  

7.2 Data 

Nueces Delta Elevation Control (NDEC) survey data was provided by The University of 

Texas Marine Science Institute. This NDEC data was updated on June 13, 2005. There are nine 

sites (Figure 7.2). Each site contains observation points as shown in Figure 7.3 for Site 1 which 

highlighted in Tourmaline Green in Figure 7.2. The observation points at each site are in matrix 
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form structure. For example, the upper three points shown in Figure 7.3 from right to left are 

(Transect 0, Point 1), (Transect 0, Point 3), and (Transect 0, Point 5).    

 

Figure 7.2 Nueces Delta Elevation Control data displaced as each site. 
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Figure 7.3 Nueces Delta Elevation Control locations in Site 1. 

7.3 Method 

The work did so far was to provide a predicted elevation surface by using the ordinary 

kriging method. The detail of the kriging method can be found in chapters 2 and 3 of this 

dissertation. The nugget of semivariogram in Figure 7.4 is 0.007 m
2
. Namely, the independent 
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error is small. The partial sill of semivariogram is approximately 0.009 m
2
, and the range is 

4141.534 m. The semivariogram map is displayed in Figure 7.5.  

 

Figure 7.4 Semivariogram Model of the Ordinary Kriging. The averaged semivariogram values 

on the y-axis (in meter
2
), and distance (or lag) on the x-axis (in meter). Binned values are shown 

as red dots, which are sorted the relative values between points based on their distances and 

directions and computed a value by square of the difference between the original values of 

points; Average values are shown as blue crosses, which are generated by binning 

semivariogram points; The model is shown as blue curve, which is fitted to average values. 

Model : 0.0070822*Nugget+0.0094674*Stable(4141.5,2).  

 

 

Figure 7.5 A semivariogram map. The color band shows semivariogram values with weights 

(unit in meter
2
). 
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7.4 Result of the ordinary kriging method  

The sample size of NDEC data is 407. The prediction errors mean is approximately 

9.87×10
-5

. The mean standardized is approximately -0.00077, which is really close to zero. The 

RMS is around 0.85 and the standardized RMS is approximately 0.97. Average Standard Error is 

0.09. The statistical result showed that the predicted of elevation surface is quite well. The 

predicted graph shown in Figure 7.6 revealed how well the known sample value was predicted 

compared to its actual value. The regression function in figure 7.6 is  ( )              . 

By visually analyzed the graph, the prediction of elevation surface is acceptable, but not as good 

as expected. The closer the regression function aligns with the reference line, the better the 

model will be.  

 

Figure 7.6 The predicted graph. The blue line represents the regression function, and the black 

line represents the reference line (unit in meter).  

 

The error graph displayed in Figure 7.7 showed the difference between known elevation 

values and the predictions for these values. The error equation in Figure 7.7 is           

     . Thus, the error of prediction is quite small. The standardized error graph (Figure 7.8) 

showed the error divided by the estimated kriging errors. The equation of the standardized error 
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is                . The normal QQ plot of the standardized error (Figure 7.9) showed 

how closely the error aligns with the normal standard distribution.  Overall, the prediction of 

elevation surface (Figure 7.10) is fairly good to be used in our future research.  

 

Figure 7.7 The error graph. The blue line represents the error equation (unit in meter). 

 

Figure 7.8 The standardized error graph. The blue line represents the standardized error equation 

(unit in meter). 



124 
 

 

Figure 7.9 The normal QQ plot of the standardized error. The reference line is represented by the 

black line (unit in meter).  
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Figure 7.10 The ordinary kriging prediction elevation map with color symbol ranged within 

elevation values (unit in meter).  

 

7.5 Discussion  

The higher range of elevation values in predicted elevation surface (Figure 7.10) most 

happened close to or in water body of Nueces delta (Figure 7.11), which showed that the 
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prediction by using the ordinary kriging method is fairly reliable. Elevations are very important 

in restoration of marshes. Rasser’s Ph.D. dissertation (2009) described vegetation distribution 

patterns for Borrichia frutescens and Salicornia virginica in lower Nueces delta. To give more 

precise configuration of marsh, especially the range of boundary values (i.e., the range of 

boundary values of tidal creek in Figure 7.12), there is a need to have precise elevation values; 

hence, there is a need to have precise local geoid. This will be one of the future research 

directions.  

 

Figure 7.11 Map of Nueces Marsh (Rasser, 2009). 

Another future research direction could be to determine mean water level over marshes. 

The mathematical model of part of marsh’s restoration plan was developed by research group led 
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by Drs. Montagna and Sadovski, which need precise local geoid as well. For example, in the 

mathematical system of equations developed by Dr. Sadovski for the system of N different plant 

species (Equation 7.1), the maximum possible density   (   ) (carrying capacity of the i-th 

species at point (x, y) depends on salinity at a point, and salinity depends on the mean water 

levels. Therefore, it is important to have precise local geoid because of a need of exact depths 

(water levels) in the vegetation models. In future research, water levels data will be provided by 

Texas Coastal Ocean Observation Network (TCOON) of the Conrad Blucher Institute for 

Surveying and Science (CBI) at Texas A&M University—Corpus Christi (TAMUCC).  

                                                  
   (     )

  
     (  ∑

  

  (   )
    

   

  (   )
 
                              (7.1) 

where ui (x, y, t) is the density of the i-th species at (x,y) at time t; ri is the rate of reproduction; Li 

(x, y) is the maximum possible density (carrying capacity of the i-th species at the point (x, y)); εi 

is the diffusion (or dispersion) coefficient of i-th species; N is the maximum number of different 

plant species.  

Improve quality of modeling marsh restoration to make multi-species spatial-temporal 

models more exact. To satisfy this need requires using precise geoid as a basis. In future 

research, the goal is to determine mean water levels over marshes associated with precise local 

geoid.  
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Figure 7.12 A conceptual model. Vegetation pattern for Borrichia frutescens and Salicornia 

virginica in the Nueces delta (Rasser, 2009).  
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Chapter 8: Conclusions 

The Gulf of Mexico as 9
th

 largest water body in the world is important for many reasons 

as introduced in Chapter 1. Dynamic environmental and physical changes including coastal 

erosion, tropic storm surges, coastal subsidence, and global sea level rise, etc. impact on the 

coastal areas, and should be evident in changes to the geoid along the coast. The geoid is the 

equipotential gravity surface of the earth, which the best fits the global mean sea level. The geoid 

is not only been seen as the most natural shape of the Earth, but also it serves as the reference 

surface for most of the height system. The shape of the geoid has a significant effect on 

interdisciplinary research and applications in Earth related science.  

Today, GPS can be used to determine very accurate position quickly and easily. GNSS 

can be used to determine the ellipsoid height within just a few centimeters of accuracy. However, 

surveyors and engineers require orthometric heights more than the ellipsoid heights. Therefore, 

there is a need for an accurate geoid model.  

This dissertation work was aimed to evaluate the accuracy of the local coastal geoid. 

Chapter 1 is an introduction to this work. Chapters 2 and 3 are similar in methodology but results 

are based on different kinds of data. Research in Chapters 2 shows that more precise evaluations 

of errors in gravity anomalies can be achieved by using different models of kriging. Results from 

Chapters 2 and 3 show that ordinary kriging with the stable semivariogram model provide better 

predictions. Research results from Chapter 3 provide estimation of maximum possible errors in 

the calculation of the geoid undulation. Research has provided a theoretical model in Chapter 4 

to estimate very small changes in gravimetric potential relative to the coast. Maximum possible 

error in the solution of Direchlet problem is determined in Chapter 5. Maximum possible error 
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depends on the errors of boundary values and the precision of the boundary itself. Results of 

factor analysis from Chapter 6 show that the elevation of sea level relates to the geoid and ocean 

circulation. Research in Chapter 7 shows that the predicted continuous elevation map obtained 

through the ordinary stable kriging was sufficiently precise and fairly reliable. Chapter 7 is an 

exploratory chapter, and the ideas of this chapter will help the future research.  
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Appendix 1 Historical Review 

 There are a several publications that support the discussion in introduces the materials of 

this section. For instance, Ewing & Mitchell (1970) and Smith (1997)’s work is regarded as 

describing the history of geodesy. There are also a lot of good internet resources available online 

(i.e. http://www.ferris.edu/faculty/burtchr/sure452/notes/history_of_geodesy.pdf).  

            Several thousand years ago, scientists were already interested in the size and shape of the 

earth, the exact problem scientists of geometrical geodesy grapple with today. No records 

indicate the beginning of geodesy, but we know that any theories were based solely on 

experiential data. The early ideas of the shape of the Earth were, of course, quite limited. 

Ancients thought the Earth must be flat, otherwise everything would fall off. The theories that 

the Earth is cylindrical and spherical were raised later.  Ancient philosophers observed the 

changeable length of shadows projected on the ground, and the way ships travelled across the sea 

in trying to determine the shape of the Earth. Aristotle (4th Century B.C.) posed that the earth 

must be sphere based on gravity. A more interesting and important principle was posed by Greek 

philosopher Eratosthenes (276-195 B.C), who is considered to be the “Father of Geodesy”. 

Eratosthenes was the first person to measure the size of the Earth. His principle was that if we 

assume the Earth is a sphere, then its size can be found if two quantities are known. The first 

quantity is the distance s between two points (Alexandria on the north and Syene/Aswan on the 

south); the second one is the angle α between two points at the center of the earth. Thus, the 

circumference C is obtained by calculating: 

                                                                  
 

 
                                                        (A1.1) 

http://www.ferris.edu/faculty/burtchr/sure452/notes/history_of_geodesy.pdf


134 
 

In Eratosthenes’s work, he measured the length of shadow from a gnomon at noon in Alexandria 

at the summer solstice. He assumed that Syene is on the same meridian as Alexandria and lies 

exactly under the Tropic of Cancer. The sun’s rays reached the bottom of a well (Figure A1.1).  

Eratosthenes used a camel in order to measure the distance between the two locations. He 

traveled 100 stadia per day, and this trip took about 50 days. The arithmetic is easy. The distance 

was 5,000 stadia, so the circumference of the earth is 250,000 stadia. There were three errors in 

Eratosthenes’s work. The first was difficulty in converting distance units. Secondly, the sun 

could not be directly overhead at the time of measurement. Finally, Alexandria and Syene were 

not on the same meridian. Therefore, the estimated circumference was too large by about 16%.  

 

Figure A1.1 Eratosthenes’ Experiment 

(http://www.juliantrubin.com/bigten/images/eratosthenes_experiment.jpg). 

 

            The next similar geometry geodesy work was done by Poseidonius (135-50 B.C.), who 

used a different technique. Poseidonius measured the distance between Rhodus and Alexandria 

http://www.juliantrubin.com/bigten/images/eratosthenes_experiment.jpg
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by sailing. He used the star Canopus to determine the size of the earth. He found that Canopus 

was on the horizon at Rhodes, but elevate ¼ of zodiacal sign over Alexandria (1/48 of the circle). 

This measurement estimated the circumference of the earth was 240,000 stadia. This calculation 

resulted in a circumference that was 11% too large.  

            The caliph Abdullah al Mamum (A.D. 786-833) also did similar work, but used wooden 

rods to measure several distances around Baghdad and Al Raqqah. From a central starting point, 

al Mamum traveled both north and south until the vertical angle to the polar star changed by 1º. 

In this work, the conversion was still uncertain. The final circumference was approximately 

39,986 km, which was 3.6% too large.  

            These three experiments used arc measurements to determine the size of the earth. Later, 

Gemma Frisius proposed the principle of triangulation in 1533. Willibrord Snellius (1580-1626), 

who was one of the first to use triangulation, measured 33 triangles along a practically north-

south arc between Alkmaar and Bergen-op-Zoom in the Netherlands with 1΄ angular. This 

experiment’s result was about 0.1% different from the current average.  

            In 1669, L’Abbé Jean Picard measured the meridional arc from Malvoisin, near Paris, to 

Sourdon, near Amiens, using the principle of triangulation. The work was continued north to 

Dunkerque and south to Collioure by Philippe de Lahire, and Dominique and Jaques Cassinis 

between 1683 and 1716. These experiments found out that there was a 1º meridional arc that 

decreased northward; the Earth was pointed at the poles (egg-shaped), which is called a prolate 

spheroid (s2 > s1). This was the first evidence that showed the Earth is not sphere. Isaac 

Newton’s suggestions that the Earth was an oblate spheroid (s1 > s2) caused controversy. Newton 

suggested the earth should be flattened at the poles from his study of gravity. Newton showed 
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that liquid in rotation about an axis would flatten. Newton’s work was purely theoretical, but 

Jean Richer’s experience with a pendulum clock provided practical evidence. Richer experienced 

trouble adjusting his pendulum clock on his excursions to Cayenne, Guiana and to South 

America. The clock lost  
 

 
 minutes per day, and the pendulum had to be shortened. The period 

of clock depends on length of the pendulum and gravity’s value (the farther from the center of 

gravity, the slower the clock is). There were also two scientific expeditions to determine the size 

of the Earth. One was in Peru led by Charles Marie de la Condamine in 1735; the other was led 

by Pierre L. M. de Maupertuis in Lapland in 1736. When comparing the results of both 

expeditions with a 1º meridional arc, the arc in Lapland was longer than the arc in Peru. This 

result proved that Newton’s concept was correct—the shape of the earth is an oblate spheroid. 

This is referred to as the beginning of the Ellipsoid Era in geodesy.  

            Newton’s theory classified the geodesy. The concept related to gravity, later this became 

known as physical geodesy. The geodetic work started more reasonable. In this era, not knowing 

precise longitude caused numerous shipwrecks, resulting in numerous deaths and loss of ships 

and goods. Shipwrecks were common because sailors did not know exactly where they were. 

Therefore, there was a need at that time to determine longitude. Galileo Galilei played a major 

role in determining longitude through his discovery of a “celestial timekeeper”. By Galilei’s 

observation using his telescope, he discovered that Jupiter had four satellites, and their passages 

in front and behind a plane could be predicted. Longitude could be obtained by calculating the 

time of these passages. But this work was still not possible at sea. John Harrison’s work filled 

this gap. He developed a clock which could accurately keep time during ocean voyages and help 

determine the longitude. The first clock was completed in 1735. The fourth clock Harrison 

designed was smaller, and had an error rate of less than two minutes over a five -month voyage.  



137 
 

            In the history of geodesy, Johann Carl Friedrich Gauss (1777-1855) played a pivotal role 

in the revolution of geodesy. As a mathematician, physicist and geodesist, Gauss developed the 

theory of least squares, theories in statistical estimations, and potential theory. He also was the 

first one to use least square theory to adjust a triangulation network. Fischer (1975) wrote down 

that Gauss (1828) wrote,  

The arc measurement in Hannover adds new confirmation to the now unquestionable truth that 

the surface of the Earth does not have a quite regular shape.... While the astronomic 

observations give the latitude of Altona 5I:52 smaller (than the geodetic, computed on the best 

fitting ellipsoid available), the observations made on the Brocken give its latitude 10-11" larger, 

a difference of which certainly only a fraction could be due to instruments and the declinations 

used in the computation. The comparison of the latitude difference between Altona and the 

Brocken with the curvature of the spheroid which best fits the Earth as a whole, would thus give 

a discrepancy of 16". 

In our opinion it is incorrect to talk in such cases only of local deviations of the plumb 

line, thus considering them as isolated exceptions. What we call the surface of the Earth in a 

mathematical sense, is nothing else but that surface, which everywhere intersects the direction of 

gravity at right angles, and of which the surface of the oceans is a part. The direction of gravity 

at every point is determined by the shape of the rigid part of the Earth and its uneven density. On 

the upper surface of the Earth's crust, the only part of which we know anything at all, this shape 

and density appears as being very irregular; the irregularity of the density may easily extend 

quite far downward, and escapes our computations for which almost all data are lacking. The 

mathematical surface is produced by the total effect of these irregularly distributed elements. 

Instead of thinking it strange to find clear evidence of the irregularity, one should rather marvel 

that its effect is not even larger.... 

          This does not prevent us, however, from considering the Earth as a whole as a spheroid of 

revolution, from which the real (mathematical) surface deviates everywhere in larger or smaller, 

shorter or longer undulations. Were it possible to quasi spin one trigonometric net all around the 

whole Earth and to compute thereby the relative position of all points, then the ideal spheroid of 

revolution would be the one where the computed directions of the normals best agreed with the 

astronomic observations [in today's language, where the deflections of the vertical are 

minimized]. Although this is an unattainable ideal, there is no doubt that future centuries will 

considerably advance the mathematical knowledge of the figure of the Earth.... Maybe the idea is 

not chimerical that some day all observatories of Europe will be trigonometrically connected ….  

F. W. Bessel (1837) gave more details on difference between mathematical and physical surface 

of the Earth based on Gauss’s explanation. Bessel wrote,  
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The visible irregularities of the physical surface of the Earth definitely do not belong to the 

mathematical surface, but, since they too are irregularities of the mass distribution, they do 

affect it indirectly by producing attractions which otherwise would not be there. Likewise, 

irregularities of the mass distribution in the Earth's interior produce irregularities of the 

mathematical surface. All attractions together, combined with the centrifugal force produce that 

surface, to which the geodetic work refers.... This is a surface which intersects at right angles the 

directions of the forces which consist of all attractions produced by the individual elements of 

the Earth, combined with the centrifugal force corresponding to its rotational velocity. This 

condition, however, only determines any of the surfaces which could be covered by a fluid in 

equilibrium; one must still decide which of these surfaces should be the mathematical surface of 

the Earth. The choice would, if not restricted by an extraneous condition, actually be arbitrary if 

the Earth were only a rigid body without an ocean. Since this, however, exists, it is appropriate 

to adopt that one as the surface of the Earth, of which the ocean surface is a part. Imagine the 

Earth covered by a net of channels connected with the ocean and filled by it, then the surface of 

the calm water in them would coincide with the mathematical surface of the Earth.... 

      One must consider them (the irregularities) as distributed randomly over the Earth's surface, 

as small elevations above or small depressions below the surface of the - on the whole – best 

fitting ellipsoid of revolution. The extent of these undulations will not be known, unless made the 

specific purpose of a measurement.... I don't believe that it is of much interest to find that extent 

in a specific case, since this does not permit a general conclusion; yet I would follow with 

interest an investigation which ... (using already existing promising data).., explores the 

behavior of these irregularities. Although one cannot expect to discover a pattern in the 

irregularities of the Earth's surface..., every new geodetic work connected with astronomic 

determinations will again point to their existence…. 

            The reasonable shape of the Earth was clearly brought forward by Listing in 1872. He 

suggested that the shape of the Earth should be considered to be irregular, and must be thought of 

in relation to the ocean. Later, Listing’s suggestion was taken by Helmert in 1884. He wrote, 

That we gained some knowledge of the figure of the Earth in general although its surface is not 

everywhere accessible, was made possible through the existence of a - in the first approximation 

– very simple rule of formation for the shape of the Earth as a whole; a rule, whose factors are 

the gravitation of the mass elements and the centrifugal force produced through the rotation 

about an axis.  

      Especially important among the level surfaces is the surface of the oceans, which one must 

consider here as subject only to the gravity of the Earth and therefore calm, so that any 

movement due to the tides, winds, and other causes of ocean currents is disregarded. This ideal 

ocean surface forms the visible part of a level surface. One calls it the mathematical surface of 

the Earth or (with Listing, 1872) the geoid, in contrast to the real, the physical surface of the 

Earth. Through a system of channels leading from the ocean shore into the interior of the 

continents, one could visualize the geoid also there. The calm surface of ponds and lakes, 

however, are usually parts of other level surfaces. 
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      The task of determining the shape of level surfaces is made easier by the fact that they have, 

in great approximation, the shape of an ellipsoid of revolution, slightly flattened at the poles. 

This made it possible to gain an approximate knowledge from measurements at a limited number 

of places.... 

Helmert coined the term Geoid, and defined the geoid as the shape of the Earth. He also raised 

the theory that related the geoid to potential—equipotential surface. Helmert suggested that the 

Earth’s surface should be thought of as the average corresponding to the mean sea level without 

winds, currents, tides, etc. However, Ferdinand Hassler is the first one actually started doing the 

geodetic survey on the coast in 1816. Bessel was wrong in the judgment of small geoidal 

undulations result from the distribution of irregularities, as the following development of 

geodesy. 

            Geodetic science entered into a great era when the first satellite (Sputnik) was launched 

on October 4th, 1957 and the United States launched the satellite (Vanguard) in 1958. This era is 

called the satellite geodesy era. Although Gauss proposed to minimize deflections of the  vertical 

to find the best fitting world as the spheroid,  as “an unattainable ideal” in geometric world net, 

attained later in satellite-derived world net.  
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Appendix 2 Theoretical Review 

 The geoid has been accepted as the “mathematical figure of the Earth” (Hofmann-

Wellenhof and Moritz, 2006); as it ought to be, the ellipsoid then serves as the reference surface 

of the Earth. To study the geoid, it requires the description of the observed gravity field in terms 

of difference in gravity anomalies which indicate the intensity of gravity, deflections of the 

vertical (direction of gravity, which is the slope of the geoid), geoidal heights (also called geoidal 

undulation or geoidal separation) which reflect shape, and disturbing potential which is also 

called the anomalous potential (geopotential). All of these four parameters are interrelated (see 

Figure A2.1 and Figure A2.2).  

 

Figure A2.1 The Geoid and Reference Ellipsoid (Hofmann-Wellenhof and Moritz, 2006). 
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Figure A2.2 The Deflection of the Vertical (Hofmann-Wellenhof and Moritz, 2006). 

The disturbing potential T is the small difference between the actual gravity potential W based on 

the geoid and the normal gravity potential U based on the reference ellipsoid surface:  

                                                                                                                                   (A2.1) 

The geoidal undulation N is the distance PQ (Figure A2.1) between the geoid and ellipsoid (see 

Equation A2.2).  

                                                                                                                                    (A2.2) 

In Equation A2.2, h is the ellipsoidal height that above the ellipsoid, and H is the orthometric 

height that above the geoid.  

As illustrated in Figure A2.1, the gravity g at point P of the geoid and the normal gravity γ at 

point Q of the ellipsoid. The gravity anomaly (difference in magnitude) is computed: 
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                                                                                                                                   (A2.3) 

The deflection of the vertical is the difference in direction (also see Figure A2.2; a north-south 

component of the deflection of the vertical ζ and an east-west component η). 

There is also a possibility that compare g and γ at the same point P of the geoid. Then the gravity 

disturbance is obtained by  

                                                                                                                                   (A2.4) 

            The determination of the geoid produced a long line of theoretical studies. In 1849, a 

theorem by G.G. Stoke, well-known as Stoke Theorem, provided a way to compute the geoidal 

undulation at point P of the geoid from gravity anomalies. Equation A2.5 is called Stokes’ 

formula or Stokes’ integral (Figure A2.3).  

                                                                          ∬      
 

                                            (A2.5) 

where S represents the geoid;  
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Figure A2.3 The Stokes Theorem (Fischer, 1975). 

Using Stokes’ formula to compute a global geoid from gravity anomalies were first made by R. 

A. Hirvonen in 1934; later in 1948 by L. Tanni, and then updated by Heiskanen in 1957 (Fischer, 

1975). The reference ellipsoid used in these computations has a flattening of 1/297. In 1928, F. 

A. Vening Meinesz gave a derivative formula which computes deflections of the vertical, the 

geoid’s slope, from the gravity anomalies as well.  

            The reduction of observed gravity from the physical surface of the observation is needed 

to refer to the geoid. Several techniques have been developed based on the different topographic 

masses above the sea level. Free-air reduction by a theoretical vertical gradient of gravity 
  

  
, we 

have, 

                                                                                                                                    (A2.6) 

where 
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                                                         (A2.7) 

F is the free-air reduction to the geoid; g is observed gravity; g0 is the observed gravity refer to 

the geoid; H is the height between the physical surface of the observation and the corresponding 

location on the geoid. The assumption of this technique is no masses above the geoid. The 

Bouguer reduction is using a mean standard density value of the physical surface. In other words, 

it assumes that the masses outside the geoid should be completely removed in the Bouguer 

reduction. Terrain correction is simple, and this technique is for the effect of topographic 

variations in the close neighborhood.  

            When the compensation in masses was questioned, the reduction for such compensation 

was developed by J. H. Pratt in 1854. Isostatic reduction started with Pratt’s calculations of the 

effect of the Himalayas on the plumb line at different stations (Hofmann-Wellenhof and Moritz, 

2006). The topographic deflection of the vertical that affected by the attraction of the masses was 

much larger than the observed discrepancy between the geodetic and astronomic positions. The 

Pratt-Hayford theory of isostatic supposes that lighter compensating materials underneath the 

Himalayas. This theory balances the excess masses with the underground deficient masses in 

mathematical way, which was also followed by other theories, such as G. B. Airy theory, Airy-

Heiskanen theory, Vening Meinesz theory, M. P. Rudzki, etc. (Fischer, 1975; Hofmann-

Wellenhof and Moritz, 2006 ). They were applied to the deflection of the vertical as well as to 

gravity anomalies.  

            Physical geodesy has also developed along Helmert’s theories. Unlike Stokes’ theorem 

need various hypotheses (details can be founded in Heiskanen & Vening Meinesz, 1958), this 

direction required a minimum of hypotheses. With avoiding the assumption of mass transfers 
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when reduction is required to fit the condition of Stokes’ theorem, a theorem by M. S. 

Molodensky in 1945 can directly work from observations on the topographic surface instead of 

the geoid. The surface by Molodensky’s theorem is quasigeoid, which is plotted the height 

anomalies above the ellipsoid. According to Hofmann-Wellenhof and Moritz (2006), quasigeoid 

does not have a physical meaning and is not a level surface.  
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Appendix 3 Notes of Universal Kriging with Constant Trend Removed 

 

 

Figure A3.1 Semivariogram of the universal stable kriging with removal of constant trend. The 

averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis (in 

degree). Binned values are shown as red dots, which are sorted the relative values between points 

based on their distances and directions and computed a value by square of the difference between 

the original values of points; Average values are shown as blue crosses, which are generated by 

binning semivariogram points; The model is shown as blue curve, which is fitted to average 

values. Model: 0.24582×Nugget+369.12×Stable(2.1204,1.9385).  

 

Figure A3.2 Semivariogram with all lines (green lines) which fit binned semivariogram values. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree).  
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Figure A3.3 Semivariogram with showing search direction. The tolerance is 45 and the 

bandwidth (lags) is 3. The local polynomial shown as a green line fits the semivariogram surface 

in this case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) 

on the x-axis (in degree). 

 

Figure A3.4 A semivariogram map. The color band shows semivariogram values with weights 

(unit in mgal
2
). 

 

Figure A3.5 A semivariogram map with an example search direction transect (unit in mgal
2
). 
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Figure A3.6 Semivariogram of the universal Gaussian kriging with removal of constant trend. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree). Binned values are shown as red dots, which are sorted the relative values between 

points based on their distances and directions and computed a value by square of the difference 

between the original values of points; Average values are shown as blue crosses, which are 

generated by binning semivariogram points; The model is shown as blue curve, which is fitted to 

average values. Model: 0.75508*Nugget+360.22*Gaussian (2.0244).              

                                  

 

Figure A3.7 Semivariogram with all lines (green lines) which fit binned semivariogram values. 

The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) on the x-axis 

(in degree). 
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Figure A3.8 Semivariogram with showing search direction. The tolerance is 45 and the 

bandwidth (lags) is 3. The local polynomial shown as a green line fits the semivariogram surface 

in this case. The averaged semivariogram values on the y-axis (in mgal
2
), and distance (or lag) 

on the x-axis (in degree).  

 

 

Table A3.1 Cross validation statistics compared between the stable and the Gaussian techniques. 
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Appendix 4 How to Read Semivariogram in ArcGIS 10 and 10.1 

The exact values on y-axis of the semivariogram shown in Chapter 2, for example,  

Figure 2.7 are vague to read. The way to read this value is using the formula: 

   (    ). 

However, the scientific notation often writes as    (   ). Therefore, the partial sill of the 

semivariogram in Figure 2.7 is              (369.1191).  

 

Figure 2.7 in Chapter 2. 

 

 


